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Abstract

In this paper we introduce the Biased Cost Pathfinding (BCP)
algorithm as a simple yet effective meta-algorithm that can be
fused with any single-agent search method in order to make
it usable in multi-agent environments. In particular, we focus
on pathfinding problems common in real-time strategy games
where units can have different functions and mission priori-
ties. We evaluate BCP paired with the A* algorithm in several
game-like scenarios. Performance improvement of up to 90%
is demonstrated with respect to several metrics.
Keywords: Multi-Agent Pathfinding; Biased Cost Pathfind-
ing; Real-time Heuristic Search

Introduction
Multi-agent and group pathfinding is an area of active re-
search in the heuristic search and games communities. Mod-
ern real-time strategy games challenge existing single agent
pathfinding algorithms (Botea, Müller, & Schaeffer 2004;
Bulitko & Lee 2005; Korf 1993; Koenig 2004; Sturtevant
& Buro 2005) and have given rise to specialized multi-
agent pathfinding algorithms (Silver 2005; 2006). As multi-
agent optimal pathfinding has been proven to be a PSPACE-
hard problem (Hopcroft, Schwartz, & Sharir 1984), heuristic
search algorithms are a popular way of trading off computa-
tional time and solution optimality.

Most algorithms on multi-agent pathfinding fall into two
categories: centralized, in which all paths are computed
jointly by a central unit, and distributed, which lets each
unit decide on its path and resolve potential collisions lo-
cally. In this paper we will focus on centralized pathfinding
since in most real-time strategy (RTS) games complete in-
formation on all units is available at all times. The rest of the
paper is structured as follows: first we explain the problem
we are facing in more details. This will be followed by re-
lated works on multi-agent pathfinding in different domains.
Then, BCP will be introduced as a solution to import single
agent pathfinding methods to Multi-Agent Systems (MAS).
It will be analyzed in terms of computational cost. Empir-
ical results obtained from simulation in different maps and
scenarios will illustrate the efficiency of our method. These
results are evaluated afterwards. We will also talk about the
possible extensions to our approach in the future work sec-
tion. The conclusion part will wrap up the paper.

Problem Formulation
In an RTS game the player has to control many units with
different abilities and speeds. In this paper we focus on
multi-agent pathfinding for cooperating units of equal move-
ment speed but of different priorities. The pathfinding task
is defined by assigning each unit start and target positions.
The following assumptions further shape the problem:

• The environment is an 8-connected gridworld. It is deter-
ministic and fully observable by all units. The units may
not move if they try to move to an obstacle or another
unit’s position.

• No two units can have the same start position or target.

• Collisions occur as a unit tries to move into a position
occupied by another unit or when two or more units try to
move into the same position at the same time. In the latter
case only one of the units is able to move successfully
and the rest remain in their previous positions. If a unit
is in position s at time t it will occupy this position for
the times t and t + 1. If it plans to move to position s′ at
time t + 1, and the move is successful, this unit will also
occupy position s′ at time t + 1

• Eight moves of an equal cost available to each unit are:
←,↖ , ↑,↗,→,↘, ↓ and↙.

• Each unit has a priority assigned to it which represents its
importance in an in-game scenario. For example, injured
units or special units (heros) can have higher priorities.
Priority of a unit can be adjusted dynamically as it takes
on different roles during a game.

• Heuristic used is Euclidian distance.

Related Work
Multi-agent pathfinding has been a challenging problem in
robotics, studied over a number of years (Clark, Rock, &
Latombe 2003; Guo & Parker 2002). Guo and Parker tack-
led a multi-robot pathfinding problem via the concept of a
local sensory area. These robots find a path individually
and keep following it. Before colliding with other units
they will be identified in each other’s sensory area, so they
can communicate and resolve the possible collisions through
real-time interaction. This method is well suited to robotic
problems since usually each unit does not have a complete



Figure 1: a) A pathfinding algorithm plan for the movement of
three units. The paths of A and B intersect but they do not collide,
But the paths of A and C intersect in the middle point at the same
time, so there is a collision. b) A virtual cost function based on the
central collision point. (µ = Collision coordination, σ = Number of
colliding units)

knowledge of the environment. However, in RTS games
centralized path finding is often a more effective approach
as it takes advantage of complete knowledge of the environ-
ment at all times.

Current methods used by game developers do not try to
solve the whole pathfinding problem as a single task. In-
stead, the units’ initial paths are computed on an individ-
ual basis without considering projected paths of other units.
Upon a collision, new paths are computed taken the current
positions of all units into account but, again, ignoring pro-
jected paths. Such collisions lead to additional travel and
planning cost reducing the overall pathfinding efficiency. In
particular, in fast-paced RTS games, the time units waste
colliding with each other can strongly influence the outcome
of a battle. This problem manifests itself frequently in clut-
tered environments such as enemy bases or bridges or moun-
tain paths.

Recently, an algorithm called Cooperative Pathfinding
was poised to address these problems (Silver 2005; 2006).
In this algorithm, the geographical search space is extended
in the time dimension. This allows memory-sharing units to
make reservations in both space and time thereby preventing
collisions. The larger search space of this approach presents
problems as the map size and the number of units scale up.

Proposed Approach
Overview
One concern of any multi-agent pathfinding problem is to
identify collisions and avoid them as much as possible. But
on the other hand, resolving all collisions can be potentially
time consuming and thus adversely affect the performance
in fast-paced RTS games. In our approach, collisions are de-
tected and prevented as much as planning time allows. This
may result in sub optimal paths for units but let them co-
operate via coordinating their planned paths. As shown in
Figure 1.a, in each iteration paths for each unit are found
through an arbitrary pathfinding algorithm (e.g., A∗) with-
out considering collisions with other units. Afterwards the
exact collision points can be computed for all paths. In the
example of Figure 1, the intersection between A and B is
not a collision because by the time unit B reaches that point,

unit A has passed it already. However, units A and C will
collide in the center point. In order to resolve collisions, a
biased cost function1 is defined on such points for all of the
colliding units except the unit with the highest priority. This
encourages all colliding units to replan their paths except the
one which will be given the highest priority. Assuming unit
C has the highest priority, Figure 1.b shows a Gaussian func-
tion centered on the collision point which will cause unit A
to replan its path. After one iteration the set of virtual cost
functions for each agent will be updated. By adding these
functions to the actual heuristic values, the path finding al-
gorithm will find new paths for each unit. Therefore, on the
next iteration, units are discouraged to traverse this location.
This will decrease the probability of having the same colli-
sions on the next pathfinding trial. This process can be done
iteratively until the time limit is reached or no more colli-
sions are detected. In each iteration the new cost function
would be computed using all of the previous extra cost func-
tions and the Euclidian distance. BCP takes its name from
the use of biased cost functions. For the sake of presenta-
tion clarity we start with the basic algorithm and follow the
exposition with two enhancements.

Basic Algorithm

The BCP algorithm is shown in Figure 2. On line 3, for
each unit a limited path considering the virtual heuristic val-
ues (h′) is planned. The information on the paths is inserted
into a hash table called CollisionDetector. After finishing
the planning part, all collisions are computed from the hash
table. Each collision is defined by its position (x, y) and the
set of units colliding in it. On line 12, the unit with the high-
est priority is omitted from the list. This allows that specific
unit to occupy the position on the next iteration and discour-
age the rest of the colliding units, from getting close to that
collision point. Each agent maintains its own set of virtual
cost functions. In line 14, the new virtual heuristic is added
to the rest of the colliding units. This virtual cost is mod-
eled as a Gaussian function with the mean at the collision
location and the variance relative to the number of collid-
ing units. On the next iteration the new paths are generated
taking all virtual cost functions into account. The result re-
turned in line 23 is the set of paths for all units with the least
number of collisions that has been found so far. Figure 3 il-
lustrates the way that h′ function is being computed. For any
given position and unit the list of virtual cost functions as-
signed to that unit is extracted (line 1). Then all of the virtual
functions are computed for the given position and summed
up in line 4.

We expect BCP to help units (especially prioritized ones)
reach their goals faster compared to original single agent
pathfinding method. On the other hand BCP has a higher
computational complexity due to repeated planning trials
and heuristic refinement. In the next section we analyze this
overhead.

1This function will be used later in order to compute virtual
heuristic values (h′).



BCP
0 Colliding← True
1 While time is available and Colliding do
2 For each unit i on the map do
3 p← Limited path from the start to the goal of unit i

with maximum length k considering heuristic as h + h′

4 reset the time: t← 0
5 For each position n on path p do
6 CollisionDetector.add(n, t, i)
7 end for
8 end for
9 C ← CollisionDetector.getCollisions()
10 For each collision c in C do
11 A← c.units()
12 Delete the unit with highest priority from A
13 For each unit i in A do
14 VirtualHeuristic.add(i, c.x, c.y, c.size)
15 end for
16 end for
18 if C is not empty
19 Colliding← True
20 else
21 Colliding← False
22 end while
23 return set of paths with least number of collisions

Figure 2: BCP algorithm in a high level pseudo-code

h′(n, i)

1 G← VirtualHeuristic.Gaussians(i)
2 S ← 0
3 For each function f in G do
4 S ← S + f(n.x, n.y)
5 end for
6 return S

Figure 3: Virtual heuristic method (h′) which is called with posi-
tion n and unit i.

Theoretical Analysis
Computational complexity
The CollisionDetector and VirtualHeuristic objects can be
implemented using hashing tables. This means inserting
each element is done in constant time. Finding collisions
can be done incrementally as we insert new data into the
CollisionDetector. Therefore, the complexity of one itera-
tion of BCP which is finding a path for all of the units is
upper bounded as follows:

O

(
N(A + K) + CN

)
= O

(
N(A + K + C)

)
Here N is the number of units on the map; A is the time
complexity of pathfinding algorithm used by BCP (e.g., A∗);
K is the limit for the path (Figure 2, line 3) and C is the
maximum number of collisions in all iterations. Normally,
the computational complexity of the underlying algorithm
(i.e. the A∗ here) dominates the sum, therby reducing it to
O(NA). This means that BCP’s trial complexity is the same
order as planning paths individually for all of the N units.

The total cost is determinied by a number of trials BCP per-
formes. Additionally computing the virtual heuristic values2

for each position contributes further planning cost. In the
worst case on each iteration the number of virtual cost func-
tions could be increased by K, which means all units chose
the same path. Assuming m iterations to be completed suc-
cessfully, this will add an extra cost of O(Km(m−1)

2 ) on each
node expanded during pathfinding algorithm for all m iter-
ations. In order to reduce the extra cost, two enhancements
are made to the BCP.

Enhancement One: Trimmed-Gaussian functions
The effective radius of each Gaussian function is dependent
on its covariance. Since outside of this range the virtual
heuristic values are infinitesimal, we can decrease the com-
putational cost substantially by cutting the effective area of
each Gaussian function to a limited bound.

g∗(x, y) =
{

g(x, y) ‖x + y‖ ≤ 2σ
0 otherwise.

The g∗(x, y) trimmed-Gaussian function is used henceforth
in place of g.

Enhancement Two: Limited collision detection
In our settings, the first detected collision renders the rest
of the process meaningless as replanning is due. Therefore,
it would be sufficient to find the first collision of each unit
and discard the rest of their path on each iteration. This re-
duces the worst case bound on number of Gaussian functions
that can be added for a unit on each iteration to one which
reduces the excessive node computation for each node to
O(m(m−1)

2 ). Since after detecting the first collision for one
unit the rest of them would be ignored, the number of colli-
sions per trial is no longer a good evaluation parameter for
the set of paths. This means, the BCP method (Figure 2, line
18) should return the last found path.

Empirical Evaluation
We situated our empirical evaluation in a recent RTS game-
like open source testbed (Sturtevant 2005). It allowed us to
set up controlled experiments based on scenarios from com-
mercial games. We picked A∗ as the basic pathfinding algo-
rithm as it is commonly used in commercial games. Small
scale of these scenarios enabled complete path computation
(k =∞).

Scenario one: Rescue the Hero
For the first set of experiments we simulated a scenario com-
monly found in most RTS games. Suppose a high priority
unit called hero hereafter is badly injured and the user wants
to return it back to the base while enemy units are attack-
ing it. The user sends a group of units to defend the hero
and stop the enemies (Figure 8). Unfortunately, the hero
collides with its friendly units and while struggling to find
a new path, is eliminated by the attackers. Figures 4 and 5

2The new heuristic value for each position is the sum of original
heuristic value and the virtual heuristic value: h

′′
= h + h′.



Figure 4: Scenario 1: The top nine units are intending to go down
while the hero unit of a higher priority should get to its goal but the
lack of cooperation makes it difficult for it to pass through. A∗ is
used.

Figure 5: Scenario 1: Good cooperation between units makes it
possible for the hero unit to pass through the group without chang-
ing its straight line path. BCP is used

show the simulation view of A∗ and BCP methods for this
scenario in our testbed. From left to the right, screenshots
shows the simulation at time steps 0, 1, 5, 8, 11 and at the
goal state. Circles and squares denote units and their goals
respectively. The red unit on the bottom (hero) wants to
reach a location on the top, while nine support units want
to come down in order to secure the hero. It is clear that
the hero has difficulties passing through the other units us-
ing A∗ method. Also, support units lack a good cooperation
between themselves. This behavior can be seen in Figure 4
on times 5,8, and 11. Figure 5 shows application of BCP to
the same problem. Three top units in the same column as
the hero, realized forthcoming collisions with the hero and
started to drift away from their straight path in the middle
(Figure 5, time 5). As they plan to shift to the right, the
rightmost units cooperate with them and start their shift to
the right (Figure 5, time 8). When the hero passes the group,
they will move close and reach their goals.

In Figure 6 the results of A* and BCP algorithms are
shown for scenario one with different numbers of units com-
ing down positioned randomly in a 3 × 3 matrix at the top.
The hero is positioned in the same column and is 10 moves
away from its goal. Each graph shows the sum of time steps
needed for all units to reach their goal, averaged over 10
samples. Overall, the BCP method is better than A∗ algo-
rithm, though the difference is not statistically significant.

Figure 6: The comparison of A∗ and BCP units in terms of total
number of steps taken by all units in scenario one. Results averaged
over 10 experiments.
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Figure 7: The comparission of A∗ and BCP heros in terms of total
number of steps taken by each of them to get their goal in scenario
one. Results averaged over 10 experiments.

This is because the units generated on a 3× 3 matrix can
be initialized in a way so that they will not collide to each
other, so both algorithms will return the same optimal re-
sults. Considering this fact, we can reliably claim that BCP
units could reach their goals faster or with the same speed
(in special cases). Note that as the number of units increases,
the gap between two algorithms becomes more noticeable.
This promises the scalability of BCP. Figure 7 shows sim-
ilar data for the hero unit. The BCP hero could reach its
target in 10 time steps in all cases (Hence zero variance in
the graphs). This means that all of the other units considered
its priority and avoided any kind of collision with the hero
while reaching their goal. On the other hand, the A∗ hero
almost always collided with other units and failed to reach
its goal in 10 time steps. Table 1 shows the first move delay
which is the time used by all of the pathfinding iterations of
BCP for all units on the first move. These pathfinding times
are less than half a second which is important in real time
strategy games.

Scenario one: Extensions
In order to show the effectiveness of BCP in practical envi-
ronments, scenario one has been extended into three differ-
ent sub-scenarios. In the first one, the hero is fleeing from a
critical situation with a low hit-point (HP) count while being
chased by a ranged attacker. On each cycle if the hero is in



Figure 8: A screenshot of WarCraft III by Blizzard Company. The
hero in critical situation has a hard time in order to retreat because
of allied units while being chased by an attacker.

the attacker’s range it will lose one HP. If the hero stands
still, an additional HP is deducted. For the next two exten-
sions we put respectively one and two static attackers which
would decrease the HP of the hero by one on each cycle if
the hero is in their range. Figure 9 shows the result of all
extensions. The horizontal axis illustrates the number of it-
erations used for BCP. Note that the first number represents
the initial A∗ algorithm. The vertical axis shows the death
rate of the hero averaged over 18 runs with random starting
positions of the hero in a 3 × 7 rectangle. In order to make
the random tests interesting, we set the HP of the hero to
the mean of all damages it took on all iterations of BCP. As
Figure 9 depicts, by increasing the number of iterations the
death rate of the hero decreases in all cases. It was interest-
ing that in all extensions we experienced a slight increase on
the 10th iteration. After reviewing the simulations we real-
ized that in general, avoiding some collisions might result in
new collisions which might lead to a lower efficiency but if
time allows, collisions will be resolved eventually.

Scenario two: Groups going through each other
In order to see the scalability of BCP to more complicated
environments, we setup another scenario which is similar
to scenario one, but has two groups of units who want to
pass through each other (Figure 10). Each group can in-
clude zero to nine units located in a 3× 3 matrix randomly.
This increases the complexity of the path finding since now
more cooperation is needed to resolve collisions. Results are
shown in Figure 11 and Table 1. The total number of units
is shown on horizontal axis. The gap between BCP and A∗

methods grows as the size of the problem increases. At the
same time the first-move delay is kept below 0.6 seconds.

Figure 9: Death rate of the hero in three extensions of scenario
one based on the number of iterations averaged over 18 samples.

Scenario 1 Scenario 2
Units 1st move delay (ms) Units 1st move delay (ms)

4 236 8 315
5 254 9 434
6 323 10 396
7 329 11 375
8 329 12 543

13 458
14 442
15 470

Table 1: The averaged 1st move time delay of BCP algorithm in
both scenarios for all of the units.

Discussion

In small-scale scenarios inspired by common situations in
real-time strategy games, BCP improved A∗ results for co-
operative multi-agent pathfinding. Specifically, the hero unit
was able to leave enemy territory without colliding with ally
units. Consequently, the damage it incurred during the evac-
uation sequence was minimized.

On the down side, BCP adds overhead to the A∗ computa-
tion. While scale-up experiments are in progress to establish
its limits, one can speed up BCP by capping the number of
iterations (m) appropriately. This allows a game AI designer
to trade off pathfinding performance for computational effi-
ciency.

Figure 10: A snapshot of HOG simulator for a sample configura-
tion of scenario two of 12 units. Two groups of units intend to go
through each other in order to reach their goal.



Figure 11: Comparison of BCP and A∗ methods in scenario two.
Bars show the total number of time step needed for all units in order
to reach their goals. Still as the complexity of the task increases the
distance between BCP and A∗ becomes larger.

Future Work
As we discussed earlier, BCP is a general path finding algo-
rithm that can be combined with various single agent search
methods. As a future work we will investigate application
of BCP to state-abstraction path refinement A* (Sturtevant
& Buro 2005). This may also help us find collisions and add
virtual heuristics at higher abstraction levels, resulting in a
lower computation and memory cost. Another extension to
our work lies in comparing BCP with other group pathfind-
ing algorithms like Cooperative Pathfinding (Silver 2005).
We expect to have less optimal solutions, but better time and
space complexities.

Conclusions
Real-time strategy games provide a challenging testbed.
In particular, optimal real-time multi-agent pathfinding is
intractable and requires approximate heuristic algorithms.
Classic methods such as A∗, while widely used in single-
agent pathfinding, prove inadequate for cooperative multi-
agent pathfinding as performance is undermined by numer-
ous collisions among the units. The novel algorithm pro-
posed in this paper addresses this problem by iteratively re-
solving collisions in the planning phase. This is done via bi-
asing the heuristic function of potentially colliding units to
repel them from collision locations and force them to prefer
alternative routes. The advantage of this approach is that it
can be used with any existing path-finding algorithm based
on a heuristic function. Experimental results demonstrate
BCP’s effectiveness in several scenarios commonly found in
RTS games. Performance gains of up to 90% are observed
over the A∗ search.
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