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Sparsity of features
Sparsity: Only      features are active at any given 
moment.

Simulated leg [Lin, Kim 94]: 350 << 40000

Card game [Bowling et al. 02]: 3 << 10^6

Keep away soccer [Stone et al. 05]: 416 << 10^4

Go [Silver et al. 07]: ~200 << ~10^6

k
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O(k)→ O(lk)

O(mn + k
2)→ O(mn + lk
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Proof of Convergence

   Theorem : iLSTD converges with 
probability one to the same solution as TD, 
under the usual step-size conditions, for any 
component selection method such that all 
components for which      is non-zero are 
selected in the limit an infinite number of  
times.

µt
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Conclusions Based on
 Empirical Results

If number of features increases enough, 
LSTD can not outperform TD based on 
computation.

Data wise LSTD outperforms TD.

Greedy component selection method 
outperformed Random, ε-Greedy, and 
Boltzmann in most cases.

No convergence proof! 
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