Improving Cache Performance by Structure Reordering®

(Extended Abstract)

Kevin Zatloukal Adrian Corduneanut Richard E. Ladner!
Vinod Grover? Simon Meacham?

November 8, 1999

Abstract

Reordering of the members of structures is used to improve the cache performance
of C and C++ programs. A new analytical model, the membership transition graph, is
developed to model access behavior to structures for different orderings. The model is
used to define an optimization problem whose solution guarantees a minimum number
of cache misses. The model is applied to Microsoft SQL Server 7.0 to yield improve-
ments in cache performance and overall performance.

1 Introduction

In this paper, we consider whether reordering members of C and C++ structures
can improve the data cache performance and overall performance of programs. Our
focus is on C and C++ programs because many major pieces software, like Microsoft
SQL Server, are written in C and C++ and improving their performance is of critical
importance. Because memory latency continues to grow relative to processor speed,
the cache performance of programs has become an important consideration for system
designers, compiler designers, and application programmers alike. All of us must be
aware of and try to reduce processor stalls caused by data cache misses in order to
achieve maximum performance from our programs.

Memory is organized into lines, where a line is the unit of memory that is moved
into the cache as the result of a memory access. Typically, lines are 32 or 64 bytes, so
several data items can be placed on the same line. It has been proposed that a good
way to reduce cache misses is to place data that are often accessed together on the same
line [1, 2, 3, 4, 5, 6, 7, 10]. If one datum is accessed shortly after another and neither

*Richard Ladner’s research was supported by NSF grant CCR-9732828, Microsoft, and AT&T. Kevin
Zatloukal and Adrian Corduneanu were interns at Microsoft Research while this research was conducted.

tDepartment of Computer Science and Engineering, University of Washington, Seattle, WA 98195.
{kevinz,lander }@cs.washington.edu

tDepartment of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1Al.
a.corduneanu@utoronto.ca

$Microsoft Research, One Microsoft Way, Redmond, WA 98052. {vinodgro,simonme}@microsoft.com

is in the cache, then two cache misses can be reduced to one if the data are relocated
to the same line. In C and C++, compilers layout the members of structures in the
order given in the declaration, respecting the alignment constraints of the members. If
the structure spans more than one cache line, then it may be beneficial to attempt to
reorder its members such that those members that are accessed together in time are
located on the same line.

This paper presents two main results. First, we present a new model for analyz-
ing the cache performance of programs. This model allows the structure reordering
problem to be represented as a specific optimization problem. Theoretically, the opti-
mization problem is NP-hard, but various heuristic algorithms can be used to solve the
optimization problem approximately. Second, we demonstrate that optimizing with
respect to this model can improve the cache performance and overall performance of
real industrial programs such as Microsoft’s SQL Server 7.0.

The idea of reordering the members of structures is not a new idea and has been
considered by others [2, 5, 6, 10]. Chilimbi, Davidson, and Larus [2] define a field affinity
graph and Kistler and Franz [6] define a temporal relationship graph for a structure,
both with a similar objectives. The nodes of the graph are labeled with the members
of the structure and the edges are weighted with nonnegative numbers, where a large
weight indicates that the members at the ends of the edge are often accessed closely
in time. As a result, an ordering of the members of the structure corresponds to a
clustering of the nodes of the graph where the members in each cluster are placed
on the same line. The clusters are constrained so the members of each cluster can
actually fit on one line. A good ordering then corresponds to a clustering where the
sums of the weights of edges within clusters is maximized or, equivalently, the sums
of the weights of edges between clusters is minimized. The field affinity graph and
temporal relationship graph differ in how the weights are determined. The clustering
algorithm of Chilimbi, Davidson and Larus and the algorithm of Kistler and Franz
differ also: the former using a greedy bottom-up approach and, the latter using a top-
down global optimization approach. Neither algorithm optimally solves the problem,
but both approaches yield good results.

Ours is quite different from these previous approaches. We do not try to model
the temporal affinity of members of a structure with weights because it is not clear
how these weights formally relate to minimizing the number of cache misses, which is
our real objective. Instead, we directly model the behavior of the program’s accesses
to members of a structure and how the ordering affects the number of cache misses.
To model the behavior of the program’s accesses to a structure, we define the member
transition graph (MTG). The MTG of a structure is a Markov model, augmented to
account for cache behavior. In this model, we can define precisely the miss rate for an
ordering of the structure by solving a system of linear equations. With this, we have
an optimization problem that we can solve in a number of ways. Most importantly, we
know that a good solution to the optimization problem must yield an ordering which
does a good job of minimizing the miss rate. A major contribution of this paper is the
analytical model that provides a direct connection between optimization in the model
and minimizing the miss rate. We discuss our model in detail in section 2.

For the MTG model to be useful, we must be able to gather trace data from which we
can derive the parameters of the model. Microsoft has developed DLP (Data Locality
Profiler) for gathering such data. DLP has access to Microsoft’s C++ compiler’s

(1.0,0.1) (0.2,0.2)
o (O (%)
(0.8,0.8)
(1.0,0.2) (1.0,0.1)

()

Figure 1: An example of a member transition graph (MTG).

type information which allows us to gather traces that include each memory address
accessed, and for each access to a structure member, the name of the structure and
its member. In addition, we need the ability to simulate the cache behavior when
the structure members are reordered. The simulation step is crucial in assessing the
potential benefit of a structure reordering. DLP provides the capability of simulating
a structure reordering to determine the number of cache misses that would occur. We
discuss DLP in detail in section 3.

To determine whether structure reordering is effective in practice, we tested our
methodology on a large industrial program, namely, Microsoft’s SQL Server 7.0. In
section 4, we present our results, which show improvements in both cache performance
and running time. In this preliminary study, we were able to reorder only seven struc-
tures. The reorderings produced by our heuristic algorithm reduced the number of
cache misses for all seven structures. SQL Server’s running time improved by about
1.3%. This result is less than the 2-3% improvement for SQL Server 7.0 reported by
Chilimbi et al. [2] using their approach. However we should note that their improve-
ment came from reordering the five most frequently accessed structures while we did
not reorder any of those. This fact was due to limitations in our early versions of DLP,
which will shortly be remedied. In the final version of this paper, we will include the
results of reordering more than 100 SQL Server structures. We expect to see perfor-
mance improvements of at least 7-10%. These results would be impressive when we
consider that the original orderings of these structures were produced by the hand-
tuning of software professionals. In section 5, we give our conclusions and directions
for future research.

2 Modeling the Cache Behavior of Structures

To model the cache behavior of a program’s accesses to the members of a structure,
we build a member transition graph (MTG) like the one shown in Figure 1. The nodes
of this graph represent the members of the structure. An edge between any members
i and j contains a pair of probabilities (p;;,¢;;). The transition probability, p;;, is

the probability that ¢ was the member accessed immediately before j. The cache line
survival probability, g;;, is the probability that a cache line that was in the cache when
1 was accessed is still in the cache when 7 was accessed. These two values should be
independent of the ordering. In our example in figure 1, the edge from A to B is labeled
(1.0,0.1) meaning that member A is always accessed immediately before member B,
but the probability at that a line survives in the cache that long is only 0.1.

Our model is essentially an augmented Markov model. As such, it makes the as-
sumption that the probability that a particular member will be accessed next depends
only on which member was accessed last. Most real programs do not strictly satisfy
this Markov assumption. Thus, our model is just an approximation of program be-
havior. However, we have found that the approximation works well in this application
for two reasons: the probabilities can be measured by frequency counting from trace
data, and the model provides a principled basis for reordering algorithms that improve
cache performance. For some programs, the Markov model seems to be a very close
approximation to the actual behavior.

With this model and its assumptions, it is possible to compute the expected cache
performance of any reordering. We start by expressing the probability of a cache hit
as a conditional sum over the member that is being accessed:

Pr(hit) = ZPr(hit|accessing i) Pr(accessing 1). (1)

K3

The probabilities p; = Pr(accessing 1) are easily computed from the p;;’s by the system
of linear equations:

pi = > Djibj
j

1 = sz'.
1

The p;’s are also easily computed by frequency counts in the trace data, so we may
instead choose to consider them as inputs.

It remains to determine how we can compute Pr(hit|accessing ¢). This can be done
by solving a system of linear equations. Let L be a collection of members on one cache
line. We indicate that member 4 is on line L with the notation i € L. Define X} to
be the probability that L is in the cache when i is accessed. We can determine the
probabilities X/ by solving the following system of equations.

XP = Y piigi+ Y piigi Xy, ifi€l (2)
jeL jéL
j

To understand these equations let us first consider the case when i is on line L, equation
(2). The index j represents the previous member accessed. If j is also on line L, then
the probability that ¢’s line is still in the cache when accessing 7 is simply g;;. If j is not
on line L, then L can only be in the cache when accessing 7 if it was in the cache when
accessing j (which occurs with probability X]L) and it survived the transition from j
to i (which occurs with probability ¢;;). In the case when ¢ is not on line L, equation
(3), the probability that L is in the cache when 7 is accessed simplifies because it only

4

depends on which member j was previously accessed, whether L was in the cache when
J was accessed (X]L), and whether L survived (g;;). The system represented in (2-3)
consists of mn equations, where n is the number of members in the structure and m is
the number of cache lines spanned by the structure.

Define L(i) to be the line containing the member i. For each member 4, the value
XiL @ i exactly the quantity Pr(hit|accessing 7). Thus, we can express the probability
of a hit simply as: '

Pr(hit) = 3 p; X; . (4)
i

The goal of finding the ordering that minimizes cache misses is now equivalent to finding
the assignment of members to lines that maximizes the sum in equation (4) subject to
capacity constraints for the lines and alignment constraints for the members. There
is one word of caution however. It is not hard to think of an example of a structure
whose members fit on 2 lines, but placing the members on 3 lines has a much better
miss rate. In terms of our equations, this means that care has to be taken to choose the
number of lines m to be large enough to include the optimal placement of members.

There are two problems left for DLP to solve. First, it must compute the p;;’s and
gi;’s from trace data. Second, it must determine how to place the members onto cache
lines such that (4) is maximized while respecting capacity and alignment constraints.
Although we will not prove it here, this latter problem is NP-Hard. Nonetheless, there
are a number of approaches to approximately solving NP-Hard problems like this one.
We will describe in section 3 how DLP approximately solves this problem.

It should be apparent by now how different our approach to the structure ordering
problem is from previous approaches. In previous methods [2, 6], a weighted graph was
formed to model the temporal affinity between members and clustering done to find a
good ordering. In our approach, we statistically model accesses to members directly.
From this we construct an optimization problem using the solutions to a set of linear
equations. An optimal solution to the optimization problem is one that minimizes the
miss rate. In the previous methods, there is no such guarantee.

3 Data Locality Profiler

The Data Locality Profiler (DLP) consists of two distinct pieces. The first piece is the
logging engine, which has the job of recording all of the memory access information
while the program is running. In doing so, it must have the minimum possible impact
on the performance of the program. This is quite a challenging task, and is outside the
scope of this paper. One major difference between DLP and other profiling tools such
as ATOM [9] and Etch [8] is that DLP has access to compiler tables which enables it to
identify which members of which structures are accessed in the memory access stream.

The second piece is the analysis tool, called dlreport, which has the job of ana-
lyzing the trace produced by the logging engine, and from that information, finding
the optimal reordering for each structure according to the model described in section
2. The analysis tool goes through three phases, as depicted in Figure 2. We will now
describe each of these phases in detail.

During the scanning phase, dlreport examines the entire trace, and from the infor-
mation therein, computes the p;;’s and ¢;;’s described above. Since a large percentage
of a program’s instructions are memory accesses, the logging engine can produce several

Scan ——| Optimize |——| Simulate

Figure 2: The three phases of the DLP analysis tool.

gigabytes of data from only a few minutes of program execution. Scanning through the
trace is computationally expensive, as each memory access may require the fetching
of type information, the determination of which member of the structure instance was
accessed previously, and the updating of statistical information. As a result, it is not
unusual for the scanning phase to require over an hour to complete for traces that are
several gigabytes in length.

The technique used by dlreport to compute the p;;’s is straightforward. During
the scanning, it counts how many times each transition is taken. If we let C;; denote the
number of times an access to member j is immediately preceded by an access to member
i, then p;; is simply Cj;/ (30 Ckj)- The technique used by dlreport to compute the
gij’s is also quite simple. During the scanning, it simulates the memory addresses in
the trace on a typical cache. When member j is accessed, it simply checks whether 4’s
line (which was brought into the cache when i was accessed) is still in the cache. The
resulting probability g;; is simply the number of times that this occured divided by
the total number of times the transition occured. Technically, the computed g¢;;’s are
dependant on the intial ordering. However, if we assume that the size of a structure
instance is small relative to the size of the cache, then this dependency disappears.
The computed g¢;;’s are also dependant on the cache parameters used. However, we
have seen that in most cases changing the cache parameters used only modifies the
computed ¢;;’s by a scale factor and does not change which ordering is optimal.

During the optimization phase, dlreport determines, for each structure, how to
partition the members into cache lines so as to optimize (4). It includes two algorithms
for searching through potential orderings. The first is a Branch and Bound algorithm
that considers all possibilities. Since its running time is exponential in the number of
members, it can only be used for relatively small structures.

For larger structures, we use a Local Search algorithm, which iteratively improves
the initial ordering. A single iteration of Local Search proceeds as follows: for each
pair of members, we remove them from their respective lines and then consider placing
them on every other line. The number of orderings considered on each iteration is
O(m?n?) in the worst case, where n is the number of members and m is the number of
cache lines used. On all examples we have seen thus far, the Local Search algorithm has
worked very well. In addition, it has the property that the final ordering is guaranteed
to be no worse than the initial ordering in our model.

During the simulation phase, dlreport makes a second pass over the trace. During
this pass, it simulates in the cache the memory references that would occur using the
new orderings. The miss rate of each structure is recorded and, at the end, displayed.
These miss rates can be compared with the miss rates from the original orderings,
which were displayed out at the end of the scanning phase. If dlreport worked well,

| Struct # | Miss Rate Decrease (%) |

1 30.1
6.0
33.5
27.7
26.5
9.5
42.4

| O O =] W N

Figure 3: The percentage decreases achieved by DLP on the seven structures chosen from
SQL Server 7.0.

then there should be decreases in the miss rates of each structure.

4 Results

We began by validating DLP on collection of six small example programs. These
example programs were created so that we could test DLP on inputs for which we
knew the optimal reordering. Some of the examples satisfied the Markov assumption;
however, most did not. On all of the examples we tried, DLP produced the optimal
ordering with both the Branch and Bound and Local Search algorithms.

Our main preliminary study was to use DLP to reorder the structures of Microsoft’s
SQL Server 7.0, a large and finely-tuned industrial application. SQL Server has more
than 200 structures that are longer than one cache line in length. However, limitations
in the early version of DLP — dealing with bit fields and inheritance — allowed only
43 structures to be eligible for reordering. At that point, the optimization algorithms
in dlreport were still under development, so the optimization was done by hand;
however, the optimization methodology was still that described in section 2 above.
We could only deal with relatively small structures, which left about 15 eligible. Of
those, we picked seven that were frequently accessed and for which we saw strong miss
rate improvements in the simulator. The decrease in cache miss rate for those seven
structures ranged from 5-45% and are shown in Figure 3.

A version of SQL Server with the reordering in place was run on a standard bench-
mark. It showed about a 1.3% improvement over the baseline measurement. In partic-
ular, the reordered version maintained a more than 1% speedup relative to the baseline
for more than 2 minutes.

The structures reordered in our preliminary study were chosen for convenience. We
know that these did not include any of the most-referenced SQL Server structures. In
particular, we have not yet attacked the five most-referenced SQL Server structures that
were reordered by Chilimbi et al. [2], from which they achieved a 2-3% performance
improvement. In our upcoming work, we will test a fully-functional version of DLP.
This test will include many more structures (at least 10 times as many) and will use
the superior, automated algorithms. We expect to see speed improvements of at least

7-10%.

5 Conclusion

We have shown that we can model access behavior to members in structure as an
augmented Markov model. The problem of finding the structure ordering that mini-
mizes cache misses in the model is equivalent to maximizing a sum that depends on
the solution to a set of linear equations. This model can be applied to improve the
cache performance of programs by using trace data to supply the parameters of the
model. Although one can criticize the use of a Markov model that simplifies program
behavior to statistics, it is often still useful to use these models since they do work well
in practice.

Kistler and Franz [6] point out that it may be advantageous to reorder structures
dynamically depending on the data that is being supplied to the program. Our frame-
work could be used as replacement for their TRG approach for dynamic reordering.
In the dynamic setting the needed probabilities for the model change over time. Our
Local Search algorithm might work well because it iterates from known solutions to
betters ones. The previously best solution will likely not be best when the parameters
of the model change. The Local Search algorithm will search for a better solution
“near” the previous one. In essence, it will adapt to the changes in the model.

6 Acknowledgments

We are grateful to the Performance Tools Team in Microsoft Research for sponsoring
our work. Specifically, we would like to thank David Erb and Michael Parkes for their
ideas, discussions, support, and encouragement.

References

[1] Brad Calder, C. Krintz, S. John, and T. Austin, Cache-conscious data placement,
Proceedings of the 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pp. 139-149, October,
1998.

[2] T.M. Chilimbi, B. Davidson, and J.R. Larus. Cache-conscious structure definition.
Proceedings of the ACM SIGPLAN ’99 Conference on Programming Languages
Design and Implementation (PLDI), pp. 13-24, May, 1999.

[3] T.M. Chilimbi, M.D. Hill, and J.R. Larus. Cache-conscious structure layout. Pro-
ceedings of the ACM SIGPLAN ’99 Conference on Programming Languages De-
sign and Implementation (PLDI), pp. 1-12, May, 1999.

[4] Dirk Grunwald, Ben Zorn, Robert Henderson, Improving the cache locality of
memory allocation. Proceedings of the ACM SIGPLAN ’93 Conference on Pro-
gramming Language Design and Implementation(PLDI), pp. 177-186, 1993.

[6] T. Kistler and M. Franz. Automated layout of data members for type-safe Lan-
guages, Technical Report No. 98-22, Department of Information and Computer
Science, University of California, Irvine; May 1998, revised September, 1998

[6]

[7]

[10]

T. Kistler and M. Franz. The case for dynamic optimization. Technical Report No.
99-21, Department of Information and Computer Science, University of California,
Irvine, May, 1999.

P.R. Panda, N.D. Dutt and A. Nicolau. Memory data organization for improved
cache performance in embedded processor applications. ACM Transactions on
Design Automation of Electronic Systems, Vol. 2, No. 4, pp. 384-409, October,
1997.

T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad. In-
strumentation and optimization of Win32/Intel executables using Etch. USENIX
Assoc. 1997.

A. Srivastava and A. Eustace. ATOM: A system for building customized program
analysis tools. Proceedings of the ACM SIGPLAN ’94 Conference on Programming
Language Design and Implementation (PLDI), pp. 196-205, 1994.

Dan Truong, Francois Bodin, and Andre Zeznec. Improving cache behavior of
dynamically allocated data structures. Proceedings of the Conference on Parallel
Architectures and Compilation Techniques, October 1998.

