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Sarsa 

(π) a,r

[Sutton 88]

st+1st
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Temporal Difference (TD) Error

δt = rt + γV (st+1)− V (st).

Linear Function Approximation

θt+1 = θt + αtφ(st)δt(V ).
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Empirical Results
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iFDD Theory
1

TD-iFDD will provide the best possible 
approximation given the initial set of features.

Given initial features with sparse outputs, the 
per-time-step computational complexity of 
iFDD is independent of the total number of 
features.

[ICML 2011]19
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not be helpful. For example, if a key feature such as the UAV’s fuel
level is not included in the initial set of features, then the function
approximation will still be poor even after applying iFDD.

Once the iFDD algorithm has been initialized with an set of bi-
nary features, the algorithm proceeds in three steps:

(I). Identifying potential features

(II). Tracking the relevance of each potential feature

(III). Expanding the representation by including promising poten-
tial features

In step (I), iFDD considers pairwise conjunctions of active (non-
zero) features as potential features.2 Note that in a linear approx-
imation, inactive conjunctions—that is, conjunctions equal zero—
cannot affect the value function approximation for the current state.
Considering only conjunctive features is sufficient for iFDD to con-
verge to the best approximation possible in the limit; unlike dis-
junctive features, conjunctive features also also remain sparse and
thus keep per-time-step computation low.

In step (II), iFDD updates the relevance of potential features
by accumulating the error measure perceived by the underlying
learning technique for each active potential feature. Among on-
line learning techniques, we employed TD learning because it is
inexpensive to compute, has been successful [Sutton, 1996], and
has theoretical convergence guarantees when combined with linear
function approximators [Tsitsiklis and Van Roy, 1997]. Hence, at
each time t, the absolute TD error, |δt|, is added to the potential
relevance of all active potential features.

Finally in step (III), iFDD adds those potential features with the
relevance exceeding a preset threshold to the pool of features. From
that time, these discovered features will contribute to the function
approximation.

Figure 1 exhibits a snapshot of the process graphically. Cir-
cles represents initial features, while conjunctive features are rep-
resented by rectangles. The relevance of each potential feature f ,
ψf , is shown as the filled part of the rectangle, while the discov-
ery threshold ξ is represented by the length of rectangles. ξ plays
the role of discovery nob set by the user where lower values of ξ
encourage faster representational expansion.

Algorithm 1 formalizes the discovery process. Let F be the set
of features currently included in the representation and φf (s) be
the basis function that indicates whether f ∈ F is active in state s.
The algorithm takes as input the features associated with the cur-
rent state, φ(st), the current TD error δt, the discovery threshold
ξ, the complete set of current features F, and the relevances of the
potential features ψ. It first identifies all active potential features
using pairwise combination of active features at current state s.3

For each potential feature f = g ∧ h, the corresponding potential
relevance ψf is incremented by the current absolute TD error |δt|; if
ψf exceeds ξ, then feature f is added to the set F. The value func-
tion is updated using the standard TD update rule on coefficients θ:
θt+1 = θt + αtδtφ(st), where αt is the learning parameter.

We improve the computational complexity of our approach by
using a sparse summary of all active features. Specifically, we
greedily activate the most specific features (i.e., features composed
of the largest conjunction set) until all active initial features have

2For simplicity we address both initial features and feature con-
junctions as features.
3While a more expressive approach considers all subsets of active
features, we empirically found this alternative to be less competi-
tive both in terms of sample complexity and computational time.

been covered. 4 For example, if initial features g and h are active
in state s and feature f = g ∧ h has been discovered, then we set
the φf (s) = 1 and φg(s),φh(s) = 0 since g and h are covered
by f . Algorithm 2 describes this process more formally: candidate
features are recognized by identifying the set of active initial fea-
tures and calculating its power set (℘) sorted by set sizes. The loop
keeps activating candidate features that exist in the feature set (F),
until all active initial features are covered.

The sparse representation also improves the learning rate: the
coefficient θf corresponding to the new feature f = g ∧ h value
function approximation is set to θg +θh. Thus, when a new feature
is added, the value function does not initially change. However, as
more updates are applied, states in which the conjunctive feature
f is active will now only update the coefficient θf ; these are the
states for which the initial features g and h did not provide a good
generalization. States for which only one of the features g or h
was active will continue to refine the more general values for the
coefficients θg or θh.

Algorithm 1:Discover
Input: φ(s), δt, ξ,F,ψ
Output: F,ψ
foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

f ← g ∧ h
if f /∈ F then

ψf ← ψf + |δt|
if ψf > ξ then

F ← F ∪ f

end

end

end

Algorithm 2:Activate Features
Input: φ0(s),F

Output: φ(s)
φ(s) ← 0̄
activeInitialFeatures ← {i|φ0

i (s) = 1}
Candidates ← ℘(activeInitialFeatures) (*sorted by set size)
while activeInitialFeatures �= ∅ do

f ← Candidates.next()
if f ∈ F then

activeInitialFeatures ← activeInitialFeatures −f
φf (s) ← 1

end

end

return φ(s)

3.1 Properties and Performance Guarantees

In this section, we inspect the asymptotic behaviors of iFDD com-
bined with TD, iFDD-TD. We ensure that the number of active fea-
tures discovered by iFDD upper bounded by the number of fea-
tures required for a lookup table and prove that iFDD-TDdoes not
stop expanding the representation unless the representation is per-
fect or it is fully expanded. Finally, we provide both a bound on
the quality of the value function approximation found by iFDD-
TDwith respect to the true value function as well as show that
4In general finding the minimum covering set is NP-complete, yet
greedy selection mechanism is the best possible polynomial time
approximation.
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Figure 5: Rate of feature discovery of iFDD in the pendulum domain using threshold based scheme
and equation capped scheme
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Figure 6: Performance of iFDD and Random feature discovery schemes with a fixed rate of dis-
covery in four RL domains: Inverted Pendulum, BlocksWorld, Persistent Surveillance, and Rescue
Mission. Notice how iFDD outperforms the random approach in all domains.

Figure 5 shows the rate of feature discovery for the iFDD using the discovery based on the threshold
(green) and the Eq. 2 (red) for the inverted pendulum problem. The green plot essentially shows
the rate of discovery for the iFDD in plot 3(a). Note how the new bound is placed lower than the
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iFDD is ARiFDD with SplitThreshold of ∞.

For each basic tile, weighted μ and σ are stored 
incrementally. 

Empirical results suggest cutting through the 
dimension with the least variance works best.

ARiFDD



1 2 5 10 20

0

0.2

0.4

0.6

0.8

1

Initial Cuts

R
et

ur
n

1 2 5 10 20

0

0.2

0.4

0.6

0.8

1

Cuts

R
et
ur
n

 

 

ARiFDD
iFDD
initial
Tabular

!

!
·

"

39

ARiFDD



Theory

40



Theorems

0  1  1  
0  1  0  
0  0  1  
1  0  0 

1
0
0
0

0  1  1  1  
0  1  0  0 
0  0  1  0  
1  0  0  0

 Consider a 4 state MDP with 2 binary features

s1
s2
s3
s4
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Theorem 3.5 Given a Markov Chain, where the value function is approximated as Ṽ, δ = TṼ − Ṽ, and
||V∗ − Ṽ|| = x > 0 the following statement holds:
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Proof Lets consider two cases: [Parr et al. 2007]



Proof Sketch

ζ = 1− γ cos(β)−
�

1− γ2 sin(β) < 1.

Furthermore if the above conditions hold, Ṽ = Φθ, and φf /∈ span(Φ) then:

||V∗ −ΠV∗||− ||V∗ −Π�V∗|| ≥ ζx

where Π� is the projection operator using Φ� = [Φ φf ].

Proof Following the proof of Theorem 3.6 of [Parr et al., 2007b], if β < cos−1(γ) then ∃ξ > 0 :
||V∗ − (Ṽ + ξφf )|| < ||V∗ − Ṽ||. Figure 3 depicts the geometrical view of V∗, Ṽ,TṼ, and φf .
Given that the Bellman operator is contraction in the steady state distribution:

||V∗ − Ṽ|| = x ⇒ ||V∗ −TṼ|| ≤ γx ⇒ sin(α) ≤ γ.

ω = α+ β, x� = x sin(ω) = x

�
sin(α) cos(β) + sin(β) cos(α)

�

In the worst case α = sin−1(γ) ⇒ x�

x ≤ γ cos(β) +
�

1− γ2 sin(β). Note that 0 ≤ ω < π
2 .

Ṽ

TṼ
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φfx �
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Figure 3: Geometrical view of of V∗, Ṽ,TṼ, and φf . As β shrinks x� gets closer to γx.

Theorem 3.5 Given Assumptions 1 and 2, ∀F ⊆ Fd

∀f ∈ pair(F ) such that η =

�
φf (s)=1 d(s)δ(s)���

φf (s)=1 d(s)
���

s∈S d(s)δ2(s)
� > γ, F � = F ∪ f,

then

∃ξ > 0 : ||V∗ − Ṽ||− ||V∗ − (Ṽ + ξφf )|| ≥ ζx,

||V∗ −ΠV∗||− ||V∗ −Π�V∗|| ≥ ζx,

ζ = 1− γ
�

1− η2 − η
�

1− γ2

Proof Following Theorem 3.4, it is sufficient to show that show that (I) φf /∈ span(ΦF ) and (II)
β = ∠(φf , δ) < cos−1(γ). The former is already shown through Corollary 3.3. As for the latter:

cos(β) =
φf .δ

||φf ||.||δ||
=

�
φf (s)=1 d(s)δ(s)���

φf (s)=1 d(s)
���

s∈S d(s)δ2(s)
� = η.

Assuming η > γ, then β = cos−1(η) < cos−1(γ).

[Parr et al. 2007]43



Selection Mechanism

Corollary 3.6 Given Assumptions 1 and 2, an arbitrary set of features F ⊆ Fd, and definition of
η as in Theorem ??, if η > γ, then feature f∗ ∈ pair(F ) with the maximum guaranteed error
reduction can be calculated as:

f∗ = argmaxf∈pair(F )

�
φf (s)=1 d(s)δ(s)���

φf (s)=1 d(s)
� (3)

If D = I then,

f∗ = argmaxf∈pair(F )

�
φf (s)=1 δ(s)√

2d−|f |
(4)

With limited samples:

f∗ = argmaxf∈pair(F )

�
s∈Samples,φf (s)=1 δ(s)��

s∈Samples φf (s) = 1
(5)

This means that there is a trade of between the generalization ability of the feature (i.e., denuminator)

and its Bellman error coverage (i.e., numerator). Ideally the error occurs in a single state, and the

new feature is only active in that state. When the weighted sum of errors is equal for all features, the

one with the least generalization ability is preferable. On the other hand, when all features have the

same generalization, the one with the highest Bellman error coverage is ideal.

3.2 Sparsifying the Φ matrix

Unfortunately, the conjunction operator create features that is not orthogonal to the span of previous

set of features. For brevity, we consider the following element wise operators on vectors:

X̄ � ¬X
XY � X ∧ Y

X + Y � X ∨ Y

||X|| � ||X||�1−norm

The abjunction operator on two binary variable x and y is defined as: x � y = xȳ. We extend this

definition as well for vectors as X � Y = XȲ , where the operation is performed bitwise.

Furthermore, we define the � operator as described in Algorithm ??. For any given set of features

F , the � operator creates a feature matrix Φ, where for each state s, φ(s) includes a limited number

of activated features where their union covers all active basic features by selecting active features

greedy based on their feature size. This operator replicates the Generate Feature Vector algorithm

mentioned in the incremental Feature Dependency Discovery [?] in the matrix format.

Algorithm 1:�
Input: F
Output: ΦM×n

1 Φ ← ΦF

2 for i ← n downto 2 do

3 for j ← i− 1 downto 1 do

4 if Fi ∩ Fj �= ∅ then

5 Φej ← Φej � Φei

Remark For any X,Y ∈ {0, 1}n, X, Y �= 0, then if Z = XY �= 0, then Z is not orthogonal to

both X and Y .

Proof �Z,X� = �Z, Y � = ||XY || �= 0
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