
Online Discovery of
Feature Dependencies
Alborz Geramifard - June, 2011
agf@mit.edu

1

mailto:alborz@cs.ualberta.ca
mailto:alborz@cs.ualberta.ca

Joint Work

Finale Doshi Joshua Redding

Nicholas Roy Jonathan How
2

Problem

3

Why is it a hard?

4

Unknown Model

Stochastic Environment

Large State Space

Limited Online Computation

Online Model-Free RL

Why is it a hard?

4

Unknown Model

Stochastic Environment

Large State Space

Limited Online Computation

Existing Gap in the Literature

5

Lack of Convergence [Rivest et al. 2003]

Computational Complexity [Wu et al. 2004]

Sample Complexity [Whiteson et al. 2007]

Hand tuning many parameters [Kolter et al. 2009]

Existing Gap in the Literature

5

Lack of Convergence [Rivest et al. 2003]

Computational Complexity [Wu et al. 2004]

Sample Complexity [Whiteson et al. 2007]

Hand tuning many parameters [Kolter et al. 2009]

Has convergence proof

Existing Gap in the Literature

5

Lack of Convergence [Rivest et al. 2003]

Computational Complexity [Wu et al. 2004]

Sample Complexity [Whiteson et al. 2007]

Hand tuning many parameters [Kolter et al. 2009]

Has convergence proof

Required < 4 ms per step

Existing Gap in the Literature

5

Lack of Convergence [Rivest et al. 2003]

Computational Complexity [Wu et al. 2004]

Sample Complexity [Whiteson et al. 2007]

Hand tuning many parameters [Kolter et al. 2009]

Has convergence proof

Required < 4 ms per step

Scaled to large problems

Existing Gap in the Literature

5

Lack of Convergence [Rivest et al. 2003]

Computational Complexity [Wu et al. 2004]

Sample Complexity [Whiteson et al. 2007]

Hand tuning many parameters [Kolter et al. 2009]

Has convergence proof

Required < 4 ms per step

Scaled to large problems

Has one parameter

Contributions

6

Introduced Incremental Feature Dependency
Discovery (iFDD) as a novel feature
expansion method
Provided asymptotic convergence analysis
Empirically showed the scalability of the new
approach in problems with ≈108 possibilities

1 Reinforcement Learning
π(s) : S → A at

st, rt

7

V π(s) = Eπ

� ∞�

t=0

γtrt

�����s0 = s

�

1 Linear Function
Approximation

8

.

.

.

�
θ1

θ2

φ1

φ2

φn θn

V π(s) ≈ φ(s)�θ
s

1 Why Features Expansion?

9

S

G

1 Why Features Expansion?

9

S

G

1 Why Features Expansion?

9

S

G

1 Why Features Expansion?

9

S

G

(x,y)

1 Why Features Expansion?

9

S

G

(x,y)

1

10

Control Loop:

Sarsa

iFDD

2

Update Weights

Update Features

1

3

1

10

Control Loop:

Sarsa

iFDD

2

Update Weights

Update Features

1

3

1
Sarsa

(π) a,r

[Sutton 88]

st+1st

11

Temporal Difference (TD) Error

δt = rt + γV (st+1)− V (st).

Linear Function Approximation

θt+1 = θt + αtφ(st)δt(V).

1

12

Sources of TD Error

Incorrect Weights

Stochasticity

Underpowered Representation

1

12

Sources of TD Error

Sarsa
Incorrect Weights

Stochasticity

Underpowered Representation

1

12

Sources of TD Error

Model Based Methods
Incorrect Weights

Stochasticity

Underpowered Representation

1

12

Sources of TD Error

iFDD

Incorrect Weights

Stochasticity

Underpowered Representation

1

12

Sources of TD Error

iFDD

Most accumulated error ⇒ where
the representation should grow.

Incorrect Weights

Stochasticity

Underpowered Representation

Sarsa

1

13

Update Weights

Update Features

Control Loop:

iFDD

|δt|

2

1

3

Sarsa

1

13

Update Weights

Update Features

Control Loop:

iFDD

|δt|

2

1

3

1

[ICML 2011]14

Incremental Feature
Dependency Discovery

Sarsa
|δt| =

ϕ1
✓

ϕ2
✓

ϕ3
✓

1

[ICML 2011]14

Incremental Feature
Dependency Discovery

Sarsa

φ(st)
|δt| =

ϕ1
✓

ϕ2
✓

ϕ3
✓

1

[ICML 2011]14

Incremental Feature
Dependency Discovery

Sarsa

φ(st)
|δt| =

ϕ1∧ϕ2ϕ1
✓

ϕ2
✓

ϕ3
✓

1

[ICML 2011]14

Incremental Feature
Dependency Discovery

Sarsa

φ(st)
|δt| =

ϕ1∧ϕ2ϕ1
✓

ϕ2
✓

ϕ3
✓

1

[ICML 2011]14

Incremental Feature
Dependency Discovery

Sarsa

φ(st)
|δt| =

ϕ2∧ϕ3

ϕ1∧ϕ2ϕ1
✓

ϕ2
✓

ϕ3
✓

1

[ICML 2011]14

Incremental Feature
Dependency Discovery

Sarsa

φ(st)
|δt| =

ϕ2∧ϕ3

ϕ1∧ϕ2ϕ1
✓

ϕ2
✓

ϕ3
✓

1

[ICML 2011]14

Incremental Feature
Dependency Discovery

Sarsa

φ(st)
|δt| =

ϕ2∧ϕ3

ϕ1∧ϕ2ϕ1
✓

ϕ2
✓

ϕ3
✓

1

[ICML 2011]14

Incremental Feature
Dependency Discovery

Sarsa

φ(st)
|δt| =

ϕ2∧ϕ3

ϕ1∧ϕ2ϕ1
✓

ϕ2
✓

ϕ3
✓

1

[ICML 2011]14

Incremental Feature
Dependency Discovery

Sarsa

φ(st)
|δt| =

✓
ϕ2∧ϕ3

ϕ1∧ϕ2ϕ1
✓

ϕ2
✓

ϕ3
✓

1

[ICML 2011]14

Incremental Feature
Dependency Discovery

Sarsa

φ(st)
|δt| =

✓
ϕ2∧ϕ3

ϕ1∧ϕ2ϕ1
✓

ϕ2
✓

ϕ3
✓

1

[ICML 2011]14

Incremental Feature
Dependency Discovery

Sarsa

φ(st)
|δt| =

✓

✓

ϕ2∧ϕ3

ϕ1∧ϕ2ϕ1
✓

ϕ2
✓

ϕ3
✓

1

[ICML 2011]14

Incremental Feature
Dependency Discovery

Sarsa

φ(st)
|δt| =

✓

✓

ϕ2∧ϕ3

ϕ1∧ϕ2ϕ1
✓

ϕ2
✓

ϕ3
✓

ϕ1∧ϕ2∧ϕ3

1

[ICML 2011]14

Incremental Feature
Dependency Discovery

Sarsa

φ(st)
|δt| =

✓

✓

ϕ2∧ϕ3

ϕ1∧ϕ2ϕ1
✓

ϕ2
✓

ϕ3
✓

ϕ1∧ϕ2∧ϕ3

1

[ICML 2011]14

Incremental Feature
Dependency Discovery

Sarsa

φ(st)
|δt| =

✓

✓

✓

ϕ2∧ϕ3

ϕ1∧ϕ2ϕ1
✓

ϕ2
✓

ϕ3
✓

1
Empirical Results

Representations used with Sarsa

initial

iFDD

ATC [Whiteson et al. 2007]

SDM [Ratitch et al. 2004]

Tabular
15

Pendulum BlocksWorld PSM Rescue
0

0.2

0.4

0.6

0.8

1

Domain

Re
tu
rn

Initial
iFDD
ATC
SDM
Tabular

!

!
·

"

1.2×103

16

Domains

Pendulum BlocksWorld PSM Rescue
0

0.2

0.4

0.6

0.8

1

Domain

Re
tu
rn

Initial
iFDD
ATC
SDM
Tabular

!

!
·

"

1.2×103

16

Domains

~3.5×105

Pendulum BlocksWorld PSM Rescue
0

0.2

0.4

0.6

0.8

1

Domain

Re
tu
rn

Initial
iFDD
ATC
SDM
Tabular

!

!
·

"

1.2×103

16

Domains

~3.5×105

10
10

10

~1.5×108

Pendulum BlocksWorld PSM Rescue
0

0.2

0.4

0.6

0.8

1

Domain

Re
tu
rn

Initial
iFDD
ATC
SDM
Tabular

!

!
·

"

1.2×103

16

Domains

~3.5×105

10
10

10

~1.5×108

1 2 3

+1

4

.8

+1 5 +5

8 6

+1

7+5

.8

8
+10

.5

10

~2×108

Simulation Results

Pendulum BlocksWorld PSM Rescue

0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Pendulum BlocksWorld PSM Rescue
0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Initial
iFDD
ATC
SDM
Tabular

[ICML 2011]

10k

20k

100k

17

Simulation Results

Pendulum BlocksWorld PSM Rescue

0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Pendulum BlocksWorld PSM Rescue
0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Initial
iFDD
ATC
SDM
Tabular

[ICML 2011]

10k

20k

100k

17

Simulation Results

Pendulum BlocksWorld PSM Rescue

0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Pendulum BlocksWorld PSM Rescue
0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Initial
iFDD
ATC
SDM
Tabular

[ICML 2011]

10k

20k

100k

17

Simulation Results

Pendulum BlocksWorld PSM Rescue

0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Pendulum BlocksWorld PSM Rescue
0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Initial
iFDD
ATC
SDM
Tabular

[ICML 2011]

10k

20k

100k

17

Simulation Results

Pendulum BlocksWorld PSM Rescue

0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Pendulum BlocksWorld PSM Rescue
0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Initial
iFDD
ATC
SDM
Tabular

[ICML 2011]

10k

20k

100k

17

Simulation Results

Pendulum BlocksWorld PSM Rescue

0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Pendulum BlocksWorld PSM Rescue
0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Initial
iFDD
ATC
SDM
Tabular

[ICML 2011]

10k

20k

100k

17

Simulation Results

Pendulum BlocksWorld PSM Rescue

0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Pendulum BlocksWorld PSM Rescue
0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Initial
iFDD
ATC
SDM
Tabular

[ICML 2011]

10k

20k

100k

17

Simulation Results

Pendulum BlocksWorld PSM Rescue

0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Pendulum BlocksWorld PSM Rescue
0

0.2

0.4

0.6

0.8

1

Domain

R
et
ur
n

Initial
iFDD
ATC
SDM
Tabular

[ICML 2011]

10k

20k

100k

17

[ICML 2011]18

Pitmaze Pendulum BlocksWorld PSM Rescue

Hand Tuned

Initial Features

Sarsa + iFD

ATC

SDM

Tabular

Total Q(s,a)

30.00

88.00 120.00 1,296.00 1,377.00 5,632.00 10.00 0.35

454.13 546 9,882.00 17,670.00 10,022.00 45.49 2.68

366 59,162.40 16,031.70 27,217.00 30.50 16.06

493.00 72,000 53,092 132,247 41.08 19.55

380.00 466.00 144,039.60 881,875.00 972,898.13 38.83 39.11

484 1,200.00 368,316 147,197,952 207,618,048

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

Inverted Pendulum BlocksWorld Persistant Surveillance Rescue Mission

F
e

a
tu

re
s

Initial initial+iFDD ATC SDM Tabular |(s,a)|

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

Inverted Pendulum BlocksWorld Persistant Surveillance Rescue Mission

F
e

a
tu

re
s

Initial initial+iFDD ATC SDM Tabular Total

Simulation Results

iFDD Theory
1

TD-iFDD will provide the best possible
approximation given the initial set of features.

Given initial features with sparse outputs, the
per-time-step computational complexity of
iFDD is independent of the total number of
features.

[ICML 2011]19

Contributions

20

Introduced iFDD as a novel feature
expansion method
Provided asymptotic convergence analysis
Empirically showed the scalability of the
new approach in problem sizes ≈108

Backup Slides

21

LFA: Example
State

10
20
10
10
5

Feature Weight Value

1
0
1
1
0

V(s) = 20+10+10
= 40

22

φt(s) θt

Algorithms

23

1

24

not be helpful. For example, if a key feature such as the UAV’s fuel
level is not included in the initial set of features, then the function
approximation will still be poor even after applying iFDD.

Once the iFDD algorithm has been initialized with an set of bi-
nary features, the algorithm proceeds in three steps:

(I). Identifying potential features

(II). Tracking the relevance of each potential feature

(III). Expanding the representation by including promising poten-
tial features

In step (I), iFDD considers pairwise conjunctions of active (non-
zero) features as potential features.2 Note that in a linear approx-
imation, inactive conjunctions—that is, conjunctions equal zero—
cannot affect the value function approximation for the current state.
Considering only conjunctive features is sufficient for iFDD to con-
verge to the best approximation possible in the limit; unlike dis-
junctive features, conjunctive features also also remain sparse and
thus keep per-time-step computation low.

In step (II), iFDD updates the relevance of potential features
by accumulating the error measure perceived by the underlying
learning technique for each active potential feature. Among on-
line learning techniques, we employed TD learning because it is
inexpensive to compute, has been successful [Sutton, 1996], and
has theoretical convergence guarantees when combined with linear
function approximators [Tsitsiklis and Van Roy, 1997]. Hence, at
each time t, the absolute TD error, |δt|, is added to the potential
relevance of all active potential features.

Finally in step (III), iFDD adds those potential features with the
relevance exceeding a preset threshold to the pool of features. From
that time, these discovered features will contribute to the function
approximation.

Figure 1 exhibits a snapshot of the process graphically. Cir-
cles represents initial features, while conjunctive features are rep-
resented by rectangles. The relevance of each potential feature f ,
ψf , is shown as the filled part of the rectangle, while the discov-
ery threshold ξ is represented by the length of rectangles. ξ plays
the role of discovery nob set by the user where lower values of ξ
encourage faster representational expansion.

Algorithm 1 formalizes the discovery process. Let F be the set
of features currently included in the representation and φf (s) be
the basis function that indicates whether f ∈ F is active in state s.
The algorithm takes as input the features associated with the cur-
rent state, φ(st), the current TD error δt, the discovery threshold
ξ, the complete set of current features F, and the relevances of the
potential features ψ. It first identifies all active potential features
using pairwise combination of active features at current state s.3

For each potential feature f = g ∧ h, the corresponding potential
relevance ψf is incremented by the current absolute TD error |δt|; if
ψf exceeds ξ, then feature f is added to the set F. The value func-
tion is updated using the standard TD update rule on coefficients θ:
θt+1 = θt + αtδtφ(st), where αt is the learning parameter.

We improve the computational complexity of our approach by
using a sparse summary of all active features. Specifically, we
greedily activate the most specific features (i.e., features composed
of the largest conjunction set) until all active initial features have

2For simplicity we address both initial features and feature con-
junctions as features.
3While a more expressive approach considers all subsets of active
features, we empirically found this alternative to be less competi-
tive both in terms of sample complexity and computational time.

been covered. 4 For example, if initial features g and h are active
in state s and feature f = g ∧ h has been discovered, then we set
the φf (s) = 1 and φg(s),φh(s) = 0 since g and h are covered
by f . Algorithm 2 describes this process more formally: candidate
features are recognized by identifying the set of active initial fea-
tures and calculating its power set (℘) sorted by set sizes. The loop
keeps activating candidate features that exist in the feature set (F),
until all active initial features are covered.

The sparse representation also improves the learning rate: the
coefficient θf corresponding to the new feature f = g ∧ h value
function approximation is set to θg +θh. Thus, when a new feature
is added, the value function does not initially change. However, as
more updates are applied, states in which the conjunctive feature
f is active will now only update the coefficient θf ; these are the
states for which the initial features g and h did not provide a good
generalization. States for which only one of the features g or h
was active will continue to refine the more general values for the
coefficients θg or θh.

Algorithm 1:Discover
Input: φ(s), δt, ξ,F,ψ
Output: F,ψ
foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

f ← g ∧ h
if f /∈ F then

ψf ← ψf + |δt|
if ψf > ξ then

F ← F ∪ f

end

end

end

Algorithm 2:Activate Features
Input: φ0(s),F

Output: φ(s)
φ(s) ← 0̄
activeInitialFeatures ← {i|φ0

i (s) = 1}
Candidates ← ℘(activeInitialFeatures) (*sorted by set size)
while activeInitialFeatures �= ∅ do

f ← Candidates.next()
if f ∈ F then

activeInitialFeatures ← activeInitialFeatures −f
φf (s) ← 1

end

end

return φ(s)

3.1 Properties and Performance Guarantees

In this section, we inspect the asymptotic behaviors of iFDD com-
bined with TD, iFDD-TD. We ensure that the number of active fea-
tures discovered by iFDD upper bounded by the number of fea-
tures required for a lookup table and prove that iFDD-TDdoes not
stop expanding the representation unless the representation is per-
fect or it is fully expanded. Finally, we provide both a bound on
the quality of the value function approximation found by iFDD-
TDwith respect to the true value function as well as show that
4In general finding the minimum covering set is NP-complete, yet
greedy selection mechanism is the best possible polynomial time
approximation.

1

25

not be helpful. For example, if a key feature such as the UAV’s fuel
level is not included in the initial set of features, then the function
approximation will still be poor even after applying iFDD.

Once the iFDD algorithm has been initialized with an set of bi-
nary features, the algorithm proceeds in three steps:

(I). Identifying potential features

(II). Tracking the relevance of each potential feature

(III). Expanding the representation by including promising poten-
tial features

In step (I), iFDD considers pairwise conjunctions of active (non-
zero) features as potential features.2 Note that in a linear approx-
imation, inactive conjunctions—that is, conjunctions equal zero—
cannot affect the value function approximation for the current state.
Considering only conjunctive features is sufficient for iFDD to con-
verge to the best approximation possible in the limit; unlike dis-
junctive features, conjunctive features also also remain sparse and
thus keep per-time-step computation low.

In step (II), iFDD updates the relevance of potential features
by accumulating the error measure perceived by the underlying
learning technique for each active potential feature. Among on-
line learning techniques, we employed TD learning because it is
inexpensive to compute, has been successful [Sutton, 1996], and
has theoretical convergence guarantees when combined with linear
function approximators [Tsitsiklis and Van Roy, 1997]. Hence, at
each time t, the absolute TD error, |δt|, is added to the potential
relevance of all active potential features.

Finally in step (III), iFDD adds those potential features with the
relevance exceeding a preset threshold to the pool of features. From
that time, these discovered features will contribute to the function
approximation.

Figure 1 exhibits a snapshot of the process graphically. Cir-
cles represents initial features, while conjunctive features are rep-
resented by rectangles. The relevance of each potential feature f ,
ψf , is shown as the filled part of the rectangle, while the discov-
ery threshold ξ is represented by the length of rectangles. ξ plays
the role of discovery nob set by the user where lower values of ξ
encourage faster representational expansion.

Algorithm 1 formalizes the discovery process. Let F be the set
of features currently included in the representation and φf (s) be
the basis function that indicates whether f ∈ F is active in state s.
The algorithm takes as input the features associated with the cur-
rent state, φ(st), the current TD error δt, the discovery threshold
ξ, the complete set of current features F, and the relevances of the
potential features ψ. It first identifies all active potential features
using pairwise combination of active features at current state s.3

For each potential feature f = g ∧ h, the corresponding potential
relevance ψf is incremented by the current absolute TD error |δt|; if
ψf exceeds ξ, then feature f is added to the set F. The value func-
tion is updated using the standard TD update rule on coefficients θ:
θt+1 = θt + αtδtφ(st), where αt is the learning parameter.

We improve the computational complexity of our approach by
using a sparse summary of all active features. Specifically, we
greedily activate the most specific features (i.e., features composed
of the largest conjunction set) until all active initial features have

2For simplicity we address both initial features and feature con-
junctions as features.
3While a more expressive approach considers all subsets of active
features, we empirically found this alternative to be less competi-
tive both in terms of sample complexity and computational time.

been covered. 4 For example, if initial features g and h are active
in state s and feature f = g ∧ h has been discovered, then we set
the φf (s) = 1 and φg(s),φh(s) = 0 since g and h are covered
by f . Algorithm 2 describes this process more formally: candidate
features are recognized by identifying the set of active initial fea-
tures and calculating its power set (℘) sorted by set sizes. The loop
keeps activating candidate features that exist in the feature set (F),
until all active initial features are covered.

The sparse representation also improves the learning rate: the
coefficient θf corresponding to the new feature f = g ∧ h value
function approximation is set to θg +θh. Thus, when a new feature
is added, the value function does not initially change. However, as
more updates are applied, states in which the conjunctive feature
f is active will now only update the coefficient θf ; these are the
states for which the initial features g and h did not provide a good
generalization. States for which only one of the features g or h
was active will continue to refine the more general values for the
coefficients θg or θh.

Algorithm 1:Discover
Input: φ(s), δt, ξ,F,ψ
Output: F,ψ
foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

f ← g ∧ h
if f /∈ F then

ψf ← ψf + |δt|
if ψf > ξ then

F ← F ∪ f

end

end

end

Algorithm 2:Activate Features
Input: φ0(s),F

Output: φ(s)
φ(s) ← 0̄
activeInitialFeatures ← {i|φ0

i (s) = 1}
Candidates ← ℘(activeInitialFeatures) (*sorted by set size)
while activeInitialFeatures �= ∅ do

f ← Candidates.next()
if f ∈ F then

activeInitialFeatures ← activeInitialFeatures −f
φf (s) ← 1

end

end

return φ(s)

3.1 Properties and Performance Guarantees

In this section, we inspect the asymptotic behaviors of iFDD com-
bined with TD, iFDD-TD. We ensure that the number of active fea-
tures discovered by iFDD upper bounded by the number of fea-
tures required for a lookup table and prove that iFDD-TDdoes not
stop expanding the representation unless the representation is per-
fect or it is fully expanded. Finally, we provide both a bound on
the quality of the value function approximation found by iFDD-
TDwith respect to the true value function as well as show that
4In general finding the minimum covering set is NP-complete, yet
greedy selection mechanism is the best possible polynomial time
approximation.

iFDD: 3D Example

Y

X

Z

Y Z

X Z

X Y

iFDD: 3D Example

Y

X

Z

Y Z

X Z

X Y

iFDD: 3D Example

Y

X

Z

X Y

Z

X Y

Z

A

iFDD - Mapping
Sort Layers

Dropping a Stone

X Y

Z

A

iFDD - Mapping
Sort Layers

Dropping a Stone

X Y

Z

A

iFDD - Mapping
Sort Layers

Dropping a Stone

iFDD - Mapping
Sort Layers

Dropping a Stone

X Y

Z

B

iFDD - Mapping
Sort Layers

Dropping a Stone

X Y

Z

B

iFDD - Mapping
Sort Layers

Dropping a Stone

X Y

B

iFDD - Mapping
Sort Layers

Dropping a Stone

X Y

B

Z

iFDD - Mapping
Sort Layers

Dropping a Stone
X Y

B

Z

iFDD - Mapping
Sort Layers

Dropping a Stone
X Y

B

Z

iFDD - Mapping
Sort Layers

Dropping a Stone
X Y

B

Detailed Results

29

300 2 4 6 8 10

x 10
4

0

500

1000

1500

2000

2500

3000

Steps

B
a
la

n
c
in

g
 S

te
p

s

Initial

Tabular

Guassian

ATC

Initial+iFDD

!

!
·

"

31
! " # $ % &!

'(&!
#

!&)*

!&

!!)*

!

!)*

&

+,-./

0
-
,1
23

Tabular

Initial

ATC

initial+iFDD

! " # $ % &!

'(&!
#

!)!

!

)!

&!!

&)!

"!!

")!

*!!

*)!

#!!

#)!

+,-./

0
-
,1
23

Initial

Tabular

ATC

Initial+iFDD

32

10
10

10

! " # $ % &!

'(&!
#

!&!

!)

!

)

&!

&)

*+,-.

/
,
+0
12

 Initial+iFDD

ATC

Initial

Tabular

33

1 2 3

+1

4

.8

+1 5 +5

8 6

+1

7+5

.8

8
+10

.5

10

Comparison with
Random Expansion

34

35

0 2 4 6 8 10

x 10
4

100

150

200

250

300

350

400

450

500

550

Steps

F
e

a
tu

re
s

Equation capped discovery

Threshold based discovery

Figure 5: Rate of feature discovery of iFDD in the pendulum domain using threshold based scheme
and equation capped scheme

0 2 4 6 8 10

x 10
4

500

1000

1500

2000

2500

3000

Steps

B
a
la

n
c
in

g
 S

te
p

s

iFDD

Random

(a) Inverted Pendulum

0 2 4 6 8 10

x 10
4

!1

!0.9

!0.8

!0.7

!0.6

!0.5

!0.4

!0.3

!0.2

!0.1

Steps

R
e

tu
rn

iFDD

Random

(b) Blocksworld

0 2 4 6 8 10

x 10
4

!100

0

100

200

300

400

500

Steps

R
e

tu
rn

iFDD

Random

(c) Persistent Surveillance

0 2 4 6 8 10

x 10
4

!4

!2

0

2

4

6

8

10

12

14

Steps

R
e

tu
rn

iFDD

Random

(d) Rescue Mission

Figure 6: Performance of iFDD and Random feature discovery schemes with a fixed rate of dis-
covery in four RL domains: Inverted Pendulum, BlocksWorld, Persistent Surveillance, and Rescue
Mission. Notice how iFDD outperforms the random approach in all domains.

Figure 5 shows the rate of feature discovery for the iFDD using the discovery based on the threshold
(green) and the Eq. 2 (red) for the inverted pendulum problem. The green plot essentially shows
the rate of discovery for the iFDD in plot 3(a). Note how the new bound is placed lower than the

ARiFDD

36

1

37

X

X

Y

(b)

(d) (e)

X Y

X X

Y

X Y

Y

X Y

(f)

Y

X Y

(a)

X

Y

(c)

X

Y

X YARiFDD

1

38

iFDD is ARiFDD with SplitThreshold of ∞.

For each basic tile, weighted μ and σ are stored
incrementally.

Empirical results suggest cutting through the
dimension with the least variance works best.

ARiFDD

1 2 5 10 20

0

0.2

0.4

0.6

0.8

1

Initial Cuts

R
et

ur
n

1 2 5 10 20

0

0.2

0.4

0.6

0.8

1

Cuts

R
et
ur
n

ARiFDD
iFDD
initial
Tabular

!

!
·

"

39

ARiFDD

Theory

40

Theorems

0 1 1
0 1 0
0 0 1
1 0 0

1
0
0
0

0 1 1 1
0 1 0 0
0 0 1 0
1 0 0 0

 Consider a 4 state MDP with 2 binary features

s1
s2
s3
s4

Ṽ = Φθ

41

Theorems

0 1 1
0 1 0
0 0 1
1 0 0

1
0
0
0

0 1 1 1
0 1 0 0
0 0 1 0
1 0 0 0

 Consider a 4 state MDP with 2 binary features

s1
s2
s3
s4

Ṽ = Φθ

41

Rate of Convergence

42

orthogonal projection of point P on �V , if α,β ≥ 0, and α + β < π
2 , then || �PP �|| is maximized, when

�V ∈ L.

Proof Lets assume that �V /∈ L, hence there exists a three dimensional subspace defined by �V and L. Figure
4 depicts such space. It is easy to see that

argmax
w

|| �PP �|| = argmax
w

|| �CP || sin(ω) = argmax
w

sin(w).

Since 0 < |α− β| ≤ w ≤ α+ β < π
2 ⇒ argmax

w
|| �PP �|| = α+ β, where �V ∈ L

C

α
β

P

Q V

P’

ω

L

Figure 4: A 3D visualization of n dimensional points of P,Q and vector V with C as the center. || �PP �|| is
maximized when ω = α+ β.

Theorem 3.5 Given a Markov Chain, where the value function is approximated as Ṽ, δ = TṼ − Ṽ, and
||V∗ − Ṽ|| = x > 0 the following statement holds:

∀φf ∈ Rn : β = ∠(φf , δ) < cos−1(γ), ∃ξ ∈ R : ||V∗ − Ṽ||− ||V∗ − (Ṽ + ξφf)|| ≥ ζx,

ζ = 1− γ cos(β)−
�

1− γ2 sin(β) < 1.

Furthermore if the above conditions hold, Ṽ = Φθ, and φf /∈ span(Φ) then:

||V∗ −ΠV∗||− ||V∗ −Π�V∗|| ≥ ζx

where Π� is the projection operator using Φ� = [Φ φf].

Proof Lets consider two cases:

orthogonal projection of point P on �V , if α,β ≥ 0, and α + β < π
2 , then || �PP �|| is maximized, when

�V ∈ L.

Proof Lets assume that �V /∈ L, hence there exists a three dimensional subspace defined by �V and L. Figure
4 depicts such space. It is easy to see that

argmax
w

|| �PP �|| = argmax
w

|| �CP || sin(ω) = argmax
w

sin(w).

Since 0 < |α− β| ≤ w ≤ α+ β < π
2 ⇒ argmax

w
|| �PP �|| = α+ β, where �V ∈ L

C

α
β

P

Q V

P’

ω

L

Figure 4: A 3D visualization of n dimensional points of P,Q and vector V with C as the center. || �PP �|| is
maximized when ω = α+ β.

Theorem 3.5 Given a Markov Chain, where the value function is approximated as Ṽ, δ = TṼ − Ṽ, and
||V∗ − Ṽ|| = x > 0 the following statement holds:

∀φf ∈ Rn : β = ∠(φf , δ) < cos−1(γ), ∃ξ ∈ R : ||V∗ − Ṽ||− ||V∗ − (Ṽ + ξφf)|| ≥ ζx,

ζ = 1− γ cos(β)−
�

1− γ2 sin(β) < 1.

Furthermore if the above conditions hold, Ṽ = Φθ, and φf /∈ span(Φ) then:

||V∗ −ΠV∗||− ||V∗ −Π�V∗|| ≥ ζx

where Π� is the projection operator using Φ� = [Φ φf].

Proof Lets consider two cases:

orthogonal projection of point P on �V , if α,β ≥ 0, and α + β < π
2 , then || �PP �|| is maximized, when

�V ∈ L.

Proof Lets assume that �V /∈ L, hence there exists a three dimensional subspace defined by �V and L. Figure
4 depicts such space. It is easy to see that

argmax
w

|| �PP �|| = argmax
w

|| �CP || sin(ω) = argmax
w

sin(w).

Since 0 < |α− β| ≤ w ≤ α+ β < π
2 ⇒ argmax

w
|| �PP �|| = α+ β, where �V ∈ L

C

α
β

P

Q V

P’

ω

L

Figure 4: A 3D visualization of n dimensional points of P,Q and vector V with C as the center. || �PP �|| is
maximized when ω = α+ β.

Theorem 3.5 Given a Markov Chain, where the value function is approximated as Ṽ, δ = TṼ − Ṽ, and
||V∗ − Ṽ|| = x > 0 the following statement holds:

∀φf ∈ Rn : β = ∠(φf , δ) < cos−1(γ), ∃ξ ∈ R : ||V∗ − Ṽ||− ||V∗ − (Ṽ + ξφf)|| ≥ ζx,

ζ = 1− γ cos(β)−
�

1− γ2 sin(β) < 1.

Furthermore if the above conditions hold, Ṽ = Φθ, and φf /∈ span(Φ) then:

||V∗ −ΠV∗||− ||V∗ −Π�V∗|| ≥ ζx

where Π� is the projection operator using Φ� = [Φ φf].

Proof Lets consider two cases:

orthogonal projection of point P on �V , if α,β ≥ 0, and α + β < π
2 , then || �PP �|| is maximized, when

�V ∈ L.

Proof Lets assume that �V /∈ L, hence there exists a three dimensional subspace defined by �V and L. Figure
4 depicts such space. It is easy to see that

argmax
w

|| �PP �|| = argmax
w

|| �CP || sin(ω) = argmax
w

sin(w).

Since 0 < |α− β| ≤ w ≤ α+ β < π
2 ⇒ argmax

w
|| �PP �|| = α+ β, where �V ∈ L

C

α
β

P

Q V

P’

ω

L

Figure 4: A 3D visualization of n dimensional points of P,Q and vector V with C as the center. || �PP �|| is
maximized when ω = α+ β.

Theorem 3.5 Given a Markov Chain, where the value function is approximated as Ṽ, δ = TṼ − Ṽ, and
||V∗ − Ṽ|| = x > 0 the following statement holds:

∀φf ∈ Rn : β = ∠(φf , δ) < cos−1(γ), ∃ξ ∈ R : ||V∗ − Ṽ||− ||V∗ − (Ṽ + ξφf)|| ≥ ζx,

ζ = 1− γ cos(β)−
�

1− γ2 sin(β) < 1.

Furthermore if the above conditions hold, Ṽ = Φθ, and φf /∈ span(Φ) then:

||V∗ −ΠV∗||− ||V∗ −Π�V∗|| ≥ ζx

where Π� is the projection operator using Φ� = [Φ φf].

Proof Lets consider two cases:

orthogonal projection of point P on �V , if α,β ≥ 0, and α + β < π
2 , then || �PP �|| is maximized, when

�V ∈ L.

Proof Lets assume that �V /∈ L, hence there exists a three dimensional subspace defined by �V and L. Figure
4 depicts such space. It is easy to see that

argmax
w

|| �PP �|| = argmax
w

|| �CP || sin(ω) = argmax
w

sin(w).

Since 0 < |α− β| ≤ w ≤ α+ β < π
2 ⇒ argmax

w
|| �PP �|| = α+ β, where �V ∈ L

C

α
β

P

Q V

P’

ω

L

Figure 4: A 3D visualization of n dimensional points of P,Q and vector V with C as the center. || �PP �|| is
maximized when ω = α+ β.

Theorem 3.5 Given a Markov Chain, where the value function is approximated as Ṽ, δ = TṼ − Ṽ, and
||V∗ − Ṽ|| = x > 0 the following statement holds:

∀φf ∈ Rn : β = ∠(φf , δ) < cos−1(γ), ∃ξ ∈ R : ||V∗ − Ṽ||− ||V∗ − (Ṽ + ξφf)|| ≥ ζx,

ζ = 1− γ cos(β)−
�

1− γ2 sin(β) < 1.

Furthermore if the above conditions hold, Ṽ = Φθ, and φf /∈ span(Φ) then:

||V∗ −ΠV∗||− ||V∗ −Π�V∗|| ≥ ζx

where Π� is the projection operator using Φ� = [Φ φf].

Proof Lets consider two cases: [Parr et al. 2007]

Proof Sketch

ζ = 1− γ cos(β)−
�

1− γ2 sin(β) < 1.

Furthermore if the above conditions hold, Ṽ = Φθ, and φf /∈ span(Φ) then:

||V∗ −ΠV∗||− ||V∗ −Π�V∗|| ≥ ζx

where Π� is the projection operator using Φ� = [Φ φf].

Proof Following the proof of Theorem 3.6 of [Parr et al., 2007b], if β < cos−1(γ) then ∃ξ > 0 :
||V∗ − (Ṽ + ξφf)|| < ||V∗ − Ṽ||. Figure 3 depicts the geometrical view of V∗, Ṽ,TṼ, and φf .
Given that the Bellman operator is contraction in the steady state distribution:

||V∗ − Ṽ|| = x ⇒ ||V∗ −TṼ|| ≤ γx ⇒ sin(α) ≤ γ.

ω = α+ β, x� = x sin(ω) = x

�
sin(α) cos(β) + sin(β) cos(α)

�

In the worst case α = sin−1(γ) ⇒ x�

x ≤ γ cos(β) +
�

1− γ2 sin(β). Note that 0 ≤ ω < π
2 .

Ṽ

TṼ

α β

γx

x

φfx �

V∗

Figure 3: Geometrical view of of V∗, Ṽ,TṼ, and φf . As β shrinks x� gets closer to γx.

Theorem 3.5 Given Assumptions 1 and 2, ∀F ⊆ Fd

∀f ∈ pair(F) such that η =

�
φf (s)=1 d(s)δ(s)���

φf (s)=1 d(s)
���

s∈S d(s)δ2(s)
� > γ, F � = F ∪ f,

then

∃ξ > 0 : ||V∗ − Ṽ||− ||V∗ − (Ṽ + ξφf)|| ≥ ζx,

||V∗ −ΠV∗||− ||V∗ −Π�V∗|| ≥ ζx,

ζ = 1− γ
�

1− η2 − η
�

1− γ2

Proof Following Theorem 3.4, it is sufficient to show that show that (I) φf /∈ span(ΦF) and (II)
β = ∠(φf , δ) < cos−1(γ). The former is already shown through Corollary 3.3. As for the latter:

cos(β) =
φf .δ

||φf ||.||δ||
=

�
φf (s)=1 d(s)δ(s)���

φf (s)=1 d(s)
���

s∈S d(s)δ2(s)
� = η.

Assuming η > γ, then β = cos−1(η) < cos−1(γ).

[Parr et al. 2007]43

Selection Mechanism

Corollary 3.6 Given Assumptions 1 and 2, an arbitrary set of features F ⊆ Fd, and definition of
η as in Theorem ??, if η > γ, then feature f∗ ∈ pair(F) with the maximum guaranteed error
reduction can be calculated as:

f∗ = argmaxf∈pair(F)

�
φf (s)=1 d(s)δ(s)���

φf (s)=1 d(s)
� (3)

If D = I then,

f∗ = argmaxf∈pair(F)

�
φf (s)=1 δ(s)√

2d−|f |
(4)

With limited samples:

f∗ = argmaxf∈pair(F)

�
s∈Samples,φf (s)=1 δ(s)��

s∈Samples φf (s) = 1
(5)

This means that there is a trade of between the generalization ability of the feature (i.e., denuminator)

and its Bellman error coverage (i.e., numerator). Ideally the error occurs in a single state, and the

new feature is only active in that state. When the weighted sum of errors is equal for all features, the

one with the least generalization ability is preferable. On the other hand, when all features have the

same generalization, the one with the highest Bellman error coverage is ideal.

3.2 Sparsifying the Φ matrix

Unfortunately, the conjunction operator create features that is not orthogonal to the span of previous

set of features. For brevity, we consider the following element wise operators on vectors:

X̄ � ¬X
XY � X ∧ Y

X + Y � X ∨ Y

||X|| � ||X||�1−norm

The abjunction operator on two binary variable x and y is defined as: x � y = xȳ. We extend this

definition as well for vectors as X � Y = XȲ , where the operation is performed bitwise.

Furthermore, we define the � operator as described in Algorithm ??. For any given set of features

F , the � operator creates a feature matrix Φ, where for each state s, φ(s) includes a limited number

of activated features where their union covers all active basic features by selecting active features

greedy based on their feature size. This operator replicates the Generate Feature Vector algorithm

mentioned in the incremental Feature Dependency Discovery [?] in the matrix format.

Algorithm 1:�
Input: F
Output: ΦM×n

1 Φ ← ΦF

2 for i ← n downto 2 do

3 for j ← i− 1 downto 1 do

4 if Fi ∩ Fj �= ∅ then

5 Φej ← Φej � Φei

Remark For any X,Y ∈ {0, 1}n, X, Y �= 0, then if Z = XY �= 0, then Z is not orthogonal to

both X and Y .

Proof �Z,X� = �Z, Y � = ||XY || �= 0

44

ATC and SDM

45

Adaptive Tile Coding

46
[Whiteson et al. 2007]

Adaptive Tile Coding

46
[Whiteson et al. 2007]

Adaptive Tile Coding

46
[Whiteson et al. 2007]

Adaptive Tile Coding

46
[Whiteson et al. 2007]

Adaptive Tile Coding

46
[Whiteson et al. 2007]

Adaptive Tile Coding

47
[Whiteson et al. 2007]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

48

Sparse Distributed Memories

[Ratitch et al. 2004]

