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& We focus on online policy evaluation
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Introduction

& Tabular Case
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& Using Linear Function Approximation
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Least-Square Methods

< It minimizes the mean squared TD errors over all

past experiences.
Z 37

& It takes advantage of aII expemment and does the
update (Sum of the TD updates) [Bradtke, Barto 96]

t
Z ¢.0:(Vo)
i=1
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Least-Square Methods

< It minimizes the mean squared TD errors over all

past experiences.
Z 37

& It takes advantage of aII expemment and does the
update (Sum of the TD updates) [Bradtke, Barto 96]

t
Z ¢.0:(Vo)
i=1

We call it “TD Gradient”

Tuesday, December 13, 2011



Least-Square Methods

& By plugging the definitions, we will have:

p,(0) = (iﬁbt"“tﬂ—iﬁbt(qbt—7¢t+1)T9>

1=1 1=1

[Bradtke, Barto 96]
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Least-Square Methods

Ht_|_1 — At_lbt.




Least-Square Methods
0,.1=A;'b;.
Y Pros

& Minimized the sum of TD errors with respect to
all of the past experiences.
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Least-Square Methods
0,.1=A;'b;.

Y Pros

& Minimized the sum of TD errors with respect to
all of the past experiences.

Y Cons

Y Needs at least
needs O(n?) computation per time step (Using
iterative matrix inversion)

& nis the number of features which can be
potentially large.
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iLSTD

& Can we do something about the inverse ?

’

& We are interested in case of having k features “on’
at any given moment (Tile Coding, RBFs, etc.)
where k << n.

& We do not have to compute the exact solution
since we change A matrix and b vector on each
iteration.
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iLSTD
( Z N Z Dy (b — VP111)" >

A/—/
b A,

& Incremental Computation

b, = bt—1‘|‘rt¢t
——
Ab;

A, = A, ¢t(¢t _7¢t+1)T
%/_/

AA,
[Bradtke, Barto 96]
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iLSTD
n(0) = by — A0

Y Incremental Computation (when A and b are changed).

pe(0:) = py_1(0¢) + Aby — (AAL)O;

* Note that O is fixed.




iLSTD

¢ Incremental Computation (When 0 is changed).

0,11=0,+ A0,
pe(0e11) = p(0r) — A (AGy)

* Note that A is fixed.




iLSTD

& Use Gradient Descent in “best” dimension to
update O (w.r.t TD Gradient Vector)

& Similar to prioritized sweeping idea
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iLSTD Algorithm

0 s+—50,A—0,u+—0,t—0
1  Initialize 8 arbitrarily

[ Geramifard, Bowling, Sutton 06]




iLSTD Algorithm

0 s+—50,A—0,u+—0,t—0

1  Initialize 8 arbitrarily

2 repeat

3 Take action according to 7 and observe r, 8" 7]  Updating
4 t—t+1

5 Ab «— ¢(s)r Ab and Y
6 AA — ¢(s)(d(s) — vop(s')! according to
7 A—A+AA the

8 p— p+ Ab — (AA)O _| interaction

[ Geramifard, Bowling, Sutton 06]
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iLSTD Algorithm

S<+— S0, A—0,u<—0,t—0

Initialize @ arbitrarily

repeat
Take action according to 7 and observe r, " — Updating
t—t+1
Ab «— ¢(s)r ADb and Y
AA — ¢(s)((5) — v(5))" according to
A — A+ AA the
pn— p+ Ab — (AA)6 _| interaction
for ; from 1 to m do

10 j < argmax(|u;|) Updating M

B O — 05t a’uJA according to the
H— B — apjAe;
13  end for change to O

14 end repeat [Geramifard, Bowling, Sutton 06]

O OO0 1 ON LD =~ W — O
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iLSTD

& Computational Complexity per time step

O(mn + k?)
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Number of gradient descent iterations
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iLSTD

& Computational Complexity per time step
2
O(mn + k*)

INumber of features

Number of gradient descent iterations
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iLSTD

& Computational Complexity per time step

O(mn + k*)

I TMaximum number of “On” features

Number of features

Number of gradient descent iterations
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o O ¢

Results

Chain example with correlated features

=

o O -

[Boyan 99]
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Results

¢ Parameters:
Q@ m=1| Ng + 1
ay —
t ° Ny + Episode#
ng Qp € {0017017 1}

Y Best selection for ag and No
& Averaged over 30 runs

& Same random seed for all methods.

20
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Results - small problem
(14 States)

(RMS) of all V

0 200 400 600 800 1000
Episode




Results - small problem
(14 States)

(RMS) of all V

0 200 400 600 800 1000
Episode




(RMS) of all V

Results - medium problem
7 (102 States)

0 200 400 600 800 1000
Episode




(RMS) of all V

Results - medium problem
7 (102 States)

0 200 400 600 800 1000
Episode




(RMS) of all V

Results - large problem

3 (402 States)




(RMS) of all V

Results - large problem

3 (402 States)




Results - Timing
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Results - Timing
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Discussion

¢ Which algorithm to pick?

& Data is extremely expensive, Task does not
demand fast reaction => LSTD

Q Data is cheap but we need fast reaction with
environment = [ D

Y Between criteria = iLSTD
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& LSTD is still the optimum solution with respect to all
past experiences and using TD methods.

¢ TD is faster than iLSTD, and in case of having k
features “on” in any moment, it is O(k) per time-step.
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Discussion

Y Important facts

& LSTD is still the optimum solution with respect to all
past experiences and using TD methods.

¢ TD is faster than iLSTD, and in case of having k
features “on” in any moment, it is O(k) per time-step.

& iLSTD can be fit in many constraints by adjusting
m parameter.

28
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Discussion
& Can we use Coordinate Decent?

& Equivalent to Gauss-Seidel method to solve a
linear system of equations.

Y No step size parameter to tune!
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Discussion

& Can we use Coordinate Decent?

& Equivalent to Gauss-Seidel method to solve a
linear system of equations.

¢ No step size parameter to tune! small problem

10 ¢
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Discussion

2 Can we use Coordinate Decent!?

& Equivalent to Gauss-Seidel method to solve a
linear system of equations.

& No step size parameter to tune!

"The Gauss-Seidel method is applicable to strictly diagonally
dominant, or symmetric positive definite matrices.”

Eric W. Weisstein et al. "Gauss-Seidel Method." From MathWorld--A Wolfram Web
Resource.

29
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Discussion

& Can we use Coordinate Decent?

X

& Equivalent to Gauss-Seidel method to solve a
linear system of equations.

& No step size parameter to tune!

"The Gauss-Seidel method is applicable to strictly diagonally
dominant, or symmetric positive definite matrices.”

Eric W. Weisstein et al. "Gauss-Seidel Method." From MathWorld--A Wolfram Web
Resource.

t
Z ¢t(¢t T V§bt+1)T 0 = M is neither symmetric nor
1=1

diagonally dominant.

29
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Discussion

& We can make our matrix symmetric.

bt—AtHZO
A'b, —AT'A0=0,

& A can be skewed, and this will make the
convergence much slower.

' This is computationally more expensive. Choosing
the best dimension would take O(n?)

30

Tuesday, December 13, 2011



Discussion

A/ b, —ATA0 =0




Discussion

Ath — A?Atg = 0

& Choosing the best dimension X
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Discussion
Ath — A?Atg = 0

& Choosing the best dimension X

< Sweeping through dimensions v
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Discussion
A/ b, —ATA0 =0

& Choosing the best dimension X

& Sweeping through dimensions vV

¢ Pick dimensions randomly v
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Discussion

medium problem
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Discussion

& Generalized Minimal Residual method (GMRES)
[Saad, Schultz 86]

& Used for non symmetric matrices
Y Iterative

& Results are interesting but the algorithm would
be O(n?) per time step ...

34
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Discussion

Interesting Problems, Mountain Car, |0000 Memory, 10 Tilings
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Discussion

Interesting Problems, Mountain Car, |0000 Memory, 10 Tilings

D
iLSTD

LSTD
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Discussion

& Can iterative methods be superior than LSTD?

& Many samples are needed to make A and b
accurate when the environment is Stochastic

& Small descents might be better than jumping to
the solution of the estimated model ... (Future

Work)
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Discussion

& Can iterative methods be superior than LSTD?

& Many samples are needed to make A and b
accurate when the environment is Stochastic

& Small descents might be better than jumping to

the solution of the estimated model ... (Future
Work)

Q iLSTD(A) = O((m+k)n), Still O(n)
& Larger Problems

& Proof of convergence
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Thanks...

& Questions
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