
Dynamic Pose Graph SLAM:

Long-term Mapping in Low Dynamic Environments

Aisha Walcott-Bryant, Michael Kaess, Hordur Johannsson, and John J. Leonard

Abstract— Maintaining a map of an environment that
changes over time is a critical challenge in the development
of persistently autonomous mobile robots. Many previous ap-
proaches to mapping assume a static world. In this work we
incorporate the time dimension into the mapping process to
enable a robot to maintain an accurate map while operating
in dynamical environments. This paper presents Dynamic Pose
Graph SLAM (DPG-SLAM), an algorithm designed to enable a
robot to remain localized in an environment that changes sub-
stantially over time. Using incremental smoothing and mapping
(iSAM) as the underlying SLAM state estimation engine, the
Dynamic Pose Graph evolves over time as the robot explores
new places and revisits previously mapped areas. The approach
has been implemented for planar indoor environments, using
laser scan matching to derive constraints for SLAM state
estimation. Laser scans for the same portion of the environment
at different times are compared to perform change detection;
when sufficient change has occurred in a location, the dynamic
pose graph is edited to remove old poses and scans that no
longer match the current state of the world. Experimental
results are shown for two real-world dynamic indoor laser data
sets, demonstrating the ability to maintain an up-to-date map
despite long-term environmental changes.

I. INTRODUCTION

One of the long-term goals in mobile robotics is to

achieve life-long mapping — the ability to construct and

maintain an up-to-date map while operating persistently in

an environment that undergoes substantial changes over time.

We refer to this as the long-term simultaneous localization

and mapping (SLAM) problem in dynamic environments. A

robot that repeatedly traverses a typical dynamic environment

will encounter objects that move at wide-varying time scales.

In this work we focus on the robot mapping problem in

low-dynamic environments. Low dynamic environments are

composed of static and low-dynamic objects and entities that

can be moved or changed at any time, such as furniture

or walls in a remodeled room. The dynamics of such an

environment directly affect what the robot senses and ulti-

mately incorporates into its map. In this paper, we present

the Dynamic Pose Graph (DPG) model to represent changing

environments, and the DPG-SLAM method for continuous

long-term mapping in low-dynamic environments. The aim

of our work is to maintain a current up-to-date map at all

This research has been supported by the Lucent CRFP, the MIT GSO-
Lemelson Fellowship, and the MIT Graduate Students Office Fellowship.
Also, this work is partially the result of research sponsored by the MIT Sea
Grant College Program, under NOAA Grant Number NA06OAR4170019,
MIT SG Project Number 2007-R/RCM-20, and by the Office of Naval
Research under research grants N00014-10-1-0936 and N00014-12-10020.

The authors are with the Massachusetts Institute of Technology,
Cambridge, MA 02139, USA. aisha.w.bryant@gmail.com,
{kaess, hordurj, jleonard}@mit.edu

times, identifying the more static components of the world, to

facilitate localization and to provide a foundation for future

work in active exploration that would account for long-term

environment dynamics.

Recently, some successful approaches to dealing with low-

dynamic objects have been proposed, however there remain

a number of open challenges. Andrade-Cetto [1] presents

an early system for landmark-based mapping in dynamic

environments using an extended Kalman filter. Wolf and

Sukhatme [2] and Biswas et al. [3] instead use occupancy

grids to maintain both a static and a dynamic map of a

changing environment. Mitsou and Tzafestas [4] modify the

occupancy grid structure to maintain a history of sensor

values. Performing SLAM with occupancy grids suffers from

deteriorating map quality over time. More recently pose

graph optimization techniques [5] have been very successful

at constructing accurate maps by correcting older robot poses

with, for example, loop closures.

Additionally, one of the key questions in long-term map-

ping is: what should be used to represent the map of a

changing environment? Biber and Duckett [6], [7] presented

a sample based representation that employs multiple maps,

each adapting to environment changes at a different time

scale. Konolige and Bowman [8] discuss a visual mapping

system that attempts to repair the map as the environment

changes. Meyer-Delius [9] developed a dynamic occupancy

grid that models temporal changes in the environment. Wyeth

et al. [10] take a biologically inspired approach, called

RatSLAM, that has been tested in the context of an office

delivery robot, using a non-metric representation.

Our proposed approach is based on state-of-the-art pose

graph optimization techniques for SLAM. In general, pose

graphs grow with time, are sensitive to noisy constraints,

and can become highly connected when a robot repeatedly

revisits an area and loop constraints are added. Our objective

is to continuously maintain a pose graph representation over

time, keeping a history of the environment dynamics.

The primary contribution of this work is the introduction

of a novel model called the Dynamic Pose Graph (DPG).

Pose graphs optimize the robot poses explicitly, while the

map for a static environment is implicitly represented by the

associated laser scans. The DPG extends this model for low-

dynamic environments by maintaining both an active and a

dynamic map. By annotating the scans, or subsets of scans,

for finer granularity, dynamic objects can be isolated, and

the most recent map recovered at any time. And by keeping

the history in the pose graph, a more accurate and complete

model can be achieved than by only using the latest data.

The second contribution is Dynamic Pose Graph SLAM

(DPG-SLAM), which adds complexity management to di-

rectly address the problem of long-term mobile robot navi-

gation and map maintenance in dynamic environments. By

carefully selecting nodes and constraints that are no longer

needed (due to changes in the world), the complexity of the

pose graph can be substantially reduced.

We demonstrate our work on two real-world dynamic

indoor laser data sets collected by a B21 mobile robot.

Our results demonstrate DPG-SLAM’s ability to maintain

an efficient, up-to-date map despite long-term environmental

changes.

The structure of this paper is as follows: Section II

describes the Dynamic Pose Graph representation. Section III

provides the overall DPG-SLAM algorithm. Section IV

presents our experimental results, and finally Section V

concludes the paper by summarizing our contributions and

making suggestions for future research.

II. DYNAMIC POSE GRAPH (DPG)

In this section, we describe our environment model and

assumptions, and present an example of a low-dynamic

environment. Then we introduce the Dynamic Pose Graph

(DPG) model.

A. Environment Model and Assumptions

A general dynamic environment model captures moving,

low-dynamic, high-dynamic, and stationary objects, in ad-

dition to entities (such as walls or other physical struc-

tures) that can change. Non-stationary objects move at wide-

varying time scales from seconds, such as people walking,

to weeks, such as a piece of furniture moved from one

location to another. To construct a map, we assume that

high-dynamic objects can be filtered by employing existing

methods including [11]–[13]. Thus, in this work we focus

on mapping low-dynamic environments. More specifically,

a low-dynamic object moves much slower than the robot

navigates and its motion cannot be sensed immediately.

An example of an indoor low-dynamic environment, the

Reading Room, where boxes are intentionally moved is

shown in Fig. 1. The Figure shows four separate pose graph

SLAM laser range maps created after the robot traverses the

environment four times.

We make some assumptions about the environment that

allow us to focus on the core issues of the dynamic mapping

problem. We assume that the space is a bounded two-

dimensional indoor, office environment. The robot performs

multiple passes through the same environment over time,

where each pass starts and ends near a known home location.

Changes in the environment are a result of (1) low-dynamic

objects being added, removed, or moved, or (2) changes in

presumed static objects (eg. walls during remodeling). We

also assume that if changes occur, then they occur between

passes.

One of the goals of the DPG-SLAM method is to identify

stale incorrect map measurements, as shown in Fig. 1(b),

and remove it from the representation. Applying pose graph

SLAM results in a cluttered map with stale data. A second

goal of the DPG-SLAM method is to create a map repre-

sentation that incorporates both the static and the dynamic

parts of the environment. Fig. 1(c) depicts an example of

the best-case DPG-SLAM map, called active map, for the

Reading Room. The map contains all the static parts (walls)

from each pass, and removes the portions of the map that are

incorrect, as a result of boxes moved at different points in

time. Correspondingly, Fig. 1(d) depicts the best-case DPG-

SLAM map of the dynamic parts of the environment, called

the dynamic map. This map shows the history where boxes

were added, moved, or removed. By maintaining the static

parts and labeling the dynamic parts of the environment,

the areas that are more static can later be used for reliable

localization.

B. The Dynamic Pose Graph Model

We present a novel model called the Dynamic Pose Graph

(DPG) to address the problem of long-term mapping in

dynamic environments. The DPG is an extension of the

traditional pose graph model. A Dynamic Pose Graph is a

connected graph, denoted DPG = 〈N,E〉, with nodes ni ∈ N

and edges ei,j ∈ E and is defined as follows:

Dynamic Pose Graph, DPG = 〈N,E〉:

• Node ni ∈ N , where ni = 〈x, c, a, p, z〉 with

• Pose x =
[

xi yi θi
]T

• Change node indicator

c =

{

1, if change detected

0, otherwise

• Active node indicator

a =

{

active, if measurement is used in the map

inactive, otherwise

• Pass number p, an integer representing the pass at which

the node was created

• Measurement z taken at node ni.

• Edge ei,j ∈ E, where ei,j = 〈T,Σ〉 with

• Constraint Ti,j is determined by computing spatial

constraints between two nodes ni and nj , where the

spatial geometric transform is Ti,j =
[

xij yij θij
]T

• Covariance Σ ∈ R
3×3 of the constraint Ti,j

An example of a Dynamic Pose Graph is provided in

Fig. 2. There, the DPG is shown originating from the known

start position at each pass.

C. Long-term Map Representation

The map representation in the DPG is similar to that of a

standard pose graph. In the standard pose graph a map can be

generated by projecting the measurements (e.g. laser scans)

taken at each pose into a single global coordinate frame.

As a result, the map Z can be represented by the set of

all measurements, zi ∈ Z. This section describes additional

information stored at each DPG node, as well as the active

and dynamic maps.

10.5m

(a) Example of a low-dynamic environment with range scans generated
from the CSAIL Reading Room. Low-dynamic objects are boxes that are
intentionally added, moved, or removed after each pass.

y

x

Pose Graph SLAM

y
x

Pass

Pass 1

Pass 2

Pass 3

Pass 4

(b) Pose graph SLAM map.

y

x

Dynamic Pose Graph SLAM, Active Map (best case)

(c) DPG-SLAM best-case active map.

Dynamic Map (best case)

y

x

Trajectory

After Pass 2 After Pass 3 After Pass 4

y

x

(d) DPG-SLAM best-case dynamic map.

Fig. 1. (a) Example of a low-dynamic environment with range scans
generated from the CSAIL Reading Room. Low-dynamic objects are boxes
that are intentionally added, moved, or removed after each pass. (b) Pose
graph SLAM map. (c) Best-case active map. (d) Best-case dynamic map.

Pass 3

Pass 4

P
ass

 2

P
a
s
s
 1

. . .

. . .

. . .

xstart

zp,a,c,,x2 n

222, , i,i,i Te 6

Loop Constraints

in

Fig. 2. Example of a Dynamic Pose Graph (DPG).

Node, Scan

in

Node, Scan, Sectors

in
in

Node, Scan, Sectors, Labels

Removed

Static

Added

(a) (b) (c)

Fig. 3. Illustration of a DPG node and its contents. (a) Shows a standard
pose graph node. (b) Sectors are added. (c) Complete DPG node with four
sectors and laser points that are labeled static, added, or removed.

1) Nodes and Measurements: We use laser range scans as

measurements, and construct a map using partial scans and

labels. More specifically, a measurement z is a laser range

scan, where z = 〈ψ, α〉,

• Range values and labels ψ = {〈r1, l1〉..., 〈rm, lm〉},

where m is the number of ranges in the laser scan. Range

labels lk = {static, added, removed} denote which laser

range measurements are derived from a low-dynamic

object or a static object. A low-dynamic object is either

added, removed, or a combination thereof.

• Sectors α divide the laser scan into equal-sized partitions

based on angle. The purpose of sectors is to retain as many

accurate ranges as possible by dividing the laser scan and

removing only the parts of the scan that should not be

included in the map. Each laser scan has a set of b sectors,

A = { α1, α2, ..., αb}.

An example of a DPG node is shown in Fig. 3, where (a)

shows a node from a standard pose graph, and (b) and (c)

show additional components, sectors and labels, included in

a DPG node.

2) Active and Dynamic Maps: To represent a changing

environment, the DPG maintains two maps, an active map

and a dynamic map. The active map represents the most

current state of the environment including parts of the

environment that have not changed from previous passes.

An active map is defined as follows. Active Map: Zactive

= { ri | ri is a range point from scan zj , and α(ri) = on,

and range label li ∈ {static, added} and node(zj) = active

}. Zactive is the set of range measurements from laser scans

that correspond to active nodes; the corresponding sector of

each range measurement must be on, α(ri) = on; the label

for each range is either static or added.

The dynamic map contains a representative sample of

laser range points from parts of the environment that have

changed over time, and is defined as follows. Dynamic Map:

Zdynamic = { ri | ri is a range point from scan zj , with range

label li ∈ {removed, added} }. Zdynamic is the set of ranges

deriving from active or inactive nodes and are labeled either

added or removed. Note that added points are also included

in the dynamic map because they represent a change in the

environment. The dynamic map is a representation of the

history of changes that have been detected.

III. DPG-SLAM

For a mobile robot to be able to navigate in a dynamic

environment and maintain an up-to-date map, it must be able

to continuously localize, detect changes, and repair its map.

To achieve this, we present DPG-SLAM a method to main-

tain an up-to-date representation while a robot navigates in

a low-dynamic environment. DPG-SLAM addresses two key

challenges of the long-term mobile robot mapping problem.

The first challenge is to maintain a map of a low-dynamic

environment that changes over time. The second challenge

is to reduce the size of the DPG as it grows over time. The

DPG-SLAM steps are as follows,

DPG-SLAM Steps:

1) Pose graph SLAM

2) Compute local submap

3) Detect and label changes

4) Update active and dynamic maps

5) Reduce DPG size

6) Repeat

DPG-SLAM addresses the challenges with the DPG-

SLAM-NR algorithm, where DPG-SLAM-NR (No Re-

duce/Remove) excludes step 5. The nodes and edges in DPG-

SLAM-NR refer to the robot’s entire trajectory, X; the nodes

and edges in DPG-SLAM can be removed during step 5, and

thus refer to only a subset of the robot’s trajectory, X∗ ⊆ X .

A. Compute Local Submap

To create an accurate map of a changing environment,

the robot must be able to detect changes and update its

active and dynamic maps. That is, the robot must be able to

continuously compare the current state of the environment

to its previous representation. To achieve this, we introduce

two terms: current pose chain and local submap (see Fig. 4),

whose sets of range points are used in change detection.

The current pose chain is the most recent sequence of nodes

added to the DPG. A local submap is a subset of active map

nodes and points from earlier passes. Each node in the local

submap has a field-of-view (FOV), free unobstructed space

measured by the laser range scanner, that intersects with at

least one pose chain node’s FOV, or vice versa.

To compute the local submap we find a subset of active

map nodes that sufficiently cover, based on intersecting

FOVs, the pose chain nodes. This subset of nodes are in

close proximity to the pose chain nodes. The nodes also

must pass a χ2 test for the relative uncertainty (covariance)

Fig. 4. Example of the current pose chain and a local submap.

(a)

(b)

(c)

Fig. 5. (a) Example of pose chain node ncurr’s cells covered by local
submap nodes ni and nj , and their identified unmatched points. (b) Labeled
added and removed points. (c) Example of sectors that intersect with
removed points turned off.

between each node and at least one pose chain node [14]–

[17]. We determine sufficient coverage by overlaying two

occupancy grids: one occupancy grid for the local submap,

submapGrid, and one for the current pose chain currGrid.

Then if the amount of covered cells from the currGrid

exceeds a given threshold, the pose chain is sufficiently

covered by the local submap. An example of finding local

submap nodes for a pose chain node, ncurr, is shown in

Fig. 5(a). The figure highlights the covered area w.r.t. ncurr

and two local submap nodes, ni and nj .

TABLE I

RULES FOR LABELING POINTS.

submapGrid currGrid Label

free occupied current points added

occupied free submap points removed

unknown occupied current points static

B. Detect and Label Changes

Recall that low-dynamic objects can be added, moved,

or removed after each pass. To detect and label changes

resulting from low-dynamic objects, we apply three steps

to each node, ncurr on the pose chain.

The first step is to compute the set of unmatched points,

denoted η, consisting of unmatched points from ncurr and

unmatched points from γ, where γ is the set of local

submap nodes that intersect with ncurr. To compute η, scan

matching is applied to find the points that are not matched

(unmatched points). An alternative method is to use an

occupancy grid technique to differentiate between static and

dynamic elements as in [3].

The second step is to compute a change score to determine

if the amount of change exceeds a given threshold, δ. We use

the following function to determine if a change has occurred,

ccurr =

{

1, if score(zcurr, η) > δ

0, otherwise,

To compute the score, ncurr’s sensor range is temporarily

divided into equal sized bins by angle. Each unmatched point

is assigned to a bin based on its angle relative to ncurr.

The score is computed from the ratio of the number of bins

containing unmatched points to the remaining bins. If the

score exceeds δ then change(s) has been detected.

Alg. 1 LABEL-POINTS(OccGrid currGrid, OccGrid submapGrid)

1: dynMapPoints← {}
2: for all cell ∈ currGrid do

3: if (cell == occ) AND (submapGrid[cell] == free) then

4: for all pi ∈ cell.points do

5: label(pi) ← added
6: dynMapPoints← dynMapPoints ∪ pi
7: end for

8: else if (cell == free) AND (submapGrid[cell] == occ) then

9: for all pj ∈ submapGrid[cell].points do

10: label(pj) ← removed point
11: dynMapPoints← dynMapPoints ∪ pj
12: end for

13: end if

14: end for

15: return dynMapPoints

The third step is to label the points from zcurr and γ

as static, removed, or added to update the dynamic map.

The procedure for labeling points is given in Alg. 1, and an

example is shown in Fig. 5(b). The occupancy grid for the

current node, currGrid, and the occupancy grid for the local

submap nodes, submapGrid, are overlaid. Cells of each of

the two grids are compared, and points in these cells are

labeled according to the rules in Table I, later used to update

the dynamic map.

C. Update Active and Dynamic Maps

To update the dynamic and active maps, the labeled pose

chain and local submap points. The dynamic map is updated

to include the added and removed points. The active map

is updated to include the added and static points. This

procedure is given in Alg. 2. Additionally, sectors of DPG

nodes in the active map are ”turned off” if the sectors

intersect removed points, i.e. stale data, see Fig. 5(c). Points

in sectors that are turned off are no longer included in the

active map.

Alg. 2 UPDATE-MAPS(DPG dpg, Points removedPoints)

1: inactiveNodes← {}
2: for all pi ∈ removedPoints do

3: nearbyNodes← get potential overlapping nodes(pi, dpg)
4: for all nj ∈ nearbyNodes do

5: if active(nj) == true then

6: if intersects(pi, nj) then

7: sector ← get sector(nj , pi)
8: set state(sector) ← Off
9: if percent on-sectors < percOn then

10: set state(nj) ← inactive
11: inactiveNodes← inactiveNodes ∪ nj

12: end if

13: end if

14: end if

15: end for

16: end for

17: return inactiveNodes

D. Removing DPG Nodes and Constraints

As the robot navigates the DPG will continue to grow.

As a result, pose graph optimization becomes more and

more computationally expensive. To address the DPG size

we attempt to remove the inactive nodes from the graph. An

inactive node is a node with all sectors turned off. Removing

nodes together with their corresponding laser scans reduces

the set of nodes (or poses) X , to a subset X∗ ⊆ X .

Alg. 3 REMOVE-INACTIVE-NODES(DPG dpg)

1: for all ni ∈ inactive nodes(dpg) do

2: Traverse back from ni to nodes from same pass as ni

3: Insert start constraint
4: Traverse forward from ni to nodes from same pass as ni

5: Insert end constraint
6: Create removal chain
7: end for

8: Remove removal chain if valid

An illustration of removing an inactive node is shown in

Fig. 6, and detailed in Alg. 3. To remove inactive nodes there

are four issues to consider. The first is that DPG must remain

connected at all times. The second consideration is that

additional nodes will likely be removed with an inactive node

(termed a removal chain in Alg. 3). The third is that removing

nodes requires removing constraints which at times may

greatly affect the pose estimates. The fourth consideration

is that the number of active nodes removed from the DPG

affect the active map coverage.

Fig. 6. Removing an inactive node and its corresponding removal chain
in order to reduce the size of the DPG. (top) Before removal. (bottom)
Reduced DPG.

TABLE II

SUMMARY OF DPG-SLAM PARAMETERS.

Parameter CSAIL Reading Room Univ. of Tubingen

δ, change ratio 0.2 0.3

Sectors/node 5 8

Removal chain len 5 nodes 15 nodes

Passes 20 60

Distance travelled 1.0km 7.4km

IV. RESULTS

To demonstrate the efficacy of DPG-SLAM and DPG-

SLAM-NR we present experimental results for two real-

world dynamic indoor laser data sets: the CSAIL Reading

Room and the Univ. of Tubingen [6]. Table II summarizes

the DPG-SLAM parameters used for each of the data sets.

Incremental smoothing and mapping (iSAM) [18] was used

for pose graph optimization.

A. CSAIL Reading Room

In this experiment boxes were added, moved, and removed

by hand in order to know where changes occurred. The

robot made 20 passes through the room traveling a total

distance of 1.0km. Fig. 7 shows the map with all information

from applying pose graph SLAM. Fig. 9 shows the maps

resulting from applying DPG-SLAM (top) and DPG-SLAM-

NR (bottom). A summary of the resulting DPG size is shown

in Table III.

To show the accuracy and computation time of the al-

gorithms, we use three metrics: static histograms, ground

truth error, and the run-time ratio. Fig. 8 shows the density

TABLE III

DPG SUMMARY FOR CSAIL READING ROOM.

Algorithm Nodes Edges Rem. Rem. Error (cm)
Nodes Edges

DPG-SLAM-NR 2,468 3,158 —- —- 3.9-13.4

DPG-SLAM 1,345 1,647 1,123 1,932 3.4-13.3

Fig. 7. Top-down and side-views of pose graph SLAM applied to the
Reading Room (top) and Univ. of Tubingen (bottom) data sets.

Fig. 8. Static histograms created from Reading Room active maps for
DPG-SLAM (left) and DPG-SLAM-NR (right).

of static points (from the walls) is greater for the DPG-

SLAM-NR than the DPG-SLAM. This is due to nodes being

removed during DPG-SLAM that are not inactive, and thus,

their valid laser range points are removed from the active

map. Fig. 11 shows the ground truth error—the mean of

the distances between active map static points and ground

truth, as the number of passes increases. Finally, the run-

time ratio between the two algorithms is shown in Fig. 12.

During the early iterations the computational cost of DPG-

SLAM is slightly greater than DPG-SLAM-NR. However, in

later iterations it is clear that reducing the size of the DPG

yields significant savings in computation.

B. University of Tubingen

The Univ. of Tubingen data set consists of laser data

collected over five weeks in an indoor environment, courtesy

of Biber and Duckett [6]. The robot made 60 passes through

the building, traveling a total distance of 7.4km.

Fig. 10 shows the maps resulting from applying DPG-

SLAM (top) and DPG-SLAM-NR (bottom). The parts of

TABLE IV

DPG SUMMARY FOR THE UNIV. OF TUBINGEN.

Algorithm Nodes Edges Rem. Nodes Rem. Edges

DPG-SLAM-NR 8,392 11,350 —- —-

DPG-SLAM 4,511 5,809 3,881 7,324

y

x

y

x

pass

(a) Active map (b) DPG (c) Dynamic map

Fig. 9. Results of the DPG-SLAM (top row) and DPG-SLAM-NR (bottom row) algorithms for the Reading Room data set. The points are color-coded
from each pass, where magenta is the oldest pass and cyan is the most recent pass.

y
x

pass

(a) Active map (b) DPG (c) Side-view Active Map

Fig. 10. Results of the DPG-SLAM (top row) and DPG-SLAM-NR (bottom row) algorithms for the Univ. of Tubingen dataset.

Fig. 11. Plot of errors in ground truth accuracy and DPG-SLAM-NR.

Fig. 12. Run time ratio between both algorithms, as well as the number
of nodes added with each algorithm over time.

the active maps shown in magenta imply that data from

earlier passes remain in the active map, as shown along the

”T” intersection in the middle. Again, the density of static

points from the walls is greater for the DPG-SLAM-NR than

the DPG-SLAM. Table IV summarizes the DPGs from the

two algorithms. The size of the DPG is significantly reduced

for the DPG-SLAM algorithm. The active maps from both

algorithms are very similar even though the size of the DPG

for the DPG-SLAM algorithm is nearly half the size of the

one from DPG-SLAM-NR.

V. CONCLUSION

To address the problem of long-term mobile robot map-

ping in low-dynamic environments, we presented the DPG

model and DPG-SLAM. The DPG-SLAM-NR algorithm

addressed the map maintenance problem in low-dynamic en-

vironments, and the DPG-SLAM algorithm extended DPG-

SLAM-NR to address the growth in the DPG. Our exper-

iments demonstrate that an accurate map of a changing

environment can be maintained, while reducing the size of

the DPG and addressing the issue of tractability. There was

minimal trade-off in accuracy between the two algorithms,

with a great benefit of computation time for DPG-SLAM.

The DPG-SLAM method can be improved in a number

of ways. In some cases, the removal of constraints from

the graph can affect the quality of the pose estimates. In

addition, false negatives (in which stale range points remain

in the active map) and false positives (in which range points

for stationary objects are erroneously removed) can occur.

It is anticipated that with sufficient repeated traversals of an

environment, these effects can be minimized.

Key topics to investigate in future work include: (1)

extension to 3D mapping using visual SLAM [19]; (2)

incorporation of semantic representations for places and

objects; and (3) development of motion planning techniques

that balance exploration of new areas with map maintenance

for previously mapped regions.

REFERENCES

[1] J. Andrade-Cetto and A. Sanfeliu, “Concurrent map building and
localization on indoor dynamic environments,” International Journal

of Pattern Recognition and Artificial Intelligence, vol. 16, no. 3, pp.
361–374, 2002.

[2] D. F. Wolf and G. S. Sukhatme, “Towards mapping dynamic environ-
ments,” In Proceedings of the International Conference on Advanced

Robotics (ICAR), pp. 594–600, 2003.
[3] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun, “Towards object

mapping in non-stationary environments with mobile robots,” in Intel-

ligent Robots and System, 2002. IEEE/RSJ International Conference

on, vol. 1, 2002, pp. 1014–1019 vol.1.
[4] N. C. Mitsou and C. S. Tzafestas, “Temporal occupancy grid for mo-

bile robot dynamic environment mapping,” in Control & Automation,

2007. MED ’07. Mediterranean Conference on, 2007, pp. 1–8.
[5] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial

on graph-based SLAM,” Intelligent Transportation Systems Magazine,

IEEE, vol. 2, no. 4, pp. 31–43, 2010.
[6] P. Biber and T. Duckett, “Dynamic maps for long-term operation of

mobile service robots,” Proc. of Robotics: Science and Systems (RSS),
2005.

[7] ——, “Experimental analysis of sample-based maps for long-term
SLAM,” The International Journal of Robotics Research, vol. 28,
no. 1, pp. 20–33, 2009.

[8] K. Konolige and J. Bowman, “Towards lifelong visual maps,” in IROS,
2009, pp. 1156–1163.

[9] D. Meyer-Delius, “Probabilistic modeling of dynamic environments
for mobile robots,” Ph.D. dissertation, University of Freiburg, 2011.

[10] G. Wyeth and M. Milford, “Towards lifelong navigation and mapping
in an office environment,” Proceedings of the 14th International

Symposium of Robotics Research (ISRR), 2009.
[11] D. Fox, W. Burgard, S. Thrun, and A. B. Cremers, “Position estimation

for mobile robots in dynamic environments,” in In Proc. of the

National Conference on Artificial Intelligence (AAAI, 1998.
[12] D. Hahnel, D. Schulz, and W. Burgard, “Map building with mobile

robots in populated environments,” in Intelligent Robots and System,

2002. IEEE/RSJ International Conference on, vol. 1, 2002, pp. 496–
501 vol.1.

[13] C.-C. Wang, C. Thorpe, and S. Thrun, “Online simultaneous local-
ization and mapping with detection and tracking of moving objects:
theory and results from a ground vehicle in crowded urban areas,”
in Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE

International Conference on, vol. 1, 2003, pp. 842–849 vol.1.
[14] E. Olson, “Real-time correlative scan matching,” in ICRA’09: Pro-

ceedings of the 2009 IEEE Intl. Conf. on Robotics and Automation.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 1233–1239.

[15] J.-S. Gutmann and K. Konolige, “Incremental mapping of large
cyclic environments,” in International Symposium on Computational

Intelligence in Robotics and Automation, 1999.
[16] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller,

“An Atlas framework for scalable mapping,” in Robotics and Automa-

tion, 2003. Proceedings. ICRA ’03. IEEE International Conference on,
vol. 2, 2003, pp. 1899–1906 vol.2.

[17] X. Ji, H. Zhang, D. Hai, and Z. Zheng, “A decision-theoretic active
loop closing approach to autonomous robot exploration and mapping,”
in RoboCup 2008: Robot Soccer World Cup XII, ser. Lecture Notes
in Computer Science, L. Iocchi, H. Matsubara, A. Weitzenfeld, and
C. Zhou, Eds. Springer, 2009, vol. 5399, pp. 507–518.

[18] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: incremental
smoothing and mapping,” Robotics, IEEE Transactions on, vol. 24,
no. 6, pp. 1365–1378, 2008.

[19] H. Johannsson, M. Kaess, M. F. Fallon, and J. J. Leonard, “Temporally
scalable visual SLAM using a reduced pose graph,” Computer Science
and Artificial Intelligence Laboratory, MIT, Tech. Rep. MIT-CSAIL-
TR-2012-013, May 2012.

