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Abstract
In recent years, the study of classification shifted to algorithms for training the classifier
from data that may be missing the class label. While traditional supervised classifiers al-
ready have the ability to cope with some incomplete data, the new type of classifiers do not
view unlabeled data as an anomaly, and can learn from data sets in which the large majority
of training points are unlabeled. Classification with labeled and unlabeled data, or semi-
supervised classification, has important practical significance, as training sets with a mix
of labeled an unlabeled data are commonplace. In many domains, such as categorization
of web pages, it is easier to collect unlabeled data, than to annotate the training points with
labels.

This thesis is a study of the information regularization method for semi-supervised
classification, a unified framework that encompasses many of the common approaches to
semi-supervised learning, including parametric models of incomplete data, harmonic graph
regularization, redundancy of sufficient features (co-training), and combinations of these
principles in a single algorithm. We discuss the framework in both parametric and non-
parametric settings, as a transductive or inductive classifier, considered as a stand-alone
classifier, or applied as post-processing to standard supervised classifiers. We study the-
oretical properties of the framework, and illustrate it on categorization of web pages, and
named-entity recognition.

Thesis Supervisor: Tommi Jaakkola
Title: Associate Professor
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Chapter 1

Introduction

Classification, the topic studied in this thesis, is one of the standard sub-fields of machine

learning. In classification the goal is to produce algorithms that can predict the category of

an object from a few measurable features of that object. In traditional supervised learning,

one builds such classifiers from a training set of sample objects along with their associated

category. Suppose for example that the goal is to determine whether a news article fits the

“business” category. One can build a classifier from a number of sample articles that we

manually determined whether they belong to the “business” category. Supervised learning

algorithms generally require that all training examples are labeled in order to contribute to

the classifier1.

In contrast, in the traditional unsupervised learning sub-field of machine learning algo-

rithms do not require any knowledge about the category of the training objects whatsoever.

The goal is not classification, but only clustering. Given a set of news articles of un-

known category, an unsupervised learning algorithm would group the articles in a number

of unidentified categories, based on, for example, the similarity of their word distributions.

Semi-supervised learning is a more recent development in machine learning that blurs

the line between supervised and unsupervised learning. The goal is to construct a classifier

from a training set that consists of a mix of labeled and unlabeled objects. The simplest

semi-supervised classifier would be a clustering step followed by a supervised classifier

1Some supervised algorithms are robust to a few examples with missing labels; nevertheless, they are not

designed to learn from those samples.
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that predicts a label for each resulting cluster. If we can separate news articles based on

their word distribution alone into “business” and “non-business”, without knowing which

cluster is “business”, then we need only a few articles of known category to label the

clusters correctly.

It is typical of semi-supervised algorithms to require only a few labeled objects if they

have access to a large number of unlabeled ones. Thus semi-supervised learning is well

suited to situations in which it is inexpensive to gather unlabeled data, but labeling it is

more involved. This is the case when we can gather unlabeled data automatically, but

labeling it requires human labor. We may be able to gather automatically hundreds of news

articles every day from online feeds, but most of this data comes untagged, and a person

would need to manually read the articles to determine their category.

The topic of this thesis is a framework for semi-supervised learning that encompasses

many of the current approaches, the information regularization framework. At the center

of the framework lies the notion of semi-supervised bias. A semi-supervised bias is a

subset of the training data that we believe a priori that it consists of objects of similar

category. Referring to our news article example, we could formulate a semi-supervised bias

for every word in the vocabulary, of all articles that have that word in common. We could

also formulate semi-supervised biases based on whether the articles come from a common

source, or whether they were written close in time. The semi-supervised biases need not

be 100% correct, and weak signals of label similarity are fair. The goal of information

regularization is then to assign labels to all unlabeled documents in a way that is most

consistent with the observed labeled objects, and with the semi-supervised biases.

The range of semi-supervised biases that can be defined is quite broad, so that the

framework is flexible, and subsumes many known semi-supervised algorithms, including

parametric models of incomplete data, harmonic graph regularization, redundancy of suf-

ficient features (co-training). Because we can envision an information regularization algo-

rithm based on semi-supervised biases of different kinds, with information regularization

it is also possible to combine known semi-supervised algorithms.

Szummer and Jaakkola [53] introduced the original information regularization principle

in a study of the influence of the distribution of the objects on the variation in their label,

18



when the objects are represented by a one-dimensional real number. This thesis reformu-

lates the original idea and makes it into a generic framework applicable to a much wider set

of tasks than the original. It introduces a simple and efficient message passing algorithm,

that turns information regularization into a practical semi-supervised method. The thesis

also touches many theoretical aspects of information regularization.

1.1 Outline

In Chapter 2 we introduce semi-supervised classification, along with a literature review of

the notable approaches, and place information regularization in context.

In Chapter 3 we introduce the framework of information regularization in its generic

form. We discuss in detail the classification objective, but defer the presentation of specific

algorithms for optimizing it to instantiations of the framework in subsequent chapters. We

show connections to semi-supervised learning with the EM algorithm, co-training, graph

regularization, low-density separation, and discuss the information theoretical interpreta-

tion of the framework. We also categorize the various forms in which we can instantiate

the information regularization framework.

Chapter 4 is about semi-supervised learning on tasks with continuous features, on which

the data density is correlated with the variation of the label. We refine the objective to ac-

count for the infinite number of regions that one can define on continuous spaces, obtaining

it as a limiting form of the generic information regularization objective.

In Chapter 5 we apply information regularization in a transductive setting, in which

we are only interested in computing the labels of a finite number of data points that we

know in advance. Information regularization on graphs results in an efficient optimization

algorithm that is the main application of the framework. We discuss the various properties

of the algorithm.

Chapter 6 illustrates the algorithms developed in previous chapters on both synthetic

and real tasks. We demonstrate the performance of the framework on categorization of

web pages, and on named-entity recognition.

Appendix A contains a glossary of symbols that appear in the thesis with a consistent

19



meaning. Please refer to this list often to clarify any ambiguity in regards to notation.

20



Chapter 2

Background

A central problem in machine learning is classification: building algorithms that learn from

examples to categorize data with high accuracy. In its abstract formulation, a classifier

assigns class labels y ∈ Y to data points x ∈ X , where we represent each point by a vector

of features, a set of measurable quantities that summarize our knowledge about the data

point. For example, x may be a vector of pixel intensities in a 128 × 128 image, and y

the name of the person whose face is depicted by the image; or x may be the set of words

that belong to a document, and y its topic. Assuming that data and associated labels are

distributed according to PXY (x, y), and that ŷ(x) denotes the output of the classifier, a

measure of its performance is the expected error

∑
y∈Y

∫
PXY (x, y)δ (y, ŷ(x)) dx (2.1)

where δ(y1, y2) = 0 if y1 = y2, and 1 otherwise.1 Research on classification aims at

constructing classifiers of small expected error.

Had the data distribution been known, classification would be trivial, and we could

construct an optimal classifier by setting ŷ(x) = arg maxy∈Y PY |X(y|x).2 In practice

PXY (x, y) is never known, and classification algorithms minimize approximations to the

expected error based on available evidence, often with theoretical guarantees of the error

1For utmost generality, we would substitute δ by a loss function L(y, ŷ(x)). Such generality is not needed

here though.
2In the literature this is called the Optimal Bayes Classifier [7].
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in the approximation.

In conventional machine learning (a.k.a. supervised learning), the evidence on the basis

of which the expected error is approximated and minimized consists of a set of training

examples {x1,x2, . . . ,xl} sampled from PXY (x, y) independently. Following up on our

previous examples, the training set could be pictures of known persons; or documents of

known topic. These labeled examples can be used to teach the classifier to predict class

labels for unobserved data.

While it is clear that examples of known class label are informative for training clas-

sifiers, recent developments suggest that even unlabeled data is valuable. Ideas of using

unlabeled data for classification have been around since as early as 70’s [18], but only in

the past 5–8 years the field has seen an explosion of articles published on the topic. Semi-

supervised learning3 is attractive because training data is usually gathered unlabeled, and

there is some cost to labeling it by human experts. Researchers often quote protein shape

classification as an extreme example, as the aminoacid sequence of a protein is readily

available (the feature part), but determining the 3D structure (the label part) takes months

of expensive experimental effort. In the more typical case the cost of labeling samples is

not that disproportionate, but unlabeled data is still more available. In what follows, the

training data consists of set of points D = {x1,x2, . . . ,xn}, and the labels of the first l

points: yi, 1 ≤ i ≤ l. The other u = n− l points remain unlabeled.

A question asked by many who are exposed to semi-supervised learning for the first

time is why unlabeled data carries information useful for classification. How can observing

a document of unknown topic can help at all in determining the topic of other documents?

Abundant unlabeled data does provide the ability to get an accurate estimate of how data is

distributed, and it is often the case that the data distribution affects the likely assignments

of labels. An example is illustrated in Figure 2-1, where the fact that data clusters is an

indicator that all points within each cluster share the same class label.

3In early literature semi-supervised learning was also known as unsupervised classification, learning with

labeled and unlabeled data, or with partially labeled data.
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Figure 2-1: Sample semi-supervised learning problem. The goal is to produce the best

linear decision boundary between the two classes. Left: decision boundary found by a

supervised learning method, trained only on labeled data. Right: decision boundary found

by a semi-supervised method, trained also on many unlabeled samples.

2.1 Semi-supervised learning approaches

There have been many recent and diverse approaches to semi-supervised learning, and we

introduce the reader to the current work in the field.

To get a better understanding of the role of unlabeled data in classification, let us sep-

arate the distribution of data and labels from which the classification task is sampled,

PXY , into the marginal distribution PX(x) =
∑

y∈Y PXY (x, y), and the label distribu-

tion PY |X(y|x) = PXY (x, y)/PX(x). We will refer to PXY , PX , and PY |X as the joint, the

marginal, and the conditional. Unlabeled data provides information about the marginal,

while in classification we need to estimate the conditional. If the marginal and conditional

distributions are related by a priori domain assumptions, than unlabeled data can contribute

to the estimation of the conditional, resulting in semi-supervised learning.

We structure our presentation of existing approaches to semi-supervised learning in

terms of the nature of the relation between the marginal and the conditional that each algo-

rithm assumes. The marginal and conditional may be related due to a hard restriction on

the joint, such as a parametric from that makes the marginal and the conditional dependent
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through the value of the parameter; or through a soft constraint, a domain-specific bias that

certain associations of marginals and conditionals are a priori more likely.

All semi-supervised learning algorithms operate on a set of domain-specific assump-

tions that relate the marginal and conditional, and their performance is highly dependent

on the accuracy of these assumptions for the task at hand. Semi-supervised algorithms are

even more sensitive to these assumptions that pure supervised ones, and cannot be distri-

bution free, as the data marginal plays an important role in semi-supervised learning. The

strength of the restrictions placed on the data distribution trade off robustness for potential

in reducing error rates with the addition of unlabeled data.

We identify the following semi-supervised principles treated by the literature, that will

be expanded in the rest of the chapter. Some principles may overlap.

hard constraints on the joint Parametric or other type of restrictive definitions of the

family of the joint distribution PXY introduce an implicit dependency between the

marginal and the joint, that can be exploited for semi-supervised learning. Depend-

ing on the type of restriction, we distinguish:

parametric joint The joint distribution of features and labels is restricted to a para-

metric family such as a mixture of Gaussian classes. PX(x) and PY |X(y|x)

become functionally dependent through the unknown parameter of the family.

This assumption leads to semi-supervised learning by maximum likelihood and

the expectation-maximization (EM) algorithm or variations [26, 30, 50, 45, 19,

20, 16, 47].

redundantly sufficient features The data distribution is such that x contains mul-

tiple features each sufficient for supervised classification, yet complementary

in the sense the labels obtained from some feature are not a good predictor

of the labels derived from other features. For example, x = (f1, f2), and su-

pervised learning is reasonably accurate either based on f1, or on f2. Then

supervised classifiers based on individual features can be bootstrap each other

over the unlabeled data, provided that they are sufficiently different. Notable

algorithms that exploit this property include co-training, in which supervised
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classifiers on individual features can then train off each other on unlabeled ex-

amples [9, 25, 17, 46, 31, 44, 12, 4], and some instances of the framework

presented in this thesis, information regularization.

other types of latent structure Researchers considered various restrictions on the

joint distribution that can be exploited for semi-supervised learning, including

low-dimensional manifold representations of the joint distribution (see [48] for

an overview of such methods), or a tree latent structure that generates both data

and labels in [37].

biases on the label distribution This category of methods place a soft bias on the likely

label distribution based on the received unlabeled data. We distinguish:

metric-based similarity This principle presumes the existence of a metric on X

such that proximity under this metric is correlated with label similarity. Typi-

cally these methods employ a weighted graph that encodes the similarity [10,

52, 62, 15, 11, 63, 61, 64, 13, 59, 60]

relational similarity A characteristic task from this category is the presence of a

number of relations that indicate label similarity, relations that are not necessar-

ily linked to the traditional feature representation of the points. Relations can be

citation structure, web links, objects that share a property, documents that share

a word, etc. The distinction between relational and metric-based similarity is

not strict, and many of the semi-supervised methods designed for one type of

bias can be adapted to behave like instance of the other type [58, 56, 55, 28, 3]

data density bias We exploit an assumption that the conditional is smooth as a func-

tion of x, and that smoothness depends on the data density near x. Typically,

the denser the region, the more restricted the variation of the conditional is. The

same principle can be stated as the property that the decision boundary between

the classes is likely to pass through regions of low-data density. The princi-

ple exploits the common knowledge that classes usually span dense clusters.

This principle is related to metric-based similarity, in the sense that researchers

sometimes use the metric to define a density with respect to which the variation
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in the label must be smooth. [6] defines one such notion of smoothness from the

geometry of a data manifold endowed with a data-dependent notion of distance.

Other notable works include [49, 54, 53, 34]

Some semi-supervised algorithms are based on a mixture of semi-supervised principles

from different categories. For example [39] combines features of co-training, metric-based

similarity, and parametric models into a single algorithm. information regularization, the

framework developed in this thesis and previous literature ([53, 21, 23, 22]), can account

for both hard constraints and soft biases. In particular, it can account for both types of label

similarity biases, it can act as a data-dependent smoothness prior, that enforces low-density

separation, it can exploit redundancy in the features, and it subsumes the EM algorithm in

parametric modeling of the joint.

2.2 Hard constraints on the joint

Semi-supervised methods in this category assume hard constraints on the possible distri-

butions PXY (x, y). If the true underlying data distribution satisfies indeed the assumed

constraints, such methods can be quite powerful, and the contribution of unlabeled data to

classification performance can be significant. The disadvantage of these methods is that

the true distribution practically never belongs to the assumed family. Instead, the assumed

family is only an approximation to the true distribution, and the accuracy of the approx-

imation affects performance. Theory that bounds the penalty on performance given the

distance between the true underlying distribution and the assumed family is lacking (even

for supervised learning).

2.2.1 Parametric joint

This category of methods comprises parametric restrictions on the joint: PXY that be-

longs to a parametric family {PXY (x, y; θ) ; θ ∈ Θ}. For example, we could assume that

PX|Y (x|y ; θ) is Gaussian for each class. The parameters θ can be estimated from the
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training sample T by maximizing its log-likelihood:

l∑
i=1

log PXY (xαi
, yαi

; θ) +
n∑

j=l+1

log PX(xαj
; θ) (2.2)

The objective can be maximized by various algorithms, including the iterative expectation-

maximization algorithm introduced in [26], that treats the label y as a missing variable

when dealing with unlabeled samples. At every iteration, the EM algorithm “labels” the

unlabeled data with its most likely expected label is a soft sense (by assigning a distribution

over labels for each sample, instead of computing a hard label), and then re-estimates the

parameters of the model as if the unlabeled data were labeled. The EM algorithm has been

applied successfully to a number of semi-supervised domains [30, 50], including to clas-

sification of documents into topics [45]. The EM algorithm has the potential disadvantage

that only guarantees a local optima of the likelihood.

Some parametric families posses the property of identifiability, that greatly increases

the possible gains from semi-supervised learning when present. A family of joint distribu-

tions is identifiable with unlabeled samples if enough unlabeled samples restricts the space

of possible joints to a finite number of choices [19].

For example, the Gaussian distribution family possesses this property. If each class is

Gaussian, then the marginal PX is a mixture of Gaussians with a known number of mix-

tures. Given enough unlabeled data sampled from an unknown such mixture, and without

any labeled training data, we can estimate the parameters of the mixture exactly. The

mixture determines a finite number of possible joints, corresponding to every possible per-

mutation of the labeling of the clusters.

If the joint family is identifiable, unlabeled data can reduce significantly the number of

labeled samples required for learning the classifier. On the other hand, if infinite unlabeled

data still leaves a large set of possible distributions, semi-supervised learning is weaker, but

still useful.

Introducing unlabeled samples into the likelihood function does not always improve

classification, even though the same parametric model seems to work well on the labeled

data alone. In other words, semi-supervised learning is more sensitive to parametric model

assumptions than supervised learning, in the same way in which learning with incomplete
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data is sensitive to model assumptions. Cohen [16] attempts to understand this phenomena.

Nigam [45] alleviates the problem by stopping EM before convergence, or by artificially

reweighting labeled vs. unlabeled samples in the log-likelihood function. In [20], Cor-

duneanu and Jaakkola provide a justification for the reweighting in terms of model mis-

match, and suggest a optimal weight. Rosenberg [47] introduces a self-training algorithm

similar to EM, but with a more conservative E-step that labels only the unlabeled samples

that satisfy a measure of confidence.

2.2.2 Redundantly sufficient features

One popular approach to semi-supervised learning applies to the situation in which we have

multiple supervised classifiers on the same task, that are compatible, but not identical. The

idea is to use each classifier to correct errors made by other classifiers on the unlabeled

data, improving the training of all classifiers in the process.

A. Blum [9] introduces one of the earliest examples of this principle, co-training.

Assume that the feature representation of each data point x consists of two components

(f1, f2). Let PXY be the distribution of data and labels, and PF1Y and PF2Y distributions

obtained by marginalization. Co-training makes the following compatibility assumption

about the task:

PX(f1, f2) > 0 ⇒ max
y∈Y

PF1Y (f1, y) = max
y∈Y

PF2Y (f2, y) (2.3)

In other words, f1 and f2 are compatible with each other only if the label obtained by

looking only at f1 is the same as the label obtained by looking only at f2. Each feature is

by itself sufficient for classification: if two samples (f1, f2) and (f ′1, f
′
2) have f1 = f ′1 or

f2 = f ′2, then they necessarily have the same classification label.

Here is how one may use the compatibility assumption to build a semi-supervised clas-

sifier. Given all the available unlabeled data, one may construct a graph with vertexes the

data points, and edges between any two points that have the same f1 or f2. The edges

determine connected components in the graph. The compatibility assumption asserts that

all points in a connected component have the same label. Given a training set of observed

labeled samples, now it is enough to construct a classifier on the connected components.
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Since the numbers of connected components is usually much smaller than the number of

points, the classifier requires fewer labeled samples (unless f1 and f2 are highly correlated,

in which case co-training is unlikely to impact classification).

While the compatibility assumption used in this manner can be quite powerful, it is

almost never satisfied in practice. In fact, most of the time the above algorithm will produce

a single connected component in the graph, because every f1 will be compatible with every

f2, even PX(f1, f2) is infinitesimal.

Let us analyze the legitimacy of the compatibility assumption. In supervised learning,

especially in the PAC learning framework, we may assume that the feature representation f1

completely determines the classification label, even though in reality f1 is never a complete

description of the object. Even though the label may be non-deterministic due to noise and

other unknown factors, supervised classifiers based on the assumption, such as the SVM,

are quite robust and perform well.

In this light it seems natural that if we looked at the other representation of the object,

f2, we should be able to make the same sufficiency assumption. However, the problem

emerges when we start propagating these strong assumptions over a large data set for which

we otherwise do not have any label information. A single noisy sample can connect two

large components in the graph, ruining the algorithm. It is conceivable that if the task

does not strictly abide to the compatibility assumption, SVM’s constructed over f1, or

over f2 would perform better than the same SVM’s boosted over the unlabeled data by

enforcing the assumption. Thus the same type of sufficiency assumption that works well for

supervised learning, turns out to impose a much stronger prior if propagated over unlabeled

data.

Nevertheless, there are many ways to soften the compatibility assumption of co-training

and turn it into a powerful robust semi-supervised algorithm. Even the original article [9]

propagates label information from one feature to the other only on points on which the

classifiers are most confident, in an iterative bootstrapping fashion.

[46] uses the same mutual bootstrapping technique for information extraction, where an

algorithm generates both the semantic lexicon, and the extraction patterns for the domain

over unlabeled data. [17] uses similar semi-supervised methods for named entity recogni-
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tion, where he shows that a model trained on spelling and context features that bootstrap

each other performs better that a model trained on all features together. [31] uses yet an-

other heuristic to ensure one classifier communicates label information to the other only

in point that are labeled confidently. [44] compares co-training with semi-supervised EM

empirically, and concludes that co-training is most effective when the features f1 and f2

are truly independent.

[4] provides a nice theoretical analysis of co-training, by formalizing the procedure

of bootstrapping from sets of confident labels, and iterating. The authors formalize the

property that the features must not be correlated by introducing the notion of expansion.

The property is weaker than the true independence argued in [44]. Using this notion they

are able to produce a bound on the error rate and the number of co-training iterations

required to achieve it. On the downside, their analysis requires that the classifiers can learn

only from positive samples.

[44] also discusses a probabilistic version of co-training, co-EM. A probabilistic clas-

sifier based on f1 labels all points probabilistically (after being trained on labeled data

initially). The probabilistic labels are then used to train a probabilistic classifier on f2.

We then label all points with the output of the second classifier, and return to training the

first classifier. We iterate until convergence. The co-EM algorithm is still a heuristic, as it

does not stem from optimization of a global objective. [12] substitute the EM algorithm in

co-EM with a Support Vector Machine modified to output probabilistic outputs.

The information regularization itself framework also leads to one way of softening the

co-training principle by turning the compatibility assumption into biases: points that share

f1 are biased to have similar labels, and points that share f2 are also biased to have similar

labels. The biases are resolved in the form of a global regularizer, that can be combined

with the supervised classifiers.

2.2.3 Other types of latent structure

A distinct direction in semi-supervised learning consists of a number of algorithms that

assume that data is embedded in a manifold that can be learned from unlabeled data alone.
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A classical example comes from the area of computer vision. While images are usually

represented by a large dimensional vector of pixels, they can be often explained by a small

number of transformations, such as rotations, translations, changes in lighting, etc. The

knowledge of the manifold can result in a classification domain that requires fewer labeled

samples to learn, in the same way a vector space of lower dimensionaltiy has lower VC

dimension, and lower learning complexity.

[6] considers a data manifold constructed from a metric correlated with the classifica-

tion labels. He defines a geodesic consistent with the metric, that induces a smoothness

criterion on the distribution of labels, based on its representation in a basis relative to the

Appalachian operator. Since the variation in the label will be uniform with respect to the

intrinsic structure of the manifold, the net result is that the labels are encouraged to vary

in regions of low data density. Therefore this line of work is very similar to the semi-

supervised learning on directed graphs that we will discuss on the later on in this chapter.

Other approaches that involve the manifold structure of the data exploit the fact that

the manifold may have an intrinsic dimensionality lower than that of the vector space X .

A number of methods have been developed for learning the structure of the manifold (see

[48] for a survey), and unwind it into a vector space of lower dimensionality. Methods

vary in the assumptions, but many require that the manifold does not have holes, or that the

intrinsic dimensionality is known in advance. These methods usually rely on computing

eigenvalues of manifold operators, which makes them unpractical for a large number of

unlabeled samples; yet, manifold learning need abundant unlabeled data to be reliable.

Fast approximations do exist, and it is conceivable that manifold learning will come with

fast, reliable, and robust algorithms.

[37] introduces yet another assumption about the latent structure of the data distribution

that can be exploited for semi-supervised learning. Feature values and labels are generated

from a tree model. The tree resembles a hierarchical clustering, with each observed point

(labeled or unlabeled) being a leaf. To generate a set of labels and features for all points,

we sample uniformly a (x, y) pair at the root, then propagate the value to the leafs, al-

lowing random mutations to occur with small probability on each edge. According to the

generative model, closer siblings in the tree are less likely to have different labels or feature

31



values than remote siblings. In order to perform semi-supervised learning, one can infer the

posterior over the tree structures that explain a particular data set by looking at the similar-

ities among unlabeled feature values. The posterior over tree structures can than be used to

propagate the known labels to unlabeled points. The authors name the resulting classifier

Tree Based Bayes. The efficient version of the algorithm uses an agglomerative cluster-

ing procedure to approximate the MAP tree. In the end, Tree Based Bayes introduces just

another type of smoothness functional correlated with a metric on X .

2.3 Biases on label distribution

This category consists of algorithms that leverage the unlabeled data by assuming that

certain sets of points have similar labels due to their proximity with respect to a metric, or

due to other relations that they satisfy. The local similarity biases can be used to regularize

and assignment of labels to unlabeled data. Information regularization falls under this

category, though it is flexible enough to also model other semi-supervised principles.

2.3.1 Metric-based similarity

Semi-supervised methods on undirected graphs

A popular category of semi-supervised algorithms treat the unlabeled training points points

D as vertexes of an undirected graph, connected by weighted edges that express the strength

of the similarity between labels. Given a few labeled vertexes, the algorithms resolve the

labels of the remaining vertexes in a way that is consistent with the similarity weights

encoded by the graph. Regularization on undirected graphs can be a powerful semi-

supervised method, limited only by the type of interactions that it accepts: symmetrical,

pairwise relations only. If the graph is sparse, that is if we consider only local interactions

between the points, graph regularization is computationally efficient.

In what follows let G = (D, E) be the undirected graph, where E is the set of edges,

and eij be the edge that connects xi to xj , if it exists. Let wij be the weight that encodes

the strength of the similarity bias between the endpoints, with 0 meaning that there is no a
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priori bias. Also, let us assume that the classification is binary. Let yi be the label of point

xi, yi ∈ {0, 1} that needs to be determined, and zi its soft version, zi ∈ [0, 1]. The first l

points in D are labeled with labels yl
i.

Markov Random Fields The Markov Random Field approach to semi-supervised learn-

ing places a full probabilistic model on the graph of interactions, that account for the

pairwise interactions:

Pr[y1, y2, . . . , yn] ∝ exp

∑
eij∈E

δ(yi, yj)f(wij) + λ
l∑

i=1

δ(yi, y
L
i )

 (2.4)

While the model has a clean theoretical formulation, it presents computational dif-

ficulties. Markov Chain Monte Carlo and Belief Propagation algorithms exist for

estimating the probable label configuration given the weights and the labeled data

(as a MAP estimate, or as an average over the posterior) [29], but they suffer from

many local minima, if the computational time is limited to polynomial. Other meth-

ods, as follows, employ approximate objectives that are nevertheless computationally

tractable.

Minimum Cut One of earliest semi-supervised algorithms on undirected graphs assigns

labels to unlabeled vertexes by cutting the graph across edges such that there is no

path connecting points of different classes [10]. All points sharing the same con-

nected component are assigned the same label. The cut is optimized such that the

sum of the weights of the edges it crosses is minimal. Minimize:∑
eij∈E

wij|yi − yj| =
∑

eij∈E

wij(yi − yj)
2 (2.5)

subject to fixing yi for the labeled samples. Optimization is efficient, with a max-flow

algorithm.

The min-cut algorithm operates only on hard labels, thus there is no indication in the

label confidence: we cannot tell that labels assigned near a decision binary may be

noisy. Also, there are multiple label configurations that achieve the minimum, and

the choice made by min-cut is arbitrary. The randomized version of the algorithm

[11] alleviates the problems by injecting random noise into the weights.
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One difficulty with the Minimum Cut algorithm is that the partitioning can be highly

unbalanced. The cut may leave out a single positive point just because it is not

connected to the rest of the points by enough, otherwise strong, edges. While other

graph regularization methods suffer from the same inconvenience, the discrete nature

of Min Cut (and almost discrete for the randomized version) makes it problematic to

“adjust” the distribution of labels by setting the decision threshold.

Graph Kernels A number of semi-supervised algorithms on undirected graphs assign la-

bels by minimizing a regularized loss function, with the objective of the following

form:
l∑

i=1

L(zi, y
L
i ) + λzT Sz (2.6)

where S is a matrix derived from the weights of the graph, and zi’s are relaxed to be

any real numbers. [5] solves the generic optimization by linear algebra, and provides

a theoretical analysis of generalization bounds.

If S = ∆ = D − W is the graph Laplacian, where D is a diagonal matrix with

dii =
∑n

j=1 wij , we obtain the Gaussian Random Fields and Harmonic Functions

algorithm [62]. The objective stems from a Gaussian Random Field approximation

to the discrete Markov Random Field. The objective admits a unique minimum, that

is a harmonic function: every label of an unlabeled point is the weighted average of

its neighbors. To find the optimal labeling, it is enough to iterate averaging updates

on every unlabeled point – convergence will occur exponentially fast in the number

of updates.

The harmonic function algorithm is related to the semi-supervised manifold learn-

ing algorithm presented in [6]. Belkin derives a smoothness regularizer on the graph

starting from the Laplacian operator on continuous manifolds. The harmonic func-

tion algorithm uses instead the discrete version of the Laplacian.

[59] uses a different regularization matrix, S = D−1/2∆D−1/2, the normalized graph

Laplacian. As [33] argues, the normalized Laplacian has better balancing properties

than the regular Laplacian.
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Other authors have published more aggressive transformations of the Laplacian, such

a transforming the spectrum of the Laplacian [15, 38, 63]. Some of these methods

even learn the transformation of the Laplacian from data. Such aggressive transfor-

mations are akin to learning the structure of the graph from data.

Spectral Graph Transduction In [35], Joachims modifies the Min Cut with a normalized

objective that removes it bias towards unbalanced classes. The exact form of the

modified objective is NP hard to optimize:

min

∑
eij∈E wij|yi − yj|∑
yi ·
∑

(1− yi)
(2.7)

subject to fixing yi for the labeled samples.

The objective can be made tractable by relaxing it and optimizing soft labels zi in-

stead of hard labels:

min
z

λzT Lz + (z− γ)T (z− γ) (2.8)

s.t. zT1 = 0 and zTz = n (2.9)

Here L is the normalized graph Laplacian D−1/2∆D−1/2, thus the objective is sim-

ilar to that of learning with local and global consistency [59]. The strength of the

regularization is given by λ. The labeled training points are encoded into the vector

γ:

γj =


0, for unlabeled samples√P

(1−yi)P
yi

for positive samples

−
√ P

yiP
(1−yi)

for negative samples

(2.10)

Spectral Graph Transduction optimizes the above objective by spectral methods.

SGP has better balancing properties than Min Cut.

Semi-supervised methods on directed graphs

Often the relations on which we base the semi-supervised bias are not symmetric (for ex-

ample, in k-NN, the relation between the center of the region, and a point belonging to it

is asymmetric). This motivates a class of semi-supervised graph regularization algorithms

that work on directed graphs.
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Markov Random Walks [52] studies the graph regularization problem by defining the

following Markov Random Walks process on the graph. The weights wij on the edges

of the graph induce a transition probability pi→j from every node i to its neighbor j,

where self transitions pi→i are allowed, and occur with higher probability than other

transitions.

[52] defines the following process for generating labels from nodes in the graph,

given that the probabilities that we need to estimate, PY |X(·|x), are known:

1. Select a node i uniformly at random from the graph.

2. Sample a label y according to PY |X(·|xi).

3. Perform t random transitions in the Markov Chain, following edges according

to the transition probabilities. After the transitions, say we reached node k.

4. Emit the sampled y as if it were generated by node k.

Then we can estimate PY |X(·|x) at every node such that the labels emitted by the

labels points according to the process described above match their observed label as

close as possible.

The semi-supervised bias imposed by the random walk depends strongly on the pa-

rameter t (the number of transitions), as well as on the importance of the self transi-

tion in comparison to other transitions (the two parameters are related in their con-

tribution). For instance, if t = 1, only immediate neighbors of observed labeled

samples will be labeled. If t→∞ all unlabeled points will get the same label.

The work was originally aimed at undirected graphs, but the construction of the

Markov Chain works in the same way even if the graph is directed.

Conditional Harmonic Mixing Conditional Harmonic Mixing [13] is a transductive graph

semi-supervised framework that differs from the mainstream semi-supervised graph

regularization methods in the following respects:

• It it based on a directed graph, thus it can model asymmetric influences between

labels
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• It is a probabilistic graphical model

• As opposed to Bayesian networks, it allows label distributions that are incon-

sistent with a global joint. This makes the label propagation algorithm efficient,

provably convergent to the unique optimal parameters on any type of graph.

Let D be the set of all training/testing points for which we need to determine proba-

bilistic labels PY |X(·|x), x ∈ D. The CHM model defines a semi-supervised prior by

means of a directed graph on D, and a set of given conditional probability distribu-

tions P ij
Y for every directed edge i→ j in the graph. The semi-supervised assumption

is that if the edge i→ j is present, than PY |X(y|xj) is similar to its estimate coming

from i: PY |X(y|xi)P
ij
Y (y). CHM places an objective that quantifies the degree of

similarity, and that must be minimized in order to find the labels. The objective is the

average Kullback-Leibler Divergence, over all incoming links:∑
i s.t. i→j

KL
(
PY |X(y|xi)P

ij
Y (y) ‖PY |X(y|xj)

)
(2.11)

Minimizing this objective leads to an update rule in which each label is updated

by the average of its estimates coming from each edge pointing to it. The update

provably converges to a harmonic function, in which each node equals the average of

incoming nodes (multiplied by the fixed conditional distributions attached to edges).

As in all graph regularization methods (including information regularization), there

is no good answer to learning the graph and its parameters. CHM provides a way

of learning the conditional distributions P ij
Y , but only in the case in which all points

are labeled. In practice, it turns out that identity conditional distributions do as well

as learned ones. To moderate the difficulty of learning the graph, CHM advocated

model averaging: average the resulting labels over a variety of probable graphs.

As other graph regularization methods, CHM can be used to update the probabilities

that result from a supervised classifier. This can be done by providing a duplicate set

of nodes, in which each node is connected only to its corresponding node in the main

graph. The duplicate nodes have their labels fixed to the output of the supervised

classifier.
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hub-authority [60] introduces a semi-supervised algorithm on directed graph following

the hub-authority paradigm. The authors convert the directed graph to a bipartite

graph, then define regularizer that is asymmetric in the roles of hubs and authorities

(the two layers of the bipartite graph). The resulting algorithm is an iteration in which

the label probability at each hub is obtained as an average of the label probabilities of

the authorities it liked to it, and the label probability of each authority is an average

of the labels of connected hubs. The two averages are weighted and normalized

differently.

2.3.2 Relational similarity

We distinguish from the mainstream graph regularization semi-supervised algorithms the

tasks for which we can identify heterogeneous label similarity biases, that cannot be mod-

eled well by standard graphs. Such biases typically come in the form of relations derived

from different sources of information, that need to be treated differently. The model is that

certain data points should have similar labels because they satisfy a certain relation. Ex-

amples of relations include documents having a word in common, co-cited papers, genes

whose proteins interact, books grouped by author, or by words in the title, and so on. The

field of relational learning deals with learning under such type of relational biases. It can

be viewed as semi-supervised learning, with the semi-supervised bias derived from external

sources of information.

Yarowsky [58] illustrates relational semi-supervised on the problem of word sense dis-

ambiguation. The author considers the following types of a priori biases of label similarity:

• instances of an word occurring in the same document are likely to be disambiguated

with the same meaning;

• instances of an word that have similar context are also likely to be disambiguated

with the same meaning.

His algorithm is a heuristic that propagates labels from a small number of “seed” training

points alternatively across these regions, and with the help of a decision-list supervised
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classifier. While the algorithm makes sense, there is no theoretical support for it – the itera-

tion does not even optimize an objective. [1] studies the original Yarowsky algorithm from

a theoretical perspective, and produces a number of variations, each of which optimizes a

formal objective. Nevertheless, our information regularization framework can model the

same type of biases and it is cleaner, with theoretical backing.

[3] encounters relational biases on a task of classifying persons in webcam video. The

authors identify label similarity biases among webcam frames derived from proximity in

time, proximity in the color histogram, and similarity (in terms of Euclidean pixel-wise dis-

tance) of faces detected in the frame. While the similarities are qualitatively different, the

authors still use an off-the-shelf undirected graph regularization semi-supervised method,

with good results. They do not have any results to compare on a semi-supervised method

that can model (and weight) the different types of similarity biases differently.

The Probabilistic Relational Model framework [27] was specifically designed for learn-

ing on data from relational databases, in which the relations between constituents are in fact

semi-supervised biases on the attributes of those constituents. The framework is pioneering

in distinguishing between relational templates and the instances of the relations themselves.

The edges in a standard graph for semi-supervised learning are instances of relations, that

have been generated by a certain rule (template). For example, one rule can be proximity

in the Euclidean metric, and another rule can be co-citation. Given a task, there are many

possible templates for generating a graph for semi-supervised learning. The PRM frame-

work provides algorithms for learning the best set of templates for a particular domain, and

for inference once the templates have been learned. Therefore, the framework can learn

the characteristics of the domain, and use those characteristics to define semi-supervised

biases for a particular instance of a problem from the domain.

In the PRM framework, the templates induce a full Bayesian network with the param-

eters of the template copied in all links between data points that have been generated from

the template. Thus semi-supervised inference has the same difficulties of inference as in-

ference in loopy Bayesian networks. The PRM framework does not offer the convexity

guarantees of other semi-supervised algorithms on graphs.

[27, 28, 56] provide algorithms for learning the templates of a PRM. Taskar introduces
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the Relational Markov Network framework [55], that differs from PRM’s in that it uses

undirected models. The concept is similar: relational templates are rolled into a probabilis-

tic Markov network.

2.3.3 Data density bias

A number of semi-supervised classifiers exploit unlabeled data by assuming that the condi-

tional varies smoothly with x, where the smoothness depends on the data-density, as esti-

mated from unlabeled samples. Methods that exploit metric-based similarity, as discussed

in the previous section, make implicit data-dependent smoothness assumptions. Here we

will discuss only methods that make this assumption explicit.

Adaptive regularization

Schuurmans [49] considers a regularizer that penalizes conditionals that behave differently

on the labeled training data versus on unlabeled data. This regularization principle is based

on the observation that overfitted conditionals typically behave erratically on unlabeled

data, much differently than on data with observed labels. For example, a polynomial of

large degree would fit any labeled training set with limited number of samples, but the

value of the polynomial would vary by large amount on unlabeled samples; a linear function

would be smoother on the unlabeled data, even if it does not fit labeled data well.

The author measures the behavior of a conditional PY |X(y|x; θ) by computing the dis-

tance to a fixed pre-selected function φ(x, y). The regularizer is the difference between this

distance measured empirically on observed labeled data, and the distance computed on the

data distribution estimated from unlabeled data:

R(θ) = | 1

n

n∑
i=1

dist(PY |X(yn|xn; θ), φ(xn, yn))−∫
dist(PY |X(y|x; θ), φ(x, y))dP̂Y |X(y|x)dP̂X(x) |

(2.12)

The regularizer is a semi-supervised method in the sense that focuses on regions of high

unlabeled data density — erratic behavior is penalized less in regions where unlabeled data

is scarce. In contrast to classical regularization, it is interesting because it adapts to both
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labeled and unlabeled data. Compared to other semi-supervised regularizers that pay close

attention to the topological relationship between high density clusters, it is quite crude

because it averages out the topological structure of the data (in a similar way to using a

single region in information regularization – see Chapter 3).

Transductive Support Vector Machines

A Support Vector Machine (SVM) is a non-parametric supervised classifier that seeks a lin-

ear decision boundary separating negative examples from positive examples, such that the

distance to the closest training example (the margin) is maximal. Joachims [34] extends the

SVM to the situation in which an unlabeled training set is also available. The Transductive

Support Vector Machine (TSVM) makes the same assumption as the regular SVM that the

decision boundary separates well the two classes, but also uses unlabeled data in evaluating

the margin, that must be maximized. Since we do not know in advance on which side of

the decision boundary the unlabeled points should be (not knowing their class), a naı̈ve

approach would take exponential time to try all label combinations. Joachims avoids this

complexity with an approximate algorithm that initializes the labels with the SVM values,

then flips them as long as the margin improves. TSVM training is as efficient as regular

SVM training, and the TSVM can be also extended to non-linear decision boundaries by

using kernels.

Kernel expansions with unlabeled data

Szummer [54] introduces a transductive semi-supervised classification algorithm that uses

a kernel density estimator from the unlabeled data to smoothly assign labels. The model

is that the joint distribution can be expressed as a kernel density estimator on the training

data D = {x1, . . . ,xn}:

PXY (x, y) =
1

n

n∑
i=1

QY |X(y|i)K(x, i) (2.13)

where K(x, i) is a kernel density centered at xi and QY |X(y|i) is a parameter associated

with xi that needs to be estimated. Given the above definition of the joint, we can express
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the label at any point:

PY |X(y|x) =
1

n

n∑
i=1

QY |X(y|i)K(i|x) (2.14)

where
∑n

i=1 K(i|x) = 1.

Given a labeled training set (x1, y1), . . . , (xl, yl), one can estimate QY |X(y|i) at the

unlabeled points such that PY |X(yj|xj) computed from equation (2.14) are maximized, in

a maximum likelihood sense. Once the parameters are estimated, one can compute the

label at any point according to (2.14). The estimated labels will be smooth by means of

the kernel density estimator. They are also less likely to vary in dense regions, because in

a dense region they are close to many unlabeled points that impact them.

The algorithm is computationally efficient, robust to unlabeled outliers, but somewhat

inflexible in terms of the type of semi-supervised biases it can model.

Standard information regularization

Szummer [53] introduced the original version of information regularization, in terms of a

smoothness principle that states that variation in the conditional PY |X(y|x) as a function

of x, as measured by an information theoretical objective, should be penalized in propor-

tion to the data density. The framework presented in this thesis expands the information

theoretical objective to include a wider range of semi-supervised principles, including data-

dependent smoothness, parametric joint families, redundancy of sufficient features, metric

and relational-based similarity.

2.4 Combined methods

A number of semi-supervised methods have the capability of modeling semi-supervised

principles from more than one of the categories introduced above.

Zhu [64] presents an algorithm that combines features of transductive graph-based reg-

ularization, and inductive classification with parametric models of the joint. The objective

of the algorithm is a linear convex combination of the objectives of harmonic graph reg-
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ularization and log-likelihood of the parametric model. The parameters can be estimated

with a variant of the EM algorithm.

Krishnapuram [39] introduces an algorithm that combines parametric models, metric-

based label similarity, and relational-based similarity and co-training. The semi-supervised

principles are weighted relative to each other, with weights trained from data. Also, the

algorithm learns the relative weighting between labeled and unlabeled data. The authors

also demonstrate semi-supervised active label selection. The algorithm is inductive, and

achieved good experimental results.

Information regularization is one such framework that can model various semi-supervised

principles, and combine them.
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Chapter 3

The information regularization

framework

3.1 Similarity biases in semi-supervised learning

In many classification tasks it is natural to express the prior information about the nature of

the joint distribution on data and labels as a series of similarity biases. Such biases reflect

the a priori belief that it is likely that points in a certain subsetR ofX have similar densities

PXY (x, y). It is best to explain the type of similarities we refer to by illustrating biases that

other researchers found appropriate for describing various tasks.

web page categorization [56, 23] The features are the text of the web pages, and the class

label is the topic of the web page. Additional information comes in the form of links

between pages.

• for each word in the vocabulary, pages that have that word in common are

biased to have similar topics

• two pages that are linked or link to many common pages are biased to have

similar topics

• pages that are pointed to by links that have words in common are biased to have

similar topics
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word sense disambiguation [58] The task is to determine the sense of words that can have

multiple meanings. Features: the neighboring words of an instance, as well as the

identity of the document in which the instance appears.

• multiple instances of the same word appearing in the same document are biased

to have the same meaning

• multiple instances of the same word that have common words in their context

are likely to have the same meaning

• PY |X(y|x) of each instance is biased to be similar to the distribution of a decision-

list classifier

named entity classification [17] Collins approaches the task of classifying proper names

from a large corpora of text into Person, Organization, or Location. The careful

feature selection amounts to implicit similarity biases. He identifies two types of

rules/biases: contextual rules refer to the context of the entity as determined by a

parser; spelling rules refer to features derived from the spelling of the word:

contextual Entities which have the same context, or the same type of context (ap-

positive or prepositional) are biased to be of similar type

spelling Entities that have any of the following properties in common are biased

to be of similar type: both are all-capital letters; both are all-capital with full

periods (N.Y.); both contain non-alphanumeric characters; having the same

exact spelling.

person identification in video [3] The features are video frames (color pixel images), and

the label is the name of the person present in the frame (or “unknown” person, or no

person)

• frames within a short time interval are likely to contain the same person

• frames with similar color histogram that are not to far in time are likely to

contain the same person. If the frames are too distant in time the clothing may

change, rendering the color cue unreliable.
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• proximity in pixel-wise Euclidean distance between detected faces is an indica-

tor of label similarity.

collaborative prediction Given a set of reviews/raters, and a set of reviewed objects, the

task is to predict a label associated with each object. For example, the objects can be

article submissions at a conference, rated by peer reviewers, and we need to predict

the quality of each article. Because each reviewer has a different style, objects re-

viewed by the same reviewer are naturally biased to share certain similarities in how

the reviews relate to the labeling.

The above list is by no means exhaustive, with notable natural similarity biases ubiquitous

in bioinformatics, information extraction, tracking objects in video [51].

The notion of similarity bias exhibited by various tasks is quite broad, ranging from

similarity in class labels PY |X(y|x), to similarity in the parameters that fully characterize

the joint model in the case of tracking from video. It will be apparent that the information

regularization framework is able to encompass a wide range of such biases. For clarity, in

the next section we introduce the framework on a specific scenario. Subsequently, we will

define the information regularization framework.

3.2 Information regularization for categorization of web

pages

We illustrate the concept of information regularization on the problem of determining the

topics of a collection of web pages D = {x1,x2, . . . ,xn} out of a finite number of choices

Y , where x is a feature representation of the body of the page. Besides the actual contents

of the page, we also have access to the hyperlinks among pages from D. We observe

the topics y1, y2, . . . , yl of l pages from our collection. Supervised document classification

trains a model from labeled data alone {(x1, y1), (x2, y2), . . . , (xl, yl)}. Here we would like

to use all available data, as well as the information provided by the link structure.
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3.2.1 Non-parametric biases

We identify two types of a priori biases in how the labels should be distributed among data

points:

• for each word in the vocabulary (or feature), web pages that have that word in com-

mon are likely to have similar topics.

• Consider the collection of words that are in the anchor of the hyperlinks that point

to a certain web page. These words, that come from other pages, are typically quite

indicative of the topic of a document. We represent this by the bias that web pages

having words in common in anchors that link to them are likely to have similar topics.

The rules we identified above are not strict constraints, but only biases. It would be

impossible to satisfy them exactly at the same time. Nevertheless, among alternative label-

ings that are equally likely from the point of view of the observed labeled data, we prefer

the labeling that is the most consistent with the identified biases.

Let us formalize the semi-supervised biases we talked about. In general, we can repre-

sent one such semi-supervised bias by a subset R of the training points D (or region) that

we believe it contains web pages of related topics. In the case of the biases identified above,

for every word in the vocabulary we can define a region R of all web pages containing that

word; or of all web pages that contain that word in the anchor of some link pointing to

it. The assumption is that the labels of points from R, PY |X(y|xα), α ∈ {1, 2, . . . , n}, are

likely to be similar.

We choose to represent the semi-supervised bias of region R by a regularization penalty,

an objective that can be computed from the labels of points in R that quantifies the degree

to which the labels are similar. The objective has the property that the smaller it is, the

more similar the labels are, and that it is 0 if all labels are equal. In building a classifier for

web documents we seek to minimize the regularization penalty on region R, among other

constraints that take into consideration the labeled training data.

Had we need to quantify the similarity between the labels of two documents only, in-

dexed inD by say α1 and α2, we could have used the Kullback-Leiber Divergence (in short
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KL-divergence) [24], that is widely used for measuring the distance between two distribu-

tions:

KL
(
PY |X(·|xα1) ‖PY |X(·|xα2)

)
=
∑
y∈Y

PY |X(y|xα1) log
PY |X(y|xα1)

PY |X(y|xα2)
(3.1)

KL-divergence in the form presented above does not suffice for our purpose because it

is not symmetric, and it does not generalize to more that two points. Instead, we measure

the distance from each point to an average distribution:

1

2
KL
(
PY |X(·|xα1) ‖Q?

Y

)
+

1

2
KL
(
PY |X(·|xα1) ‖Q?

Y

)
(3.2)

where Q?
Y (y) = (PY |X(y|xα1) + PY |X(y|xα2))/2.

It is easy to extend the above objective to quantify the similarity between the labels in

a set of documents R:

1

|R|
∑
α∈R

KL
(
PY |X(·|xα) ‖Q?

Y |R(·|R)
)

(3.3)

where Q?
Y |R(y|R) = 1

|R|
∑

α∈R PY |X(y|xα).

Note that Q? could be obtained minimizing the objective, had we allowed it to vary:

Q?
Y |R(·|R) = arg min

QY |R(·|R)

1

|R|
∑
α∈R

KL
(
PY |X(·|xα) ‖QY |R(·|R)

)
(3.4)

This allows us to quantify the similarity bias on region R by the following objective,

that we seek to minimize as a function of the labels:

min
QY |R(·|R)

1

|R|
∑
α∈R

KL
(
PY |X(·|xα) ‖QY |R(·|R)

)
(3.5)

Turning the objective into a minimization may seem unnecessary at a first sight, but it

does allow us to easily generalize to other useful definitions of Q?
Y |R(·|R), that cannot even

be represented in analytic form.

Multiple regions

We can define one such region for every word in the document (the first type of bias men-

tioned), and for every possible word in the anchor of links pointing to web pages (the second
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type of bias mentioned). If R is the collection of regions, therefore we can represent the

global semi-supervised bias as the following information regularizer:

I(PY |X) =
∑
R∈R

PR(R) min
QY |R

1

|R|
∑
α∈R

KL
(
PY |X(·|xα) ‖QY |R

)
(3.6)

We have weighted the contribution of each region by PR(R) to acknowledge the fact that

some semi-supervised biases are more important than others and should be satisfied first.

In web page categorization we apply the regularizer as a penalty to the standard log

likelihood on the labeled samples:

l∑
i=1

log PY |X(yi|xi)− λI(PY |X) (3.7)

where λ is a positive number that represents the strength of the regularizer (or how infor-

mative the task prior is).

Maximizing the regularized log likelihood would select among labelings that are oth-

erwise equally likely the choice that is most consistent with the semi-supervised biases

imposed by the regions.

3.2.2 Parametric biases

In many tasks domain knowledge dictates that the data distribution takes a particular para-

metric form. For example, one parametric model that has been successful in document

categorization is naı̈ve Bayes [45]. In multinomial naı̈ve Bayes, we represent each docu-

ment by a bag of words, and assume that the words are generated independently of each

other if the topic of the document is known. Thus the probability of generating a document

can be written as:

PXY (x, y) = PY (y)
∏
w∈x

PW |Y (w|y) (3.8)

for every word w contained in the bag-of-words feature representation x of a document.

Equivalently, PXY belongs to a distribution family M parametrized by a vector θ =

{PY (y), y ∈ Y ; PW |Y (w|y), y ∈ Y , w ∈ V}.

Typically in supervised learning we enforce the parametric form of PXY dictated by

domain knowledge by optimizing the regularized log likelihood under the constraint PXY ∈
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M. This approach can be quite powerful if the joint truly belongs toM, it is well-studied

in the supervised learning literature.

However, there are many situations in which the parametric generative assumption on

the joint is not really satisfied, but a member of the parametric family is still a good approx-

imation to the joint. For example, experts agree that the naı̈ve Bayes model of documents

is far from realistic, because words will not occur independently of each other even if the

topic is known. Still, supervised naı̈ve Bayes performs well in practice, because the ap-

proximation is good enough.

Recognizing that parametric families are only reasonable approximations to the real

joint, when training a classifier we would like to have the ability to express the bias that

the joint is similar to a certain parametric family, without imposing the strict constraint that

the joint actually belongs to that parametric family. This ability would be quite powerful

especially in situations in which different sources of information seem to indicate different

parametric models, that would be incompatible if viewed as strict constraints.

In the case of web page categorization, we would like to combine the non-parametric

semi-supervised biases that we described in the previous section with fact the the naı̈ve

Bayes distribution is a reasonable approximation to the joint.

IfM is the naı̈ve Bayes family of distributions parametrized by θ, we can express the

bias that the joint is almost naı̈ve Bayes by controlling the KL-divergence distance between

the joint and any member of the familyM1:

min
θ

KL (PXY ‖QXY (· ; θ)) (3.9)

We can incorporate this bias as another additive term in the information regularizer,

weighted by a constant τ that expresses the importance of the word constraints relative to

the naı̈ve Bayes constraint:

I(PY |X) = τ min
θ

KL (PXY ‖QXY (· ; θ)) +

+ (1− τ)
∑
R∈R

PR(R) min
QY |R

∑
α∈R

KL
(
PY |X(·|xα) ‖QY |R

) (3.10)

1Minimizing the KL-divergence is related to likelihood maximization. If PXY is given, that the optimal

θ is the maximum likelihood estimate.
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The understand the effect of τ , note that if τ = 0 we classify only according to the para-

metric bias. Minimizing the KL-divergence by itself is equivalent to maximizing the log-

likelihood of the data, where the label is treated as a latent variable. Thus τ = 0 reproduces

the EM algorithm with naı̈ve Bayes for semi-supervised learning, as in [45]. As τ increases

we are also incorporating the other biases. If τ = 1, we completely ignore the naı̈ve Bayes

parametric model. τ = 1 is less than ideal though, because R typically does not cover the

entire data set, and it would be impossible to set the labels of documents not covered byR

without the naı̈ve Bayes model.

We will demonstrate the effectiveness of the above information regularizer for catego-

rization of web pages in Chapter 6.

3.3 The generic information regularization framework

We introduce the information regularization framework in its generic form. To facilitate

the presentation let us assume that the objects involved in classification are points in an

Euclidean space, where x ∈ X denotes the coordinates of a point. In general X in the

space of the feature vectors x that represent the data.

The goal of the learning algorithm is to predict a certain quantity associated with each

point available to the algorithm. We denote byA the set of points available to the algorithm,

and by z the quantity to be predicted.

Let us discuss in more detail the meaning of A and z. In standard supervised learning,

A and X are always the same, because the feature vector xα is all we know about the

object α. The classifier would not be able to distinguish between α1 and α2 if xα1 =

xα2 . In our semi-supervised information regularization framework we may introduce other

information about the objects then their feature representation. In particular, the semi-

supervised similarity biases will be defined at the level of the objects α, not at the level

of their feature representation x. If two different objects have the same x, they may still

participate in our similarity biases differently. For example, in the web page classification

task, where x denotes the body of the web page, we would like to group together pages

based on information external to x, such as the link structure of the web pages.
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In a typical inductive classification setting, the algorithm must have the ability to assign

labels to any point in the space X . In this case A = X , as all the points are available

to the algorithm. On the other hand, if the classification problem is transductive, than the

classifier can predict labels only for the received training data D = {x1,x2, . . . ,xn}. In

this case A = D. In general, we should think of α ∈ A as an unique identifier for the

object to be classified, and xα as the feature representation of that object. It may be that

different objects with different α’s have the same feature representation, because x is not a

complete description of the object. A is the space of objects to be classified, and X is their

representation.

z is the quantity around which we define the notion of similarity bias. Normally z = y,

the classification label, in that the biases represent similarity between the labels of the ob-

jects. In some cases we will want to define z differently. For example, if z = (x, y), then the

semi-supervised bias can measure similarity in the distribution PXY = PX(x)PY |X(y|x),

that includes information about both x and y.

The goal of the learning algorithm is to estimate PZ|A(z|α) for every α ∈ A, where

the output is probabilistic to reflect uncertainty in the true value of z for a particular α.

The input to the algorithm is a finite training set of points D = {α1, α2, . . . , αn} with their

associated features {x1,x2, . . . ,xn}. We also observe z for the first l points: z1, z2, . . . , zl.

The rest of n− l training points have unknown z.

Typical supervised learning algorithms are trained by minimizing a loss function

lossD(PZ|A) defined on the samples for which z is observed. One standard loss is the

log-likelihood of the labeled data,
∑l

i=1 log PZ|A(zi|α). Since lossD(PZ|A) does not in-

corporate unlabeled samples, supervised learning does not take advantage of all available

information, and can be suboptimal.

Semi-supervised learning incorporates all available information, labeled or unlabeled.

In information regularization we do so by providing a regularization penalty that can be

applied to the classical supervised loss:

min
PZ|A

lossD(PZ|A) + λI(PZ|A) (3.11)

Here λ is the strength of the regularization. If λ = 0 the algorithm is purely supervised.
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However, we will see interesting semi-supervised algorithms for λ→ 0, that use the unla-

beled data.

In general, we may want to restrict the possible conditionals PZ|A over which we min-

imize (3.11) to some distribution family F . For example, F can be a parametric family,

such as Gaussian class distributions PX|Z(x|z). Many supervised classifiers enforce such

parametric constraints on the joint. Allowing to restrict the minimization to F provides an

easy way of converting a good parametric supervised classifier to a semi-supervised one:

min
PZ|A∈F

lossD(PZ|A) + λI(PZ|A) (3.12)

The regularizer I(PZ|A) encodes the semi-supervised bias (task prior). In information

regularization, we define the semi-supervised bias by the help of a set of regionsR, whose

elements R are subsets ofA. Each region encodes a semi-supervised bias at the local level,

by biasing PZ|A(z|α) to be similar for all α ∈ R.

As in web page classification, we compute the similarity among conditionals PZ|A(z|α),

α ∈ R, by evaluating their average distance to a common distribution QZ|R(z|R), typically

the average of all conditional in R, where the distance is the KL-divergence:∫
α∈R

πA|R(α|R)KL
(
PZ|X(·|xα) ‖QZ|R(·|R)

)
=∫

α∈R

πA|R(α|R)

∫
z∈Z

PZ|A(z|α) log
PZ|A(z|α)

QZ|R(z|R)
dz

(3.13)

Note that we have introduced a distribution πA|R(α|R) over R that expresses the relative

contribution of each point in R to the similarity measure. This weighting is normally

uniform, but we envision scenarios in which we know a priori that some objects should

not contribute to the similarity measure as much as others, because their membership to R

is weak. πA|R(α|R), along with the choice of R, is part of the definition of the similarity

biases, and needs to be known a priori. If we extend πA|R to R \ A by setting it to 0 for

α 6∈ R, then we can use πA|R as the very definition of R.

As in classification of web pages, we can obtain QZ|R my minimizing the average KL-

divergence. If the minimization is unconstrained, than the minimizing Q is the average over

the conditionals of points in R. However, we may want to constrain Q to be a parametric

distribution. If we do so, the similarity bias expresses both the fact that z should not vary
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across R, and that the distribution of z should be approximated well by the parametric form

of Q. The generic similarity bias of region R now becomes:

min
QZ|R∈MR

∫
α∈A

πA|R(α|R)KL
(
PZ|A(·|α) ‖QZ|R(·|R)

)
dα (3.14)

MR is a family of distributions that may restrict QZ|R. It may be unconstrained, or

defined in terms of non-parametric marginal, or parametric constraints.

At the global level, we combine regularization penalties associated with local regions

R into a global regularizer as a weighted average. The weights πR(R) form a task-specific

probability distribution onR that must be given a priori:

I(PZ|A) =
∑
R∈R

PR(R) min
QZ|R∈MR

∫
α∈A

πA|R(α|R)KL
(
PZ|A(·|α) ‖QZ|R(·|R)

)
dα (3.15)

It is useful to combine the a priori weights πR and πA|R into a single joint distribution

πAR(α, R) = πR(R)πA|R(α|R) that defines the structure of the information regularizer. We

are now ready to provide a formal definition of the information regularizer:

Definition LetA be a set of points, and Z a random variable associated with each

point with values from Z . An information regularizer is a function that associates

a non-negative number to the conditional density PZ|A ∈ F , defined in terms of

the following items:

• a region setR, where each region is a subset of A

• a joint distribution on points and regions πAR(α, R)

• familiesMR of distributions on Z associated with each region R ∈ R

Than the information regularizer is given by:

I(PZ|A) =
∑
R∈R

min
QZ|R∈MR

∫
α∈A

πAR(α, R)KL
(
PZ|A(·|α) ‖QZ|R(·|R)

)
dα

(3.16)

Note that λ, R, πAR, F , and MR are task-specific and must be known a priori, i.e.

before seeing the training data. The selection of these parameters is beyond the scope of

this thesis, though at times we will provide selection algorithms for experimental results.
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Learning the parameters of information regularization is difficult because the rules for gen-

erating the regions are specific to the domain, not to the particular task instance. It is

difficult to learn to characteristics of the domain from a single task, though not impossible.

3.3.1 Information regularization as a communication principle

We provide an information theoretical interpretation of the information regularization frame-

work. We begin by rewriting the information regularizer in terms of mutual information.

For this purpose, we view the random variables R,α, z as being sampled from a joint gen-

erative distribution with the following Markov dependency:

R→ α→ z

The joint distribution is given by PRAZ(R,α, z) = πR(R)πA|R(α|R)PZ|A(z|α).

Theorem 1 The information regularizer is equal to

I(PZ|A) =
∑
R∈R

πR(R) I (A|R ; Z|R) +

∑
R∈R

πR(R) min
QZ|R∈MR

KL
(
PZ|R(·|R) ‖QZ|R(·|R)

) (3.17)

where I (A|R ; Z|R) is the mutual information between A and Z conditioned on R, and

PZ|R(z|R) =

∫
α∈A

PZ|A(z|α)πA|R(α|R)dα (3.18)

Corollary 2 If allMR’s are unconstrained, then:

I(PZ|A) =
∑
R∈R

πR(R) I (A|R ; Z|R) (3.19)

In general, the right-hand side is a lower bound on the information regularizer.
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Proof We manipulate the information regularizer as follows:

I(PZ|A) =
∑
R∈R

πR(R) min
QZ|R∈MR

∫
α∈A

πA|R(α|R)

∫
z∈Z

PZ|A(z|α) log
PZ|A(z|α)

QZ|R(z|R)
dzdα

= K +
∑
R∈R

πR(R) min
QZ|R∈MR

∫
z∈Z

PZ|R(z|R) log
PZ|R(z|R)

QZ|R(z|R)
dz

= K +
∑
R∈R

πR(R) min
QZ|R∈MR

KL
(
PZ|R(·|R) ‖QZ|R(·|R)

)
(3.20)

where PZ|R(z|R) =
∫

α∈A PZ|A(z|α)πA|R(α|R)dα. Here we denoted by K the term that

does not depend on QZ|R, equal to:

K =
∑
R∈R

πR(R)

∫
z∈Z

∫
α∈A

πA|R(α|R)PZ|A(z|α) log
PZ|A(z|α)

PZ|R(z|R)
dzdα (3.21)

The double integral in K from equation (3.21) is exactly the mutual information be-

tween A and Z given R [24].

If MR’s are unconstrained, the term in I(PZ|X) that depends on QZ|R is equal to 0,

because the KL-divergences vanish when QZ|R = PZ|R (provided that PZ|R ∈ MR, for all

R ∈ R). Thus I(PZ|A) = K when MR’s are unconstrained. �

We formulate the following rate distortion with side information communication prob-

lem. Consider a data source that generates (α, R) according to πAR(α, R). We would like

to transmit a lossy version of α, which we denote by z ∈ Z , across a channel by sending

a minimal number of bits, such that z is still an accurate representation of α. Hence we

limit the distortion between the output z and the input α. Our measure of distortion is the

supervised learning loss function, on which we place an upper bound M :

lossD(PZ|A) ≤M (3.22)

The goal is thus to produce a noisy channel PZ|A such that the rate of information that

needs to be transmitted in order to preserve lossD(PZ|A) ≤ M is minimal. As opposed to

standard rate distortion theory, the receiver will also have access to the side information R

when decoding z.

According to rate distortion theory, the distribution PZ|A that minimizes the bit rate

that needs to be transmitted can be found by minimizing the mutual information between
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A and Z subject to the distortion constraint. In our case we also have access to the side

information R, therefore we must minimize the average mutual information restricted to

each region R:

arg minPZ|A s.t lossD(PZ|A)≤M

∑
R∈R

PR(R)I (A|R ; Z|R) (3.23)

If we replace the constraint with a Lagrange multiplier, the objective reduces to:

arg minPZ|A
lossD(PZ|A) + λ

∑
R∈R

PR(R)I (A|R ; Z|R) (3.24)

where M is now defined implicitly through λ. This objective is the same as that of infor-

mation regularization in the case in whichMR’s are unconstrained.

Relationship to Information Bottleneck

Information Bottleneck [57] is a popular clustering method with strong connections to rate

distortion theory. We highlight the similarities and differences between the information

bottleneck method and information regularization.

In Information Bottleneck the goal is to compress a random variable A into a random

variable Z, where the number of symbols in Z is known in advance, and is smaller than

the cardinality of A. We represent the compression as a probabilistic mapping PZ|A(z|α)

that needs to be determined. We can measure the degree of compression by the mutual

information between A and Z:

I (A ; Z) =
∑
α∈A

∑
z∈Z

PAZ(α, z) log
PAZ(α, z)

PA(α)PZ(z)
(3.25)

The smaller the mutual information, the better the compression, at the expense of dis-

carding information contained in A; therefore there is a trade-off between the achievable

compression factor and the information about A that must be retained. We express this

trade-off by the means of an auxiliary random variable R correlated with A that contains

the relevant information about A that needs to be retained. We may think of R as a quantity

that needs to be predicted given the value of A as input. We would like to compress A,

while preserving its ability to predict R.
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The information bottleneck method compresses A into Z by minimizing the following

objective:

min
PZ|A

I (A ; Z)− βI (R ; Z) (3.26)

Thus Z must contain as little information about A as possible (maximum compression),

while retaining as much relevant information as possible.

How does the information bottleneck method relate to information regularization? Let

us take a closer look at the information regularizer for unrestrictiveMR:

I(PZ|A) =∑
R∈R

πR(R)I (A|R ; Z|R) = H(Z|R)−H(Z|A, R) =

H(Z|R)−H(Z|A) = (H(Z)−H(Z|A))− (H(Z)−H(Z|R)) =

I (A ; Z)− I (R ; Z)

(3.27)

Thus for unrestrictedMR the information regularizer is a special instance of the infor-

mation bottleneck objective with β = 1. In other words, information regularization uses a

special form of the information bottleneck objective as a regularizer applied to a standard

loss function. Unlike in generic information bottleneck, the special form with β = 1 en-

sures convexity. Nevertheless, the information regularization framework does depart from

information bottleneck in the case in whichMR is a restricted family.

3.3.2 Information regularization and convexity

While the information regularization framework is quite expressive as formulated, care

must be taken to produce a tractable objective. In particular, the constrained families F

and MR may introduce non-convexity, making the optimization complex. In the subse-

quent chapters we will introduce tractable algorithms for various instances of information

regularization. For now we state a generic result that is valid when the setsMR are uncon-

strained. In this situation the information regularizer takes the form presented in equation

(3.17).

Theorem 3 IfMR is unconstrained for all R ∈ R, then the information regularizer is a

convex function of PZ|A.
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Proof Suppose PZ|A is equal to a convex combination (1−ε)P 1
Z|A +εP 2

Z|A of conditionals,

such that ε ∈ (0, 1) and P 1 and P 2 differ on a subset of Z ×A of non-zero measure (with

respect to a measure whose support is Z × A). It follows immediately that PZ|R(z|R) =∫
α∈A PZ|A(z|α)πA|R(α|R)dα satisfies the same convex combination:

PZ|R(·|R) = (1− ε)P 1
Z|R(·|R) + εP 2

Z|R(·|R) (3.28)

Since KL-divergence is convex [24] it follows that

KL
(
PZ|A(·|α) ‖PZ|R(·|R)

)
<(1− ε)KL

(
P 1

Z|A(·|α) ‖P 1
Z|R(·|R)

)
+

εKL
(
P 2

Z|A(·|α) ‖P 2
Z|R(·|R)

) (3.29)

Applying this inequality to equation (3.16) yields the convexity of the information regular-

izer. �

3.4 Semi-supervised principles subsumed by information

regularization

We illustrate that various settings of the information regularizer yield a broad range of

existing semi-supervised principles. The power of information regularization is that it can

not only reproduce these principles, but also combine them as appropriate. Please refer to

Chapter 2 for a more detailed explanation of the principles.

3.4.1 Parametric joint

Scenario

In this setting we assume that the joint over features and labels belongs to a parametric

family

{PXY (x, y; θ) ; θ ∈ Θ}

The goal is to estimate θ given a finite training set D ⊂ A that consists of both labeled and

unlabeled data. The standard approach is to maximize the log likelihood of D where the
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label of unlabeled samples is treated as a latent variable:

l∑
i=1

log PXY (xαi
, yαi

; θ) +
n∑

j=l+1

log PX(xαj
; θ) (3.30)

The information regularizer

Let the variable of interest z of information regularization be the feature and label pair

(x, y) associated with a point. We define an information regularizer with the following

structure:

• R = {D} (a single region containing all training points, labeled and unlabeled)

• πAR(α,D) = 1/n if α ∈ D, 0 otherwise (n is the cardinality of D)

• MD = {PXY (x, y; θ) ; θ ∈ Θ} (the distribution of the regions is restricted to our

parametric family)

• Fσ = {PZ|A(x, y|α) = PY |X(y|x)K(x|α, σ)}, where K(x|α, σ) is a Gaussian ker-

nel of mean α and covariance σ2I . In other words, only look for PZ|A(z|α) of the

form PY |X(y|x), where x is the feature representation of α. The parameter σ must

be given, but can be moved to 0, as the reader will see.

According to equation (3.16) the information regularizer takes the following form:

I(PXY |A) = min
QZ|R∈MD

∑
α∈D

1

n
KL
(
PZ|A(·|α) ‖QZ|R(·|D)

)
= min

θ∈Θ

∑
α∈D

1

n

∫
x∈X

∑
y∈Y

PY |X(y|x)K(x|α, σ) log
PY |X(y|x)K(x|α, σ)

QZ|R(x, y; θ|D)
dxdy

=
1

n
min
θ∈Θ

[
−
∑
α∈D

∫
x∈X

K(x|α, σ) log QZ|R(x ; θ|D)dx +

+
∑
α∈D

∫
x∈X

K(x|α, σ)KL
(
PY |X(·|x) ‖QZ|R(·|x ; θ|D)

)
dx−

∑
α∈D

H(K(·|α, σ))

]
(3.31)
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Let us examine the three terms that form the information regularizer as illustrated in

the above equation in a situation in which all data points are unlabeled. In this situation we

apply the regularizer by simply minimizing it, because there is no labeled evidence:

min
PY |X

I(PXY |A) (3.32)

The last term in the information regularizer, the entropy of the Gaussian kernels, can be

ignored, because it depends on neither PY |X nor θ. The term in the middle vanishes

when minimizing over PY |X , because PY |X is unconstrained and can be made equal to

QZ|R(·|x ; θ|R). Thus information regularization in this case is equivalent to the following

estimation:

min
θ∈Θ
−
∑
α∈D

∫
x∈X

K(x|α, σ) log QZ|R(x ; θ|R)dx (3.33)

When σ is very large (σ → ∞), this objective is exactly maximization of the incomplete

data log-likelihood of the parametric family:

max
θ∈Θ

∑
α∈D

log QZ|R(xα ; θ|R) (3.34)

If the training set D contains also some labeled points, it is now easy to see that infor-

mation regularization would be similar to the standard objective in equation (3.30), except

that there will be a weighting between the labeled and unlabeled parts as dictated by λ.

3.4.2 Redundantly sufficient features

Scenario

In this setting the feature representation x of each data point consists of multiple features

x = (f1, f2, . . . , fk) that are redundant in the sense that each component is sufficient for

building a noisy classifier. This redundancy can be the basis of a semi-supervised principle:

an unlabeled data point labeled confidently by one classifier can be used to correct other

classifiers that are uncertain about their label. One popular instance of this semi-supervised

principle is co-training, in which samples labeled confidently by one classifier will be used

as training points for another classifier in the next iteration of the algorithm.
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We consider a scenario in which each of the k classifiers is parametric. Therefore we

define classifier i by a restricted family of probability distributions on fi:

MRi
= {PY Fi

(y, fi ; θ) ; θ ∈ ΘRi
} (3.35)

We have one such family for each 1 ≤ i ≤ k. Without loss of generality we can assume

thatMRi
is a family of distributions on X ×Y that constrains (fi, y) to a parametric form,

and leaves the joint on the rest of the features unconstrained.

The information regularizer

We show that information regularization can incorporate redundantly sufficient features.

We build upon the result from the previous section in which information regularization

with a single parametric region can mimic a parametric classifier. Since here we have k

classifiers, we cover the data with k regions. Each region contains the entire training set D,

thus the regions differ only in terms of their parametric restriction.

As before, the variable of interest z is (x, y). The information regularizer has the fol-

lowing structure:

• R = {R1, R2, . . . , Rk}

• πAR(α, Ri) = 1/(nk) if α ∈ D, 0 otherwise (n is the cardinality of D). This must be

true for all 1 ≤ i ≤ k.

• the distribution family associated with region Ri is MRi
as defined in equation (3.35)

• As in the previous scenario, we relate PZ|A(z|α) to PY |X(y|x) by the means of a

Gaussian kernel: Fσ = {PZ|A(x, y|α) = PY |X(y|x)K(x|α, σ)}

The information regularizer that must be minimized is a sum of the information regu-

larizers representing each classifier:

I(PXY |A) =
1

kn

K∑
i=1

min
QZ|R(·|Ri)∈MRi

∑
α∈D

KL
(
PZ|A(·|α) ‖QZ|R(·|Ri)

)
(3.36)

As we have seen in the previous section, minimizing the information regularizer of one

of the regions Ri is equivalent to estimating the parameters of the classifier i by maximum
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likelihood in a semi-supervised fashion. When we bring together the information regular-

izers of each region, the net effect is that samples labeled confidently by one classifier will

contribute to the training of the other classifiers. The rule that governs the resolution of

the posteriors of each classifier QZ|R(y|x ; θi|Ri) into a single posterior PY |X(y|x) will be

apparent in Chapter 5 when we discuss optimization of information regularization in detail.

3.4.3 Label similarity bias

We show that the information regularization framework can model the objective of graph

regularization semi-supervised methods [61]. The semi-supervised principle underlying

these methods is that points that are similar according to some metric or some rule are

biased to have similar labels.

Scenario

Consider a binary classification task (Y = {−1, 1}), and suppose that we are only interested

in the labels of the unlabeled points that we received as training data. Therefore A =

{α1, α2, . . . , αn}, and D = A. Suppose that we are also given an undirected graph with

A as vertexes, and a set of edges (i, j) ∈ E and associated positive weights wij . The

underlying assumption is that the magnitude of wij reflects the degree to which the labels

yαi
and yαj

are constrained to be similar.

Let zα be a real number that expresses the confidence in point α having label 1. The

goal is to estimate zα for every α ∈ A. We define a simple graph regularization method for

semi-supervised learning by penalizing∑
(i,j)∈E

wij(zαi
− zαj

)2 (3.37)

Therefore, given the labels of the first l data points in D, we can assign labels to all points

in A by minimizing the following regularized loss:

1

l

l∑
i=1

(yαi
− zαi

)2 + λ
∑

(i,j)∈E

wij(zαi
− zαj

)2 (3.38)

In what follows we show that information regularization can naturally model this standard

graph regularization objective.
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The information regularizer

We define an information regularizer that has the same structure as the undirected graph in

the sense that we consider a region for every edge in the graph, that contains its end points.

The information regularizer will estimate for each point a soft label that is a Gaussian

random variable with zα its mean. We need to show that the information regularization

objective and the graph regularization objective are identical.

We define the following information regularizer:

• R = {Rij ; (i, j) ∈ E}, where Rij = {αi, αj}

• πAR(α, Rij) = wij/(2wtot) if α ∈ {αi, αj}, 0 otherwise (wtot is the total weight of

all edges)

• MRij
is the family of one-dimensional Gaussian random variables of unit variance.

The family is parametrized by θij , the mean of the Gaussian

• F is left unconstrained

Then according to the information regularization framework we can estimate PZ|A(z|α)

by minimizing:

min
PZ|A

1

l

l∑
i=1

loss(yαi
, PZ|A(·|αi)) +

λ
∑

(i,j)∈E

wij

2wtot

min
θij

[
KL
(
PZ|A(·|αi) ‖QZ|R(· ; θij|Rij)

)
+

KL
(
PZ|A(·|αj) ‖QZ|R(· ; θij|Rij)

)]
(3.39)

Assume that the loss is a KL-divergence between PZ|A(·|αi) and a Gaussian of unit variance

and mean equal to yαi
:

loss(yαi
, PZ|A(·|αi)) = KL

(
PZ|A(·|αi) ‖Q(· ; yαi

)
)

(3.40)

We show that minimizing the objective defined above is equivalent to minimizing the graph

regularization objective in equation (3.38).

We begin by proving that the optimal PZ|A(·|α) will necessarily be a Gaussian distribu-

tion of unit variance. We will need the following lemma:
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Lemma 4 Let p, q1, q2, . . . , qk be probability measures on a common space. If
∑k

i=1 λi =

1, where λi ≥ 0, then we have:

k∑
i=1

λiKL (p ‖ qi) = log K̃ + KL

(
p ‖ K̃

k∏
i=1

qλi
i

)
(3.41)

where K̃ is the normalization that ensures that the distribution in the second term of the

KL-divergence integrates to 1.

Proof The proof is only a matter of verifying the identity. �

PZ|A(·|αi) must achieve the minimum value of the following objective, for some value

of the parameters θij:

τiKL
(
PZ|A(·|αi) ‖Q(· ; yαi

)
)

+ λ
∑

j, s.t. (i,j)∈E

wijKL
(
PZ|A(·|αi) ‖QZ|R(· ; θij|Rij)

)
(3.42)

where τi is 1 for labeled samples, 0 otherwise.

According to Lemma 4 this may be written as a single KL-divergence. Since PZ|A is

unconstrained, if the objective is optimal then PZ|A(·|αi) is equal to the second argument

of the KL-divergence, and the KL-divergence is 0. The second argument is a geometric

average of Gaussians of unit variance, which is also a Gaussian of unit variance. This

completes the proof that the optimal PZ|A(·|αi) will be Gaussian of unit variance for every

αi.

Let zαi
be the mean of the Gaussian of unit variance PZ|A(·|αi). We can now rewrite

the information regularization objective in equation (3.39) only in terms of zα’s and θij’s.

For this purpose we need the following known result:

Lemma 5 If p and q are Gaussians of unit variance of means µ and τ then:

KL (p ‖ q) =
1

2
(µ− τ)2 (3.43)

Proof This is only a matter of verifying the identity, given that p(x) = exp(−(x −

µ)2/2)/
√

2π) and q(x) = exp(−(x− τ)2/2)/
√

2π). �
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Using the above lemma, equation (3.38) can now be written as:

min
zα,α∈A

1

l

l∑
i=1

(zαi
− yi)

2 + λ
∑

(i,j)∈E

wij min
θij

[
(zαi
− θij)

2 + (zαj
− θij)

2
]

(3.44)

The minimum over θij is achieved when θij = (zαi
+ zαj

)/2. Thus the information

regularization method minimizes the following objective:

min
zα,α∈A

1

l

l∑
i=1

(zαi
− yi)

2 + 2λ
∑

(i,j)∈E

wij

2wtot

(zαi
− zαj

)2 (3.45)

This is the same objective as in semi-supervised graph regularization (3.38), with a slight

adjustment in λ. We conclude that the information regularization framework subsumes this

semi-supervised principle.

3.4.4 Data-dependent smoothness prior and low-density separation

Scenario

In this scenario X is an Euclidean space, and we know a priori that PY |X(y|x) must vary

smoothly as a function x in a manner that depends on the data density PX(x); the higher the

data density, the less likely is that we see large variations in PY |X(y|x). As a consequence,

we prefer decision boundaries that do not cross regions of high density. We show that the

information regularizer can act as a smoothness prior.

The information regularizer

Assume that A = X , thus we can use α and xα interchangeably. We define an information

regularizer on the variable of interest y based on a uniform covering R of the space X

with small overlapping cubes of equal size. Their centers can be for example lattice points,

where the distance between consecutive lattice points is small, as in [53, 21]. Suppose that

we cover the space in such a way that every point x ∈ X belongs to exactly T regions from

R. Then we can define the following distribution over regions:

πAR(α, R) =

 1
T
P ?

X(xα) if xα ∈ R

0 if xα 6∈ R
(3.46)
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where P ?
X(x) is the data density, or estimate of it based on available labeled samples.

The definition of πAR(α, R) naturally emerges from the following generative process:

generate samples x from X according to P ?
X , then generate a region R from the T regions

containing x uniformly.

We complete the specification of the information regularizer by mentioning that F and

MR for R ∈ R are left unconstrained. Then according to equation (3.17) the information

regularizer takes the following form:

I(PY |X) =
∑
R∈R

P ?
X(R) I (X|R ; Y |R) (3.47)

Note that our definition of PXR(x, R) ensures that the local constraint expressed by the reg-

ularizer of each region is weighted by the data density of the region P ?
X(R) =

∫
x∈R

P ?
X(x)dx.

The net effect is that the variation in PY |X is penalized more in regions of high data den-

sity than in regions of low data density. Thus the information regularizer is equivalent to a

data-dependent smoothness prior.

3.5 A taxonomy of information regularization algorithms

In order to apply the information regularization framework to a specific task we still need to

provide an algorithm for optimizing the objective. We distinguish between various possible

algorithms across a few dimensions, as depicted in Figure 3.5.

metric vs. relational

This distinction is between algorithms that assume that the similarity between labels is

based on a metric defined on A, or based on relations between the samples that come from

additional sources of information.

full marginal vs. finite sample

Some information regularization algorithms assume that unlabeled data is abundant, and we

can estimate PA(α) precisely. Then only PR|A(R|α) needs to be specified a priori. Other

algorithms assume instead that only a finite number of unlabeled samples are available. It is

68



(Corduneanu, Jaakkola UAI 03)unrestricted

parametric

relational

metric

full marginal

finite sample

full marginal

finite sample

unrestricted

parametric

unrestricted

parametric

unrestricted

parametric

space
unlabeled 

information
model type

inductive

inductive

transductive

transductive

inductive

inductive

transductive

transductive

resulting 
classifier

(Corduneanu, Jaakkola UAI 03)

(Szummer, Jaakkola NIPS02)

(Corduneanu, Jaakkola NIPS 04)

reference

estimation

estimation

(Szummer, Jaakkola NIPS02)

Figure 3-1: Types of information regularization algorithms

always possible to view a “full-marginal” algorithm as a “finite sample” one by providing

a kernel estimate of PA(α) from the finite unlabeled sample.

parametric vs. unrestricted

This category distinguished between applications of information regularization where F

andMR’s are parametric, or are completely unrestricted.

transductive vs. inductive

It is possible to provide information regularization algorithms that are either transductive

or inductive. Transductive algorithms are aimed at estimating the labels of the received

unlabeled points, where inductive algorithms can estimate the label of any point in the

space, indifferent of whether it has been received as an unlabeled sample or not.

We will see that information regularization is never strictly transductive. It will always

be possible to estimate the labels of other points in the space provided that we can determine

the regions fromR to which they belong.
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Chapter 4

Information regularization on metric

spaces

In this chapter we consider semi-supervised learning on continuous spaces, endowed with

a metric correlated with the labeling of the points. In other words, the assumption is that

neighboring points with respect to the metric are a priori more likely to have similar labels

than distant points. Also, the label is more likely to change in regions of low data density.

A common example would be a situation in which the features are vectors in an Euclidean

space with the standard Euclidean metric, possibly weighted by the relevance of individual

components of the feature vectors. The analysis in this chapter applies to a wide variety of

learning tasks in which the feature vectors have continuous components, as long as a suit-

able metric exists. In what follows we adapt the information regularizer to the continuous

setting, discuss specific theoretical results, and derive explicit optimization algorithms.

The distinguishing characteristic of information regularization on continuous spaces

is that there is a continuum of regions defining the semi-supervised bias; indeed, we can

place a local prior on label similarity centered at every point in the space. Therefore it is

not possible to work directly with the standard regularizer defined in the previous chapter,

and here we derive the regularizer as the limit of finite discretizations, as in [21]. Note that

if we were to limit ourselves to a transductive algorithm, where we are only interested in

the labels of a finite set of observed unlabeled points, we could still define an information

regularizer that needs only a finite number of regions. The following approach is an induc-
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tive algorithm, while the discrete graph regularization that we will introduce in Chapter 5

is transductive.

In this continuous and inductive setting, we can identify each point α with its feature

representation xα. This is because we will derive all regions of information regularization

from the metric applied to the vector xα, and there is no other information that we know

about the points besides xα. Consequently, we identify the X in the generic formulation of

information regularization with X .

4.1 Full knowledge of the marginal

Let us begin by considering the ideal situation in which we have access to unlimited unla-

beled data, which is equivalent to knowing the marginal density PX , an assumption that we

will relax later on. The goal is to convert our knowledge of PX into a priori biases about

how the data should be labeled, such that the label is less likely to change in regions of low

data density than in high-density regions. The information regularizer that we construct is a

penalty whose minimization constrains variations in the label to regions of low data density,

without making any parametric assumptions about the underlying data distribution.

4.1.1 The information regularizer

The basic building block of the regularization penalty consists of a region R ⊂ X on

which we impose the bias that points belonging to the region have similar labels PY |X .

In our continuous metric setting, the region is a collection of points that are close to each

other with respect to the metric, for instance, a sphere of small diameter. As we have seen

in the previous chapter in (equation (3.19)), in a non-parametric setting we can quantify the

similarity of the labels of points belonging to a region by the mutual information between

A and Y . Specifically, if R is our collection of regions (for now finite), we can define the

following information regularizer:

I(PY |X) =
∑
R∈R

πR(R) I (X|R ; Y |R) (4.1)
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where

I (X|R ; Y |R) =

∫
x∈X

∑
y∈Y

πX|R(x|R)PY |X(y|x) log
PY |X(y|x)

PY |R(y|R)
dx (4.2)

and

PY |R(y|R) =

∫
x∈X

πX|R(x|R)PY |X(y|x)dx (4.3)

Let us discuss the choice of the weights πR(R) and πA|R(α|R) in the information regu-

larizer. In order to capture the low-density separation principle, variations in dense regions

must be penalized more. Thus an appropriate choice for πR(R) is to be proportional to the

cumulative probability mass in region R:

πR(R) ∝ PA(R) =

∫
α∈R

PA(α)dα (4.4)

Next, we choose πX|R(x|R) such that the generative process of choosing R according

to πR, then x according to πX|R, results in generating x according to PX . It follows that

πX|R(x|R) =

 0, if x 6∈ R

PX(x)/PX(R), if x ∈ R
(4.5)

It remains to choose the regions. Ideally, R would be a uniform covering of X with

identical regions centered at every point in the space. Since the generic information regu-

larizer would be intractable on an infinite set of regions, our approach is to discretize R,

then take the limit as the number of regions converges to infinity. The limiting form has

the additional benefit that it no longer requires us to engineer a particular covering of the

space.

Sensible regions must have the following properties:

• The regions are small.

• The overlap between neighboring regions is significant.

• The shape and distribution of the regions avoids systematic biases.

Small regions ensure that the semi-supervised bias of label similarity remains a local prop-

erty. Overlapping regions ensure that the information regularization functions as a global

criterion, with the local semi-supervised bias imposed by each region being propagated to
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its neighbors. Needless to say, the information regularizer should not introduce systematic

biases that cannot be justified a priori (such as a preference for allowing variations of PY |X

only in a certain direction). For example, to avoid biases we make all regions of the same

shape, centered at different points.

Infinitesimal Information Regularizer

While increasing the number of regions to infinity, we also decrease their size to 0, and

increase the overlap. The size of the regions is akin to the resolution at which we can

measure the variation in labels, and decreasing the size of the regions ensures that in the

limit we have infinite resolution.

We identify two tendencies in the limit. On the one hand the local mutual information

will converge to 0 as the diameter of the region approaches 0; this is normal, as PY |X

will look more constant the smaller the region. On the other hand, as the overlap between

regions increases, we get a multiplicative effect from the fact that each point belongs to

more and more regions. In the limit, this multiplicative factor is infinity. Thus if the regions

do not overlap enough, the regularizer will converge to 0, and if they overlap too much, it

will converge to infinity. In order to produce a finite infinitesimal information regularizer

we must strike the right balance between the size of the regions and their overlap.

We begin by assessing the asymptotics of the local mutual information as the diameter

of the region R converges to 0. We have the following result [21]:

Theorem 6 Let I (X|R ; Y |R) be the mutual information restricted to R as defined in

(4.2). If diam(R) is the diameter of region R, then the mutual information takes the fol-

lowing asymptotic form with respect to the diameter:

I (X|R ; Y |R) =
1

2
Tr
[
covπX|R (X) F (EπX|R [X])

]
+O

(
diam(R)3

)
(4.6)

Here EπX|R [X] is the expected value of the vector xα, and covπX|R (X) its covariance,

when α is distributed according to πA|R. Also, F (x) is the Fisher information matrix of the

distribution PY |X evaluated at x:

EPY |X(y|x)

[
∇x log PY |X(y|x) · ∇x log PY |X(y|x)>

]
(4.7)
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Moreover, covπX|R (X) is O (diam(R)2).

Proof Let x0 = EπX|R [X] be the average value of x in the region. To simplify notation

let G = ∇xPY |X(y|x0) and H = ∇2
xxPY |X(y|x0) be the gradient and the Hessian of the

conditional at x0. The conditional has the following second order Taylor expansion about

x0:

PY |X(y|x) = PY |X(y|x0) + G>(x− x0) + (x− x0)
>H(x− x0) +O

(
diam(R3)

)
(4.8)

By taking expectation with respect to πX|R(x|R), and using the definition in equation (4.3),

we get

PY |R(y|R) = PY |X(y|x0) + Tr
[
covπX|R (X) H

]
+O

(
diam(R3)

)
(4.9)

Next we use 1/(1 + x) = 1 − x + x2 + O (x3) and log(1 + x) = x − x2/2 + O (x3) to

obtain:

log
PY |X(y|x)

PY |R(y|R)
=

1

PY |X(y|x0)
[G>(x− x0) + (x− x0)

>H(x− x0)−

Tr
[
covπX|R (X) H

]
− [G>(x− x0)]

2/2PY |X(y|x0)] +O
(
diam(R3)

)
(4.10)

We only need to multiply the above equation by the expansion of PY |X(y|x) again and take

the expectation with respect to πX|R(x|R) to get:

I (X|R ; Y |R) =
∑
y∈Y

1

2
PY |X(y|x0)Tr

[
covπX|R (X) GG>

]
+O

(
diam(R3)

)
(4.11)

Notice that
∑

y PY |X(y|x0)GG> is just the Fisher information at x0. It follows that:

I (X|R ; Y |R) =
1

2
Tr
[
covπX|R (X) F (x0)

]
+O

(
diam(R3)

)
(4.12)

Finally, it is easy to verify that the covariance is O (diam(R2)) using the same Taylor

expansion of PY |X(y|x) about x0. �

We conclude that as the size of the regions approaches 0, their overlap must compensate

with O (diam(R2)) in order to achieve a finite information regularizer. In what follows we

construct a specific cover, with a specific type of regions, that achieves this in the limit. It
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should be clear though that if the regularizer converges to a finite number, it will converge

to the same formula up to a multiplicative factor, no matter the shape of the region, or the

overlap factor.

Assuming that X has vector space structure, we cover it with a homogeneous set R of

overlapping regions of identical shape: regions centered at the axis-parallel lattice points

spaced at distance l′. Specifically, the regions are axis-parallel cubes of length l, where l is

much larger than l′. Assume also that l/l′ is an integer. Let Il,l′(PY |X) be the information

regularizer on the set of regions with parameters l and l′.

Each point1 in X belongs to (l/l′)d cubic regions fromR, where d is the dimensionality

of the vector space. Let R′ be the partitioning of R into atomic lattice cubes of length

l′. Each region in R is partitioned into (l/l′)d disjoint atomic cubes from R′, and each

atomic cube is contained in (l/l′)d overlapping regions from R. We may now rewrite the

regularizer as a sum over the partitionR′:

Il,l′(PY |X) ∝
∑
R∈R

PX(R)I (X|R ; Y |R) =
∑

R′∈R′

PX(R′)
∑
R⊇R′

I (X|R ; Y |R) (4.13)

Assuming that PY |X is differentiable, when l and l′ are very small I (X|R ; Y |R) for

R ⊇ R′ will be approximatively equal. Denote by IR′ (X|R ; Y |R) the local mutual infor-

mation on a region of type R that contains the atomic region R′. Therefore for small l and

l′ we have:

Il,l′(PY |X) ∝
∑

R′∈R′

PX(R′)(l/l′)dIR′ (X|R ; Y |R) (4.14)

When l converges to 0, the above sum becomes integration:

lim
l→0

Il,l′(PY |X) ∝
∫

x∈X
PA(x)

[
lim
l→0

(l/l′)dIR′3x (A|R ; Y |R)
]
dx (4.15)

The interaction between the overlap and the asymptotics of the local mutual information

is now clear. We must choose an overlap factor l/l′ such that the following limit is finite:

lim
l→0

(l/l′)dIR′3x (A|R ; Y |R) (4.16)

1non-lattice point
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Following Theorem 6, it is enough to choose l′ = l1+2/d such that (l/l′)d = l−2. Then we

have:

lim
l→0

Il,l′(PY |X) ∝
∫

x∈X
PA(x)

{
Tr

[
F (xx) lim

R3x, diam(R)→0

covπX|R (X)

diam(R)2

]}
dx (4.17)

Given this form of the regularizer we can argue that regions in the shape of a cube are

indeed appropriate. We start from the principle that the regularizer should not introduce any

systematic directional bias in penalizing changes in the label. If the diameter of a region R

is small enough, πA|R(x|R) is almost uniform on R, and PY |X(y|x) can be approximated

well by v · x + c, where v is the direction of highest variation. In this setting we have the

following result [21]:

Theorem 7 Let R be such that diam(R) = 1 and PY |X(y|x) = v · x + c. The local

information regularizer is independent of v/ ‖v‖ if and only if covπX|R (X) is a multiple of

the identity.

Proof Let x0 = EπX|R [X] be the average value of x in the region. We have F (x0) = vv>.

The relevant quantity that should be independent of v/ ‖v‖ is therefore v>covπX|R (X)v.

Let v = Φi/ ‖Φi‖, where Φi is an eigenvector of covπX|R (X) of eigenvalue φi. Then

v>covπX|R (X)v = φi should not depend on the eigenvector. If follows that covπX|R (X)

has equal eigenvalues, thus covπX|R (X) = φI. The converse is trivial. �

It follows that in order to remove any directional bias, covπX|R (X) ≈ diam(R)2 · I,

as it is the case if R is a cube or a sphere. Substituting into equation (4.17), we reach our

final form of the infinitesimal information regularizer for continuous metric space when the

marginal is fully known, and without placing any parametric biases:

I(PY |X) ∝
∫

x∈X
PX(x)Tr [F (x)] dx (4.18)

where the Fisher Information is given by

F (x) = EPY |X(·|x)

[
∇x log PY |X(y|x) · ∇x log PY |X(y|x)>

]
(4.19)

Note the the dependence ofR is only implicit, and that we removed any multiplicative

constants on purpose. The claim is that we reach the same formula up to a multiplicative

constant for a variety of (unbiased) region covers.
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4.1.2 Classification algorithm

We discuss classification algorithms based on the infinitesimal information regularizer as

in equation (4.18). The task is to estimate a label probability distribution PY |X(·|x) for

every x ∈ X (or, equivalently, for every x ∈ X ), given the following inputs:

• full knowledge of PA

• a labeled training sample D = {x1,x2, . . . ,xl}, where all {yxi
}i=1..l are observed.

Note that we do not require explicit unlabeled training data, because all unlabeled evidence

is implicitly represented by the knowledge of PA. Under this interpretation the task is in

fact equivalent to having infinitely many unlabeled samples.

According to the information regularization principle we need to maximize the regular-

ized log-likelihood of the labeled training sample:

max
{PY |X(·|x) ;x∈X}

l∑
i=1

log PY |X(yxi
|xi)− λ

∫
x∈X

PA(x)Tr [F (x)] dx (4.20)

where F (x) = EPY |X(y|x)

[
∇x log PY |X(y|x) · ∇x log PY |X(y|x)>

]
, and the maximization

is subject to 0 ≤ PY |X(y|x) ≤ 1 and
∑

y∈Y PY |X(y|x) = 1.

Let us reflect for a moment on the structure of the optimization criterion. The only

component that relates the information received from the labeled samples to the rest of

the labels is the information regularizer. Without imposing any parametric constraints, the

information regularizer is able to propagate labels from labeled samples to the entire space.

In fact, we show that if we fix the label distributions at the observed samples, PY |X(·|xi) =

P 0
Y |X(·|xi), there is a unique set of label distributions that maximizes the objective (or

minimizes the regularizer). For clarity we restrict the analysis to binary classification:

Y = {−1, 1}.

Theorem 8 [21, 53] The functions PY |X(1|x) and PY |X(−1|x) that are differential with

respect to x on X \ {x1, . . . ,xl}, and continuous on X , and that minimize:∫
x∈X

PA(x)Tr [F (x)] dx (4.21)
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subject to 0 ≤ PY |X(y|x) ≤ 1 and PY |X(1|x) + PY |X(−1|x) = 1, are also a solution to

the following differential equation:

∇x log PA(x) · ∇xPY |X(1|x)>+Tr
[
∇2

xxPY |X(1|x)
]
+

1

2

PY |X(1|x)− PY |X(−1|x)

PY |X(1|x)PY |X(−1|x)

∥∥∇xPY |X(1|x)
∥∥2

= 0

(4.22)

Moreover, the solution to the differential equation is unique subject to the boundary condi-

tions PY |X(·|xi) = P 0
Y |X(·|xi), for all 1 ≤ i ≤ l, and limx→∞∇xPY |X(1|x) = 0.

Proof The differential equation is just the Euler-Lagrange condition of the calculus of

variations that must be satisfied by any function that minimizes the integral. The solution

is unique on any differentiable compact set as long as the boundary of the compact set is

fixed. In this case the boundary is {x1, . . . ,xl} and∞. �

The differential equation thus defines the solution to the optimization problem implic-

itly. In order to find explicit label distributions that optimize (4.20) one could solve the

differential equation numerically for various values {P 0
Y |X(yxi

|xi)}i=1...l, then optimize

with respect to P 0
Y |X(yxi

|xi). Unfortunately, solving the differential equation numerically

involves discretizing X , which is impractical for all but low dimensional spaces. That is

why the non-parametric but inductive (find a label for each point in X ) information regu-

larization is of more theoretical than practical interest.

Nevertheless, if X is the one-dimensional real line the differential equation can be

solved analytically [21]. We introduce the solution here to illustrate the type of biases

imposed by the information regularizer. When X is one dimensional, the labeled samples

x1,x2, . . . ,xl split the real line into disjoint intervals; thus if P 0
Y |X(·|xi) are given, the dif-

ferential equation can be solved independently on each interval determined by the samples.

The solution only depends on the labels of the endpoints, and is given by the following:

PY |X(1|x) =
1

1 + tan2
(
−c
∫

1
PA(x)

) (4.23)

where c and the additive constant in
∫

1/PA can be determined from the values of the

conditional at the endpoints. These two parameters need not be the same on different

intervals.
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Figure 4-1: Non-parametric conditionals that minimize the information regularizer for var-

ious one-dimensional data densities while the label at boundary labeled points is fixed

Figure 4-1 shows the influence of various data distributions PA(x) on PY |X(1|x) through

information regularization under the boundary conditions PY |X(y = 1|x = 0) = 0.9 and

PY |X(y = 1|x = 1) = 0.1. The property of preferring changes in the label in regions of low

data density is evident. Note that the optimal PY |X(1|x) will always be between its values

at the boundary; otherwise for some x1 6= x2 we would have PY |X(1|x1) = PY |X(1|x2),

and because the cumulative variation is minimized, necessarily PY |X(1|x) = PY |X(1|x1)

for every x ∈ [x1,x2].

4.2 Finite unlabeled sample

In this section we substitute the requirement of full knowledge of PA, which is unrealistic

in any practical application, with the availability of a set of unlabeled training samples

{xxl+1
, . . . ,xxn}. we also show how to reconcile the infinitesimal information regularizer

with parametric constraints on PY |X that may be known to describe the task accurately.

Although it is possible to approach this scenario directly by partitioning the space into
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regions as in [53], here we reduce the task to the situation in which the full marginal is

known by replacing the full marginal with an empirical estimate obtained from the unla-

beled sample.

We illustrate this method on logistic regression, in which we restrict the conditional to

linear decision boundaries with the following parametric form: PY |X(y|x; θ) = σ(yθ>x),

where y ∈ {−1, 1} and σ(x) = 1/(1 + exp(−x)). The Fisher information is therefore

F (x; θ) = σ(θ>x)σ(−θ>x)θθ> and according to equation (4.18) the information regular-

izer takes the form

‖θ‖2
∫

P̂A(x)σ(θ>x)σ(−θ>x)dx (4.24)

Here P̂A is the empirical estimate of the true marginal. We compare two ways of esti-

mating PA: the empirical approximation 1
n

∑n
j=1 δ(x − x′j), as well as a Gaussian kernel

density estimator. The empirical approximation leads to optimizing the following criterion:

max
θ

l∑
i=1

log σ(yxi
θ>xxi

)− ‖θ‖2 λ

n

n∑
j=1

σ(θ>xxj
)σ(−θ>xxj

) (4.25)

It is instructive to contrast this information regularization objective with the criterion

optimized by Transductive Support Vector Machines (TSVM’s), as in [34]. Changing the

SVM loss function to logistic loss, transductive SVM/logistic regression optimizes:

max
θ,yxl+1

,...,yxn

n∑
i=1

log σ(yxi
θ>xxi

)− λ

2
‖θ‖2 (4.26)

over all labelings of unlabeled data. In contrast, our algorithm contains the unlabeled in-

formation in the regularizer.

The presented information regularization criterion can be easily optimized by gradient-

ascent or Newton type algorithms. Note that the term

σ(θ>x)σ(−θ>x) = PY |X(1|x)PY |X(−1|x)

focuses on the decision boundary. Therefore compared to the standard logistic regression

regularizer ‖θ‖2, we penalize more decision boundaries crossing regions of high data den-

sity. Also, the term makes the regularizer non-convex, making optimization potentially

more difficult. This level of complexity is however unavoidable by any semi-supervised
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algorithm for logistic regression, because the structure of the problem introduces locally

optimal decision boundaries.

If unlabeled data is scarce, we may prefer a kernel estimate P̂A(x) = 1
n

∑n
j=1 K(x,xxj

)

to the empirical approximation, where K(·, ·) is a kernel density with the restriction that the

regularization integral remains tractable. In logistic regression, if the kernels are Gaussian

we can make the integral tractable by approximating σ(θ>x)σ(−θ>x) with a degenerate

Gaussian. Either from the Laplace approximation, or the Taylor expansion log(1 + ex) ≈

log 2 + x/2 + x2/8, we derive the following approximation, as in [21]:

σ(θ>x)σ(−θ>x) ≈ 1

4
exp

(
−1

4
(θ>x)2

)
(4.27)

With this approximation computing the integral of the regularizer over the kernel cen-

tered µ of variance τI becomes integration of a Gaussian:

1

4
exp

(
−1

4
(θ>x)2

)
N (x ; µ, τI) =

1

4

√
det Σθ

det τI
exp

(
−µ> (τI− Σθ) µ

2τ 2

)
N
(
x ;

Σθµ

τ
, Σθ

) (4.28)

where Σθ =
(

1
τ
I + 1

2
θθ>
)−1

= τ
[
I− 1

2
θθ>/

(
1
τ

+ 1
2
‖θ‖2

)]
After integration only the multiplicative factor remains:

1

4

(
1 +

τ

2
‖θ‖2

)− 1
2
exp

(
−1

4

(θ>µ)2

1 + τ
2
‖θ‖2

)
(4.29)

Therefore if we place a Gaussian kernel of variance τI at each sample xxj
we obtain

the following approximation to the information regularization penalty:

‖θ‖2√
1 + τ

2
‖θ‖2

1

4n

n∑
j=1

exp

(
−1

4

(θ>xxj
)2

1 + τ
2
‖θ‖2

)
(4.30)

This regularizer can be also optimized by gradient ascent or Newton’s method.

4.2.1 Logistic regression experiments

We demonstrate the logistic information regularization algorithm as derived in the previous

section on synthetic classification tasks. The data is generated from two bivariate Gaussian
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densities of equal covariance, a model in which the linear decision boundary can be Bayes

optimal. However, the small number of labeled samples is not enough to accurately es-

timate the model, and we show that information regularization with unlabeled data can

significantly improve error rates.

We compare a few criteria: logistic regression trained only on labeled data and regular-

ized with the standard ‖θ‖2; logistic regression regularized with the information regularizer

derived from the empirical estimate to PA ; and logistic regression with the information

regularizer derived from a Gaussian kernel estimate of PA.

We have optimized the regularized likelihood L(θ) both with gradient ascent θ ←

θ + x∇θL(θ), and with Newton’s method (iterative re-weighted least squares) θ ← θ −

x∇2
θθL(θ)−1∇θL(θ) with similar results. Newton’s method converges with fewer itera-

tions, but computing the Hessian becomes prohibitive if data is high dimensional, and con-

vergence depends on stronger assumptions that those for gradient ascent. Gradient ascent

is safer but slower.

We ran 100 experiments with data drawn from the same model and averaged the error

rates to obtain statistically significant results. In Figure 4-2 ([21])we have obtained the error

rates on 5 labeled and 100 unlabeled samples. On each data set we initialized the iteration

randomly multiple times. We set the kernel width τ of the Gaussian kernel approximation

to the regularizer by standard cross-validation for density estimation. Nevertheless, on

such large number of unlabeled samples the information regularizers derived from kernel

and empirical estimates perform indistinguishable. They both outperform the standard

supervised regularization significantly.

4.3 Learning theoretical properties

We extend the analysis of information regularization on metric spaces under the assump-

tion of full knowledge of the marginal with a learning theoretical framework. In the non-

parametric setting, without the bias imposed by the information regularizer learning would

certainly not be possible: no matter how much labeled training data we see, we would still

not be able to learn PY |X because the only constraint on PY |X(·|x) is that it is a piecewise

83



0 0.5 1 1.5 2 2.5
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

regularization strength (λ)

er
ro

r 
ra

te

information regularization (empirical)
information regularization (kernel)
standard regularization

Figure 4-2: Average error rates of logistic regression with and without information regu-

larization on 100 random selections of 5 labeled and 100 unlabeled samples from bivariate

Gaussian classes

differentiable function of x. The aim of this section is to show that the introduction of

information regularization, without any other parametric constraints, is sufficient to make

the conditional learnable. While the learning framework is general, due to technical con-

straints 2 we derive an explicit sample-size bound only for binary classification when X is

one-dimensional.

We need to formalize the concepts, the concept class (from which to learn them), and

a measure of achievement consistent with (4.20). The key is then to show that the task is

learnable in terms of the complexity of the concept class.

Standard PAC-learning of indicator functions of class membership will not suffice

for our purpose. Indeed, conditionals with very small information regularizer can still

have very complex decision boundaries, of infinite VC-dimension. Instead, we rely on

the p-concept [36] model of learning full conditional densities: concepts are functions

h(y|x) : X → [0, 1]. Then the concept class is that of conditionals with bounded informa-

2Only in one dimension the labeled points give rise to segments that can be optimized independently.
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tion regularizer:

Iγ(PA) =

{
h :
∑
y∈Y

h(y|x) = 1 and

∫
X

PA(x)
∑
y∈Y

h(y|x) ‖∇x log h(y|x)‖2 dx ≤ γ

}
(4.31)

We measure the quality of learning by a loss function Lh : X × Y → [0,∞). This

can be the log-loss − log h(y|x) associated with maximizing likelihood, or the square loss

(h(y|x) − 1)2. The goal is to estimate from a labeled sample a concept hopt from Iγ(PA)

that minimizes the expected loss EPAP ?
Y |X

[Lh], where P ?
Y |X is the true conditional.

One cannot devise an algorithm that optimizes the expected loss directly, because this

quantity depends on the unknown P ?
Y |X . We make the standard approximation of estimating

hopt by minimizing instead the empirical estimate of the expected loss from the labeled

sample:

ĥ = arg min
h∈Iγ(PA)

Ê [Lh] = arg min
h∈Iγ(PA)

1

l

l∑
i=1

Lh(xi, yxi
) (4.32)

If the loss function is the log-loss, finding ĥ is equivalent to maximizing the information

regularization objective (4.20) for a specific value of λ. However, we will present the

learning bound for the square loss, as it is bounded and easier to work with. A similar result

holds for the log-loss by using the equivalence results between the log-loss and square-loss

presented in [42].

The question is how different ĥ (estimated from the sample) and hopt (estimated from

the true conditional) can be due to this approximation. Learning theoretical results provide

guarantees that given enough labeled samples the minimization of Ê [Lh] and EPAP ?
Y |X

[Lh]

are equivalent. We say the task is learnable if with high probability in the sample the em-

pirical loss converges to the true loss uniformly for all concepts as l→∞. This guarantees

that E [Lĥ] approximates E
[
Lhopt

]
well. Formally,

Pr{∃h ∈ Iγ(PA) : |Ê [Lh]− E [Lh] | > ε} ≤ δ (4.33)

where the probability is with respect to all samples of size l. The inequality should hold for

l polynomially large in 1/ε, 1/δ, 1/γ.

We have the following sample complexity bound on the square loss, derived in [21]:
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Theorem 9 Let ε, δ > 0. Then

Pr{∃h ∈ Iγ(PA) : |Ê [Lh]− E [Lh] | > ε} < δ (4.34)

where the probability is over samples of size l greater than

O

(
1

ε4

(
log

1

ε

)[
log

1

δ
+ cPA

(m−1
PA

(ε2)) +
γ

(m−1
PA

(ε2))2

])
(4.35)

Here mPA
(β) = Pr{x : PA(x) ≤ β}, and cPA

(β) is the number of disconnected sets

in {x : PA(x) > β}.

Measures of learning complexity

Let us explain the significance of mPA
and cPA

in more detail. The sample size for a desired

learning accuracy must be a function of the complexity of Iγ(PA), like VC-dimension in

PAC-learning. One such measure is the bound on the information regularizer γ; however,

we should also take into account the complexity of PA.

The quantities mPA
(·) and cPA

(·) characterize how difficult the classification is due to

the structure of PA. Learning is more difficult when significant probability mass lies in

regions of small PA because in such regions the variation of h(y|x) is less constrained.

Also, the larger cPA
(·) is, the labels of more “clusters” need to be learned from labeled

data. The two measures of complexity are well-behaved for the useful densities. Densities

of bounded support, Laplace and Gaussian, as well mixtures of these have mPA
(β) < uβ,

where u is some constant. Mixtures of single-mode densities have cPA
(β) bounded by the

number of mixtures.

For future use, let us also define the following related quantities: For each β ∈ [0, 1) let

MPA
(β) = {x : PA(x) ≤ β} be the points of density below β. Let CPA

(β) be the partition

of X \ MPA
(β) into maximal disjoint intervals. Note that mPA

(β) = Pr[MPA
(β)], and

cPA
(β) is the cardinality of CPA

.

Derivation of the learning bound

Lemma 10 For x1 < x2, Y = {−1, 1}∫ x2

x1

p(x)E

[(
d

dx
log h(y|x)

)2
]
≥ 4 (h(1|x1)− h(1|x2))

2∫ x2

x1

1
p(x)

dx
(4.36)
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where the expectation is with respect to h(y|x).

Proof After rewriting the expected value we use Cauchy-Schwartz, then h(1|x)h(−1|x) ≤
1
4
: ∫ x2

x1

1

p(x)
dx ·

∫ x2

x1

p(x)

(
d
dx

h(1|x)
)2

h(1|x)h(−1|x)
dx ≥(∫ x2

x1

d
dx

h(1|x)√
h(1|x)h(−1|x)

dx

)2

≥ 4

(∫ x2

x1

d

dx
h(1|x)dx

)2
(4.37)

�

Lemma 11 The square loss Lh = (h(y|x)− 1)2 satisfies

|E [Lh1 ]− E [Lh2 ] | ≤ 2E
[
(h1(1|x)− h2(1|x))2

] 1
2

|Ê [Lh1 ]− Ê [Lh2 ] | ≤ 2

[
1

n

n∑
i=1

(h1(1|xi)− h2(1|xi))
2

] 1
2

Proof A simple application of Cauchy’s inequality. �

Theorem 12 For every β ∈ (0, 1) and M there exist points {x1,x2, . . . ,xM} from X such

that any h1, h2 ∈ Iγ(PA) with |h1(1|xi)− h2(1|xi)| ≤ τ, i = 1 . . . M, τ ∈ (0, 1) satisfy

|EPA(x) [Lh1 ]− EPA(x) [Lh2 ] | ≤ 2

[
mPA

(β) +
γ

2N2β2
+ 3τ

]1/2

(4.38)

where N = M + 1 − 2cPA
(β). Also, with probability at least 1 − (M + 1) exp(−2ε2n)

over a sample of size n from X , for any such h1 and h2 we have:

|Ê [Lh1 ]− Ê [Lh2 ] | ≤ 2

[
ε + mPA

(β) +
γ + γNε

2N2β2
+ 3τ

]1/2

(4.39)

Proof We construct a partition P ofX \MPA
(β) with intervals by intersecting the intervals

that make up CPA
(β) with a partitioning of X into N intervals of equal probability mass.

Let {x1,x2, . . . ,xM} be the endpoints of these intervals. There are no more than N − 1 +

2cPA
(β) distinct endpoints in P , and we choose N such that M = N − 1 + 2cPA

(β).

We bound (h1 − h2)
2 on each set of the partition MPA

(β) ∪
⋃

I∈P I of X . On MPA
(β)

[h1(1|x) − h2(1|x)]2 ≤ 1 trivially. On each I ∈ P we must resort to Lemma 10 to derive

an upper bound.
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Let I = (u, v). Note that for x ∈ I , [h1(1|x) − h2(1|x)]2 ≤ 2[h1(1|x) − h1(1|u)]2 +

2[h2(1|u)−h2(1|x)]2 +3τ . Thus it suffices to bound the variation of each h on (u,x). This

is exactly what Lemma 10 provides:

[h(1|x)− h(1|u)]2 ≤ Rx
u(h)

4

∫ x

u

dx′

PA(x′)
≤ Rv

u(h)

4

∫ x

u

dx′

PA(x′)
(4.40)

where Rb
a(h) is the information regularizer of h on (a, b). Thus [h1(1|x) − h2(1|x)]2 ≤

3τ+1
2
(Rv

u(h1)+Rv
u(h2))

∫ x

u
dx′/PA(x′). Combining this result with a similar application of

Lemma 10 on (x, v) leads to [h1(1|x)−h2(1|x)]2 ≤ 3τ+(Rv
u(h1)+Rv

u(h2))/4·
∫ v

u
dx/p(x).

Since 1/PA(x) ≤ PA(x)/β2 on I , for x ∈ I we have

[h1(1|x)− h2(1|x)]2 ≤ 3τ +
Rv

u(h1) + Rv
u(h2)

4Nβ2
(4.41)

To obtain the bound on |E [Lh1 ]−E [Lh2 ] | take expectation over I of (4.41), use
∑

I RI(h) <

γ,
∫

I
PA ≤ 1/N , then apply Lemma 11. For the second part of the theorem, we upper

bound 1
n

∑
(h1(1|xi)−h2(1|xi))

2 using (4.41) in terms of the fraction fI of samples that fall

in interval I , and the fraction f0 of samples that fall in Mβ(PA). Since maxI fI < 1/N + ε

and f0 < mβ(PA) + ε with probability at least 1 − (M + 1) exp(−2ε2n), the conclusion

follows. �

We can now proceed to proving Theorem 9. Had Iγ(PA) been finite, we could have

derived a learning result from McDiarmid’s inequality [41] and the union bound as in [32]:

Pr[∃h ∈ Iγ(PA) : |Ê [Lh]− E [Lh] | > ε] ≤ 2|Iγ(PA)|e−2ε2n (4.42)

Hence the idea of replacing Iγ(PA) with a finite discretization Iε
γ(PA) for which the above

inequality holds. If for any h in Iγ(PA) its representative qh from the discretization is

guaranteed to be “close”, and if |Iε
γ(PA)| is small enough, we can extend the learning result

from finite sets with

|Ê [Lh]− E [Lh] | ≤ |Ê [Lh]− Ê [Lqh
] |+

+ |E [Lh]− E [Lqh
] |+ |Ê [Lqh

]− E [Lqh
] |

(4.43)

To discretize Iγ(PA) we choose some M points from X and discretize possible values of

h at those points into 1/τ intervals of length τ > 0. Any h is then represented by one
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of (1/τ)M combinations of small intervals. Iε
γ(PA) consists of one representative from Iγ

corresponding to each such combination (provided it exists). It remains to select the M

points and τ to guarantee that h and qh are “close”, and |Iε
γ(PA)| = (1/τ)M is small.

Our starting point is Lemma 10 that bounds the variation of h on an interval in terms

of its information regularizer and
∫

1/PA. We can use it to bound (h(1|x) − h′(1|x))2 on

an interval (x1,x2) independently of h, h′ ∈ Iγ(PA), provided h, h′ are within τ of each

other at the endpoints, and
∫ x2

x1
dx/PA(x) is small. If we select the M points of Iε

γ to make∫
1/PA small on each interval of the partition (except on the tail mPA

(β)), we can quantify

the “closeness” of h and qh as in Theorem 12:

|E [Lh]− E [Lqh
] | ≤ 2

[
mPA

(β) +
γ

2N2x2
+ 3τ

]1/2

(4.44)

|Ê [Lh]− Ê [Lqh
] | ≤ 2

[
ε̄ + mPA

(β) +
γ + γNε̄

2N2x2
+ 3τ

]1/2

(4.45)

with probability at least 1− (M + 1) exp(−2ε̄2n), where β ∈ (0, 1) is a free parameter to

be optimized later, and N = M + 1 − 2cPA
(β). We can combine the last two inequalities

and (4.42) in (4.43) and optimize over M, τ, β, ε̄ to obtain a learning result.

To derive a general result (without knowing mPA
(β), cPA

(β)) we must choose possibly

non-optimal values of the free parameters. If N = γ
2β2 , ε̄ = ε2, τ = ε2, mPA

(β) = ε2, we

obtain the asymptotic sample size stated in the theorem.

4.4 Discussion

We derived the information regularization objective for inductive classification tasks in

which each object is represented by a feature vector in a continuous metric space. Initially

we also assume that the marginal distribution of data is fully known, and assumption that we

later on relax by producing an estimate of the marginal from observed unlabeled data. The

objective, obtained as a limiting case of the generic information regularizer, involves the

information regularization regions only implicitly. In the special case in which the vector

is one dimensional and the joint is non-parametric, the objective can be optimized to an

analytic form of the labels. Otherwise, the objective can only be optimized approximately
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under additional parametric assumptions on the joint. We illustrate one such example when

the main supervised classifier is logistic regression.
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Chapter 5

Information regularization on graphs

5.1 Introduction

Previously (Chapter 4) we have analyzed the information regularization framework on tasks

in which the feature space is continuous, endowed with a metric that naturally induces a

semi-supervised bias on label similarity. The goal has been decidedly inductive: to estimate

a label for every possible feature vector, whether we have seen it during training or not. We

showed that we can turn the implicit bias represented by the metric into a clean infinitesimal

information regularizer that does not require further engineering of the semi-supervised

bias (region selection). While the resulting model is clean from a theoretical perspective,

the fact that we request the full conditional distribution on a continuous space makes the

task computationally infeasible, unless we constrain the problem further with parametric

assumptions.

In contrast, in this chapter we take a discrete approach to information regularization,

that will enable us to produce efficient algorithms. We restrict the problem to tasks in which

the space of objects is either finite, or we are only interested in computing the labels of a

finite subset of objects. In other words, A, the collection of objects whose labels we must

determine, it finite.

Another advantage of the discrete setting relates to the type of similarity biases that we

can incorporate in the regularizer. In the continuous setting, in order to cover the entire

space we had to define infinitely many regions, which restricted their specification to re-
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gions defined implicitly from a metric relevant to the labeling. In the discrete setting the

number of regions and their cardinality is necessarily finite, which allows more flexibility

in the way the regions are defined. The biases can originate as in the continuous setting

from a metric onX , but can also come from relations related to the labeling, as in relational

learning [56, 55, 28]. For example, the relations can be co-citation, documents that share a

word, or common anchor text for web pages.

From the outset we must clarify that the transductive formulation of information regu-

larization that we are about to introduce is not limited to transduction, and can be extended

to an inductive algorithm. While the training step will assign labels only to the finite num-

ber of objects inA, the model will have the ability to produce without retraining an estimate

of the label of every object not in A for which we can determine its region membership.

The label will however be more accurate if we incorporate the object during the training

phase as an unlabeled point.

5.2 Graph representation

The discrete version of information regularization admits a graph representation similar

to other graph semi-supervised learning methods [10, 52, 62, 15, 11, 63, 61, 64, 13]. As

in Figure 5-1, we can represent the semi-supervised task by a directed bipartite graph,

with edges from the set of regions R = {R1, R2, . . . , Rm} to the set of objects A =

{α1, α2, . . . , αn}. We connect region Ri to object αj iff αj ∈ Ri. We associate with every

region its weighting πR(Ri), and with every edge the weighting PA|R(αj|Ri) that defines

the relative importance of the points that belong to Ri. Note the key difference between our

representation of the task, and mainstream semi-supervised learning on graphs: standard

approaches consider only pairwise relationships between points, while our definition of

regions allows to specify constraints that depend on a larger number of points.

The goal is to estimate a variable interest z ∈ Z for every point α ∈ A. The inputs

to the problem are the semi-supervised biases encoded by the graph, and the true value of

the variable of interest for a limited subset of the training data: {zα1 , zα2 , . . . , zαl
}. We

associate with every point a distribution PZ|A(z|α) that represents our confidence in the
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…

…

R1 Rm

PZ|A(z|α)
α1 α2 αn−1 αn

πA|R(α|R)

πR(R)

Figure 5-1: Graph representation of the semi-supervised biases of the discrete version of

information regularization. The lower nodes are the data points, and the upper nodes are

regions that encode label similarity biases. πR(R) and πA|R(α|R) are task-specific weights

that define the regions and must be given in advance. For some of the points (but not all)

the variable of interest z is observed. The goal is to produce a probability distribution PZ|A

for every point, that describes the likely values of the variable of interest in light of the

semi-supervised biases.

value of z at α that needs to be determined.

5.3 Optimization

We develop an optimization algorithm for minimizing the objective of information regular-

ization that can be carried out efficiently when the task is discrete (i.e. R and A are finite).

As presented in equation (3.16), the information regularizer in its most generic form is

given by

I(PZ|A) =
∑
R∈R

min
QZ|R(·|R)∈MR

∑
α∈A

πAR(α, R)KL
(
PZ|A(·|α) ‖QZ|R(·|R)

)
(5.1)

where we have adjusted the formula to reflect that A is finite. Remember that the distri-

bution families MR associated with each region define the type of semi-supervised bias

imposed by the region.
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The information regularization approach to semi-supervised learning is to assign soft

labels PZ|A to each data point by minimizing the following objective that combines the

regularizer with the labeled evidence:

min
PZ|A∈F

−
l∑

i=1

log PZ|A(zαi
|αi) + λI(PZ|A) (5.2)

Let us take a closer look at information regularization in the trivial case in whichR con-

sists of only one region R0. Then finding PZ|A(·|α) for some unlabeled α amounts to find-

ing distributions PZ|A(·|α) ∈ F and QZ|R(·|R0) ∈ MR0 that achieve the KL-divergence

distance between the distribution families F andMR0:

min
PZ|A(·|α)

min
QZ|R(·|R0)∈MR0

KL
(
PZ|A(·|α) ‖QZ|R(·|R0)

)
(5.3)

One popular approach to this type of problems is alternative minimization, such as the em

algorithm that performs alternative information-geometrical projections [2]. The idea is to

minimize the objective over PZ|A(·|α) and QZ|R(·|R0) alternatively, by holding one set of

parameters constant while optimizing the other. If F andMR0 are convex, the iteration is

guaranteed to converge to the unique minimum.

We follow the same alternative minimization blueprint in the general situation. Con-

sider distributions P ∗
Z|A and Q∗

Z|R that minimize the information regularization objective.

Then necessarily:

P ∗
Z|A ∈ arg minPZ|A∈F −

l∑
i=1

log PZ|A(zαi
|αi) +

λ
∑
R∈R

∑
α∈A

πAR(α, R)KL
(
PZ|A(·|α) ‖Q∗

Z|R(·|R)
) (5.4)

and

Q∗
Z|R ∈ arg minQZ|R(·|R)∈MR

∑
R∈R

∑
α∈A

πAR(α, R)KL
(
P ∗

Z|A(·|α) ‖QZ|R(·|R)
)

(5.5)

If we can guarantee that each of the two updates above produces a single answer that can

be computed efficiently, then the updates constitute the basis of an alternative minimization

algorithm for performing information regularization. We show that this is the case under

the following restrictions:
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• A andR are finite (and not too large)

• F is unrestricted

• MR’s are also unrestricted

We require the constraining distributions to be unrestricted to guarantee that the mini-

mum in equations (5.4) and (5.5) is achieved by unique distributions. Technically, to ensure

uniqueness it is enough for these distribution families to be convex. Nevertheless, not all

convex families yield updates that can be computed efficiently, and that is why for now we

limit the analysis to unrestricted families. Later we will relax the unrestricted requirement

to other examples of convex families that result in tractable updates.

According to Theorem 3, when MR’s are unrestricted the information regularization

objective is strictly convex1, thus the minimizing pair (P ∗, Q∗) is unique and it will neces-

sarily be reached by the alternative minimization iteration irrespective of the initialization.

The following theorem provides the explicit form of the updates:

Proposition 1 Let P ∗
Z|A and Q∗

Z|R be distributions that minimize the objective (5.2) under

the assumption that F and MR are unrestricted. For every unlabeled data point α ∈

A \ {α1, α2, . . . , αl} and for every R the following hold:

log P ∗
Z|A(z|α) =

∑
R∈R

πR|A(R|α) log Q∗
Z|R(z|R) + const. (5.6)

Q∗
Z|R(z|R) =

∑
α∈A

πA|R(α|R)P ∗
Z|A(z|α) (5.7)

where the constant is such that the resulting conditional distribution sums to 1.

Proof If we fix Q∗
Z|R(z|R), then for every α unlabeled P ∗

Z|A(·|α) is a distribution that

minimizes: ∑
R∈R

πAR(α, R)
∑
z∈Z

PZ|A(z|α) log
PZ|A(z|α)

Q∗
Z|R(z|R)

(5.8)

The first identity follows immediately by taking the variational derivative with respect to

P ∗
Z|A(·|α) and equating the result to 0.

1Conditioned on all of A being covered by πAR
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On the other hand, if we fix P ∗, then Q∗ minimizes

−
∑
α∈A

πAR(α, R)
∑
z∈Z

P ∗
Z|A(z|α) log QZ|R(z|R) (5.9)

The second identity also follows immediately after equating the derivative to 0. �

Theorem 1 suggests an optimization algorithm in which we treat each identity as one of

two iterative updates, of P ∗ given Q∗, and of Q∗ given P ∗ until convergence. Each update

decreases the information regularization objective, and at convergence (P ∗, Q∗) must be the

unique set of distributions that minimizes the objective. The starting value does not matter2

because the objective has a unique minimum. The algorithm can be seen as a variant of

the Blahut-Arimoto algorithm in rate-distortion theory [8], where the region distributions

QZ|R(·|R) are variational parameters.

The complexity of each update is of the order of the in-degree of the point or region op-

erations, respectively. Thus a full iteration in the worst case scenario takesO (|A| · |Z| · |R|)

time if the bipartite graph is complete, but can take significantly less time if the bipartite

graph is sparse.

A potential difficulty arises in updating PZ|A for points that are labeled, because the

fixed-point equation is more involved, and the solution cannot be expressed analytically.

Nevertheless, we can compute the solution efficiently by Newton’s method, as follows.

P ∗
Z|A(z|αi), 1 ≤ i ≤ l must minimize the following formula subject to

∑
z∈Z PZ|A(z|αi) =

1:

− log PZ|A(zαi
|αi) + λ

∑
R∈R

πAR(αi, R)
∑
z∈Z

PZ|A(z|αi) log
PZ|A(z|αi)

Q∗
Z|R(z|R)

(5.10)

The quantity is strictly convex, thus the minimum exists and it is unique.

Placing a Lagrange multiplier on condition
∑

z∈Z PZ|A(z|αi) = 1 we obtain that P ∗
Z|A(·|αi)

must be the solution to the following system of equations:∑
z∈Z

PZ|A(z|αi) = 1 (5.11)

− δ(zαi
, z)

PZ|A(z|αi)
+ λπA(αi) log PZ|A(z|αi)− λ

∑
R∈R

πAR(αi, R)Q∗
Z|R(z|R) + γ = 0(5.12)

2The starting value may still affect the speed of convergence, even if the final result does not depend on

it.
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where γ is also an unknown in the system, and the second equation must hold for all z ∈ Z .

The following Newton update on PZ|A(z|αi) starting from the initial values PZ|A(z|αi) =

1 converges to the solution of the system for a given γ:

PZ|A(z|αi)←
δ(zαi

, z) + λπA(αi)PZ|A(z|αi)

λπA(αi)[1 + log PZ|A(z|αi)] + γ − λ
∑

R∈R πAR(αi, R)Q∗
Z|R(z|R)

(5.13)

It remains to find the right γ such that
∑

z∈Z PZ|A(z|α) = 1 at convergence. We can do so

by binary searching γ because at convergence
∑

z∈Z PZ|A(z|α) is a decreasing function of

γ.

5.3.1 Message passing algorithm

As shown in the previous section, we can optimize the information regularization objec-

tive (5.2) in the case in which we do not impose any constraints on the point and region

distributions with the algorithm presented in Figure 5-2.

Note that the regularization parameter λ is only used in updating the label distribution

of the objects for which we have labels in the training data. λ is therefore a measure of

confidence in the observed z. Typically we give full confidence to the labeled evidence,

that is we set λ to 0. This amounts to fixing the label distributions of the labeled data

to their observed label, and removes the special update for labeled points. At the other

extreme, if λ is very large the labeled evidence is ignored, and at convergence all points,

labeled or unlabeled, will have the same label.

The algorithm admits a message passing interpretation as in Figure 5-3. The informa-

tion regularization iteration propagates evidence from the few observed labeled points to

the unlabeled points by passing messages between regions and points. Note that there is no

convergence issue if the graph has loops, as it would be in belief propagation.

Example

To clarify the information regularization algorithm we illustrate its performance on a sim-

ulated task as in Figure 5-4. The goal is two identify the two classes in the 2D plane, given

one negative, one positive, and many unlabeled points. We cover the observed samples into
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1. Assign distributions QZ|R(·|R) to every region R ∈ R.

2. Initialize PZ|A(z|α), α ∈ A as desired.

3. Region update: Recompute all region distributions by averaging point dis-

tributions:

QZ|R(z|R)←
∑
α∈A

πA|R(α|R)PZ|A(z|α)

4. Point update: Recompute all point distributions of unlabeled points by

geometrically averaging region distributions:

PZ|A(z|α)← 1

Z̃
exp

(∑
R∈R

πR|A(R|α) log QZ|R(z|R)

)

For labeled points, recompute PZ|A(·|α) by performing the Newton iteration

in equation (5.13) and binary searching γ.

5. Return to Step 3 until convergence.

Figure 5-2: Description of the information regularization algorithm
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Figure 5-3: Semi-supervised learning by information regularization is a message passing

algorithm. In the first part of the iteration each region aggregates messages about the vari-

able of interest from its points. In the second part of the iteration, each point aggregates

messages from the regions that contain it. We iterate until convergence.

regions based on the Euclidean distance. We associate a region with every training point,

of all the training points that are within radius R of it. The number of regions is thus equal

to the number of points. We weight the regions equally, and set the distribution of points

with a region to uniform.

The information regularization iteration converges to a state in which the negative and

positive classes are well separated, as in the figure. The performance does depend on the

a priori parameter R. If R is too small, clusters of unlabeled points become disconnected

from any observed labeled sample, and no information about labels can propagate to them.

Thus we observe a sharp decrease in performance when the points become disconnected.

On the other hand, the algorithm is robust to variations in R as long as all points remain

connected. For extremely large R though the regularizer looses it resolution, in the sense

that the absolute distance between the unlabeled point and labeled training samples be-

comes the dominant factor in assigning a label to that point.
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Figure 5-4: Sample run of information regularization on a 2D task where regions are de-

fined in terms of the Euclidean distance. The left figure is the training set, while the right

figure is the output of information regularization. The training set contains one positive and

one negative sample, as well as many unlabeled samples.

5.3.2 Analysis of the algorithm

Computational complexity

The information regularization iteration as described requires two passes through every

edge in the graph, one to propagate messages from regions to points, and one to propagate

messages from points to regions. In the worst case scenario (complete bipartite graph),

the number of edges in the graph is O (|A| · |R|). For every edge in the graph we need to

propagate information about each class, thus the worst-case complexity of the information

regularization iteration is O (|A| · |R| · |Z|).

In practice we choose regions such that the information regularization graph is sparse.

However, we must be cautious not to leave the graph disconnected by making it sparse.

The information regularization iteration can be optimized for overlapping regions (or

points), by reusing computation performed for the smaller region in determining the label

of the larger region. For example, recomputing the labels of a cascading set of regions

R1 ⊂ R2 ⊂ · · · ⊂ Rk is O (|Z| · |Rk|) rather than O (|Z| · (|R1|+ |R2|+ · · ·+ |Rk|)).

Similarly, if two regions overlap, we can reuse the sum of the labels of the overlap in com-
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puting the labels of each of the two regions. This optimization can amount to significant

savings in computational complexity.

Rate of convergence

We have empirical evidence and theoretical justification (though not a complete formal

proof) that the information regularization iteration converges to the optimal value exponen-

tially fast if every node in the graph is connected to at least on labeled object (through a

path of non-zero weight), in the following sense:

lim sup
t→∞

max
α∈A,z∈Z

P t+1
Z|A(z|α)− P ?

Z|A(z|α)

P t
Z|A(z|α)− P ?

Z|A(z|α)
< 1 (5.14)

where P t
Z|A(z|α) is the t’th iterate of the conditional, and P ?

Z|A(z|α) is its value at conver-

gence.

To see why this may be the case when λ = 0, consider a region that contains at least

one labeled object. Let τ be the total weight of the labeled objects in the region. Then

the label of region must converge to its final value at a exponential rate of 1 − τ , because

the labeled objects, responsible for a weight of τ in the weighted update of the region, are

fixed and are already at their convergence value. Then this exponential rate of convergence

propagates from this region to its objects, then to the regions that contain those objects, and

so on. The difficulty in making this line of thought a formal proof is that the geometric

averaging of labels of the regions when recomputing a object is re-normalized to sum to 1.

The normalization breaks the properties of an “average”.

Nevertheless, we can say for sure that if a object is connected to a labeled object by a

shortest path of M objects, information from the labeled object cannot contribute to this

object in less that M full information regularization iterations. Thus in order to achieve

sensible labels, the number of information regularization iterations must exceed the max-

imum number of objects on a shortest path between a labeled and an unlabeled object.

Depending on the structure of the graph, this number may be O (n), for a long graph with

a single label at one end, or smaller.
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Unbalanced classes

Consider a task in which the variable of interest is the class label y ∈ Y = {1, 2, . . . , K}

that can take K values. Unfortunately, the label distribution of the labeled training data

has a significant impact on the label distribution of the labels assigned by the information

regularization iteration. For example, if we received 2 positive examples in Figure 5-4 but

still one negative example, we expect most objects to be assigned a positive label as a result

of the information regularization algorithm (if not twice as many positives than negatives).

This imbalance may have a negative impact on the performance of the algorithm because

such a small sample of labeled objects is very noisy and is at best a very coarse indicator

of the true distribution of labels.

Note that supervised learning methods have the same difficulty learning the label dis-

tribution from such a small labeled sample. Some of them, such as SVM’s, are robust to

unbalanced classes, while others need more labeled training data to get a better estimate of

the label distribution.

We make a simple change to the information regularization algorithm to allow to incor-

porate a prior on the label distribution, that may be different from the label frequencies of

the labeled training data.

The solution is to change the mapping between the label distributions PY |A(·|α) to hard

classification labels from Y . Normally , we would assign to α the label that maximizes

PY |A. Instead, we make the decision based on a threshold vector (t1, t2, . . . , tK):

ŷα = arg max
y∈Y

log PY |A(y|α) + ty (5.15)

We select the thresholds ty after the information regularization algorithm converges, in

a way that makes the resulting label distribution equal to our prior label distribution (or a

posterior label distribution if the labeled training data is sufficient to affect the prior).

Let us discuss what would happen if we do not receive any labeled sample from class

y = 1. The regular information regularization would assign a 0 probability of belonging to

that class to every object. The modified version of information regularization would correct

this with a threshold that ensures that whenever a object is not explained well enough by

the other classes, it will be assigned to y = 1.
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Figure 5-5: Alternative representations of the similarity bias of the labels of a number of

objects: all possible pairwise regions (left) or a single region covering all objects (right).

Region size trade-off

This section illustrates the trade-off between grouping a set of objects into a single large

region, or into many smaller regions. Suppose that we have the a priori bias that a certain

set of objects should have similar labels. The question is whether to represent this bias as

a single region containing all objects, or as many pairwise regions of pairs of objects, as in

Figure 5-5. From the object of view of computational complexity it is clear that a single

large region is more efficient because it introduces fewer edges in the bipartite graph. Let

us evaluate the effect on the resulting probabilities.

Assume that the variable of interest is the class label, and that the classification is binary

(Y = {0, 1}). Assume also that λ → 0+, and that the weights π are uniform. There are n

training objects, and only l of them are labeled. Assume that f is the fraction of objects of

the labeled objects that are of class 1.

We consider two scenarios (Figure 5-5). In the first scenario we have a single region

containing all objects. In the second scenario we have n(n − 1)/2 regions of 2 objects

joining any pair of objects. Because of the symmetric of the problem, in both scenarios

after convergence information regularization will assign a common label to all unlabeled

objects. Let us find out which is the label in each scenario.

In the single region case it is easy to see that the probability of class y = 1 assigned to
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all the unlabeled object by information regularization converges f , the fraction of labeled

objects of class y = 1.

In the multiple region case, let p = PY |A(1|α) be the probability to which the algorithm

converges (for unlabeled points). Let us write the probabilities QY |A(1|R) associated with

each region. We distinguish between three types of regions:

1. Both endpoints are unlabeled. Then QY |A(1|R) must be equal to p at convergence.

2. One endpoint is unlabeled, and the other one is labeled with y = 1. Then QY |A(1|R)

must be equal to (1 + p)/2 at convergence.

3. One endpoint is unlabeled, and the other one is labeled with y = 0. Then QY |A(1|R)

must be equal to p/2 at convergence.

Each unlabeled point belongs to exactly n− l+1 regions of type 1, fl regions of type 2,

and (1−f)l regions of type 3. According to the point update of information regularization,

the distribution of the unlabeled point must be obtained as a normalized geometric average

of the mentioned region distributions. The geometric averages of the regions that contain

of an unlabeled point for the positive label and the negative label are, respectively3:

1

n− 1

[
fl log

1 + p

2
+ (1− f) log

p

2
+ (n− l − 1) log p

]
(5.16)

1

n− 1

[
fl log

1− p

2
+ (1− f) log

(
1− p

2

)
+ (n− l − 1) log(1− p)

]
(5.17)

(5.18)

These are the logarithms of two numbers whose ratio must be equal to p/(1− p) at conver-

gence. If follows that p must satisfy:

1

n− 1

[
fl log

1 + p

1− p
+ (1− f)l log

p

2− p
+ (n− l − 1) log

p

1− p

]
= log

p

1− p
(5.19)

We can solve for f in the above equation. We get:

f =
log 2−p

1−p

log (1+p)(2−p)
(1−p)p

(5.20)

3expressed as logarithms
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Figure 5-6: The graph of the probability PY |A(1|α) assigned by information regularization

to unlabeled points in a binary classification task in a scenario in which all points belong to

a single region (x-axis) versus a scenario in which every pair of points belongs to a region

(y-axis). Refer to Figure 5-5 for a depiction of the scenarios.

In Equation 5.20 p is the probability of class y = 1 for all unlabeled points at conver-

gence in the scenario with many pairwise regions, while f is the same probability in the

scenario with a single region that contains all points. The relationship between the two

probabilities is depicted in Figure 5-6.

We observe that in the scenario with pairwise regions, if less then 10% labeled training

points are negative (or positive), information regularization ignores them, and the resulting

p is approximatively 1 (or 0). Intuitively, the smaller the regions, the more geometric aver-

aging and normalization operations. This type of operations have the tendency of driving

small probabilities to 0, and large probabilities to 1, hence the shape of the graph. It is

interesting that the shape of the curve does not depend on the number of points considered.

To conclude, it is not easy to decide whether to use smaller or larger regions based

on the implied assumptions – it really depends on the task. Nevertheless, one large region

instead of many small ones (a quadratic number of small ones) will be less demanding from

the computational point of view, but offers no way of capturing spatial structure.
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5.4 Learning theoretical considerations

As in the metric case, we seek to show that the information regularizer is an adequate

measure of complexity, in the sense that learning a labeling consistent with a cap on the

regularizer requires fewer labeled samples. We consider only the simpler setting where the

labels are hard and binary, PY |A(y|α) ∈ {0, 1}, and show that bounding the information

regularizer significantly reduces the number of possible labelings. Assuming that the points

in a region have uniform weights, let N(γ) be the number of labelings of {α1, α2, . . . , αn}

consistent with

I(PZ|A) < γ (5.21)

According to [23] we have the following result:

Theorem 13 log2 N(γ) ≤ C(γ) + γ · n · t(R)/ minR γ(R), where C(γ) → 1 as γ → 0,

and t(R) is a property ofR that does not depend on the cardinality ofR.

Proof Let f(R) be the fraction of positive samples in region R. Because the labels are

binary the mutual information I (A|R ; Y |R) is given by H(f(R)), where H is the entropy.

If
∑

R πR(R)H(f(R)) ≤ γ then certainly H(f(R)) ≤ γ/πR(R). Since the binary entropy

is concave and symmetric w.r.t. 0.5, this is equivalent to f(R) ≤ gR(γ) or f(R) >=

1 − gR(γ), where gR(γ) is the inverse of H at γ/πR(R). We say that a region is mainly

negative if the former condition holds, or mainly positive if the latter.

If two regions R1 and R2 overlap by a large amount, they must be mainly positive

or mainly negative together. Specifically this is the case if |R1 ∩ R2| > gR1(γ)|R1| +

gR2(γ)|R2| Consider a graph with vertexes the regions, and edges whenever the above

condition holds. Then regions in a connected component must be all mainly positive or

mainly negative together. Let C(γ) be the number of connected components in this graph,

and note that C(γ)→ 1 as γ → 0.

We upper bound the number of labelings of the points spanned by a given connected

component C, and subsequently combine the bounds. Consider the case in which all regions

in C are mainly negative. For any subset C ′ of C that still covers all the points spanned by
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C,

f(C) ≤ 1

|C|
∑
R∈C′

gR(γ)|R| ≤ max
R

gR(γ) ·
∑

R∈C′ |R|
|C ′|

Thus f(C) ≤ t(C) maxR gR(γ) where t(C) = minC′∈C, C′ cover

P
R∈C′ |R|
|C′| is the minimum

average number of times a point in C is necessarily covered.

There at most 2nf(R) log2(2/f(R)) labelings of a set of points of which at most nf(R) are

positive. 4. Thus the number of feasible labelings of the connected component C is upper

bounded by

21+nt(C)maxR gR(γ) log2(2/(t(C)maxR gR(γ))) (5.22)

where 1 is because C can be either mainly positive or mainly negative. By cumulating

the bounds over all connected components and upper bounding the entropy-like term with

γ/πR(R) we achieve the stated result. �

Therefore when γ is small, N(γ) is exponentially smaller than 2n, and

lim
γ→0

N(γ) = 2

5.5 Relation to other graph regularization methods

The information regularization algorithm has similar structure with other semi-supervised

algorithms that operate on graphs, including harmonic graph regularization [62], and con-

ditional harmonic mixing (CHM) [13]; yet, the updates of information regularization differ

from the mentioned algorithms as follows.

Both harmonic graph regularization and CHM result only in arithmetic averaging up-

dates, while information regularization is asymmetric in the sense that one update is geo-

metric. The geometric combination of label distributions means that if one probability is

approximately 1, the average will be also almost 1 irrespective of the distributions of other

regions. If the regions are experts that vote for the label of a common point, in information

regularization it is enough for a single region to be confident to set the label of the point.

4The result follows from
∑k

i=0

(
n
i

)
≤
(

2n
k

)k
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5.6 Extensions

5.6.1 Information regularization as post-processing

In what follows we introduce a variation of the information regularization algorithm that

allows us to apply it as a post-processing step on top of any probabilistic classifier. Often

we are already invested in a well-engineered supervised classifier that models the task very

well given enough labeled samples. Post-processing enables us to turn the classifier into a

semi-supervised learning algorithm without waisting the predictive power of the supervised

classifier.

The idea is to use the probabilistic output of the supervised classifier as labeled training

data for information regularization. Since the supervised classifier has the ability to assign

a label to any point in the space, all training data A will now be labeled prior to running

information regularization. It may be counter-intuitive why information regularization is

still appropriate, since there are no unlabeled points. Nevertheless, with an appropriate

regularization weight λ the information regularization can still correct labels that do not

agree with the semi-supervised bias. For example, if the input classifier places a single

negative label in a cluster of positive labels, the information regularizer will correct it to a

positive label.

Thus the objective on information regularization becomes:

min
PZ|A∈F

−
∑
α∈A

∑
z∈Z

P 0
Z|A(z|α) log PZ|A(z|α) + λI(PZ|A) (5.23)

where P 0
Z|A(·|α) is the probabilistic output at α of the previous classifier. The information

regularization algorithm is the same, except that it needs to be modified to accept proba-

bilistic labels of points as input by replacing the δ function in Equation 5.13 with the actual

probability P 0
Z|A(·|α).

The value of the regularization parameter λ is critical in running information regular-

ization as post-processing. If λ→ 0, the initial labels are fully trusted and no changes can

be made. Post-processing makes sense only for large values of λ.

In Figure 5-7 we see an example in which information regularization corrected the

output of a previous classifier to account for the a priori bias that neighbors with respect to
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Figure 5-7: Post-processing of the probabilistic output of a supervised classifier with infor-

mation regularization, in a binary classification task. Left: the output labels of the super-

vised classifier. Right: the output labels after information regularization, corrected to agree

with the semi-supervised bias that nearby points should have similar labels.

the Euclidean metric should have similar labels.

5.6.2 Parametric models

We relax the assumption of the information regularization iteration that the distributions

associated with every point and every region are unconstrained; therefore, F andMR can

now be restricted, and be defined as parametric distribution families. Before we proceed, let

us reiterate the problems that may emerge due to placing restrictions on the distributions:

1. Restricting the distributions breaks the convexity of the information regularization

objective.

• we can only guarantee a local optimum

• initialization matters

2. The restrictions may result in computationally intractable point and region updates.

If the parametric restrictions on F orMR bring in important domain knowledge, we

argue that a local optimum that considers the domain knowledge may be better than a global

optimum that disregards it. Thus we agree to tolerate a certain amount of non-convexity.

However, if the updates become intractable, the algorithm is compromised. Thus in our
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relaxation of the original requirements for the information regularization iteration we seek

parametric families that render tractable updates, ignoring non-convexity.

In the spirit of Theorem 1, we derive the general update for the distribution of region R

for a genericMR. As in Equation 5.9, any local optimum Q∗ of the information regular-

ization objective must minimize the following as a function of Q but with fixed P ∗:

−
∑
α∈A

πAR(α, R)
∑
z∈Z

P ∗
Z|A(z|α) log QZ|R(z|R) (5.24)

The only difference is that the minimization is now subject to QZ|R ∈ MR. Note that the

above equation can be seen as a log-likelihood of QZ|R ∈MR on a training set of samples

from Z that come with frequencies
∑

α∈A πAR(α, R)P ∗
Z|A(z|α).

It follows that the region update is tractable if any only if maximum likelihood esti-

mation on distributions fromMR is tractable. Moreover, the region update by averaging

the distribution of the points contained in it will be replaced by the maximum likelihood

distribution if the samples are the points in the regions, weighted by their weight in the

region.

In light of this argument, we extend information regularization to families of distribu-

tions known to be tractable for maximum likelihood estimation.

Expectation maximization

In Section 3.4.1 we have shown that with a special choice of the regions and distribution

familiesMR, the information regularization objective is identical to maximum likelihood

from incomplete data. Here we show that the resulting iteration for optimizing the objective

is exactly the iteration of the Expectation Maximization (EM) algorithm [26].

In this setting all points in the training set are unlabeled, and we cover the space with

a single region R that contains all points. The variable of interest Z is the pair (X, Y ) that

includes both a feature vector xα associated with each object, and the label. Also, we set

MR to be equal to {PXY (x, y ; θ) ; θ ∈ Θ}, the assumed parametric family of the joint.

Since the label y is latent for all training examples, the information regularization objective

is equivalent to likelihood maximization from incomplete data.
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The information regularization algorithm proceeds as follows. First we randomly ini-

tialize the label distributions of all points, PY |X(y|xα), then we proceed with the informa-

tion regularization iteration until convergence. The iteration consists of two steps. In the

region update step, we set the parameters of QXY |R, denoted by θR, to the maximum like-

lihood estimate of a distribution fromMR under a training set that consists of points with

labels PY |X(y|xα). In the point update step, we set PY |X(y|xα) for every point to the ex-

pected value of the label at xα under QXY |R. But this algorithm fits exactly the description

of the Expectation Maximization iteration.

Thus a single region with a parametric model performs a EM-like iteration by com-

pleting the labels of unlabeled points with current estimates from the region model. This

leads us to a sensible algorithm for augmenting a supervised classifier based on a generative

parametric model of the joint with additional semi-supervised biases:

1. Create one region that contains all training data, such thatMR associated with that

region with the parametric model of the generative classifier.

2. Create additional regions for other known semi-supervised biases.

The presence of a single region that covers all points solves any connectivity issues:

the additional biases need not provide complete information in the form of a connected

bipartite graph.

Structured labels

Here we extend the regularization framework to the case where the labels represent more

structured annotations of objects. Let y be a vector of elementary labels y = [y1, . . . , yk]′

associated with a single object α. We assume that the distribution

PY |A(y|α) = PY |A(y1, . . . , yk|α)

, for any α, can be represented as a tree structured graphical model, where the structure is

the same for all α ∈ A. The model is appropriate, e.g., in the context of assigning topics

to documents. While the regularization principle applies directly if we leave PY |A(y|α)
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unconstrained, the calculations would be potentially infeasible due to the number of ele-

mentary labels involved, and inefficient as we would not explicitly make use of the assumed

structure. Consequently, we seek to extend the regularization framework to handle distri-

butions of the form

P T
Y |A(y|α) =

k∏
i=1

P i
Y |A(yi|α)

∏
(i,j)∈T

P ij
Y |A(yi, yj|α)

P i
Y |A(yi|α)P j

Y |A(yj|α)
(5.25)

where T defines the edge set of a tree. The regularization problem will be formulated over

F = {P T
Y |A(y|α) ; P i

Y |A(yi|α), P ij
Y |A(yi, yj|α)}

rather than unconstrained PY |A(y|α).

In addition, we constrainMR to consist of distributions QY |R(y|R) that factor accord-

ing to the same tree structure. By restricting the class of region distributions that we con-

sider, we necessarily obtain an upper bound on the unrestricted information criterion. The

resulting maximum likelihood region updates are simple “moment matching” updates, as

if we updated each set of matching parameters independently, in parallel:

Qij
Y |R(yi, yj|R) ←

∑
α∈R

πA|R(α|R)P ij
Y |A(yi, yj|α) (5.26)

Qi
Y |R(yi|R) ←

∑
α∈R

πA|R(α|R)P i
Y |A(yi|α) (5.27)

The geometric update of the point distributions is structure preserving, in the sense that if

the region distributions share the same tree structure, the resulting point distribution will

have the same tree structure. Therefore in effect we are leaving F unconstrained, and only

constrainMF to be structured. The structure of the point distributions is induced from the

structure of the regions.

The structured extension to information regularization still has the convexity properties

of the original criterion, in the sense that the optimal distributions are unique and can be

found starting from any initial value.

5.7 Discussion

We have shown that restricting the information regularization framework to a finite do-

main with finitely many region biases results in an efficient message-passing optimization
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algorithm that is guaranteed to converge to the unique optimal labels irrespective of ini-

tialization. The information regularization iteration propagates label information from the

points with observed labels to the unlabeled points in a way that is consistent with the

assumed semi-supervised biases.

The algorithm admits natural extensions to parametric regions biases, or parametric

models of the labels. Structured labels can also be easily incorporated. The algorithm

subsumes and generalizes alternative minimization iterations such as EM.

The algorithms needs a set of regions, region weights, and weights of points within

each region as inputs. Learning these parameters would require a number of instances of

problems belonging to the same domain. Learning πR and πA|R from a single example (i.e.

a single training data set) is difficult, but not impossible. Our experimental results in the

following chapter include one such example. A full treatment of learning the regions is

outside the scope of our analysis.
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Chapter 6

Experiments

We illustrate the discrete version of the information regularization algorithm (Chapter 5) on

a number of classification tasks. In the first experiment we blindly apply information regu-

larization with regions derived from an Euclidean metric without knowledge of the domain

from which the training set has been sampled. The following experiment demonstrates

the application of information regularization to the task of categorization of web pages,

where we choose the regions based on intuition about the domain. Lastly, we present in-

formation regularization applied to a named entity recognition task with a large number of

objects and regions, where we provide an algorithm for region selection. With this range

of experiments we hope to provide enough intuition about the performance of information

regularization in practice, the sensitivity to region selection, and the ability to run on large

data sets.

6.1 Generic information regularization with the Euclidean

metric

We present experimental results on the performance of the discrete version of the informa-

tion regularization algorithm on 6 data sets published in [14].

The benchmark is particularly challenging for semi-supervised learning because the al-

gorithms were developed without knowledge of the domains from which data was sampled;
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Table 6.1: Metrics of the data sets used in the generic experiment.

Data set Classes Dimension Points

g241c 2 241 1500

g241d 2 241 1500

Digit1 2 241 1500

USPS 2 241 1500

COIL 6 241 1500

BCI 2 117 400

in fact, the data sets were preprocessed to mask any obvious link with a particular domain.

Only after the publication of the book the origin of the data sets were revealed. Now that

the identity of the data sets is revealed, it is instructive to comment on the dependency of

the results on right or wrong assumptions. We also show that semi-supervised learning can

improve significantly on supervised methods.

6.1.1 The data

We provide a brief description of the 7 data sets. The first three are artificially generated,

and the rest come from real domains. Their metrics are shown in Table 6.1. The first data set

is a classic instance of the cluster semi-supervised principle. The seconds dataset violates

the cluster assumption, and the third has the feature that the data lies in a low-dimensional

manifold. The fourth is unbalanced, and the fifth has been chosen as an example of a

multi-class classification problem. The last data set is simply a noisy real-world difficult

classification problem.

g241c An artificial binary-classification data set in which each class is a multivariate Gaus-

sian of 241 dimensions.

g241d An artificial binary-classification data set in which each class is a mixture of 2

multivariate Gaussians, such that pairs of clusters from different classes overlap. This

data set violates the cluster assumption.
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Digit1 An artificial data set that consists of the digit “1” transformed by random rotations,

translations, scalings, then rasterized in a 16 × 16 grid. One 241 points are kept as

features, with some Gaussian noise added. The task is to predict if the digit “1” has

been tilted to the right, or two the left. The data points lie into a low-dimensional

manifold because of the small number of types of transformations that generated it,

but does not necessarily satisfy any cluster assumption.

USPS A subset of 1500 images from the USPS digit dataset, with some rescaling, and

noise applied; also, some of the features are masked so that only 241 features are

available per data point. The task is binary classification, where the positive class

consists of the digits “2” and “5”, while the other digits go into the negative class.

This is a heavily unbalanced data set, with the ratio 1 to 4 between the number of

positive and negative examples.

COIL This is a data set that originated in the Columbia Object Image Library (COIL-

100) [43], which is a database of 100 images taken from different angles. Processing

consisted of selecting only 24 object, randomly divided into 4 classes, and choosing

241 features out of a 16 × 16 sub-sampling of the red channel (the original images

were 128× 128).

BCI The features consists of a representation of the time-series recording of 39 electroen-

cephalography electrodes while one subject imagined performing tasks with the left

hand, or with the right hand [40]. The time series were converted to features by

keeping 117 fitted parameters of an auto-regressive model. The goal is to classify the

recording as “left” or “right”

Each data set comes with 24 splits into labeled and unlabeled samples. 12 of them are

problems with 10 labeled points, and the other 12 are problems with 100 labeled points.

6.1.2 Implementation details

In the absence of domain knowledge, we employed a generic semi-supervised prior that

assumes that the distribution of the labels is correlated with Euclidean metric on the vector
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space of the features. Also, we relied heavily on cross-validation to remove other implicit

prior assumptions.

We implemented the discrete version of information regularization presented in detail in

Chapter 5. Regions are centered at each data point, and consist of the K-nearest neighbors

around the point (including the center), where the distance is measured according to the

Euclidean metric. Also, regions have equal weights πR(R), and the weights of the points

belonging to a region, πA|R(α|R) are also equal.

λ, the weight of labeled training data against unlabeled data, was set to 0, meaning that

the posterior labels of training data are not allowed to change from their given values. The

regularization iteration proceeded until the change in parameters became insignificant.

Cross-validation

We cross-validated by 10-fold cross-validation the parameter K that governs the size of the

regions, and also the choice of the thresholding function, as we will describe shortly. In

order to cross-validate, we split the labeled training set in 10 equal subsets, and leave one

subset out while training with the rest of the subsets. After training we compute the error

rate on the subset that was left out.

Because the parameters we cross-validate should be a characteristic of the domain, not

of the specific task, we average the cross-validation score across all 12 splits (of the same

number of labeled samples). This alleviates the problem that the cross-validation error rate

is quite noisy when only 10 labeled points are available.

In order to determine K, we run full cross-validation for 40 values of K between 2 and

400 on a logarithmic scale, such that we try all small values of K between 2 and 18, and

fewer larger values.

When it is not clear what the optimal value of K is because the cross-validation assign

the same minimal score to a range of values, we take the average K across those minimal

values.

When computing the cross-validation error we counted as errors all points that were

graph disconnected from any labeled data points, even if their probability happened to

match the true label. This encouraged to select values of K that left most points connected.
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Selection of the threshold

We optimize the mapping between the soft probabilities PY |A that result from the infor-

mation regularization algorithm, and hard output labels. Proper selection of the threshold

requires full cross-validation. However, for reasons of computational efficiency, we cross-

validated only between two scenarios:

• assign the class labels by maximizing PY |A(y|α) + ty, following the blueprint laid

out in Section 5.3.2. ty are a set of thresholds that are optimized so that the resulting

class distribution matches the class frequency on the observed labeled data

• assign the class labels simply according to the maximum of PY |A

The first scenario is robust to unbalances between classes in the true data distribution.

The second scenario works best when the class frequencies of the observed labeled points

are so noisy that are not representative at all of the true class distribution.

6.1.3 Evaluation

We computed the error rates that resulted from the information regularization algorithm and

compared them against the performance of a purely supervised Support Vector Machine,

and that of a Semi-supervised Transductive Support Vector Machine. The average error

rates for 10 and 100 labeled training samples are presented in Table 6.2 and Table 6.3

respectively. For the performance of other semi-supervised methods on the same data sets

see [14].

We notice that information regularization performs better than the supervised method,

except on the data sets that violate significantly the semi-supervised prior imposed by the

Euclidean metric, that is g241d and BCI. On the other 4 data sets information regularization

performs better than TSVM on all but g241c.
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Table 6.2: Average error rates obtained by Support Vector Machine (supervised), Transduc-

tive Support Vector Machine, and Information Regularization, when trained on unlabeled

data and 10 labeled samples.

g241c g241d Digit1 USPS COIL BCI

SVM 47.32 46.66 30.60 20.03 68.36 49.00

TSVM 24.71 50.08 17.88 25.20 67.50 49.15

inforeg 41.25 45.89 12.49 17.96 63.65 50.21

Table 6.3: Average error rates obtained by Support Vector Machine (supervised), Transduc-

tive Support Vector Machine, and Information Regularization, when trained on unlabeled

data and 100 labeled samples.

g241c g241d Digit1 USPS COIL BCI

SVM 23.11 24.64 5.53 9.75 22.93 34.31

TSVM 18.46 22.42 6.15 9.77 25.80 33.25

inforeg 20.31 32.82 2.44 5.10 11.46 47.47
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6.2 Discussion

We conclude that information regularization has the potential to improve significantly on

supervised models. Its performance however does depend on the accuracy of the implicit

semi-supervised bias that the method assumes. This is not a weakness of information

regularization, but in fact a strength. The power of the algorithm lies in its capability of

encoding into a semi-supervised prior a wide variety of assumptions, that can be intuitively

customized to the task at hand.

While in classical supervised learning blind comparisons of classifiers lacking domain

knowledge are sensible, because distribution-free classifiers exist and perform well, in

semi-supervised learning domain knowledge is critical. Distribution-free semi-supervised

learning cannot perform on average better than pure supervised learning. It is precisely the

special form of the data distribution that correlates unlabeled data with labels, and permits

the transfer of information.

Therefore we do not endorse a thorough head-to-head comparison of various semi-

supervised learning algorithms in the absence of domain knowledge. Each method will

perform well on the data on which the assumed semi-supervised prior is relevant.

6.3 Categorization of web pages

We demonstrate the performance of the information regularization framework on a web

page categorization task. This is a natural semi-supervised learning problem, because the

rate at which we can gather unlabeled web pages from the Internet is much higher than the

rate with which people can categorize them. Therefore in practice we will always have a

significant number of uncategorized web pages. Another feature that makes the domain

suitable to semi-supervised learning is the rich structure of the web pages. We not only

have information about the contents of each web page, but also about the hyperlinks among

them. We can use the rich structure to define a relevant semi-supervised prior.
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6.3.1 The data

We perform web page categorization on a variant of the WebKB dataset [25], that con-

sists of 4199 web pages downloaded from the academic websites of four universities (Cor-

nell, Texas, Washington, and Wisconsin). Each web page belongs to one of four topics,

“course”, “faculty”, “project”, or “student”, and the goal is to label all pages with high

accuracy.

We have processed each web page to keep only the text that appears on the page, as

well as the text from other pages that appears under links pointing to this page (anchor

text). The first step in processing the documents is to treat the body and link text as bag

of words. Then we perform two independent feature selections, keeping only the 100 most

predictive body words, and the 500 most predictive link words. We measure how predictive

a word is by the reduction in entropy with respective to the class brought by the introduction

of that word.

We represent each web page by two sparse vectors. The first vector gives the count of

body words that appears in the web pages, for each of the 100 selected words. The other

vector gives the count of the link words appearing in anchors pointing to the page, for each

of the 500 selected link words.

We receive a limited amount of labeled data, and the task is to predict categories for the

rest.

6.3.2 Supervised and semi-supervised classifiers

Naı̈ve Bayes classifier

We begin by introducing a standard supervised classifier that performs well on text do-

mains, the Naı̈ve Bayes classifier. We will use the Naı̈ve Bayes classifier both as a bench-

mark, and as component of the semi-supervised classifier.

The Naı̈ve Bayes classifier is based on a generative model of the web page that assumes

within each class the words that appear on a page are generated iid from a multinomial

distribution. Let x = (x1, x2, . . . , xd) be the feature representation of a web page, where d

is the size of the vocabulary, and xi is the number of times word i appears in the page. Let
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y be the category of the web page. Then we have the following generative model for the

document:

PX,Y (x, y) = PY (y)PX|Y (x|y) = PY (y)L(|x|)
d∏

i=1

PW |Y (i|y)xi

(6.1)

where |x| =
∑d

i=1 xi is the total length of the document, L is a probability distribution over

the length of the document, and PW |Y (·|y) is the word distribution specific to class y.

Given a fully-labeled training set (x1, y1), (x2, y2), . . . , (xl, yl), it is easy to estimate the

parameters of the model, PY and PF |Y , by maximizing the log-likelihood of the model:

l∑
j=1

log PX,Y (xj, yj) (6.2)

The optimal parameters are given by:

PF |Y (i|y) =

∑l
j=1 xi

jδ(y, yj)∑l
j=1 |xj|δ(y, yj)

(6.3)

PY (y) =
1

l

l∑
j=1

δ(y, yi) (6.4)

In practice we smooth the maximum likelihood probabilities by adding an extra word

that appears in every document with a very small count. This is equivalent to placing a

prior on the parameters, and guarantees that the resulting probabilities will not vanish.

To classify a document we compute PY |X(·|x) via the Bayes rule, and choose the class

label that maximizes it.

Note that we can build a supervised Naı̈ve Bayes classifier based on body words, link

words, or all the words.

Semi-supervised naı̈ve Bayes

As discussed in Chapter 2, we devise a semi-supervised benchmark by extending the Naı̈ve

Bayes generative model to unlabeled data with the EM algorithm, as in [45]. The idea is to

treat y as a latent variable for the unlabeled points. Given the previous labeled data points,

and the unlabeled data {xl+1, . . . ,xn}, we maximize the following log-likelihood:

l∑
j=1

log PX,Y (xj, yj) +
n∑

j=l+1

log PX(xj) (6.5)
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with the EM iterative algorithm.

Note that we have shown that running the EM algorithm is equivalent to an information

regularization setup with a single region that contains all points, if the label distribution of

the region is constrained to be Naı̈ve Bayes.

The semi-supervised Naı̈ve Bayes + EM can also be run on body features, link features,

or the combination of the two.

Information regularization

We identify two types of semi-supervised biases that we encode in the information regular-

ization algorithm:

1. The body of the web page is modeled by the Naı̈ve Bayes model relatively well.

2. Web pages that have a word in common in some anchor are more likely to belong to

the same category. This bias can be expressed for every word out of the vocabulary

of 500 link words.

We formalize these biases by the set of regions R that defines the information regular-

ization algorithm. The first type of bias needs a single region that covers all the points, R0.

The second type of biases requires one region for every link word, Ri, i = 1 . . . dl. The link

region Ri contains all web pages that were linked to by at least one anchor that contained

the word indexed by i. The bipartite graph of the information regularizer is depicted in

Figure 6-1.

In order to express the first type of bias, the variable of interest of R0 must be Z =

(X, Y ). We restrict the family of distributions QZ|R(·|R0) associated with region R0 to

Naı̈ve Bayes distributions:

MR0 = {QZ ; QZ(x, y) = QY (y)QX|Y (x|y) = QY (y)L(|x|)
d∏

i=1

QW |Y (i|y)xi} (6.6)
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documents
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all documents

Figure 6-1: The bipartite graph structure of the information regularizer for categorization

of web pages. A single region constrained to a Naı̈ve Bayes model contains all the points.

The rest of the regions correspond to words in the anchors of the web page.

The second type of regions hold distributions over the variable of interest Y 1 from

unrestricted familiesMRi .

We assign the weights πR such that we can trade off the relative value between the two

types of regions. We express this trade-off by a parameter η ∈ [0, 1]. If η is 0, we only

rely on the region of type 1 and its model. If η is 1, we only rely on the regions of type2.

Otherwise, regions of type 2 are weighted the same among themselves.

Because the single region of type 1 emulates Naı̈ve Bayes and EM exactly, setting

η = 0 is equivalent to Naı̈ve Bayes + EM run on the body features. Also, we can predict

that when η = 1 the performance is poor, because the link features are sparse and without

R0 they leave the graph disconnected.

This setup of the information regularizer results in the following algorithm:

1. Assign distributions QY |R(·|Ri) to every region Ri. Assign a distribution QXY |R(·|R0 ; θ)

to the region of type 1.

1We could write the specification of the information regularizer such that all regions have the same vari-

able of interest (X, Y ). We opt for different variables of interest only to simplify the argument – the ap-

proaches are equivalent.
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2. Initialize PY |A(y|α), α ∈ A, α unlabeled, with uniform distributions.

3. Region update:

• Recompute the Naı̈ve Bayes parameters θ by maximum likelihood on a data set

on which (xα, y) appears according to PY |A(y|α). This is the M step of Naı̈ve

Bayes + EM

• Recompute all region distributions for type 2 regions by averaging point distri-

butions:

QY |Ri(y|Ri)←
∑
α∈A

πA|Ri(α|Ri)PY |A(y|α)

4. Point update: Recompute all point distributions of unlabeled points by geometri-

cally averaging region distributions:

PY |A(y|α)← 1

Z̃
exp

(
(1− η) log QY |R(y|R0 ; θ) + η

∑
R∈R,R 6=R0

πR|A(R|α) log QY |R(y|R)

)

5. Return to Step 3 until convergence.

6.3.3 Results

Table 6.4 shows a comparison of the supervised Naı̈ve Bayes, the semi-supervised Naı̈ve

Bayes + EM, and the information regularization algorithm, for various sizes of the labeled

training data. Each error rate is obtained as an average over 50 random selections of the

labeled data. All results use η = 0.9.

Information regularization achieved between 1% and 3% error rate improvement over

any of the semi-supervised algorithms. Note that when the number of labeled samples be-

comes sizable, supervised naı̈ve Bayes outperforms information regularization, which is to

be expected because semi-supervised algorithms are usually more sensitive to model mis-

match, and may loose their advantage when labeled data is enough to train the supervised

model well.

In Figure 6-2 we show the performance of information regularization as a function of

η, averaged over 50 runs, for 25 labeled training points. We can see significant improve-

ment over the purely supervised method (that does not depend on η, as well as a gradual
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Table 6.4: Error rates of Naı̈ve Bayes, the semi-supervised Naı̈ve Bayes + EM, and the

information regularization on the web page categorization data. Each result is obtained as

an average of 50 runs with random sampling of the labeled training data.

number of labeled samples

10 20 40 80 160 320 640 1280

inforeg 18.33 16.29 16.35 16.34 16.15 15.67 15.08 13.84

nb + EM (body) 22.48 19.94 19.93 19.86 19.56 19.13 18.68 17.41

nb + EM (link) 60.53 60.58 60.71 60.63 60.60 59.61 43.90 43.62

nb + EM (body + link) 20.93 20.03 19.92 19.69 19.08 18.13 17.25 15.48

NB (body) 32.68 25.38 20.95 18.14 16.66 15.35 15.07 14.52

NB (link) 57.01 57.49 55.22 53.06 50.72 48.63 47.09 45.44

NB (link + body) 31.67 24.36 19.66 17.07 15.59 14.18 13.74 12.84

improvement over the semi-supervised NB + EM. If η is very large, performance drops

significantly because connectivity breaks.

6.4 Semi-supervised named entity recognition

We apply information regularization to a named entity recognition task on the data pub-

lished in [17]. In named entity recognition, the goal is to identify the category of each

proper name in a document based on the spelling of the proper name, and the context

around it. For example, if the entity begins with Mr., we have a strong reason to believe

it names a person; and if the words preceding the entity are city of, it is very likely that it

names a location. Identifying such specific rules that depend on the actual words contained

in the entity and around it seems to require a large number of labeled training samples,

as the number of possible rules is very large. We show that even with a limited labeled

training set, if we have enough unlabeled data we can achieve low error rates by placing a

reasonable semi-supervised prior through information regularization.
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Figure 6-2: Average error rate of information regularization on the WebKB web page cate-

gorization task, as a function of η. η = 0 is equivalent to naı̈ve Bayes + EM semi-supervised

learning, while η = 1 uses only the link regions. The dotted lines indicate one standard

deviation variation on the 47 experiments. The horizontal line is the error rate achieved by

supervised naı̈ve Bayes. There were 25 labeled samples.
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The idea is to define information regularization regions based on context and spelling

features of the entities, such as the words that make up the entity, its capitalization, or

the words that modify it. Therefore we consider a one-to-one mapping between features

and information regularization regions, and entities belong to a region if they have the

corresponding feature enabled. We consider a large number of features, and provide an

algorithm for selecting the ones that are relevant for information regularization. The mech-

anism by which we select regions is by controlling πR, the weight of each region relative

to the others.

6.4.1 The data

The task consists of classifying the named entities gathered from 971, 746 sentences from

New York Times. The named entity extraction has already been performed by a statistical

parser [17], and we only need to assign each entity to one of four categories: person,

organization, location, and other. The parser extracted a total of 90, 305 entities. Out of

these 1000 entities have been labeled by human annotators, and they will be our test set,

while the rest of the 89, 305 unlabeled entities are the unlabeled training set. Note that none

of the labeled entities will be used during training; instead we will get our label information

for training from a set of labeled rules, as described below.

In principle we could also use the remaining 1000 test entities as unlabeled data during

training, without violating the separation between the training and the testing procedures.

We keep the unlabeled features of the test data entirely separate because we want to illus-

trate that information regularization can depart from the transductive paradigm.

We extract various features about each named entity, on which we will base our classi-

fier. Each feature is a binary property that can either be present or absent. In other words,

we represent each entity by the list of features that are enabled for the entity.

There are several types of extracted features, pertaining to the spelling of the entity, or

to its context, as listed below [17]:

• The exact words in the entity: each entity has a property identified with its ex-

act spelling exact spelling, so that multiple instances of the same entity in different
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contexts share this property.

• Individual words in the entity: we label each entity by the list of words contained

in it.

• All capitals: this feature is on if the entity consists only of capital letters (such as

IBM).

• All capitals or periods: this feature is on if the entity consists only of capital letters

and periods, with at least one period (I.B.M.)

• Non-alphanumeric characters: the word obtained by removing all letters from the

entity (A.T.&T.→ ..&.).

• Context words: we attach to each entity a property that consists of the context words

that modify the entity, obtained from the parser.

• Context type: prepositional or appositive, depending on how the context words

modify the entity in the parse.

• Temporal entity: this type of feature contains a single label that is on for entities

that contain a day of week, or the name of a month among its words.

We have extracted a total of 68, 796 features, but only 25, 674 of them are enabled for

at least two entities. Features that are not enabled for at least two entities do not affect the

running time of the information regularization algorithm, because they do not participate

in the exchange of messages (if we remove them the labels of all points will converge to

the same values).

There is no labeled training data in the form of labeled entities, but we do have a set

of eight hand-labeled features that we know are indicative of the category of those entities

that have the feature enabled. The training labeled features are shown in Table 6.5.

6.4.2 Information regularization approach

We provide a classification algorithm for named entities by information regularization.

Specifically, the algorithm is based on the discrete version of information regularization
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Table 6.5: Seed features used as training labels for semi-supervised named entity recogni-

tion.

feature category

entity is New-York Location

entity is U.S. Location

entity is California Location

entity contains Mr. Person

entity contains Incorporated Organization

entity is Microsoft Organization

entity is I.B.M. Organization

temporal entity Other

introduced in Chapter 5.

Each feature potentially introduces a label-similarity bias of all the entities that have

that feature enabled. To take into account these similarity biases we define a bipartite

graph whose nodes on one side are all the entities, and on the other side are all features

(Figure 6-3). We join an entity with a feature if that entity is enabled for the feature. There

are 90, 305 points (the entities), and 68, 796 regions (the features); however, only 25, 674

regions are non-degenerate and contain at least two points.

Not all features are created equal in terms of the encoded similarity bias. For example,

while all entities with the feature “entity is Microsoft” enabled are likely to be names of

organizations, the feature “prepositional”, shared by half of the entities, clearly does not

correlate with the label – it is unlikely that the majority of entities among half the examples

have the same label. Thus the relative weighting πR of the features is very important for

the regularizer to perform. We have no choice but to tackle the famous region selection

problem. Other than that, we can safely assume that the points (entities) within a region

(enabled feature) are to be treated equally – πA|R(·|R) is a uniform distribution, for every

R.
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Figure 6-3: Graph representation of the information regularization model. Each circle is

an instance of a named entity (90, 305 circles), and each square is a feature (25, 674 that

contain at least 2 entities). An edge means that the entity has the feature enabled. (This is

the same as Figure 5-1, reproduced here for convenience.)

6.4.3 Region selection

In the generic analysis of the information regularization algorithm from the previous chap-

ter we avoided the question of selecting the regions of the information regularizer, as the

type of regions that works with a task is a property of the domain, and should ideally be

learned from more than one task, in order to generalize. The ideal set of regions for a

single task would always be the regions that group together all points of a particular class.

However, we cannot find these regions without solving the classification problem in the

first place. At best we can select a set of regions based on a sensible criterion that we think

it correlates regions with labels as well as possible.

In this named entity recognition task, the assumption we make is that the set of regions

(and associated weights) that best describes the task is the one that results in soft labels

PY |A of minimal entropy. The smaller the entropy of the soft labels, the more precise they

are, and the more confident we are in the true category of the entities. Thus if P ∗
Y |A(πR) is

the set of labels that minimizes the information regularizer for a particular region weighting
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πR, we choose the weighting that minimizes the average entropy of the points:

π∗R = arg min
πR

∑
α∈A

∑
y∈Y

−P ∗
Y |A(πR)(y|α) log P ∗

Y |A(πR)(y|α) (6.7)

P ∗
Y |A(πR) = arg min

PY |A

∑
R∈R

min
QY |R(·|R)∈MR

∑
α∈A

πR(R)πA|R(α|R)KL
(
PY |A(·|α) ‖QY |R(·|R)

)
(6.8)

In the computation of entropy, we assign a uniform label distribution to points that are not

covered by any region. Therefore uncovered entropy have the highest entropy, thus the

set of regions of minimal global entropy will likely cover all points. If a point remains

uncovered and there exists a region that

• has not been selected

• covers the point

• is linked to at least one labeled training region by a path of selected regions that

overlap

than we could further reduce the entropy by selecting this region with an infinitesimal

weight πR.

Greedy approximation

Optimal region selection according to the above entropy criterion is expensive from a com-

putational perspective, given the large number of points and potential regions. We resort to

an efficient greedy approximation. The idea is to start from a minimal set of seed regions

(those for which we have labels), and enlarge R incrementally while updating the weights

of the existing regions, so that each operation minimizes the entropy greedily.

Suppose that given a set of weights πR and a region R0 we can compute g(R0, πR), the

optimal value of πR(R0) while keeping πR(R) fixed2 for all R 6= R0. Then we can run the

following greedy algorithm to find a good set of region weights:

2We let
∑

R∈R πR(R) be unconstrained. The only restriction on the weights is that they are non-negative.
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1. S will be the of regions R ∈ R of positive πR(R). We initialize S to

be the set of labeled training regions. We fix PY |R(y|R) = δ(y, ŷR), the

training label. We also fix πR(R) = ∞ for the labeled regions (in other

words, we trust the labeled regions completely – if an entity belongs to

some labeled regions, its label distribution will be determined only from the

labeled regions to which it belongs.).

2. For each R0 ∈ R \ S compute g(R0, πR), as well as the resulting drop in

entropy with the addition of region R0 with the computed weight. Add to S

the k regions that achieve the highest entropy drop, where k is specified in

advance.

3. For each R ∈ S that is not a labeled training region update

πR(R)← g(R, πR) (6.9)

4. Repeat from 2. until all points in A are covered by at least one region, the

cardinality of S is sufficiently large, and the update in Step 2. indicates

that the weights have converged (early stopping for computational savings

is also OK).

The above greedy algorithm, that starts from a small set of rules and expands it incre-

mentally, is likely to perform better and be faster than an algorithm that starts from all rules,

and keeps removing them. This is because we initialize with relevant regions, and we only

add regions that are relevant given relevant regions. Thus S is should stay relevant as it

increases in size. On the other hand, starting from all regions means that most of them will

be irrelevant in the beginning, and the greedy judgment is noisy and questionable.

Note that if set of possible regions covers all entities, than the described greedy itera-

tion will eventually produce a set of regions S ⊂ R that also covers all entities. This is

because it is always beneficial to add a region with new points if its weight is small enough.

When the weight approaches 0 it will have no effect on the points that are already covered,

but it will move PY |A(·|α) for the newly covered points away from the uniform default,

decreasing the overall entropy.
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Computation of the optimal weight of a single region

Unfortunately, even the computation of the optimal weight of a single region given that the

weights of all other regions are fixed is not efficient enough. According to the blueprint

of the greedy algorithm, the computation of g(R0, πR) must be performed for each R0 ∈

R at every greedy iteration. Thus each addition of k regions to S involves potentially

25, 6743 evaluations of g(R0, πR). We do not have a choice but to restrict the computation

of g(R0, πR) to a fast approximation.

Let us analyze what the exact evaluation of g(R0, πR) would entail. According to equa-

tion (6.8), computing P ?
Y |A(πR), the optimal labels of all entities, involves a full run of

the information regularization iterative algorithm described in the previous chapter. Every

slight change in πR, even in the weight of a single region, involves running the information

regularization on all regions again, because the weight of a single region affects all labels.

Thus evaluating a single g(R0, πR) exactly is necessarily less efficient than information

regularization. Then clearly we cannot evaluate g(R0, πR) exactly 25, 000 times, for every

couple of regions we would add to S.

The key to making the evaluation of g(R0, πR) efficient is to break the dependency be-

tween πR(R0) and the labels of all points and all regions. Therefore, we make the following

important approximation: we assume that only PY |R(·|R0) and PY |A(·|α) for α ∈ R0 are

allowed to vary. The labels of all other points and regions are held constant. We then op-

timize the average entropy of the labels as a function of the weight of region R0. Thus we

use the following approximation of g(R0, πR)

g(R0, πR) ≈ arg min
πR(R0)

∑
α∈R0

∑
y∈Y

−P ∗
Y |A(πR(R0))(y|α) log P ∗

Y |A(πR(R0))(y|α) (6.10)

where

P ∗
Y |A(πR(R0)) = arg min

PY |A(·|α),α∈R0, PY |R(·|R0)∑
R∈R

min
QY |R(·|R)∈MR

∑
α∈A

πR(R)πA|R(α|R)KL
(
PY |A(·|α) ‖QY |R(·|R)

)
(6.11)

3In practice we can save computation by considering as candidates only the regions that have at least one

element in common with already selected regions.
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Note that we only only need to evaluate the average label entropy on R0, because all

other entity labels are held constant, thus the only variation in global average entropy comes

from the labels of points from R0.

The computation of P ∗
Y |A(πR(R0)) now involves only the points in R0 and it is much

faster to carry out than running the full information regularization. In particular, for a spe-

cific πR(R0) the information regularization iteration for computing reduces to the following

set of updates:

PY |R(y|R0) =
1

|R0|
∑
α∈R0

PY |A(y|α) (6.12)

log PY |A(y|α) =
πR(R0)

πR(R0) + t(α)
log PY |R(y|R0) +

C(y, α)

πR(R0) + t(α)
+ const. (6.13)

where t(α) and C(y, α) are constants determined from the neighbors of R0 according to:

C(y, α) =
∑

R3α, R 6=R0

|R0|
|R|

πR(R) log PY |R(y|R) (6.14)

t(α) =
∑

R3α, R 6=R0

|R0|
|R|

πR(R) (6.15)

and the constant const. is such that for each α, PY |A(y|α) sums to 1 over Y .

For a fixed πR(R0) we can perform the iterations (6.12) and (6.13) until convergence, to

find P ∗
Y |A(πR(R0)). Then we can evaluate the entropy over R0, that need to be minimized

as a function of πR(R0). There are many ways of minimizing this objective, including

gradient descent, and Newton’s method. We opt for a simple line binary search over the

values of πR(R0). Since the objective is neither convex, nor monotonic, we need extra care

not to be trapped in a poor local optimum.

It is worth understanding what is the label configuration if πR(R0) takes extreme values.

If πR(R0) → 0, then region R0 has no impact whatsoever on points from R0 that belong

to other enabled regions also. It is as if we run information regularization without R0 to

assign labels to points from R0 that belong to other regions. Than we set PY |R(·|R0) to the

average label of those points. Then we copy PY |R(·|R0) to the labels of the points that are

only covered by this region. The change in average entropy comes only from setting the

labels of points unique to R0.
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On the other hand, if πR(R0)→∞, then we assign complete confidence to region R0.

At convergence, the label distributions of all α ∈ R0, as well as PY |R(·|R0) will all be

equal. The configuration is equivalent to a situation in which all points from R0 collapse to

a single point, that belongs to all regions that intersected R0. The label of that point is set

by geometric averaging, while the label of R0 is set to the label of the point.

6.5 Results

We compare the performance of the information regularization algorithm with region se-

lection on the named entity recognition task with the error rates obtained by Yarowsky

[58] and Collins at al [17], shown in Table 6.6. The baseline is a supervised decision list

classifier:

ŷ(x) = arg max
R3x,y∈Y

Count(R, y) + ε

Count(R) + |Y|ε
(6.16)

where Count(R, y) is the number of labeled training entities of observed class y present in

region R, and Count(R) is the total of labeled training entities in R. ε = 0.1 is a smoothing

parameter. In other words, the decision list classifier estimates a label distribution for each

region based only on the labeled data, and assigns labels to other entities according to a

maximum rule.

The Yarowsky and Collins algorithms are described in [17], and consist of the ap-

plication of the supervised decision list classifier on a training set generated by labeling

the unlabeled data incrementally starting at the entities with known labels, and iteratively

propagating across the regions. Collins separates the spelling and context features, and

propagates on the two sets of features alternatively, in the spirit of co-training.

We ran information regularization by greedily adding 20 regions at a time. The la-

beled regions had their weight fixed to infinity, so that if an entity belongs to some labeled

region, its label will be determined solely from the labeled regions to which it belongs.

The optimal weights of the other regions were computed by binary search on the interval

bounded by 0 and twice the maximum of the weights of other unlabeled regions. Figure 6-4

shows the performance of the information regularization with region selection algorithm,

that achieves an error rate of 14% at 2000 regions. The comparison with Collins’ algorithm
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Table 6.6: Error rates on the named entity recognition task.

Algorithm Error rate

Supervised Decision List 0.54

Semi-supervised EM 0.17

Yarowsky [58] 0.19

Collins et al [17] 0.09

Information Regularization 0.14

is somewhat unfair because we categorize the entities into 4 classes, while the other algo-

rithms categorize them only into 3 classes, by omitting the “other” class altogether. This is

done by training only on 3 classes, and excluding the test points labeled with “other” from

the computation of error rates.

From what we observed the main source of error in the information regularization run

was the incorrect treatment of location features, such as “Japan”, or “York”. These features,

along with many other location features, were labeled as “organization” features. The rea-

son is that some generic features that contained many entities, such as “..” or “ALLCAPS”,

appeared mostly in organizations, and they were labeled as such. However, some location

entities also contained “..”, so that the “organization” label propagates to some “location”

entities that were of unknown label at the time. Once a few “location” entities were labeled

as “organization”, the wrong label quickly propagated to the entire cluster.

Once possible remedy to the source of error described above is to artificially weight

less large regions for which we decided their label based on a small number of entities

contained in them, because they likely span many classes and are likely to hurt if weighted

to much. Just because the 10% of the entities for which we have some label information

from a large region seem to share the same label does not mean that all points in the region

should share that label. However, if the region is small and 90% of its points share the same

label, then it is likely that the region is a good indicative of the label.
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Figure 6-4: Error rate of information regularization on the named entity recognition task as

a function of the number of regions included in the regularizer. Bottom dotted line: error

rate on entities covered by at least one region. Top dotted line: error rate on all entities, by

treating all uncovered entities as errors. Solid line: estimated error rate by selecting labels

of uncovered entities uniformly at random.
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Chapter 7

Contribution

We introduced a framework for semi-supervised learning based on the the principle of

information regularization, originally described in [53]. A central concept in information

regularization is that of a semi-supervised bias, an unlabeled subset of the training set

that consists of objects deemed to be similar in a way that is relevant to classification.

Information regularization represents the semi-supervised biases by a collection of regions

that covers the training data, and a probability distribution over the selection of the regions.

The regions can be defined from a similarity metric on the vector space of features, or from

relations among the objects.

Given a set of regions, the framework defines an information regularizer that penalizes

joint distributions that do not satisfy the similarity biases of individual regions. The regular-

izer can be applied to a supervised loss function to obtain an objective whose minimization

results in semi-supervised classification.

We demonstrated the convexity of the information regularization objective, and pro-

vided an iterative message passing algorithm on the bipartite graph of objects and regions

that optimizes the criterion.

We showed that the information regularization algorithm can be applied in both a purely

non-parametric setting, and in a situation in which we enforce parametric constraints on the

joint.

When the feature space is continuous, we obtained an inductive classification algorithm

by taking the limit of the information regularizer when the number of regions is infinite,
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and their size approaches 0.

The information regularization framework is flexible enough to subsume the expecta-

tion maximization algorithm for semi-supervised learning, by defining a single region that

contains all points, with a specially restricted region distribution. It can also obtain the ob-

jective of harmonic graph regularization by defining regions with pairs of points, one region

for each edge in the graph. A variant of co-training can be achieved with the information

regularization objective.

We demonstrated the performance of information regularization on categorization of

web pages, and on named entity recognition.

7.1 Topics of further research

An important issue with most current semi-supervised algorithms is that they do not address

well learning the semi-supervised biases. In the context of information regularization this

translates into learning the region set, and the region weights. In other semi-supervised

algorithms it may mean learning a label-similarity metric. We made an attempt on learning

the region set in the context of named entity recognition, but the resulting algorithm is

largely heuristic. There is a need for a thorough treatment of the topic. We envision that in

order to learn the similarity metric reliably one would need a collection of tasks (training

sets) from the domain on which the metric should be valid.
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Appendix A

Notation

The following is a list of symbols defined in the thesis and their meaning:

A, α the set of all data points available to the semi-supervised learning algorithm.

α is a generic element of A

x,X the feature vector representation of a data point, and the set of all possible

feature vectors (x ∈ X )

xα feature representation of the object α

Y , y the set of possible class labels, and a generic label (y ∈ Y)

yα class label of the object α

z,Z quantity to be predicted about each data point in the most general frame-

work; for example z may be y or (x, y)

R, R a collection of regions from the set of available objects. R ∈ R is a generic

region. Note that R ⊂ A

θ, Θ parameter vector, and the set of all parameters

D = {α1, α2, . . . , αn} is a semi-supervised training set of n objects, of which

the first l are labeled, and the next u are unlabeled. Thus (xαi
, yαi

) is ob-

served for 1 ≤ i ≤ l, and xαj
is observed for l < j ≤ n. Note that D ⊂ A

and n = l + u.

πR probability distribution over R. It represents the relative importance of the

regions in the regularizer. In a typical setting it is given a priori.
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πA|R probability distribution over the elements of region R. It represents the

relative contribution of each element to the model associated with R. In a

typical setting it is given a priori.

PZ|A probability distribution associated with each data point that needs to be es-

timated. It represents the a posteori confidence in the value of quantity z for

data point α.

PA the probability distribution that generates data points. It can be estimated

from observed unlabeled samples.

F constrained family of distribution to which PZ|A is forced to belong. It

represents any hard constraints on PZ|A known a priori.

QZ|R probability distribution associated with each region that represents the a pos-

teriori confidence in the quantity z on average across the region.

MR constrained family of distributions over Z associated with region R. In

other words, QZ|R is forced to belong toMR. The family encodes the semi-

supervised bias over PZ|A induced by region R.

PF the task prior. It is a distribution over F that encodes a priori biases about

the possible PZ|A. Any semi-supervised method assumes implicitly or ex-

plicitly a task prior. PF is specific to the class of problems, but not on the

particular instance of the problem we need to solve.
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Relational Markov Network, 40
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self-training, 28

semi-supervised bias, 18

semi-supervised learning, 17, 22

similarity bias, 45

Spectral Graph Transduction, 35

supervised learning, 17, 22

Support Vector Machine, 41

systematic bias, 73
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tors, Advances in Neural Information Processing Systems 17, pages 1633–1640. MIT

Press, Cambridge, MA, 2005.

[61] Xiaojin Zhu. Semi-Supervised Learning with Graphs. PhD thesis, Carnegie Mellon

University, May 2005.

[62] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning us-

ing gaussian fields and harmonic function. In Proceedings of the 20th International

Conference on Machine Learning, volume 20, pages 912–919, 2003.

[63] Xiaojin Zhu, Jaz Kandola, Zoubin Ghahramani, and John Lafferty. Nonparametric

transforms of graph kernels for semi-supervised learning. In Lawrence K. Saul, Yair
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