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Abstract

One of the central goals in mobile robotics is to develop a mobile robot that can construct
a map of an initially unknown dynamic environment. This is often referred to as the Si-
multaneous Localization and Mapping (SLAM) problem. A number of approaches to the
SLAM problem have been successfully developed and applied, particularly to a mobile
robot constructing a map of a 2D static indoor environment. While these methods work
well for static environments, they are not robust to dynamic environments which are com-
plex and composed of numerous objects that move at wide-varying time-scales, such as
people or office furniture.

The problem of maintaining a map of a dynamic environment is important for both
real-world applications and for the advancement of robotics. A mobile robot executing
extended missions, such as autonomously collecting data underwater for months or years,
must be able to reliably know where it is, update its map as the environment changes, and
recover from mistakes. From a fundamental perspective, this work is important in order
to understand and determine the problems that occur with existing mapping techniques
for persistent long-term operation.

The primary contribution of the thesis is Dynamic Pose Graph SLAM (DPG-SLAM),
a novel algorithm that addresses two core challenges of the long-term mapping problem.
The first challenge is to ensure that the robot is able to remain localized in a changing
environment over great lengths of time. The second challenge is to be able to maintain
an up-to-date map over time in a computationally efficient manner. DPG-SLAM directly
addresses both of these issues to enable long-term mobile robot navigation and map main-
tenance in changing environments. Using Kaess and Dellaert’s incremental Smoothing
and Mapping (iSAM) as the underlying SLAM state estimation engine, the dynamic pose
graph evolves over time as the robot explores new areas and revisits previously mapped
areas.

The algorithm is demonstrated on two real-world dynamic indoor laser data sets, demon-
strating the ability to maintain an efficient, up-to-date map despite long-term environmen-
tal changes. Future research issues, such as the integration of adaptive exploration with
dynamic map maintenance, are identified.

Thesis Supervisor: John J. Leonard
Title: Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

One of the central goals in mobile robotics is placing a robot in an unknown, dynamic en-
vironment with the mission to autonomously construct a map of the environment. Achiev-
ing this goal requires the robot to localize while constructing a map of the environment,
and is referred to as the Simultaneous Localization and Mapping (SLAM) problem. A
number of successful approaches have been developed particularly for static environ-
ments. However, environments are generally not static and are complex with objects mov-
ing at wide-varying time-scales.

This thesis presents a novel method called the Dynamic Pose Graph SLAM (DPG-
SLAM) that directly addresses the problem of long-term mobile robot navigation and map
maintenance in dynamic environments. The robot is assumed to operate in such environ-
ments for extended periods, eg. weeks, months, or even years.

Natural Disasters ;;ﬂ-__-;“ ;

T

S;c:ufity

Exploration

(a) (b) (c)

Figure 1-1: Example of different real-world environments for potential long-term robot mapping.
(a) shows one of the two robots, Spirit and Opportunity, that have been operating on Mars for
several years. Figure (b) shows a robot patrolling a public space. Figure (c) shows an image of the
aftermath of the Japan earthquake.

Environments are constantly changing, both in the short term and the long term. The
dynamics of a complex environment directly affect what the robot senses and ultimately
incorporates into its map. The focus of this thesis is on environments that change slowly
over time, and often abruptly and seemingly at random, such as furniture moving. Addi-
tionally, robots are being used on longer term missions, or in scenarios where they have a
persistent presence in our every-day lives (see Figure 1-1). For example, consider a mobile
robot navigating in an airport and maintaining a model of the dynamics of the environ-
ment. The robot must be able to adapt to changes in the environment such as in an airport
terminal that is undergoing remodeling, and at the same time, discern when a change oc-
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curs such as an unexpected package placed in a prohibited area. Our DPG-SLAM method
provides a robot with the ability to adapt to long-term changes as well as detect new ob-
jects added to the environment.

The long-term SLAM problem presents a number of challenges. For example, vast
amounts of data are collected, objects move according to different time scales, and coping
with failures inherent in long-term autonomous operation. To confront some of these is-
sues a number of methods to SLAM in populated and dynamic environments have been
proposed. Many of these methods approximate a static map, and use techniques to filter
out transient obstacles, such as people walking [3,32,54, 66,75].

1.1 Long-term Mapping Overview

Traditional SLAM and methods for SLAM in dynamic environments are not robust to en-
vironment changes that occur at wide-varying time scales. A robot covering a large en-
vironment will navigate and revisit parts of the environment at different points in time.
One of the main difficulties the robot faces is dealing with objects that move infrequently
and do not follow a continuous trajectory, such as sofas, chairs, and desks. To maintain
an accurate and up-to-date map, the robot must be able to detect environment changes
and repair the map. Revisiting a room where furniture has been moved, for example, re-
sults in different measurements of the same room. Both, people walking and furniture
being moved, are examples of what makes an environment dynamic. However, the two
have significantly different time-scales. People walking are in continuous motion while
within the robot’s field-of-view. In contrast, a sofa is generally stationary while within the
robot’s field-of view. The sofa can be moved or removed outside of the robot’s FOV and
after the sofa has be included in the map. The only way for the robot to be able to detect
this type of change is to revisit the location where the sofa initially was located, take new
measurements and repair the map.

While different approaches have been proposed to represent long-term dynamic maps
[9,10,52,80], the long-term mapping in dynamic environments remains an open research
problem in robotics.

This thesis presents a novel solution to the problem of long-term mapping in dynamic
environments called DPG-SLAM (Dynamic Pose Graph SLAM). A low-dynamic environ-
ment is one that consists of static and low-dynamic objects. The term low-dynamic objects
was introduced in [52] to describe objects that appear stationary within the robot’s field-
of-view, and move while outside the robot’s field-of-view. To enable a mobile robot to
navigate and maintain an accurate and up-to-date map while operating in a low-dynamic
environment, the DPG-SLAM method focuses on achieving four critical goals listed below.

Long-term Mapping Goals:

1. Continuously incorporate new information. As the robot navigates, information about
the environment obtained by the laser range finder should be continuously incorpo-
rated into the DPG model. This includes computing constraints, updating the robot’s
trajectory, and maintaining an up-to-date map.

2. Representation of the environment should include the history of the map as changes occur
with the passage of time. The representation of the environment should store informa-
tion on where changes occurred and where changes did not occur. By maintaining
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the environment changes, the model can be used to represent the temporal dynam-
ics of the environment. That is, it would be possible to determine how often changes
occur in various parts of the environment based on the laser data collected by the
robot. In addition to keeping track of the changes, it is also important to maintain
the areas of the environment that do not change. These areas can be considered as
“more static” than other areas. By incorporating this information into the map of the
dynamic envisagement, such applications like path planning can exploit the model
by planning paths through parts of the environment that are more static. In these
areas it is more likely that the robot can accurately localize.

3. Detect changes and update the map online. To maintain an accurate and up-to-date map
the robot should detect changes relative to its current pose and repair its current
representation of the environment online. This process should be done incrementally
at the pose level; i.e., as the robot navigates and adds poses to the DPG.

4. Address the problem of tractability for growing DPG. At the heart of the Dynamic Pose
Graph model is a pose graph [28] representation. A pose graph consists of nodes
and edges that make up the robot’s trajectory (see Chapter 3 for details). The size
of the pose graph grows with time as the robot navigates around its environment.
The continuous addition of nodes and constraints to the DPG directly affects the
computational tractability when pose-graph optimization is applied. Therefore, a
mobile robot navigating for weeks, months, or even years, will generate an ever
increasing DPG. To address the problem of tractability, a framework for reducing
the DPG size including nodes, edges, and ranges should be a part of DPG-SLAM.

1.2 Summary of Contributions

The primary contributions of this thesis are threefold. First, we develop the Dynamic Pose
Graph model, an extension to pose graphs that has additional information stored at the
nodes in order to cope with the dynamic environments. Second, we propose a unified
environment representation called the active and dynamic maps. The third contribution is
the DPG-SLAM method which has two parts. The first part is maintaining an up-to-date
representation in the face of environment changes, referred to as DPG-SLAM-NR. The
second part is addressing the tractability problem by reducing the size of the DPG model.
Figure 1-2 presents an example of our work as compared to traditional pose graph SLAM
methods applied to a dynamic environment. We demonstrate our work on a B21 mobile
robot (shown in Figure 1-3.) equipped with a laser range finder in the plane providing
180° coverage.

1.3 Thesis Outline

The layout of this thesis is as follows. Chapter 2 describes related work in long-term robot
mapping and SLAM in dynamic environments. Chapter 3 presents the foundation for
this work, namely pose graph SLAM. Chapter 4 details our formulation of the long-term
mapping problem. Next, Chapter 5 describes the DPG-SLAM method, its core algorithms,
and concludes with an example of DPG-SLAM applied to the CSAIL Reading Room Data
set. Chapter 6 presents the analysis and results illustrating the efficacy of our DPG-SLAM
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methods applied to the CSAIL Reading Room data set and the University of Tubingen data
set [9]. Finally, Chapter 7 concludes with a summary of the work presented in this thesis,
limitations of our methods, as well as potential future research.
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Figure 1-2: Images of pose graph SLAM, DPG-SLAM-NR, and DPG-SLAM on 60 passes through
the University of Tubingen, Robot Lab. Figures (a) and (b) are the results of applying pose graph
SLAM. Figures (c) and (d) are the result of applying DPG-SLAM-NR (our method for maintaining
an up-to-date map). Figures (e) and (f) are the results of both maintaining an up-to-date map and
reducing the size of the DPG (ie. DPG-SLAM).
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Figure 1-3: B21 robot used in our experiments.
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Chapter 2

Related Work

This thesis presents Dynamic Pose Graph SLAM (DPG-SLAM) a method for maintaining
an up-to-date map in a slowly changing environment. There has been a lot of attention
on the problem of SLAM in dynamic environments particularly where the robot operates
for short periods, or covers the environment and generates a map. Typical methods where
a robot performs SLAM in a dynamic environment for short periods, filter out dynamic
objects, detect and classify static objects versus dynamic objects, or track moving objects
[3,32,54,66,75].

More recently, the problem of continuous, long-term SLAM, also known as the life-long
SLAM problem, has received much attention. A critical part of the life-long SLAM prob-
lem is the ability to construct and maintain an up-to-date map while operating in dynamic
environments. The robot is repeatedly covers the environment while objects move at wide-
varying time scales. More specifically, [52] describes dynamic environments as those com-
posed of static low-dynamic and high-dynamic objects. High-dynamic objects are those that
appear in motion while within the robot’s field-of-view (FOV), such as transient objects
like people and vehicles [52]. Low-dynamic objects are those that are stationary within the
robot’s FOV and move at random outside the robot’s FOV, such as sofas and desks. While
there have been some recent successful approaches have been proposed [9,10,52,80] there
remain a number of open challenged.

This chapter summarizes related work from traditional SLAM in static environments
towards life-long SLAM in dynamic environments. At the heart of the life-long SLAM
problem is the long-term mapping problem. We discuss recent work on long-term SLAM
in dynamic environments and the various models for representing the environment.

2.1 Summary of SLAM in Static and Dynamic Environments

In traditional SLAM the robot is placed in an initially unknown and static environment
and is tasked with constructing a map of the environment. For example, Figure 2-1(a)
shows a room comprised of static objects i.e., walls. To construct a map the robot makes
one pass through the room to cover the space. To cover the space autonomously the robot
must follow an exploration strategy as well as localize and construct a map. As the robot
navigates, errors in its odometry measurements accrue. At the same time sensor measure-
ments are corrupted by noise. Consequently, a core part of the general SLAM problem is
the ability for the robot to cope with uncertainty in its motion and sensor measurements.
To construct a map of a static environments numerous approaches to the traditional
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Figure 2-1: Example of static, high-dynamic, and low-dynamic entities (objects) in an environment.

SLAM problem have been proposed. The two premier approaches apply smoothing, which
using both the past and the future measurements, and filtering, which used the past mea-
surements. Smoothing methods compute the full posterior of the robot poses along the
trajectory and include [16,20, 28,30, 36,41, 53,58]. Filtering methods maintain the current
position of the robot and include the Extended Kalman Filter (EKF), and the Extended
Information Filter (EIF), and Particle Filters (PFs) [12,27,65,72].

To construct a map autonomously the robot must be able to explore and cover the en-
vironment. A number of exploration strategies have been proposed and tested in indoor
environments both with single and multiple robots [23,24,43,59,71]. Exploration strate-
gies alone are not sufficient in more realistic scenarios in which objects, such as people or
furniture, are moving at various times scales.

SLAM in high-dynamic environments includes environments with objects that are mov-
ing within the FOV of the robot (see Figure 2-1(b)). Many of the approaches to the SLAM
problem in high-dynamic environments use methods to filter-out or track moving objects
[15,31,46,54,73,74]. Examples include robots operating in populated environments such as
museum tour guide robots [64,68] or robots assisting the elderly in nursing homes [60,61].
Also, recent success with the DARPA grand challenges demonstrated autonomous vehi-
cles operating safely in high-dynamic environments [1].

2.2 Long-term Mapping in Dynamic Environments
A core part of the life-long SLAM problem is the robot’s ability to maintain an up-to-

date map while operating in an environment for an extended period, e.g. weeks, months,
or years. In general, the environment would consist of static, low-dynamic, and high-
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dynamic objects. Recently there has been some work focusing on the two important areas
of long-term mapping environment representation and long-term robot operation.

2.21 Representation

To represent a dynamic environment both spatial and temporal data can be included in the
map. That is, the location of an object (represented by the sensor measurements) and the
time the robot detected the object (or set of measurements referring to an object). Three
common approaches to representing a dynamic environment are grid-based, map aging,
and multiple maps.

Grid based methods extend the original occupancy grid, first proposed by Moravec [55]
and Elfes [18], which represent free, occupied, and unknown space with a discrete grid of
cells. The cells are updated probabilistically as new sensor data is acquired and as the
robot moves through the environment. A variety of techniques have been proposed for
updating grid cells based on new sensor data, such as fuzzy logic and Dempster-Shafer
probabilities [76].

While standard occupancy grid approaches are designed for static environments, a
number of extensions have been proposed to use occupancy grids for dynamic environ-
ments. Arbuckle et al. [3] developed the Temporal Occupancy Grid (TOG) to classify static
versus dynamic objects within the local FOV of the robot. Mitsou and Tzafestas [52] pro-
posed an extension to the TOG, called the extended TOG, where each cell maintains all sen-
sor measurements over time. More specifically, the state of each cell at different points in
time is represented in a time interval data structure, B+ Tree. The extended TOG represen-
tation is memory intensive, and thus, not suitable for storing and maintaining long-term
map data. In addition, Wolf and Sukhatme [78] and Biswas et al. proposed maintaining a
static occupancy grid and a dynamic occupancy grid to represent a dynamic environment.

Another approach is to use multiple maps, distributed across different times, with the
maps aging (or fading) at different rates. Yamauchi and Beer [83] developed an early ap-
proach to temporal mapping using topological representations. Additionally, Andrade-
Cetto and Sanfeliu [2] developed a feature-based map where features in the map aged and
were removed from the map.

More recently, important work that addresses the long-term mapping problem in dy-
namic environments was developed by Biber and Duckett [9,10]. Their method employed
multiple, sample-based maps (from laser range scans), where different sets of samples are
represented on different time scales. Many of the proposed methods for dynamic environ-
ments combine more than one representation, such as multiple maps and grid-based maps
such as with [77-79].

2.2.2 Long-term Mobile Robot Operation

A key objective of the life-long SLAM problem is for the mobile robot to be able to operate
for extended periods, such as weeks, months or even years. The robot should have little
or no human intervention. Long-term operation can be based on distance covered by the
robot or long-term operation can be based on the amount of time the robot spends op-
erating in an environment. Robots that have covered long-distance include autonomous
vehicles, for example from the DARPA Grand Challenges [1], [47], [39] [40] [51] [81]. How-
ever covering long-distances does not imply that the robot revisits several locations. In our
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work, we assume a large part of long-term mapping includes revisiting areas a number of
times.

In addition, there has been quite a bit of work that achieved long-term localization in
an environment mapped a priori. One early example was the Minerva museum tour guide
robot developed by Thrun and colleagues at CMU [68]. Another large-scale, long-term
mobile robot installation was performed by Siegwart and colleagues at the Swiss National
Exhibition in 2002 [64].

In this work we are specifically interested in the robot operating in an environment for
an extended amount of time. The robot will repeatedly revisit areas and changes in the
environment will occur at wide-varying time scales. The Mars rovers [33, 50] Spirit and
Opportunity provide a compelling example of long-term mobile robot operations. Another
example is RatSLAM, where a robot operated for several hours autonomously in an indoor
environment, using a biologically inspired approach to long-term operation [51]. While
these long-term robot deployments are impressive, none of them entailed persistent long-
term map maintenance in dynamic environments.

2.3 Discussion

There are a number of challenges to enable a mobile robot to operate for extended periods
while the environment changes slowly and at random over time. Below is a summary of
the challenges addressed by our DPG-SLAM method, in the context of related work (see
Table 2.1).

Table 2.1: Key challenges of long-term SLAM in low-dynamic environments, and related work.

Continuous | Change | Low-Dynamic | Removing | Long-term | Long-term

Related Work

SLAM Detection Objects Data Model Data

A-Cetto [2] yes no yes yes no no
Wolf [77-79] yes yes yes no no no
Mitsou [52] yes no yes no no no
Biber [9,10] no no yes yes yes yes
Konolige [39] yes no yes yes yes no
Our Work yes yes yes yes yes yes

In comparison to the previous research described above, our proposed approach is
unique in several respects. First, it utilizes state-of-the-art pose graph optimization tech-
niques for SLAM state estimation. Second, we focus on long-term changes to the envi-
ronment (low dynamic objects). Third, we aim to continuously maintain a representation
over time, keeping a history of the dynamics instead of letting them fade out over time.
Most importantly, we keep a current up-to-date map at all times, identifying the more static
components of the world, which will facilitate path planning, localization, and exploration
strategies to keep the map up-to-date.
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Chapter 3

Foundation

This chapter reviews the core SLAM methods that provide the foundation for this thesis.
We begin with an overview of the robot model and notation. Then we provide a review of
a graphical model for SLAM, called pose graph SLAM [4,28,36,69]. Finally, we review the
non-linear optimization problem to find the maximum likelihood estimate of the position
of the pose graph nodes given the robot’s sensor measurements.

3.1 Robot Model

Robot

Local Coordinate
Frame

global
A

Control Inputs

= » X
'[:-XO global X2 — [yzl
Global Coordinate Frame &, Robot Path

Figure 3-1: Example of a robot following a path. The poses, z;. are shown with triangles and the
control inputs, u;, are shown on edges between the pose triangles. Each pose has its own local
coordinate frame from which laser ranges are measured.

A mobile robot creates a trajectory by applying control inputs, u;, over time as shown
in Figure 3-1. The robot’s positions are defined by poses, x;, which specify the position
(translation in the x and y directions) and the orientation (or heading) of the robot. In this
thesis, a pose at time-stamp i is denoted by the vector x; = [z; y; 9;]", where z; and y; are
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the position in a global coordinate frame and 0; is the robot’s heading also in the global
reference frame. Each pose defines its own local coordinate frame shown as the small
coordinate axis with each pose in Figure 3-1. A trajectory is represented by the history of
poses from start time 0 to time 7 - defined as the set X = {x¢, x1, ..., X; }, where we assume
the initial position xg is known. The set of all applied control inputs is U = {uy, ua, ..., u;}.
As the robot drives it takes sensor measurements of the environment, denoted z;, at each
pose. The set of all sensor measurements is denoted Z = {z1, 22, ..., z; }
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Figure 3-2: Images of the laser range finder sensor range, range points, and field-of-view (FOV).

In this thesis, we adopt existing methods to estimate the robot’s trajectory given the
measurements and control inputs. Each measurement is acquired by robot odometry and
a laser range finder. Due to robot motion noise (eg. motors, odometry, wheel slippage)
and other uncertainties caused by sensing, actuation, and environment irregularities, the
true values of the poses on the trajectory are hidden or unknown. As a result, there is un-
certainty in the robot poses, referred to as pose uncertainty. In addition, there is uncertainty
or noise in the robot’s sensor measurements. As mentioned, we use a laser range finder in
this work. A laser range finder returns the range and bearing in a two-dimensional planar
field of view to the sensor location. The collection of range and bearing values from 0° to
180 is called a laser scan. An example of a laser range scan is shown in Figure 3-2.
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3.2 SLAM Overview

The map is a spatial representation of the environment, constructed using sensor data col-
lected as the robots navigates through the space. A difficulty of this mission is that sensing
and navigation errors grow unbounded with the passage of time. As the uncertainty in
the robot’s estimate of its current position increases, the accuracy of the map degrades
over time. Constructing an accurate map in spite of these errors is a well-known prob-
lem in robotics known as the Simultaneous Localization and Mapping (SLAM) problem.
Numerous approaches to the SLAM problem have been very effective particularly for a
mobile robot operating in a static, 2D indoor environment.

A number of approaches to the SLAM problem have been applied to accurately esti-
mate the trajectory of the robot and the map of the environment. The two premier tech-
niques are smoothing and filtering. Smoothing techniques compute the robot trajectory
using past and future measurements [25]. Filtering techniques use only the past measure-
ments to estimate the robot position and the map [25].

Many of the traditional approaches to the SLAM problem relied on filtering methods
such as the Extended Kalman Filter, or Particle Filters [6,29,65]. These methods maintain
an estimate of the current pose of the robot and the map [4,12, 44,45, 65,67,72]. Filtering
methods immediately incorporate sensor information into the current pose estimate; no
additional information is propagated back to pose estimates generated at earlier points in
time.

Recently, graphical methods that use smoothing have been successfully applied to the
SLAM problem [16, 20, 28, 36, 37,49, 53,58, 65]. These approaches are graph-based and
continuously update an estimate of all the poses on the trajectory by incorporating new
information, eg. laser range scans, as the robot navigates. This is done at a cost of com-
puting the full posterior over the entire robot trajectory, also referred to as smoothing [36].
Pose graph SLAM is a smoothing method and estimates the full trajectory of the robot. At
present graph-based SLAM methods are considered state-of-the art in solving the SLAM
problem in computation time and map accuracy [28]. In this thesis we extend pose graph
SLAM methods to solve the problem of SLAM in low-dynamic environments.

3.3 Pose Graph SLAM

Pose graph methods address the SLAM problem by computing the robot’s trajectory. The
map is an implicitly represented by the collection of measurements, such as laser scans or
images, taken at each pose along the trajectory [28, 36,39,49,58]. The pose graph models
the trajectory of the robot and the position of features/landmarks as a graph (see [69] for
more details). A graph consisting only of poses is called a pose graph. The nodes denote
the robot poses at different points in time and the edges denote relative spatial constraints
between the poses [28]. In this work we construct the map from laser scans stored at each
pose; thus our pose graph is constructed only from the set of poses that constitute the robot
trajectory. This is referred to as pose only SLAM in [36]. Note, pose graph methods assume
the environment is static. In this section we review the pose graph model, relative spatial
constraints, and the trajectory estimation problem.
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Constraints

Figure 3-3: Example of a pose graph composed of a sequence of poses, x;, with a constraint (relative
spatial transformation), 7; ;, on edges between poses.

3.3.1 Pose Graph Formulation

A pose graph, as shown in Figure 3-3, is a network of spatial relations between pairs of
poses. It is defined as a connected graph G = (N, E), where n; € N is a node in the set of
allnodes N = {ni,ng,...,n¢}, and e; ; € E is a directed edge that connects a pair of nodes
n; and n;. More specifically, a pose graph is defined as follows:

Pose Graph, PG = (N, E):

Node n; € N, where n; = (x,z),

e Posex = [a:z Yi Qi]T,

e Laser range scan z = {r1,72, ..., "m }, Where m is the number of ranges in the laser
scan.

Edgee; ; € E, wheree; ; = (T, %)

o Constraint T; ; is computed by matching scans between two nodes n; and n;,
where the spatial geometric transform is T} j = [tzi; tyi; t0;] r

7

Oxx Ogzxy Ogz0
e Covariance ¥ of the constraint 7; ;, where ¥ = |0y, 0yy  0yg

O9xr Ofy 0T0p

An example of a pose graph is shown in Figure 3-3. Each spatial constraint is given in
the local coordinate frame of a pose x;, thatis, T; ; is the position of x; relative to x;’s frame.
A spatial constraint between two poses x; and x; is the estimate of the relative translation
in the = and y directions, denoted ¢, and ¢,, and the relative rotation, ¢y, between the two
poses (see Figure 3-5).

We use one of two types of spatial constraints for each edge in a pose graph. The
two constraints are odometry constraints, generated by odometry measurements, and scan
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Figure 3-4: Example of two poses, z; and «z;, and scans of the world relative to each pose.

matching where the relative transform between two scans is computed by attempting to
align the scans and estimating the relative translation and rotation between the two scans.
Both constraints represent the same measurement though odometry constraints tend to be
more noisy. This process is also referred to as the registration process (see Figure3-4). It is
assumed that the spatial constraint that is returned from scan matching follows a Gaussian
distribution (as given in the pose graph definition). In this work, we use a common method
for scan matching known as the Iterative Closest Point (ICP) method [7, 48, 62,82]. In
this work, we seed the ICP algorithm with an initial guess derived from odometry. If
a sufficient registration cannot be found then the odometry measurement is used as the
constraint.

Rotation

Spatial Constraint

TI,J

Yglobal P .
[ \
X

Xi \/
9 Translation
global
Xglobal

Figure 3-5: Two poses z; and x; with a constraint 7; ; between them. The values of the constraint
tz, ty, and ty are illustrated in the figure and show the location of pose z; in the coordinate frame
of pose ;.
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Given a set of relative constraints between a sequence of nodes (ie. a pose graph with
no loop edges that induce a cycle), the position of each node can be referenced in the
global coordinate frame by applying the compound operator, denoted “@&”. The compound
operator is described in [65] as follows,

tﬁjk COS teij — tyjk sin t@ij + ta:ij
T =Ti; ®Tjr = | txjsin t;; — ty,, costl; + ty;; (3.1)
t0;; + 01

The compound operator computes the relative constraint from pose x; to pose xy
through pose x;. For example, to compute the position of pose x3 relative to pose x¢ in
Figure 3-3,the compound operator would be applied as follows T3 = To.1 @ T12 @ To 3.
Similarly, the reference frame of a pose x; given in the reference frame of another pose x;
can be inverted to get the position of x; in the frame of x; by applying the reverse operator,
T;; = ©T; ; [65]. The reverse operator is defined as follows,

—tl’ij COS teij — tyij sin t@ij
T‘j,i = @Ti,j = t:EZ']' sin t@ij — tyij cos teij (32)
—t@ij

In general, combinations of the compound and reverse operators can be applied to
change coordinate frames between pairs of poses. The approximate covariances of these
functions are also given in [65]. Note that these operators are non-linear functions as a
result of the robot poses including a heading (the robot’s orientation).

3.3.2 Loop Constraints and Pose Graph Optimization

In the previous section we described how the compound operator can be used to compute
the position of a pose in the global frame. Using the compound operator results in the best
estimate of the pose when the pose graph is a sequence of poses and contains no cycles.
When an edge is added to the pose graph that introduces a cycle it is referred to as a loop
constraint. An example of pose graph with a loop constraint is shown in Figure 3-6, where
the constraint 77 ; is a loop constraint connecting poses x7 and x;.

A loop constraint is a constraint that is inserted as a result of the robot navigating to
a part of the environment it has previously visited (see [19, 26,49, 57] for more detail ).
For example, in Figure 3-6 the robot drives around in an ellipse, and returns to the part
of the environment where it started. Thus, poses 7 and z; are approximately at the same
location, at least some or all of their sensor ranges overlap and as a result the robot is able
to “recognize” common features. When a loop constraint is added, a pose estimate can be
derived from more than one node in the pose graph. If it is known that z7 is at least close
to z1, then the robot can attempt to compute the relative spatial constraint between the
two poses using scan matching. Then that constraint can be inserted into the pose graph
between nodes x; and x7, as a loop constraint.

Generally, as the robot navigates, errors in its motion measurements and transforms
accumulate. We assume these measurements are corrupted by zero-mean Gaussian noise.
Small errors in the constraint estimates and sensor noise accrue with the addition of each
pose in the trajectory. As a result, the uncertainty in the robot poses along the trajectory
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Loop Constraint

Figure 3-6: Example of a pose graph where a cycle is introduced as a result of a loop constraint,
T7 1, between poses x7 and x;.
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Figure 3-7: Example maps generated from pure odometry, scan matching, and pose graph SLAM
using iISAM (incremental smoothing and mapping) [36].
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cause the trajectory estimate to drift from the ground truth, the actual robot path, over
time. The covariances of the pose estimates can be reduced if a loop constraint is inserted
into the pose graph. In this work we compute a loop constraint between nodes n; and
n; by matching the two scans, z; and z;, and inserting the edge representing the relative
transform [8,48,57].

3.3.3 Trajectory Estimation Problem

We summarize the probabilistic problem formulation of computing the full SLAM tra-
jectory for pose graphs with any number of loop constraints. A pose graph contains a
collection of poses and relative constraints that represent the trajectory X. The poses are
referred to as variables that are estimated by various pose graph optimization methods.
The general probabilistic problem formulation for pose graph SLAM, ie. SLAM without
features/landmarks, is given by as P(X, U, T'). This formulation represents the joint prob-
ability over the robots poses X, the control inputs U, and the set of all constraints 7'.

%\ °
)

Figure 3-8: In the figure, the hidden variables are the robot poses, x;. The transformation T} ; is a
derived measurement computed from two laser range scans, z; and z;.

The Bayesian network of the trajectory estimation problem is shown in Figure 3-8. The
robot applies control inputs u; from pose to pose and scan matching constraints, denoted
T;,;, are computed for some m pairs of poses. Given the Bayesian network model, Eq. (3.3)
factors as follows,

n m
P(X,U,T) = P(x0)P(u1)...P(un) [ [ P(xilxi—1, wic1) [[ P(TF, x5 x5),  (33)

i=1 k=1
where pose x; and pose x4 are referred to as xq, and xq, to denote that the k' constraint
depends on the two poses, and j and ¢ are indexes referring to any pose along the trajec-

tory.

We adopt the common SLAM assumption to formulate the robot’s motion model [4,
69], resulting from odometry measurements. The robot’s motion is represented as the
following Gaussian noise model, where w; is zero-mean Gaussian noise with covariance

Qt/
Xt < f(Xg—1,u) + w1, (3.4)

where u; is the control input applied from pose x¢_1 to pose xt.

Oftentimes the relative rotation and translation between two poses can be computed
more accurately by matching laser range scans taken at each pose. It is assumed that there
is sufficient overlap between the two scans, z; and z;, and scan matching results in the
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transformation, 7; ;, between two poses x; and ;. This process is also assumed to be
corrupted by zero-mean Gaussian noise b;, with covariance ¥ as given in Eq. (3.5). The
function h(x;,x;) = x; © xj.

Tij < h(xi, x5) + by (3.5)

Given noise in the motion model and measurement models, nodes in a pose graph also
include the covariance of the motion model, n; = (xi, Q;, z;). As mentioned earlier pose
graph edges contain the covariance of the constraint as well, e; ; = (T} ;, %; j). A general
approach to compute the trajectory is to compute the maximum likelihood (or maximum
a posteriori in some cases [36]) estimate of the trajectory of the joint probability as given
below,

X* =argmax P(X,U,T) (3.6)
X

To compute the maximum likelihood estimate of the joint probability we minimize the
negative log of Eq. (3.6) using the squared Mahalanobis distance, resulting in the non-
linear least squares problem given in Eq. (3.7), where the priors are dropped for simplicity
(see [16,28,42] for details).

X* = argmaxy P(X,U,T)
= argminy —log P(X,U,T)

= argminy —log( [T PGupxior.wi) 1 P(T34" xa")
= arg minx(i —log P(x;|xi_1, ui—1) kml —log P(sk]xjk, x1¥) (3.7)
= argming (3 (3 ~ fGa11))Q7 ! (6~ Flxia, i)

+ ”; (T = Bk 455 (T — o <)

To solve the non-linear least squares problem in Eq. (3.7), a number of different pose
graph optimization methods have been applied [16, 36, 58]. These methods compute the
positions of all the nodes in the pose graph according to a cost function. The methods mini-
mize the difference between the measurement 7; ; and the prediction x;. More specifically,
maximizing the likelihood in this model is equivalent to minimizing the square Maha-
lanobis distances. Thus, the goal is to compute the trajectory estimate that simultaneously
minimizes the costs. This thesis uses iSAM (incremental smoothing and mapping [36]) for
pose graph optimization in order to compute the best trajectory estimate X *.
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Chapter 4

Long-Term Mapping Problem

We aim to develop algorithms for a mobile robot to operate in an environment for long
periods. In particular, our research focuses on equipping the robot with the ability to nav-
igate in, and maintain an up-to-date map of, a dynamic environment. A mobile robot
navigating for long periods in a dynamic environment will encounter objects that move
at varying time-scales. In this thesis, objects are not extracted from the environment as in
the recognition problem. Instead, this thesis focuses on how moving objects cause changes
in the robot’s representation or map of the environment, and implications for robot nav-
igation in such environments. These map differences are referred to as changes. Thus,
changes occur at varying time scales.

Much of the work in traditional SLAM assumes that the environment is made up of
static, or static and transient objects, such as people or vehicles [31, 64, 68]. These ap-
proaches also assume the robot is operating for shorter periods of time [3, 32,54, 66, 75].
While these methods have proven to be successful in indoor and some outdoor settings,
the problem of life-long SLAM remains open. This thesis explores the important and crit-
ical open research problem of continuous long-term mobile robot navigation in dynamic
environments. In this chapter we present the problem formulation and assumptions, and
define a novel model called the Dynamic Pose Graph (DPG) to represent the trajectory and
map of a dynamic environment, and outline our goals for long-term mapping.

4.1 Problem Formulation

For a mobile robot to be able to navigate in a dynamic environment and maintain an up-
to-date map, it must be able to continuously localize and detect changes. We refer to this
process as concurrent localization and change detection. To determine if the environment
has changed when a robot revisits a location, poses at that location must be well localized
relative to each other. Subsequently, older scans at that location may be compared to the
most recent scans to determine whether or not a change has occurred, and if so, where
the changes have occurred. Therefore, it is necessary to know the pose estimate along the
trajectory as well as be able to detect if a change has occurred.

In this section, we detail three key components of the long-term mapping problem
explored in this thesis. First is general probabilistic change detection and trajectory esti-
mation formulation. The second is our dynamic environment model. Lastly, we describe
the set of assumptions used in our approach.
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4.1.1 Change Detection and Trajectory Estimation Problem

Our aim is to estimate the trajectory and the changes given the constraints, control inputs,
and laser scans. Recall from Chapter 3, X represents the robot trajectory, Z is the collection
of laser scans that make up the map, U is the set of control inputs, and 7" is the set of con-
straints between poses. The set of all changes C' = {¢y, ¢g, ..., ¢, } corresponds to each pose,
and indicates if a change was detected at that pose. Thus, the concurrent change detection
and trajectory estimation problem can be described by the expression P(X,C|Z,U,T). The
expression P(X,C|Z,U,T) is expanded in Eq. (4.1) as follows,

P(X,C|Z,U,T) = P(C|X, Z,U,T)P(X|Z,U,T). (4.1)

The term P(X|Z,U,T) has constraints T" that are derived from matching scans in Z.
Given the constraints 7, the set of laser scans Z is independent in the expression because
it provides no additional information. Therefore we write P(X|Z,U,T) = P(X|U,T). In
the term P(C|X, Z,U,T), given the trajectory X the control inputs U and the constraints 7"
are independent. The laser scans Z are needed in order to detect change and compute C.
Asaresult, P(C|X,Z,U,T) = P(C|X, Z). Eq. (4.1) is re-written in (Eq. (4.2) ) as follows,

P(X,C|Z,U,T) = P(X|U,T)P(C|X, Z). (4.2)

In this work, we approximate solutions to the two distributions in Eq. (4.2) separately.
Pose graph optimization using iSAM is applied to compute the trajectory, P(X|U,T). Then
given the best estimate of the trajectory, we use a binary function to compute whether
changes have occurred (see Chapter 5) to approximate P(C|X, Z).

4.1.2 Dynamic Environment Model

The process by which the environment changes over time is independent of how the robot
navigates and is not directly known. The dynamic environment model includes the types
of objects, both moving and stationary. These objects move at wide-varying time scales
from seconds (such as people walking) to weeks (such as a piece of furniture moved from
one location to another). The model is a composition of objects of three types: static, high-
dynamic, and low-dynamic. The terms high-dynamic and low-dynamic were presented
in [52] to describe general dynamic environments. Below is a description of each type of
object.

Dynamic Environment Model, Env = SU F U D:

Static Objects, S: A static object, s;, is one that remains stationary; ie. never moves. Such
examples include walls and columns. The set of static objects is S = {s1, 52, ..., 55}

High-dynamic Objects, F: A high-dynamic object, f;,is a transient object, such as a person
walking, vehicles, or continuous moving artifacts like soccer balls. These objects ap-
pear in motion while in the robot’s field-of-view. The set of all high-dynamic objects

is F' = {f1, f2, .-, fm }-

Low-Dynamic Objects, D: A low-dynamic object, dj, are those objects that move much
slower than the robot navigates, and therefore their motion cannot be sensed im-
mediately. That is, they do not appear in motion while in the robot’s field-of-view.
Often, these objects are stationary most of the time and, when moved, they appear to
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Figure 4-1: Illustration of the three types of environment change that can occur between passes.
Four snapshots of the same room are shown, where a box is added, moved, and then removed. To
move the box it is added to its new location, and removed from its previous location.

move abruptly and seemingly at random. Examples include trash cans, desks, and
temporary installations. The set of low-dynamic objects is D = {d;, da, ..., di }.

4.1.3 Assumptions

For long-term operation, it is assumed that the robot makes numerous passes through the
environment to maintain an up-to-date map as well as capture the environment dynam-
ics. A pass describes the robot navigating and covering either part of the environment or
covering the entire environment. A robot executes a pass from a known start (or home) lo-
cation, and completes the pass by returning to the start location. The general assumptions
applied throughout this thesis are listed below.

Assumption 1: Dynamic Environment Model. The robot operates in an environment where

the dynamics, places where objects are added, moved, or removed, are unknown.
We assume that the environment contains static and low-dynamic objects, ie., Env =
S U D. There are no high-dynamic objects F’ included in our environment model.
high-dynamic objects can be filtered by existing methods including [17,22,31,74,79].
The space is a bounded two-dimensional indoor, office environment. In addition,
changes are a result of low-dynamic objects being added, removed, or moved (see
Figure 4-1). In order for an object to move it must be removed from its current posi-
tion and added to its new position. We assume that if changes occur, then they occur
between passes.

Assumption 2: Robot Navigation and Sensing. The robot navigates over the long-term
by executing a number of passes. Each pass starts and ends at the same known
start location, xs;¢. The robot is equipped with a two-dimensional, planar forward-
facing laser range scanner, where each scan returns ranges values measured from an-
gles between 0° to 180°. While navigating, the robot takes laser range measurements
to construct and maintain an accurate map. The trajectory that the robot follows on
different passes can overlap. Thus, the robot may take several measurements of the
same location at different points in time (eg., measurements taken during different
passes). An example of passes that overlap in the same location is given in the pose
graph in Figure 4-2.
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Assumption 3: Trajectory Estimation. The pose graph model is used to represent the robot’s
trajectory. To estimate the location of poses in the pose graph, pose graph optimiza-
tion with incremental smoothing and mapping (iSAM) is used [36]. Additionally,
generating loop closing constraints is a critical procedure to pose graph SLAM. We
assume that our loop closing method generates constraints that, in turn, are used to
improve pose estimates.

4.2 Example of Four Passes Through An Indoor low-dynamic En-
vironment

In traditional SLAM, the robot makes one pass and low-dynamic objects are assumed to be
static and can be included in the map. If the robot encounters high-dynamic objects such
as people, several methods have been proposed to filter out or track these transient objects
while constructing a static map. However, traditional SLAM methods that make only one
pass are not sufficient to discern low-dynamic objects.

We present an example of a robot making four passes through an indoor environment,
the MIT CSAIL Reading Room. Figure 4-2 shows four individual maps generated after
each pass through the Reading Room. One or two low-dynamic objects, boxes denoted, d
and d4 where p is the pass number, are removed, are added or moved after each pass.

Pass 1 Pass 2
T — i )
L_J —
i
| :
1 ks
d [ 2
L 3
|
= F__N_«ﬁ_,‘ r U
Pass 3 (a) Pass 4 ®)
—
t 4
d,
4
3 d 1
dl
e
|
L
L S — 1
! 10.5m !
(c) (d)

Figure 4-2: Example maps of four individual CSAIL Reading Room maps after four passes. Sub-
scripts of each box (low-dynamic object) are used for identification and superscripts are used to
denote the pass number.
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4.2.1 Pose Graph SLAM Representation

Consider a scenario in which a mobile robot equipped with a laser range finder continu-
ously navigates in an indoor room. The robot contains on-board computational capabilities
to perform pose-graph SLAM while it navigates. The robot is tasked with exploring and
maintaining an up-to-date map of the room. It computes pairwise and loop constraints
using scan matching and applies pose graph optimization methods to obtain an accurate
trajectory estimate and a map. At the same time, low-dynamic objects are added, moved,
or removed as the robot makes a number of passes through the room.

Passes 1,

(c) (d)

2, 3and 4! }

Figure 4-3: The pose graph and maps generated after each of the 4 passes through the CSAIL
Reading Room. The images shows that with pose graph SLAM the low-dynamic objects from
various locations are all included in the map. The room contains two boxes which are labeled d;
and ds and are low-dynamic objects.

Figure 4-3(a) shows the pose graph and the map from the robot’s first pass through the
environment. There is one low-dynamic object d} (the superscript is the pass number that
the box is at the location). Before the second pass the low-dynamic object d; is moved to
where d? is located, and a second object is added d3 (see Figure 4-3(b)). After the second
pass, di is moved and ds is removed. Finally, after the third pass both boxes are in the room,
and are moved to different locations than previous passes (see Figure4-3(d)). A three-
dimensional side view of the pose graph SLAM map generated after 4 passes is shown in
Figure 4-4, where submaps from each pass are shown on the z-axis.

The example illustrates that in a dynamic environment, the set of all laser scans pro-
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Figure 4-4: A three-dimensional side-view of the pose graph SLAM map highlighting the individ-
ual passes. The figure depicts pose graph SLAM maps generated after the robot makes 1, 2, 3, and
then 4 passes through the CSAIL Reading Room.

duced by pose graph SLAM yield an inaccurate representation of the environment. The
inaccuracies in the map arise as a result of changes caused by low-dynamic objects. When
low-dynamic objects move the previous (older) scans of the environment become stale and
do not reflect the current map. The example also illustrates how the pose graph grows as
a function of the length of the robot trajectory and not as a function of the size of the room.

4.2.2 Pose Graph Representation of Low-dynamic Environments

One of the aims of the DPG-SLAM method is to be able to identify stale data and remove
it from the current map. Figure 4-5 illustrates the best-case map after the robot makes
four passes through the environment shown in Figure 4-2. In the figure the low-dynamic
objects from passes 1-3 have been removed, leaving the ranges from df and dj. If d3 was
at the same position as dj then the ranges of d; from both passes would be included in the
best-case map. Another aim of the DPG-SLAM method is to retain data from static objects
which ensures that the map representation captures not only the most recent map but the
“more static” parts of the environment as well.

The resulting map should represent both the static and the dynamic parts of the envi-
ronment. By maintaining the points from ranges of low-dynamic objects that have been
added, moved, or removed, the map can also represent temporal dynamics where parts of
the environment change and the frequency of the changes. Figure 4-6 depicts the best-case
dynamic map of the boxes as they are added and removed from pass to pass. Our goal
is to develop a method where the robot incrementally constructs a representation of the
environment online. The representation (or map) should contain the ranges of the static
and dynamic parts of the environment as depicted in Figure 4-5 and Figure 4-6.

In addition, it is important to consider the pose graph from our example described
above. In the Reading Room data set the robot is driven along an ”“out-and-back” trajec-
tory as shown in Figure 4-7. The robot travels out for some distance and returns home
along the same trajectory. As a result, redundant range measurements from objects such
as those that are parallel to the robot’s path are collected. An example of redundant mea-
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Slow Dynamic Objects

(@)

Figure 4-5: Illustration of the best-case map after four passes through the CSAIL Reading Room.
The most recent state of the environment can be seen in (a), where range measurements from objects
that moved during previous passes are removed from the map. (b) shows a side-view of the best-
case map where laser range measurements from the static parts of the environment (the walls)
remains in the map.

surements taken at poses along the trajectory are measurements from the walls that are
collected as the robot goes out and returns along the same trajectory. Thus, the pose graph
shown in Figure 4-7 could be potentially reduced to half of its size over time (after the
robot completes its current pass). On the other hand, registrations (matching scans) across
different passes contain additional information.

Also, from pass to pass there will be nodes with ranges from objects that have since
moved, thus the ranges should not be included in the current map. That is, when the robot
revisits an area, pose graph nodes containing old data, for example, could be removed as
new nodes with current information (range measurements) are added to the pose graph.
These observations about pose graph SLAM applied to a mobile robot operating in low-
dynamic environments served as motivation to develop a sophisticated model that is ro-
bust to changing environments and can generate an accurate and up-to-date map.We call
this model the Dynamic Pose Graph.

4.3 The Dynamic Pose Graph Model

This section presents a novel model called the Dynamic Pose Graph (DPG) to address the
problem of long-term mapping in dynamic environments. The DPG is an extension of the
SLAM pose graph model. A suite of algorithms are applied to a DPG that enable a mobile
robot to continuously navigate and maintain an accurate and up-to-date map.

A Dynamic Pose Graph is a connected graph, denoted DPG = (N, E), with nodes n; €
N and edges ¢; ; € E, is defined as follows:

Dynamic Pose Graph, DPG = (N, E):
Node n; € N, where n; = (x,¢,a,p, z),

e Posex = [$Z Yi Gi}T,
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Pass 2 Added and Removed Points -

Pass 3 Added and Removed Points

Removed Points

Added Points

(b)
Pass 4 Added and Removed Points
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Figure 4-6: Illustration of the points that change from pass 1 to pass 2, pass 2 to pass 3, and from
pass 3 to pass 4. Our goal is to include this information of the dynamics of the environment in our
best-case map.
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Figure 4-7: Example of the two out-and-back trajectories that the robot followed to map the room.

1, if change detected

Change node indicator ¢ = ] ,
0, if no change detected

active, if one or more sectors (see definition below) are on

Active node indicator a = < , )
inactive, otherwise

4

Pass number p, an integer representing the pass at which the node was created
and added to the dynamic pose graph,

Laser range scan z = (r, «v),

— Range values and labels 1 = {(r1,11)..., (rm, lm)}, where m is the number of
ranges in the laser scan. Range labels [}, = {static, added, removed} are used
to denote which laser range measurements are derived from a low-dynamic
object or a static object. Recall that a low-dynamic object is either added re-
moved, or a combination of the two to an environment. Each measurement
is labeled according to whether or not it was derived from a static, added, or
removed object, while the robot navigates and updates its map (see Chapter
5).

— Sectors a, divide the laser scan into equal-sized partitions based on angle.
The purpose of sectors is to retain as many accurate ranges as possible by
dividing the laser scan and removing parts of the scan that are inaccurate
and should not be included in the map. Each laser scan has a set of sectors,
A ={ a1,09,...,0p}, where b is the number of sectors. For example, if a
laser scan is divided into 10 sectors and has 181 range measurements from
0° to 180, then the ranges are divided by angle of 18.1°. Additionally, each
sector can be in one of two states, either on or off. Once a sector is in the
off state it cannot transition back to the on state. When all sectors of a laser
range scan are off, the node it corresponds to is labeled inactive.

Edge €ij € E, where €ij = <T, Z>

o Constraint T; ; is computed by matching scans between two nodes n; and n;,
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where the spatial geometric transform is T; ; = [t:z:ij tyi; t@ij] r

7

Ozx Ozy Oz0
o Covariance ¥ of the constraint T; ;, where ¥ = |0y, 0yy  0yg

Ogx Ofy 060

An example of a dynamic pose graph is given in Figure 4-8. In the figure, the DPG is
shown originating from the known start at each pass. An example of a node in a DPG is
shown in Figure 4-9, where (a) shows a node from a typical pose graph. Images (b) and (c)
show additional properties included in a DPG node.

>> >
= f S>> -
> >

Loop Constraints

Figure 4-8: Example of a Dynamic Pose Graph. Two nodes n; and n; and a loop constraint between
them are shown with their DPG notation.

Node, Scan, Sectors Node, Scan, Sectors, Labels
Added
Node, Scan /
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L]
n, . . n, .
> H . p .
L] L] L]
. . ® Static
: /
Removed

@ (b) ©

Figure 4-9: Illustration of a DPG Node and its contents. The node in (c) is a complete DPG Node
with sectors and a laser range scan where the points on the scan are labeled static, added, or re-
moved.
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4.3.1 DPG Long-term Map Representation

Recall from Chapter 3 that a mobile robot equipped with a laser range scanner can nav-
igate a static environment and compute its trajectory and map by applying pose-graph
SLAM methods. Given a set of relative spatial constraints between poses along the robot’s
trajectory, denoted X, pose graph optimization methods yield an estimate of the poses.
The set of poses is referred to as the robot’s trajectory, and is denoted X. Then, with the
updated pose estimates, the robot can generate a map by projecting the laser scans taken
at each pose into a single global coordinate frame. Also, in traditional pose graph SLAM it
is assumed that the environment is static. As a result, the map Z can be represented by the
set of all laser scans, z; € Z. In Dynamic Pose Graph SLAM an accurate map is constructed
from parts of scans that accurately reflect the environment. This is illustrated in the map
shown in Figure 4-7b.

To represent a changing environment, the DPG maintains two maps an active map and
a dynamic map.

Active Map: Z,ctive = { 75 | r; is a range point from the scan z;, and «(r;) = on, and /; is the
range label and [; € {static, added} and node(z;) = active }.
The set of range measurements from laser scans that correspond to active nodes; the
corresponding sector of each range measurement must be on, a(r;) = on; the label
for each range is either static or added.

Dynamic Map: Zgynamic = { i | 7 is a range point from the scan z;, and [; is the range
label and I; € {removed, added} }.
The set of ranges deriving from active or inactive nodes and are labeled either added
or removed. Note that added points are also included in the dynamic map because
they represent a change in the environment. The dynamic map is a representation
the history of changes that have been detected.

The combination of the active and dynamic maps, the set of points derived from the
static parts of the environment can be determined by computing the set difference between
the active and dynamic maps. The active map represents the most current state of the
environment as well as retains the parts of the environment that have not changed. The
dynamic map contains a representative sample of laser range points from parts of the
environment that have changed over time.

4.4 Discussion

There have been a number of successful approaches to the SLAM problem in static envi-
ronments and environments with high-dynamic objects. However, the problem of map-
ping environments with low-dynamic objects has not received as much attention. This is,
in part due to the difficulties of detecting and/or tracking low-dynamic objects, as well as
operating a mobile robot for long-periods (eg., days, weeks, or months). In this chapter we
presented our problem formulation for mobile robot long-term mapping in dynamic en-
vironments. Three core components of the problem were outlined including the dynamic
environment model, the general probabilistic problem formulation of concurrent change
detection and trajectory estimation, and the assumptions. Additionally, we proposed a
novel model called the Dynamic Pose Graph used to compute and store an accurate map
of the environment at any point in time, while capturing the environment dynamics. The
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following chapter presents Dynamic Pose Graph SLAM, our method to enable a mobile
robot to remain localized and detect changes while operating in a dynamic environment.
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Chapter 5

Dynamic Pose Graph SLAM

A mobile robot operating in a dynamic environment over long periods must be able to
continuously localize and maintain an up-to-date map as the map changes with the pas-
sage of time. The robot makes a number of passes through the environment, navigating
part or all of the environment during each pass, and returning to a known home location.
This chapter presents the Dynamic Pose Graph SLAM method to enable a mobile robot to
maintain an up-to-date and accurate map, while operating in an environment composed
of static and slow-dynamic environments (see Chapter 4). To equip a mobile robot with
the ability to have sustained long-term persistent operation in dynamic environments, ex-
isting approaches that deal with transient, high-dynamic objects can be integrated with
novel methods presented in this thesis that address slow-dynamic and static objects.

Developing a method for a robot to update and repair its representation is impor-
tant to addressing the life-long SLAM problem. Also, it is important to be able to detect
differences or changes, particularly in security applications such as ship hull inspection
and airports. In addition, the DPG-SLAM method is used to investigate the efficacy of
state-of-the-art pose graph SLAM methods, such as incremental smoothing and mapping
(iSAM) [36] used in this thesis, applied to low-dynamic environments.

To develop the DPG-SLAM method a number of challenges must be addressed. For
example, if the covariance of the robot’s pose estimate becomes too large, then the robot is
unsure of its current position. Consequently, the robot is unable to reliably detect change
and update its map. At the same time, if the robot believes its position is fairly accurate and
the environment has changed since the previous visit, then the robot is not able to reliably
determine its relative position because the previous and the current scans of the area are
different. Thus, the robot frequently asks the question Am I lost, or has the world changed?
Another challenge is to address the size of the pose graph as it grows as a function of the
number of poses or how much the robot travels rather than the size of the environment.

This chapter describes the DPG-SLAM method for continuous long-term operation in
low-dynamic environments. Recall from Chapter 1 four long-term mapping goals were
detailed. The first goal is to enable the robot to continuously incorporate new information
as it navigates. The second goal is to create a representation the incorporates the history
of the map over time. The third goal is to be able to detect and react to changes online.
Finally, the fourth goal is to address the problem of tractability because the DPG grows as
the robot navigates. These goals are addressed in this chapter by our DPG-SLAM method.
The core algorithms of DPG-SLAM applied to the DPG model are presented. Finally, we
detail the results of this method as it applies to the 4-pass CSAIL Reading Room example
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described in 4.

5.1 DPG-SLAM Overview

The Dynamic Pose Graph (DPG) allows us to use existing pose-graph methods for tra-
jectory optimization, with our novel algorithms to address changes that occur in the en-
vironment. In this work, the robot is continuously updating its trajectory, the DPG, and
the active and dynamic maps while the environment changes over time. This continuous
process is detailed as a part of the Dynamic Pose Graph SLAM (DPG-SLAM) method. We
assume the robot is equipped with a laser range finder and odometry. A summary of the
key DPG-SLAM steps is outlined below.

DPG-SLAM Steps:

—_

. Pose Graph SLAM

Initialize pose chain

Close pose chain

Compute active submap

Detect and label changes

Update active and dynamic maps

Remove nodes and constraints

® N S G ke » D

Repeat

In general, if there are no changes, the robot executes pose graph SLAM. Once the robot
suspects a change, it initializes a pose chain. A pose chain is a sequence of poses in the DPG
as seen in Figure 5-1. Recall that odometry errors along a sequence of poses grows without
bound; only inserting a loop constraint and optimizing the pose graph can significantly
reduces the pose error. After the pose chain is initialized, subsequent poses are added to
the pose chain until a loop constraint is successfully inserted in to the DPG (see Figure
5-1(b) and Figure 5-1(c)). At this point, pose graph optimization using iSAM is performed,
yielding the best pose estimates given the constraints. After optimization the pose chain is
“closed”, and the nodes along the chain are used to update the DPG. Intuitively, the pose
chain is closed once the robot revisits a familiar part of the environment.

The general DPG-SLAM procedure is given in Algorithm 1. Line 5 refers to executing
pose graph SLAM, the first step of DPG-SLAM. Initializing and updating the pose chain,
Step 2, is shown on Lines 7 - 13. Steps 3 and 4 are implemented on Lines 17-18. Finally, the
process of updating the DPG, Steps 3-6, is given on Lines 19 - 33. The algorithms unique
to DPG-SLAM, shown in all caps, are detailed in the following sections.
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Figure 5-1: Example of the robot executing the DPG-SLAM steps until the pose chain is closed.
(a) shows that the robot suspects a change at n;. Then nodes are added to the pose chain in (b).

Finally, the pose chain, consisting of nodes 71, ng, n3, and ny, is closed when a loop constraint is
inserted from the final node on the pose chain. Then the DPG is optimized to update the trajectory

estimates.



Algorithm 1 DPG-SLAM(Graph graph, Node nq,¢) returns a Dynamic Pose Graph.

1: dpg < initialize_dpg(graph, nsiart)
2: while true do

3:  poseChain <+ {}

4:  while robot not at home do

5 pose_graph_slam(dpg)

6: Neurr < get_current_pose(dpg)
7

8

9

if is_empty(poseChain) then
(submapN odes, submapPoints) + COMPUTE-ACTIVE-SUBMAP (dpg, ncurr)
: unmatchedPoints <+ GET-UNMATCHED-POINTS(submapPoints, Neyrr)
10: changeScore + COMPUTE-CHANGE-SCORE(unmatched Points, neyrr)

11: if changeScore > changeScoreThreshold then

12: poseChain < poseChain U ey

13: end if

14: else

15: if NOT(is_empty(poseChain)) then

16: poseChain < poseChain U ey

17: if added_loop_constraint(dpg, ncurr) then

18: optimize_pose_graph(dpg)

19: changeNodes < {}

20: dynamicMapPoints « {}

21: for all Node n; € poseChain do

22: (submapN odes, submapPoints) <+ COMPUTE-ACTIVE-SUBMAP (dpg,
n;)

23: unmatchedPoints <+ GET-UNMATCHED-POINTS(submapPoints, n;)

24: changeScore < COMPUTE-CHANGE-SCORE(unmatchedPoints, n;)

25: if changeScore > changeScoreT hreshold then

26: node_type(n;) < Change Node

27 dynamicMapPoints +  LABEL-POINTS(n;, get_grid(n;),

submapN odes)

28: end if

29: end for

30: inactiveN odes < UPDATE-MAPS(dpg, get_removed_points(dynamicM apPoints))

31: REMOVE-INACTIVE-NODES(inactive N odes)

32: poseChain < {}

33: end if

34: end if

35: end if

36: end while
37: end while

5.2 Compute Active Submap
The set of scans from the pose chain form a submap representing the most recent state of

the area of the environment covered by the poses on the pose chain. To update the active
and dynamic maps, the pose chain submap points is compared with the active submap
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from the same part of the environment. An active submap is a set of active points (ranges
from “on” sectors) in nodes from previous passes that were added to the DPG before the
current pose chain’s pass. The previous nodes are referred to as active submap nodes.
The fields-of-view (FOVs) of each submap node intersect with the FOV of the pose chain
nodes. Figure 5-2 depicts an example of a pose chain and its points, as well as candidate
nodes from previous passes that can be combined to create an active submap.

Active Submap Candidates

Pose Chain Nodes

e®000s0c0c0cs

PosEChain Submap Points

>

Figure 5-2: Example of a pose chain and a pose chain submap. A large set of potential active
submap nodes are shown from previous passes.

An outline of the steps to find the active submap is given below.

Active Submap Steps:
1. Select one node from the pose chain n.cyr
Select a subset of candidate active map nodes that are spatially close to 7¢y,r

Create n.y occupancy grid with occupied, free, and unknown cells

L

Compute coverage of n., with active map nodes by marking occupancy grid
cells of n¢y, according to the rules in Table 5.1.

The robot operates for long periods repeatedly revisiting areas and updating its map.
When the robot re-visits part of the environment there may be numerous DPG nodes from
several previous passes that represent the area. As a consequence, most of the nodes will
contain redundant active map points. For example if there are 100 nodes from previous
passes with FOVs that intersect the FOV of the current node, then it is likely that it is not
necessary to use all 100 nodes to create an active submap. In the best case, our method
would select the minimal set of nodes with FOVs that cover the FOV of the current node.
However identifying this perfect subset can be computationally expensive. In our ap-
proach we find the first subset of nodes that intersect all or a large part (e.g. a coverage
threshold of 90%) of the FOV of the current node.
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Table 5.1: Rules for marking grid cells covered. If the cells were unknown, or are currently un-
known, then we do not have enough information to state if the cell is covered, thus we mark it
N/A.

active submap noden; | current node ncyry Label
free free mark as covered
occupied free mark as covered
unknown free N/A
free occupied mark as covered
occupied occupied mark as covered
unknown occupied N/A
free unknown N/A
occupied unknown N/A
unknown unknown N/A

Our approach to finding the active submap is to find the active submap nodes for one
pose-chain node, 7y, at a time. Determining the set of active submap nodes is similar
to the problem of finding loop closing candidates in pose graph SLAM [12,30,35,57]. As
stated we are interested in finding a subset of nodes in the DPG where the union of the
FOVs of the nodes covers completely or partially ney's FOV. In contrast, complete FOV
coverage is not necessarily a requirement for loop closing candidates. The set of scans from
the submap nodes are used to determine the active submap points which, in turn, are used
to detect changes. More specifically, if the set of scans from each submap node is { 21, 22,
weos Zn }, then submapPoints = { r; | i € { 21, 22, ..., zn, } AND r; intersects the FOV(n) },
then the active submap points of the points in the submap nodes scans.

Static Object

[&] Added
Object

Pass 1, 2 and 3 Environment Pass 4 Environment

(a) (b)

Figure 5-3: Example changes in low-dynamic environment during passes 1-3 and pass 4. There
is no change during passes 1-3, as shown in Figure (a). After pass 3, a change occurs and the
low-dynamic object d; is removed and ds is added as shown in Figure (b).

To determine the overlap or intersection of the FOV of node n.,,» an occupancy grid
for neyrr is constructed with cells that are defined as free, occupied, and unknown (Line 2).
The unknown cells are a result of an obstruction in the robot’s view. The grid is constructed
temporarily for this step of the DPG-SLAM process. The scans of the submap nodes are
used to approximate the amount of coverage by counting the cells marked as ”covered”.
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5-3.
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More specifically the amount of coverage of node n’s FOV is determined by first creating
an occupancy grid for ne,,.. Then each of the submap nodes are projected into the refer-
ence frame of ncy (Line 8). Next the cells of the occupancy grid are marked covered if and
only if the points of the submap nodes cover the cells according to Table 5.1. Figure 5-3
illustrates an example environment during pass 1 and 2 (Figure 5-3(a)), and during pass 3
(Figure 5-3(b)). Scans of two candidate submap nodes, n; and n; from pass 1 and pass 2
respectively, are shown in Figure 5-4. In addition, the scan for the current node at pass 3 is
shown in Figure 5-4(a). An example of the grid for n.,, is given in Figure 5-5(a). Then the
active points from candidates nodes n; and n; are projected onto the grid of n.,, in Figure
5-5(b), depicting an occupancy grid based on n; and n;. The covered free and occupied
cells of ney, are marked with X’s in Figure 5-5(c). Finally, the example depicts the active
submap nodes and the active submap points of the current node in Figure 5-5(d).
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Figure 5-5: Illustration of the procedure to determine the coverage of ny,'s FOV with candidate

submap nodes n; and n;. The environment and the range scans of each node are shown in Figure
5-3 and Figure 5-4.

The COMPUTE-ACTIVE-SUBMAP algorithm given in Algorithm 2 takes as input a
node 7y, from the current pose chain and the Dynamic Pose Graph dpg and returns the
active submap nodes and active submap points. A pre-specified percentage of the current
node’s FOV (defined by the grid) must be covered in order to have sufficient points for
change detection. The pre-specified amount is defined by MAX_COVERAGE. In addition,
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candidate submap nodes are initially selected based on proximity to 7, but must also
pass an uncertainty test. This test is performed as a part of the get_overlapping nodes()
function on Line 1 and is described below.

Algorithm 2 COMPUTE-ACTIVE-SUBMAP(Dynamic Pose Graph dpg, Node ny,) returns
a set of nodes with laser ranges that overlap the current node, and returns the submap
which is the set of points that over lap the current node.

1: candidateNodes < get_overlapping_nodes(dpg)
2: grid < create_grid(ncyrr)

3: coveredCells + initialize_boolean_grid()

4: totalCoveredCells < get_covered_cells(grid)

5: submapNodes < { }

6: candidateCoveredCellsCounter < 0

7. for all Node n; € candidateNodes do

8 set,pose(n;) — OZeurr D x5

9 set,rcmges(n;-) — O%ourr D 2
10:  forall ranges r; € 2] do
11: if candidateCoveredCellsCounter/totalCoveredCells ; MAX COVERAGE

then
12: break
13: else
14: rayTraceCells < ray trace(n;, 7, grid)
15: for all Cell ¢;, € rayTraceCells do
16: row <— get_row(ci)
17: col < get_col(cy)
18: if (coveredCells[row][col] == false) AND ( grid[row][col] == free OR occu-
pied) then
19: submapNodes <+ submapNodes U n;
20: candidateCoveredCellsCounter < candidateCoveredCellsCounter + 1
21: submapPoints < submapPoints U r;
22: coveredCells[row][col] < true
23: end if
24: end for
25: end if
26:  end for
27: end for

28: return submapNodes, submapPoints

5.2.1 Node Uncertainty Test

As the robot navigates it re-visits areas and updates its map. Each time the robot re-visits
a specific area changes may have occurred and the robot needs to updates its active and
dynamic maps. However, the uncertainty in the robot poses (current pose and poses from
submap nodes) at that location affect its ability to determine if a change occurred. In order
to accurately detect and identify changes the robot must be able to answer the question
”Am I 'lost, or has the world changed?” The first part of the questions refers to the relative
covariance between the current node and nodes in the submap. That is the robot may be
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very uncertain of its position relative to the submap. As a result it is lost and therefore
cannot accurately discern whether or not a change have occurred. The second part of the
question implies that the robot is fairly certain about pose estimate and the estimate of
the poses in the submap. However, small or dramatic changes have occurred since the last
time the robot visited the area, and thus, the result of the scan matcher would be unreliable.

For example, in Figure 5-6 the low-dynamic object d; is removed after pass 1. At pass
2, node n; sufficiently overlaps n; however there is large relative uncertainty between the
two poses, as a result n; is not a reliable submap node for change detection. Figure 5-6(b)
depicts a much smaller area of uncertainty between the two nodes. In general, if the un-
certainty in the predicted transformation between two nodes is above a certain threshold
then the change detection algorithm will not be able to differentiate between change or a
misalignment (from matching scans) caused by inaccurate prediction.

This section describes the uncertainty test that candidate active submap nodes must
pass as a part of the get_overlapping nodes() function in Algorithm 2 Line 1.

-elative

_:Uncertainty

man

Pass 2

Pass 1= .

Pass 1% X
(a) (b)

Figure 5-6: Illustration of relative pose uncertainty between a node and a candidate submap node.
A low-dynamic object is removed after pass 1. The ellipsoids represent the area in which the two
nodes may reside. The larger ellipse in Figure (a) depicts high uncertainty between the two nodes
n; and n;. The relative uncertainty between the two nodes depicted in Figure (a) is much smaller
and n; can be included in the local submap.

Given two nodes n; and n; with means x; and x; with estimated poses X; and X; then
we compute the error € as follows: X; = x; + w;, Xj = X;j + w;, where w; and w; are noise.
Let,

A = x; — x3, and A= X; — X; , where A is the prediction of the relative transform
between the two nodes. Then the error ¢ is defined as follows:

e=A— A= w; — w; = wj;, where wj; is a random variable derived from a Normal
distribution, Normal(0, C).

The prediction of the relative transform (or constraint), TZ-” s between any two nodes
n; and nj, is computed from the pose estimates currently in the DPG. The aim of the
uncertainty test is to determine the likelihood that the error of the prediction, denoted
¢ is bounded by a given threshold m. We write P(le| > m) = P(¢2 > m?) = P(efC~te >
m?C~1m) and apply a x? test, where

eI’ C~ e follows a x? distribution. To compute the probability the prediction covariance,
C, is required. We compute a conservative estimate of the prediction covariance, C, using
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the Dijkstra Projection described in [12]. Then our test is if m?C~!m > b then reject the
node, otherwise accept the node.

The goal of the node uncertainty test is to compute the likelihood that the prediction
of the relative transform between a candidate active submap node and the current node,
Neurr, 1S greater than a given distance from the mean. To achieve this, we compute the
distance to the mean of the prediction of the relative transform from a set of threshold
vectors. Six error pre-defined threshold vectors, denoted my, ..., mg, are given to represent
the maximum tolerable error from the mean along each axis,

—0y 40y 0 0 0 0
mp = 0 , Mo = 0 ,y M3 = | =0y |, My = +0y , My = 0 , e = 0 ’
0 0 0 0 —0p +oy¢

where ¢ is a given distance for the threshold.

Finally if the node n; passes the uncertainty test, then the candidate node n; is included
in the set of active submap nodes.

The COMPUTE-ACTIVE-SUBMAP algorithm finds a set of “nearby” nodes and points
from previous passes that are later used to detect changes. The algorithm has some limita-
tion that result in old outdated ranges being include in the active map. The first limitation
is that there may be a few range points of the current node that are not covered by the
active submap and thus not used in change detection. A second limitation is that the ac-
tive map nodes may only intersect a small portion of the FOV of the current node. As a
result, the coverage threshold is not exceeded and change detection is not done and the
submap of the current area is not updated. However, as the robot continues to navigate
and cover the environment change detection will likely be performed and the submap of
this particular area of the environment will be updated.

5.3 Detect and Label Changes

Our goal is to provide the robot with the capability to determine if a change occurred
between the current pass through the environment and previous passes. A robot detects a
change when it revisits a location from a previous pass and compares its current scan with
the active submap. There are three main steps to detect and label change. These steps are
shown below and refer to Lines 23 - 27 in Algorithm 1.

Detect and Label Changes Steps:
1. Get unmatched points
2. Detect changes

3. If changes detected then label points

The goal is to compute the probability that there is change given the current scan and
active map points, P(Ccurr|2curr, ), Where cey,r is the event that the current scan represents
a change(s) from the previous submap, and 7 is the set of active map points that do not
match (i.e., approximately coincide with) any points on the current scan z.,,». To deter-
mine if there is a change we approximate the probability by a binary function indicating if
there are changes in the environment or not (see Equation 5.1). This function determines
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if the amount of change is greater than a given threshold J, and is related to the general
problem formulation P(C' —X, Z) given in 4.2.

1, ifscore(zcyrr,m) > 0

Plecurr|zeurr, ) = { 0 otherwise (5.1)

To look for changes we need the set of unmatched points from the active submap,
denoted 7, and the points in the current node’s scan z,,». The first step is to collect the set
of unmatched points that are within the FOV . The set of unmatched points refers to the
points in 7 and the points in z.,, that do not match any active map points. An example
of the set of unmatched points from Figure 5-4 is shown in Figure 5-7. To determine the
unmatched points, we propose two possible methods. The first method is to use scan
matching to register the z.,,» and the active submap points. Points not used to register
the two scans are unmatched points. The second method is to use n.y,'s grid created
in COMPUTE-ACTIVE-SUBMAP. We keep the points from n.,,, and the points from the
active map nodes in their corresponding grid cells. Then the cells that have points from
only the active map nodes or only the current node are considered unmatched points (see
Figure 5-7(b)). This process is similar to the occupancy grid map technique given in [11] to
differentiate between static and dynamic.

The function that computes the score to detect change is called COMPUTE-CHANGE-
SCORE and is given in Algorithm 3. The function computes the amount of change between
the current scan and the active submap. The current node 7., and the unmatched points
are inputs to the function. We then divide the node’s angular sensor range into equal sized
segments. These are temporary and are not the same as a sectors defined in Chapter 4.
For example, for a 180° sensor range it might be divided up into 2° segments. Then each
of the unmatched points are assigned to a segment based on their angle relative to the
current node’s pose, x; (see Figure 5-8). Finally, the number of segments covered by the
unmatched points represents an approximation on the percentage of change.

Algorithm 3 COMPUTE-CHANGE-SCORE(Node 7¢y, Points unmatchedPoints) returns
a score for percent of change.

1: changeCounter < 0

2: coveredSegments < segment_sensor_range(angle Resolution)
3: for all p; € unmatchedPonts do

4:  segment < get_segment(coveredSegments, get_angle(p;))
5. if segment == false then

6 coveredSegments(segment) < true

7 changeCounter < changeCounter + 1

8: end if

9: end for

10: percentChange < changeCounter/ get_total_segments(coveredSegments)
11: return percentChange

If the percentage of segments that include unmatched points is greater than ¢ from
Equation 5.1, then the points are labeled static, removed, or added, ie. I}, € {static, removed,
added}. Static points are the set of points that are derived from parts of the environment
where the robot has previously visited, but its view was obstructed. Thus, the are was
unknown and is currently known. Added points are new points from parts of the environ-
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Figure 5-7: Example of the unmatched points (points that are circled in the images). (a) can be
achieved by registering the two set of points with scan matching and (b) illustrates the grid ap-
proach.

Segmented Unmatched Points in
Current Node
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Figure 5-8: Example of the unmatched points in their respective segments for change detection.
There are 20 segments and unmatched points occupy 9 of them. Thus, the percentage of change
(the change score) is approximately 45%, and if the percentage of change is greater than ¢ then ncy,
is a change node and the unmatched points are then labeled added or removed.
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ment where the robot has not visited or parts of the environment that were previously free
space and are now occupied. Lastly, the removed points are points that were previously in
the map and are no longer in the map.

The labeling of each point affect the active map and the dynamic map. Recall that the
active map is the set of all static and added points, and the dynamic map is the set of all
added and removed points. The labels are a reflection of the types of change that occur in
the environment. That is, they represent change from low-dynamic objects that are added,
moved, or removed, noting that a moved object is defined by the combination of added
and removed.

Algorithm 4 LABEL-POINTS(Occupancy Grid currentGrid, Occupancy Grid
submapGrid) returns a set of points that are labeled added or removed.

1: dynamicMapPoints < {}
2: for row = 1 to num_rows(grid) do
3:  for col = 1to num_cols(grid) do

4: if (currentGrid[row][col] == occupied) AND (submapGrid[row][col] == free)
then
5: currentCell Points < get_points(currentGrid[row][col])
6: for all p; € currentCell Points do
7: label(p;) < added
8: dynamicMapPoints < dynamicMapPoints U p;
9: end for
10: else if (currentGrid[row][col] == free) AND (submapGrid|row][col] == occupied)
then
11: submapCell Points <+ get_points(submapGrid[row][col])
12: for all p; € submapCellPoints do
13: label(p;) < removed point
14: dynamicMapPoints < dynamicMapPoints U p;
15: end for
16: end if
17:  end for
18: end for

19: return dynamicMapPoints

The procedure for labeling points is described in Algorithm 19, LABEL-POINTS. The
occupancy grid for the current node, currentGrid (Figure 5-5(a)), and the occupancy grid
for the active submap nodes submapGrid (Figure 5-5(b)) are the inputs to update the
dynamic map, (dynamicMapPoints). These two grids are overlaid and the state of the
cells is compared from before to after, where the submapGrid is the state before and the
currentGrid is the state after. The rules are shown in Table 5.2. In this method it is only
necessary to traverse the grid cells from each grid that refer to the unmatched points, al-
though the LABEL-POINTS algorithm traverses over all the grid cells. Finally, the proce-
dure returns the set of dynamic map points, where the added points are updated in the
active map and the added and removed points are used to update the dynamic map. Fig-
ure 5-9 the added and removed points from the example in the previous section. Note that
the two occupancy grids are small local grids relative to the current node, and are used
temporarily for this procedure.
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Table 5.2: Rules for labeling points.

submapGrid | currentGrid Label
free occupied label the current points added
occupied free label the submap points removed
unknown occupied | label the current points static (by default)
sPass 2

b

Removed Points

’ Doy 4 5
Added Points A :Pass 1

E Pass 4

Figure 5-9: The added and removed points from the current node’s scan z..,» and the active
submap points. The labels for the points were determined by traversing the current grid in Fig-
ure 5-5(a) and the submap grid in Figure 5-5(d) and applying the rules in Table 5.2.

To maintain accurate and up-to-date active and dynamic maps, we need to detect
changes and identify ranges the do not accurately reflect the current state of the envi-
ronment. There are a few limitations of the DETECT-CHANGE and the LABEL-POINTS
procedures. At times, there will be active submap points that have changed but are outside
the FOV of the current node, and within the current node’s sensor range. These points will
not be detected, and thus, will remain in the active map. In addition, due to sensor noise
and error in the pose estimates, there will be some points that are not included in the set
of unmatched points. As a result, these points will not be labeled and will remain in the
active map. In practice, these limitations are shown to minimally impact the accuracy of
the active and dynamic maps.

5.4 Update Active and Dynamic Maps

To update the active and dynamic maps the labeled points from change detection and
labeling are used. The dynamic map points are updated to include the added and removed
points. The active map is updated by first including the added and static points from the
current pose chain node 7. The removed points, assumed to be derived from a low-
dynamic object that has been moved or removed, are used to update the active map by
turning certain sectors of nodes off.

Recall that the active submap nodes are a subset of the nodes in the area that the robot is
revisiting (see Figure 5-2). The collection of scans from submap nodes are a representative
submap of this area. To update the active map all the ranges referring to the removed object
should be discarded from the active map. More specifically, the removed points, and all
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Figure 5-10: Example of several nodes in the same area, where all of the nodes have one or more
sectors that intersect with the removed points. Two of the nodes n; and n; are the active submap
nodes.

the points from the nodes in the area that are coincident with the removed points should
be discarded from the active map. For example, in Figure 5-10 there are two active submap
nodes, n; and n;, that contain ranges from an object that have been removed. There are
also nodes that have ranges that coincide with the removed points, which should also be
discarded.

Intersecting Sectors Turned Off

Figure 5-11: Illustration of sectors intersecting with the removed points. The sectors shown in bold
lines are on and the remaining sectors are turned off.

The process of updating the active map given a set of range points is given in Algorithm
5. The algorithm iterates over each removed point and turns off the sectors of nodes that
intersect with each removed point (see Figure5-11). These points in those sectors do not
represent the most recent state of the area that the robot has revisited. If all the sectors of a
node (or some given percentage of the number of sectors) are turned off, then the node is
labeled inactive and its laser scan is completely discarded from the active map. In addition,
recall that active points are the set of points from a node’s “on” sectors. Similarly, inactive
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points are points from the sectors of a node that are turned ”off”. Therefore the activemap
= activemap |J staticpoints — inactivepoints.

Algorithm 5 UPDATE-MAPS(DynamicPoseGraph dpg, Points removedPoints) returns a
set of inactive nodes.

1: inactiveNodes < {}

2: for all p; € removedPoints do

3:  nearbyNodes < get_potential_overlapping nodes(p;, dpg)

4:  forall n; € nearbyNodes do
5 if active(n;) == true then
6: if intersects(p;, n;) then
7: sector < get_sector(n;, p;)
8 set_state(sector) + off
9 if percentage of on-sectors < percentOnT hreshold then
10: set_state(n;) < inactive
11: inactiveNodes < inactiveNodes U n;
12: end if
13: end if
14: end if
15:  end for
16: end for

17: return tnactiveN odes

The process of discovering added and removed points is subject to noise in the sensor
measurements as well as noise in the pose estimates. Nodes with sectors that border the
removed points, but do not overlap might not be turned off. These nodes may have points
that should be removed. As a result, there may be some erroneous points included in
the active map. These points contribute to an effect we call ghosting in the active map.
In practice, however, we found that the amount of these erroneous points is significantly
small compared to the number of correct active map points. In addition, points that are
inserted into the dynamic map are inserted based on their location in the global reference
frame at the time that the points are identified. Therefore, if the pose estimates of the nodes
from which the points were collected ever change, the location of the points will not move.

5.5 Removing DPG Nodes and Constraints

One of the main goals of this thesis, outlined in Chapter 1, is to address the problem of
computational tractability. The tractability problem arises because the pose graph grows
as the robot continuously navigates through and re-visits areas of the environment. Con-
tinuously adding constraints to the DPG increases the computation time to compute the
robot’s trajectory, X, by pose graph optimization. We reduce the size of the DPG by re-
moving inactive nodes from the graph. Also, we assume that the environment changes,
otherwise nodes and constraints would not be removed from the DPG (in this case pose
graph SLAM for static environments should be applied).

During the process of updating active and dynamic maps nodes with all sectors turned
off become inactive. Inactive nodes do not contribute to the active or dynamic maps. They
serve as place holders to keep the incoming and out going constraints of the inactive node a
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part of the DPG. Our goal is to remove the inactive nodes and their incoming and outgoing
constraints from the DPG. To achieve this there are two details to consider:

1. The DPG must remain connected. Nodes that represent an articulation point [34] must
not be removed from the DPG. An articulation point in a graph is a node whose
removal would cause a connected graph to be disconnected. In DPG-SLAM the con-
straints between the nodes in the graph are used as input to pose graph optimization.
In pose graph optimization the DPG constraints and nodes represent a matrix, and
thus, the problem becomes singular, i.e. under-constrained [28,36].

2. Restrict the length of the chain of nodes to be removed. During the process of removing
an inactive node, it is likely that additional nodes from the same pass as the inactive
nodes, and that are sequentially connected to the inactive node are removed (see
Figure5-12(c)). Removing nodes from the DPG affects the active map’s coverage of
the environment. It also affects the density of points that refer to static objects. Thus,
we limit the number of nodes that can be removed at once.

3. Remove singleton nodes. While removing inactive nodes, it is possible for a node in the
pose graph to be disconnected because all of its incoming and outgoing edges have
been removed. At this point, the singleton node should also be removed from the
DPG in order to ensure the graph remains connected.

Removing nodes modifies X because each node refers to a pose on the trajectory. Thus,
a subset of nodes in X are maintained, X* C X. Additionally, when nodes are removed
their corresponding laser scans are removed too. The active and dynamic maps are created
based on the nodes in the dynamic pose graph. Consequently, applying DPG-SLAM with
and without node removal on the same set of data, yields different active and dynamic
maps (see example in 5.6).
Our aim is to reduce the number of constraints and thus address the problem of tractabil-

ity of pose graph optimization on a DPG that grows indefinitely. An outline of the steps to
remove an inactive node is given below.

Remove Inactive Node Steps:
1. Traverse back each predecessor node and insert start constraint
2. Traverse forward to each succeeding node and insert end constraint
3. Create removal chain

4. Remove nodes and constraints along removal chain

Our method to remove nodes from the DPG differs from marginalizing out nodes
in a pose graph [38,42,69]. Marginalization produces additional constraints in the pose
graph based on the dependencies (incoming and outgoing constraints) of the node being
removed. However, in our approach we limit the number of constraints to ensure our
DPG is connected by inserting at most two constraints. The first constraint added (or used
if one already exists) is from predecessor nodes along the same sequence as the inactive
node. The second constraint added (or used if one already exists) is from a successor node
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sequentially connected to the inactive node. The addition of constraints is shown in Figure
5-12(d) where a start constraint and an end constraint are inserted into the DPG. A start
constraint represents a familiar part of the environment. That is, there is sufficient overlap
between the two scans at the two nodes that the start constraint it connects. The same is
true for an end constraint. Removing constraints may temporarily reduce the accuracy of
the pose estimates, but as the robot continues to navigate and add new constraint the pose
estimates will improve.

Figure 5-12 illustrates the steps of creating a removal chain and removing the nodes
in the chain. In Figure 5-12(a) the node to be removed is n; and filled in gray. The first
step to remove an inactive node, shown in Figure 5-12(b), is to backtrack from n; to its
sequential predecessors that are in the same pass as n; and are not connected to n; via a
loop constraint. While traversing back in the graph each sequential node is added to the
set of removal nodes. To ensure the graph remains connected, an attempt to insert a loop
constraint, called a start constraint, is done at each sequential predecessor node of n;. The
same process is done for the successor nodes until a loop constraint called an end constraint
is inserted (see Figure 5-12(c)). Finally, if the length of the removal chain does not exceed
the pre-specified maximum removal chain length, then the nodes and constraints along
the removal chain are removed from the DPG, as shown in Figure 5-12(d).

The REMOVE-INACTIVE-NODES procedure is given in Algorithm 6. The main pur-
pose is to reduce the size of DPG at regular intervals. Often times older inaccurate ranges
are removed, and redundant ranges are removed. The input to REMOVE-INACTIVE-
NODES is a set of inactive nodes generated from updating the active map and the DPG.
To remove and inactive node, n; a removal chain is constructed on Lines 2-4. A removal
chain is a sequence of nodes from the same pass that are connected to n; and are candi-
dates for removal. Algorithm 7 details the process of constructing a removal chain. There
are many different options to inserting the start and end constraints for a removal chain. In
this work, the start constraint and the end constraint are inserted into maps that are more
recent than the inactive node. That is, the start and end constraints connect with nodes in
passes that come after the pass of the inactive node. Older passes will eventually be re-
moved as the environment changes over time. REMOVE-INACTIVE-NODES returns the
updated DPG with 0 or more nodes and edges removed.

In general the REMOVE-INACTIVE-NODES procedure performs as desired to address
the computational tractability problem for large DPGs. However, the procedure does have
some limitations. First, to remove an inactive node the REMOVE-INACTIVE-NODES pro-
cedure might require backtracking to the start of the pass of the inactive node (or similarly
traversing forward to the end of the pass). If the removal chain length is not exceeded,
then the nodes on the chain are removed and their information (ie. laser scans, etc) is lost.
In our experiments we rarely encountered such scenarios where an entire pass is removed
from the DPG. A second limitation is that not all inactive nodes will be removed if the
criteria are not all met. Thus, the DPG will likely continue to include some inactive nodes.
Another limitation is that nodes in the removal chain with several incoming and outgo-
ing constraints might be removed. Removing these constraints affects the quality of the
pose estimates. We argue that in the long-term mapping problem the pose estimates will
improve as the robot continues to navigate and revisit various parts of the environment.
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Figure 5-12: Example of removing an inactive node, n;, from the DPG. A start constraint represents
a familiar part of the environment. That is, there was sufficient overlap between the two scans at
the two nodes that the start constraint it connects. The same is true for an end constraint.
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Algorithm 6 REMOVE-INACTIVE-NODES(DynamicPoseGraph  dpg, ~ Nodes
inactiveNodes ) returns the dynamic pose graph with zero or more nodes and edges
removed.

1:
2:

5
6
7:
8
9

10:
11:
12:
13:
14:

for all n; € inactiveNodes do

(startSeqNode, startChainEdge) < GET-REMOVAL-CHAIN(usePredecessor, n;,
dpg)
if startChainEdge # null then
(endSeqNode,endChainEdge) <+ GET-REMOVAL-CHAIN(useSuccessor, n;,
dpg)
if startChainEdge # null AND endChainEdge # null then
insert_edge(dpg, startChainEdge)
insert_edge(dpg, endChainEdge)
if no articulated points on the removal chain then
remove_node_sequence(dpg, startSeqN ode, endSeqN ode)
end if
end if
end if
end for
return dpg

Algorithm 7 GET-REMOVAL-CHAIN(SearchDirection searchDir, Node n, DPG dpg ) re-
turns the sequential predecessor or successor node of node n (based on the search direc-
tion) and the added loop constraint edge.

—_

—_
—_

12:
13:
14:

—_
2e

chainEdge < null
chainCounter < 0
seqNode + get_sequential node(searchDir, n)
while seqNode # null AND chainCounter < maxRemovalLength do
Edge edge + insert_constraint(seqNode, dpg)
if edge # null then
remNode < get_source(edge)
chainEdge < edge
break
end if
chainCounter < chainCounter + 1
seqNode + get_sequential node(searchDir, seqN ode)
end while
return seqNode, chainEdge
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5.6 DPG-SLAM Example

In this section we walk through an example of DPG-SLAM and a variant DPG-SLAM-NR,
where no nodes or constraints are removed. The example is from 4 passes through the
CSAIL Reading Room as described in Chapter 4. Nodes contain 5 sectors and change is
detected when 20% or more of the environment has changed. The two algorithms illus-
trate the tradeoff between not removing nodes or constraints and removing nodes and
constraints (DPG-SLAM). This section details the evolution of each map per pass and the
dynamic maps as well, while Chapter 6summarizes the results applied to a number of dif-
ferent scenarios. To begin, Figure 5-13 presents a summary of images of the active map,
DPG, and dynamic map generated by both of the algorithms.

5.6.1 DPG-SLAM-NR

The DPG-SLAM-NR active maps have a few ghosting points from older passes that are
not in the DPG-SLAM active maps. It also shows that parts of the static areas (walls) are
removed, due to sectors that have been turned off. These areas are seen in the upper left
corner of Figure 5-13(d) of DPG-SLAM, where there are much less points than in the upper
left corner of Figure 5-13(c) DPG-SLAM-NR. A summary of the total nodes and constraints
after each pass is shown for DPG-SLAM-NR applied to the 4 CSAIL Reading Room data
sets. The Table shows how much the number of change and inactive nodes increase after
each pass.

Table 5.3: Totals of the node types and constraints in the DPG after each pass. The data is from 4
passes through the CSAIL Reading Room and DPG-SLAM-NR is applied.

#Passes | Nodes | Constraints | Change Nodes | Inactive Nodes
1 119 129 — —
2 252 263 63 3
3 373 452 143 30
4 495 612 202 80

Figure 5-14 shows the number of removed and added points that are inserted into the
dynamic map after each pass. The Figure clearly shows that there are some points in the
dynamic map that derive from static parts of the Reading Room. This is an artifact of the
DPG-SLAM method where the constant updating of the pose estimates can cause the map
to shift slightly. As a result, part of a wall during one pass might be slightly moved in a
later pass.

Figure 5-15 depicts images of the evolution of the map from pass 1. As changes are
detected in later passes, some nodes from pass 1 become inactive and other nodes have
some of their sectors turned off. As a result, it appears that the pass 1 map starts to fade
with the increasing number of passes.We see a similar phenomenon with the maps from
the other passes as well (see Figure 5-16 and Figure 5-17).

The images in Figure 5-16 and Figure 5-17 show the evolution of the maps referring
to the second and third pass maps of the CSAIL Reading Room. It is clear that ranges
from the dynamic object are removed over time. In addition, the number of inactive nodes
and change nodes increase. For example in Figure 5-16(b) the regular nodes circled in the
right corner become change nodes after pass 4 as shown in Figure 5-16(c). The fourth map
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Figure 5-14: Images of the dynamic map after the second third and fourth pass through the Reading
Room, where DPG-SLAM-NR was applied.
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Figure 5-15: Evolution of the submap from pass 1 as the robot makes up to 4 passes through the
Reading Room, where no nodes/constraints are removed.
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from the final pass is given in Figure 5-18 and the regular nodes and the change nodes are
shown.

Inactive Nodes

Change Nodes

|
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Active Map, Pass 2 of 2 {‘ | Active Map, Pass 2 of 3

Regular Nodes

Active Map, Pass 2 of 4 "~ Inactive Nodes

(©

Figure 5-16: Evolution of the submap from pass 2 from the Reading Room, where DPG-SLAM-NR
was applied.

To summarize the results of the DPG-SLAM-NR algorithm, the graph in Figure 5-19
shows the rate of growth over each iteration for the number of nodes, constraints, inactive
nodes and change nodes.

5.6.2 DPG-SLAM

This section highlights the results of the node and constraint removal, DPG-SLAM, on
the 4 passes through the CSAIL Reading Room data set. The active map, DPG, and the
dynamic map are given in Figure 5-13. The amount of ghosting points in the active map
is much less than in the DPG-SLAM-NR active map. This is due to the complete removal
of nodes, from the removal chain, where not all the sectors are turned off. In addition,
Table 5.4 summarizes the total number of nodes, constraints, change nodes, inactive nodes,
removed nodes, and removed constraints, after each pass.

The dynamic map from the DPG-SLAM algorithm is shown for each pass in Figure
5-20. Also, the evolution of the submaps from each pass are Figure 5-21, Figure 5-22, and
Figure 5-23. These images show the reduction in the number of nodes after each pass, as
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Figure 5-17: Evolution of the submap from pass 3 from the Reading Room, where DPG-SLAM-NR
was applied.
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Figure 5-18: The DPG-SLAM-NR submap from the final pass through the Reading Room, pass 4,
showing the change nodes.
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Figure 5-19: Summary of Total Nodes/Constraints DPG-SLAM, CSAIL Reading Room.
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Table 5.4: Totals of the node types and constraints in the DPG after each pass. The data is from 4

passes through the CSAIL Reading Room and DPG-SLAM is applied.

#Passes || Nodes | Constraints | Change | Inactive | Rem Nodes | Rem Constraints
1 119 129 — — — —
2 238 277 63 3 14 17
3 318 381 135 30 55 87
4 395 472 192 69 100 171

the active maps fade. Some nodes appear as singleton, but they are connected to another
node from a different pass, via a loop constraint.

=

Dynamic Map, Pass 2 -

(@) (b)

Figure 5-20: Images of the dynamic map after each pass.
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Figure 5-21: Evolution of the submap from pass 1 as the robot makes up to 4 passes through the

Reading Room. The pass 1 submap is not shown because it is the same as the pass 1 submap in
DPG-SLAM-NR.
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Figure 5-22: Evolution of the submap from pass 2 as the robot makes 4 passes through the Reading
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Figure 5-23: Evolution of the submap from pass 3 as the robot makes 4 passes through the Reading
Room.

The map of the fourth pass is shown Figure 5-24, where the regular nodes and the
change nodes are highlighted. Lastly, the graph depicting the growth of each node type
and constraint over all iterations is given in Figure 5-25.
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Figure 5-24: Image of pass 4 at the end of 4 passes through the Reading Room.
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Figure 5-25: Summary of Total Nodes/Constraints DPG-SLAM, CSAIL Reading Room.

5.7 Summary

This chapter presented the DPG-SLAM method, a novel procedure for long-term persis-
tent mapping in dynamic environments. DPG-SLAM operates on a Dynamic Pose Graph
model and maintains accurate and up-to-date active and dynamic maps. A detailed exam-
ple of DPG-SLAM and a variant, DPG-SLAM-NR where no nodes are removed, was pro-
vided. The example illustrated the affects of removing and not removing nodes and con-
straints from a DPG. In the following Chapter, a wide range of experiments that demon-
strate the efficacy of DPG-SLAM and DPG-SLAM-NR is presented.
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Chapter 6

Analysis and Results

In this thesis we develop a novel approach to solving the long-term mobile robot map-
ping problem, called Dynamic Pose Graph SLAM (DPG-SLAM). We focus on the criti-
cal challenge of maintaining a map of a dynamic environment focusing on changes that
occur slowly with the passage of time. To analyze and empirically validate the DPG-
SLAM method, results on data collected from several passes through two real-world in-
door data sets, the CSAIL Reading Room and the University of Tubingen Robot Lab, are
presented. Specifically, results are presented from experiments where the two algorithms,
DPG-SLAM-NR (no nodes or constraints removed) and DPG-SLAM, are applied to short-
term and long-term operation in each environment. We are specifically interested in deter-
mining the accuracy and the efficiency of our DPG-SLAM method. Our analysis illustrates
the trade-off between maintaining an up-to-date map while keeping the DPG nodes and
constraints, and maintaining an accurate and up-to-date map while removing nodes and
constraints.

6.1 Experimental Data

Laser range data from the CSAIL Reading Room and University of Tubingen Robot Lab
were generated from a B21 mobile robot equipped with a forward-facing laser range finder
that was driven around each space for numerous passes.

CSAIL Reading Room. In this data set the robot makes a total of 20 passes throughout
a room that is approximately 10.5m x 7.5m. The environment consists of two low-
dynamic objects which are boxes labeled d; and d» (see Figure 6-1). To simulate
change, one or both of the boxes are moved, added, or removed after each pass as
seen in Figure 6-1.

University of Tubingen Robot Lab. This data set was provided by Peter Biber [9]. To
demonstrate a robot operating for a long period in a dynamic environment, the robot
was hand-driven around an indoor space over a period of 5 weeks. In general, data
was collected in the morning, after lunch, and in the evening creating a data set of
over 70 passes. The changes occurred naturally as a part of the environment. The
environment is approximately 50m x 40m and is "L-shaped” with a left corridor, a
right corridor, and a bottom corridor. Figure 6-2 depicts four example maps of the
Robot Lab generated by pose-graph SLAM, where a few changes between each map
are identified.
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Figure 6-1: Example maps of four individual CSAIL Reading Room maps after four passes. Pose
graph SLAM is to generate each map. Subscripts of each box (low-dynamic object) are used for
identification and superscripts are used to denote the pass number.
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lighted. For example, the right-side corridor contains student offices and is labeled as a populated

office area.
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6.2 Overview

DPG-SLAM provides a mobile robot with the ability to maintain an accurate and up-to-
date map of the environment. Older changes (from stale data) are eventually removed
from the active map and added to the dynamic map. At the same time, static parts of the
environment that have been revisited often become more prominent in the active map. To
analyze the accuracy and the efficiency of DPG-SLAM, a set of experiments to qualitatively
and quantitatively interpret the efficacy of our method are conducted. In the experiments,
results are presented from DPG-SLAM-NR, where no nodes or constraints are removed,
and DPG-SLAM, where nodes and constraints are removed. Results from short-term oper-
ation (a few passes) and long-term operation (several passes) in the CSAIL Reading Room
and the University of Tubingen Robot Lab are presented.

In each experiment, we varied the number of sectors (partitions of a laser range scan) of
anode. The number of sectors affects the overall accuracy of that active map in three main
ways. map quality in three main ways. First, the sectors of a node that are “on” contain the
points that make up the active map. Second, change detection is performed specifically on
the points in sectors that are “on.” The points in these sectors affect the results of change
detection and updating the active and dynamic maps. Second, a node with fewer sectors
has the potential to become inactive sooner than a node with several sectors. Recall, an
inactive node is one that has all of its sectors turned ”off.” These nodes are also candidates
for removal, and if removed, affect the pose estimates and the active map.

Below is a summary of the graphs and performance measures used in this chapter to
qualitatively and quantitatively demonstrate the efficacy of DPG-SLAM.

Active Map Images. The orthogonal projection of the active maps from each pass on top
of each other, and a three-dimensional side-view of the active map. The active map is
illustrated by layers of maps generated from each pass. These layers are shown along
the vertical (z-axis) in the images. In the images each map is color-coded according
to a color-scale from magenta to cyan. The map from the oldest pass is magenta and
the map from the most recent pass is cyan.

Total Nodes. The total number of nodes in the DPG after each iteration and each pass.

Total Constraints. The total number of DPG constraints after each iteration, where nu-
merous iterations make-up a pass.

Total Change Nodes. The total number of change nodes per iteration.
Total Inactive Nodes. The total number of inactive nodes after each iteration.

Total Removed Nodes. Total nodes removed over each iteration, and thus each pass. II-
lustrates how sensitive node removal is as a function of the environment changes.
Note, node removal also results in the removal of one or more constraints.

Total Removed Constraints. The number of constraints removed as a result of applying
DPG-SLAM with node and constraint removal.

Static Histogram. This is a two-dimensional histogram that represents the density of the
static parts of the environment for each pass. It is represented as a gray-scale grid
(or bitmap) of that static parts of the environment created from the active map. The
aim of this measure is to show how well the static information is preserved in the
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active map. For example, if the robot makes four passes through an environment and
measures the same wall each time, then that wall will be dark in the static histogram.
However, if the robot only measures the wall two out of the four times through the
environment the wall will be shown as gray in the static histogram. This measure
highlights static and added objects based on the number of time the robot re-visits
an are and takes multiple measurements of the static object. The focus is on the static
objects, such as the walls.

Mean Point Distance. Computes the mean of the distances for each range point in the
active map to ground truth. It is applied to the CSAIL Reading Room data set where
part of the ground truth, represented by line segments, is known. An example of the
method to compute the mean distance is given Figure 6-3. The active map points in
Figure 6-3(a) are selected to estimate the transform from the active map frame to the
ground truth frame by randomly selecting a subset of active map points (shown in
black in Figure 6-3(b)). Then then all the active map points are assigned to the closest
line segment and their distance to the line segment is computed (see Figure 6-3(c)).

Run Time Ratio. Computes the ratio of the runtime of the DPG-SLAM algorithm to the
DPG-SLAM-NR algorithm (i.e. DPG-SLAM/DPG-SLAM-NR).

Experimental results are shown on the CSAIL Reading Room data set followed by the
University of Tubingen Robot Lab data set. In the beginning of each section we present a
summary of results with a comparison of DPG-SLAM and DPG-SLAM-NR. Then results
are given for both short-term and long-term operation, where the number of sectors is
varied. The Reading Room short-term data is collected from four passes and the long-
term data is collected from the robot making twenty passes. In the Robot Lab data set
the short-term data is collected data from four passes and the long-term data was collected
from sixty passes. In addition, in the Robot Lab data set ground truth is not known and the
low-dynamic objects are also not known. Images of the active maps, general graphs of the
totals of each node and constraint, and performance measures are provided to illustrate
the performance of DPG-SLAM on these two slowly changing dynamic environments.

6.3 CSAIL Reading Room Experimental Analysis and Results

We tested noes with 1, 3, ..., 12 sectors for the CSAIL Reading Room experiments. The
change threshold was 20%, that is a change was detected if 20% of the current scan is dif-
ferent than previous passes in the same area. The two low-dynamic objects, d; and da,
are added, removed, or moved within the interior of the room after each pass. Each pass
consisted of the robot navigating through the room such that it is able to collect measure-
ments of the entire space by the end of its pass. As a result, the best-case active map should
contain ranges from the walls from every pass, as well as ranges from d; and d» measured
during the most recent pass (see Chapter 5 for details).

6.3.1 Summary Comparison of DPG-SLAM and DPG-SLAM-NR, 20 Passes

Figure 6-4 shows the images resulting from applying DPG-SLAM (on the right) and DPG-
SLAM-NR (on the right) to 20 passes through the CSAIL reading room. In this experiment
each node had 5 sectors. The robot traveled a total distance of 1.0km. The images show
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Figure 6-4: On the left are the active, DPG, and dggamic maps for the DPG-SLAM algorithm and on
the right are the same images for the DPG-SLAM-NR algorithm. The points are color-coded from
each pass, where magenta is the oldest pass and cyan is the most recent pass. In this experiment
each node had 5 sectors.



that the density of static points (from the walls) is greater for the DPG-SLAM-NR than the
DPG-SLAM. On the other hand, the size of the DPG shown in Figure 6-4(e) is significantly
reduced. There are a total of 1,345 nodes and 1,647 constraints resulting from DPG-SLAM,
and 2,468 nodes and 3,158 constraints from the DPG-SLAM-NR algorithm.

static

Greater density of static points

(a) (b)

Figure 6-5: Static histograms of DPG-SLAM (on the left) and DPG-SLAM-NR (on the right) active
maps. The density of static map points is shown as being darker in the images.

To illustrate the accuracy of our method we show the static histograms in Figure 6-5,
and the ground truth accuracy in Figure 6-6. The static histograms show clearly darker
area for the DPG-SLAM-NR method. This is due to nodes being removed during DPG-
SLAM that are not inactive, and thus, their valid points are removed from the active map.
Lastly, to demonstrate the efficiency of removing nodes and constraints from the DPG, we
present the ratio of the runtime of DPG-SLAM to DPG-SLAM-NR in Figure 6-7. During the
early iterations (and passes) the computational cost of DPG-SLAM is slightly greater than
not removing nodes and constraints. However, in later iterations it is clear that reducing
the size of the DPG yields a great savings in computation.

6.3.2 Short-term Operation, Four Passes

Below is an image of Pose Graph SLAM using iSAM applied to the short-term CSAIL
Reading Room data (see Figure 6-8). The robot traveled 205 meters and a total of 495
nodes and 612 constraints (edges) were added to the pose graph.

DPG-SLAM-NR Results

Figure 6-9 shows the active maps generated for varying number of sectors where no node
or edge is removed. In this set of experiments, the resulting number of nodes and edges re-
main the same, ie. 495 nodes and 612 constraints. This is because as mentioned in Chapter
5, potential loop constraints can be generated from ranges in active and inactive nodes.
The active map resulting from 1 sector show no ghosting, whereas the active map from
twelve sectors, though minimal, shows the most amount of ghosting. It is also evident that
the quality and density, measured by the static histogram, of the active map is sensitive to
the number sectors. The amount of ranges that remain in the active map after each pass is
an indicator of the density of points. For example, with 1 sector as shown in Figure 6-27,
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87



Slow Dyjnamic Objects

-

ik

i

Figure 6-8: The map generated by applying pose graph slam to the CSAIL Reading Room data set

with four passes.

88



only ranges from pass 3 and pass 4 remain in the active map; whereas in the experiment
with twelve sectors the active map contains ranges from all four passes.

The total number of change nodes and inactive nodes for each experiment after the
robot makes four passes through the CSAIL Reading Room is shown in Table 6.1. The
totals each node type as the robot maintains and updates the DPG is also shown in Figure
6-10. The total number of change nodes is approximately the same for the experiments
with three or more sectors. In general, the algorithm should detect a change at approx-
imately the same poses, regardless of the number of sectors. However, the number of
change nodes is much greater for 1 sector. In the CSAIL Reading Room experiments, the
robot navigates along the boundary of the environment and the changes occur in the in-
terior. Thus, part of each scan taken at each node contains ranges from the walls, which
do not change. In the 1 sector case, a node’s entire scan is turned off when a change is de-
tected, and the node is inactive. Then the data at the node is assumed to be stale, and the
node is not used again for change detection. In addition, the room changes significantly
enough from pass to pass such that when a when attempting to detect change the only
available candidates are mostly from the immediate pass. All other nearby nodes from
earlier pases were previously set to inactive.

Table 6.1: Total number of change nodes and inactive nodes for each experiment after the robot
makes four passes through the CSAIL Reading Room. There are a total of 495 nodes and 612
constraints in each experiment.

Sectors | Change | Inactive
1 349 369
3 222 250
6 211 54
9 212 15
12 214 3

Another observation is that the number of inactive nodes decreases greatly as the num-
ber of sectors increases. Recall that a node becomes inactive when all of its sectors are
turned off (note, a change node can be also be an inactive note). Therefore, there has to be
a change or a set of changes that effects all of the sectors of a node in order for the node to
be inactive. Thus, it is expected the number of inactive nodes would decrease at the num-
ber of sectors increases. That is, as seen in Table 6.1 and Figure 6-10c, nodes with more
sectors are less sensitive to becoming inactive.

The static histograms for the four passes through the CSAIL Reading Room DPG-
SLAM-NR experiments are shown in Figure 6-11. The darker areas in each sub-figure
denote the parts of the environment that have little or no change. That is, the parts of the
environment with static objects. In the ideal case, the walls would be the darkest part of the
environment, and ideally shown in black, as they remain static while the robot makes sev-
eral passes. In Figure 6-11 the walls are shown as well as some of the low-dynamic objects
that were not removed from the active map. For example, the 1 sector experiment (Figure
6-10(a)) depicts the walls with approximately the same intensity as the low-dynamic ob-
jects from the most recent pass (see Figure 6-9a). In this experiment, the inclusion of only
the low-dynamic objects from pass 4 is accurate. However, the resulting active map from
the 1 sector experiment only contains ranges from pass 3 and pass 4 (see Figure 6-9b). On
the other hand, the static histogram for the 12 sectors experiment in Figure 6-11e shows
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Figure 6-9: The active map generated from DPG-SLAM-NR with no node/edge removed. Each

experiment contains a different number of sectors. The images show that as the number of sectors
increase the amount of points in the resulting active map increases.
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Figure 6-10: Totals of DPG nodes and constraints from the DPG-SLAM-NR algorithm as the robot
makes four passes through the CSAIL Reading Room. In Figures (a) and (b) the total nodes and
constraints increase at the same rate for each experiment, and all the lines are plotted on top of
each other. This is a result of keeping the nodes and constraints in the DPG-SLAM-NR. Figure (c)
illustrates how the number of inactive nodes increases with each pass. Finally, Figure (d) shows
that, in general, the number of change nodes grow at about the same rate in the experiments with
more than 1 sector.
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the walls with dark outlines, as desired. But it also contains the ghosting from part of the
low-dynamic objects from passes 1-3. This is an example of one of the algorithmic trade-
offs between reacting to change above a certain threshold, where smaller changes may be
a part of the resulting map.

The results of apply the mean-point-distance measure are shown in Table 6.2. The per-
formance measure provides a measure of accuracy of the known ground truth. The table
shows that in general, the results of DPG-SLAM-NR yield accurate active maps with an
average distance of each point to ground truth between 3cm and 11cm for each experi-
ment. The averages are also computed for each number of passes and number of sectors
shown in the Mean-Pass row and the Mean-Sectors column in Table 6.2. Note that ground
truth was measured by and is subject to human error.

Table 6.2: Mean-point-distance for each of the experiments. The mean and standard deviation for
the number of passes and number of sectors are provided.

Sectors P1 P1,2 P1,23 | P1,2,3,4 || Mean-Sector | Std-Sector
1 0.045m | 0.106m | 0.106m | 0.107m 0.091m 0.031m
3 0.048m | 0.038m | 0.098m | 0.038m 0.056m 0.029m
6 0.053m | 0.100m | 0.113m | 0.033m 0.075m 0.038m
9 0.054m | 0.044m | 0.103m | 0.090m 0.073m 0.028m
12 0.055m | 0.045m | 0.110m | 0.032m 0.061m 0.034m
Mean-Pass || 0.051m | 0.067m | 0.106m | 0.060m e —_—
Std-Pass 0.004m | 0.033m | 0.006m | 0.036m e o

DPG-SLAM Results

The active maps from DPG-SLAM on the CSAIL Reading Room data set with four passes
are given in Figure 6-12. In the experiments the poses can shift as nodes and edges are
remove from the dynamic pose graph and pose graph optimization (iSAM) is used to re-
calculate the pose estimates. As a result, there are differences in the active maps of DPG-
SLAM-NR and DPG-SLAM. For example, the nine sectors active map has much less ghost-
ing caused by old and stale laser scans (Figure 6-12g and h), as compared to the same nine
sectors experiment where DPG-SLAM-NR is applied (Figure 6-9g and h).

Table 6.3 shows the totals resulting from removing nodes and constraints (edges), and
Figure 6-13 shows how they grow with each pass. The results indicate that the threes
sectors experiment is particularly sensitive and yielded the smallest DPG (the fewest nodes
and edges). The number of change nodes is similar for both DPG-SLAM-NR and DPG-
SLAM. This reinforces the conjecture that the nodes in the different experiments that are
approximately in the same location should be identified as the same type either change
node or not. In addition, as the number of sectors increases beyond three sectors, the
number of removed nodes and edges decreases. As mentioned earlier, it is expected that
the number of nodes and edges decreases because nodes with more sectors general take
longer to become inactive.

The static histograms depicted in Figure 6-14 illustrate how well the walls were pre-
served in the active maps, event hough nodes, which store the laser scans, were removed.
In contrast to the 1 sector experiment (see Figure 6-14a), the three sectors (see Figure 6-14b
) has significantly more nodes and edges removed. When comparing the static histograms
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Figure 6-11: The static histogram generated from each active map for the different number of sec-
tors. The intensity (darkness) of the lines represents the level of certainty the robot has about that
part of the environment being static.
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Figure 6-12: The active map generated from DPG-SLAM where nodes and edges are inserted and
can be removed. The images show that in the CSAIL Reading Room data set, as the number of
sectors increase the amount of range points in each active map increases.
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Table 6.3: Totals for each type of node after the robot makes four passes through the CSAIL Reading
Room and DPG-SLAM was applied.

Sectors || Nodes | Constraints | Change | Inactive | Rem Nodes | Rem Constraints
1 450 547 357 365 45 78
3 307 382 261 227 188 284
6 448 549 208 36 47 85
9 465 573 207 15 30 52
12 492 605 214 3 3 9

of the one and three sector experiment, the three sectors static histogram yields better re-
sults to the 1 sector. The three sectors static histogram contains darker walls than the 1
sector; specifically along the left wall where ranges from all four passes are included in
the resulting active map. However, the DPG of the three sectors is significantly smaller,
reducing the overall pose graph optimization computation time.

Finally, Table 6.4 shows the accuracy computed by the mean-point-distance of the DPG-
SLAM active maps after four passes through the CSAIL Reading Room. Like the DPG-
SLAM-NR results, the measure shows accurate maps where the average distance of a point
is at most 11cm.

Table 6.4: Average sum of distance in meters for selected active map points projected onto the
ground truth. The data is shown for the active map after increasing number of passes where DPG-
SLAM was applied.

Sectors P1 P12 P123 | P1,23,4 | Mean-Sector | Std-Sector
1 0.047m | 0.103m | 0.109m | 0.102m 0.090m 0.029m
3 0.046m | 0.034m | 0.113m | 0.092m 0.071m 0.037m
6 0.049m | 0.040m | 0.040m | 0.031m 0.040m 0.007m
9 0.047m | 0.041m | 0.102m | 0.105m 0.074m 0.035m
12 0.049m | 0.102m | 0.110m | 0.093m 0.089m 0.030m
Mean-Pass || 0.048m | 0.064m | 0.095m | 0.085m o
Std-Pass 0.001lm | 0.035m | 0.031m | 0.031m — —_—

6.3.3 Long-term Operation, Twenty Passes

To simulate long-term operation in the CSAIL Reading Room, a mobile robot was driven
around the room for twenty passes. After each of the passes, at least one of the two low-
dynamic objects was moved, removed or added (if not previously in the space). Results for
1, 3,6, 9, and 12 sector experiments are provided where both DPG-SLAM-NR and DPG-
SLAM are applied. In these experiments the robot traveled 1.0km with a total of 2,468
nodes and 3,158 constraints.

Images od Pose Graph SLAM applied to the twenty passes are given in Figure 6-15. The
robot traveled 1,014 meters and the pose graph contains 2,468 nodes and 3,158 constraints.
Without continuous map maintenance and change detection, the map of the environment
appears cluttered with numerous objects. The ideal active map would contain ranges from
all the walls collected over all twenty passes, as well as the two low-dynamic objects as
they are positioned during the final pass.
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Figure 6-13: The graphs show how the growth of the number of constraints and each node type
over all four passes where DPG-SLAM is applied.
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Figure 6-14: The static histograms generated from four passes through the CSAIL reading room
and by applying DPG-SLAM to compute the active map.
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Images of the map generated from Pose Graph SLAM applied to the twenty passes

through the CSAIL Reading Room. The sub-figures (a) and (c) illustrate an orthogonal projection

-15
of all the maps from each pass. Sub-figure (b) illustrate a 3-D side view of all twenty maps, and (d)
98

depicts the edges from the resulting pose graph.
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DPG-SLAM-NR Results

The active maps for 1, 3, 6, 9, and 12 sectors, where DPG-SLAM-NR is applied, are shown
in Figure 6-16. In each of the maps there is a little ghosting from older ranges from low-
dynamic objects that have moved. The 1 sector experiment has the least amount of ghost-
ing and the amount of ghosting increases with the remaining number of sectors. Moreover,
the amount of range points from static objects from several from several of the passes, in-
creases with the addition of more sectors.

Table 6.5 summarizes the total number of change and inactive nodes. Figure 6-17 show
the graphs of each node type and the constraints over the twenty passes. The number of
change nodes are comparable for three or more sectors. The number of change nodes in
1 sector is much greater. This is due to the large number of inactive nodes, which leaves
fewer active nodes that can be used for change detection. Also, the number of inactive
nodes reduces while the number of sectors increases. It takes longer for a node with several
sectors to become inactive because all of its sector have to be affected by changes.

Table 6.5: Total number of change nodes and inactive nodes for each experiment after the robot
makes twenty passes through the CSAIL Reading Room, where DPG-SLAM-NR is applied. A total
of 2,468 nodes and 3,158 constraints were added in each experiment.

Sectors || Change | Inactive
1 2,306 2,211
3 1,693 1,941
6 1,418 1,137
9 1,373 460
12 1,356 209

The static histograms generated from the active maps are shown in Figure 6-17. The
1 sector static histogram has a very faint outline of the walls. Whereas, nine sectors and
twelve sectors have a clear outline of the walls. There are also faint traces form the ghosting
in each of the static histograms.

DPG-SLAM Results

Figure 6-18 shows the images of the active maps generated by applying DPG-SLAM. Even
though nodes and constraints were removed, the maps are visibly similar the DPG-SLAM-
NR active maps. A summary of the totals of each type of node and total constraints is given
in Table 6.6. In addition, three and six sectors contain the largest number of removed
constraints. The six sectors experiment resulted in the smallest DPG, with 1,422 nodes
and 1,639 constraints. Also the number of change nodes are similar, except that 1 sector
contains much more change nodes. Again, the number of inactive nodes decreases with
the increase in the number of sectors.

Figure 6-20 shows the totals as they increase with each iteration. The number of con-
straints for one and twelve sectors are shown to grow similarly (see Figure 6-20b). Al-
though 1 sector experiments contains the greatest number of total inactive nodes, it has
the fewest number of removed constraints. This is a result of when node removal is per-
formed during DPG-SLAM. Specifically with 1 sector scenarios, the DPG nodes are highly
sensitive to changes and become inactive quickly. As a result, the pose chains for removing
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Figure 6-16: The active map generated from DPG-SLAM with no node/edge removed.
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Figure 6-17: DPG-SLAM-NR graph depicting the rate of growth of the number of constraints and
nodes as the number of passes increases.
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Figure 6-18: The static histograms generated from twenty passes through the CSAIL Reading
Room. The images are generated from the active maps where DPG-SLAM-NR was applied.
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Figure 6-19: The active map generated from DPG-SLAM with no node/edge removed.
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inactive nodes are often as long as all the nodes in a pass. One of our criteria for remov-
ing nodes is based on the length of the pose chain so that we can maintain a certain level
of coverage as well as constraints. In the case of 1 sector, where most or all nodes in a
sequence referring to a specific pass are inactive, these nodes are not removed.

Table 6.6: Total for each type of node and constraint after the robot makes 20 passes through the
CSAIL Reading Room and DPG-SLAM was applied.

Sectors || Nodes | Constraints | Change | Inactive | Rem Nodes | Rem Constraints
1 2,086 2,681 2,259 2,287 382 574
3 1,452 2,239 1,736 1,772 1,016 1,016
6 1,422 1,639 1,378 814 1,046 1,833
9 1,920 2,304 1,374 325 548 951
12 2,087 2,599 1,359 169 381 656

Finally, Figure 6-21 shows the static histograms for each DPG-SLAM experiment. Like
the DPG-SLAM-NR static histograms, the nine and twelve sectors yield dark outlines of
the walls. This is a desired result because unlike DPG-SLAM-NR, the size of the DPG
has been reduced. Consequently, improving the overall computational cost of pose graph
optimization applied to this DPG.

6.4 University of Tubingen Experimental Analysis and Results

In this section we present short-term and long-term results from the Univ. of Tubingen
Robot Lab data set. The short-term operation experiments consists of data from four days,
where the robot made four passes through the robot lab. The long-term operation experi-
ments covered approximately five weeks, where the experiments included data from sixty
passes over the five week time period. At the completion of the four passes the robot
traveled 620 meters, and upon completion of the sixty passes the robot traveled a total of
7.4km.

To begin, we show a summary of the accuracy and efficiency of DPG-SLAM and DPG-
SLAM-NR after 60 passes. Then we present the results from short-term and long-term
operation. The short-term experiments include nodes with 1,4,8, and 12 sectors. The long-
term experiments include nodes with 4, 8, 12, and 16 sectors. From our experimental
observations, the 1 sector experiments were very sensitive to change and yielded active
maps with minimal density (ie. included ranges primarily from one or very few passes).
In addition, the experiments depict active maps that are updated when 30% change is
detected.

6.4.1 Summary Comparison of DPG-SLAM and DPG-SLAM-NR, 60 Passes

Figure 6-22 shows the images resulting from applying DPG-SLAM (on the right) and DPG-
SLAM-NR (on the right) to 60 passes through the Univ. of Tubingen Robot Lab, with 8
sectors per node. The parts of the images that are shown in magenta imply that data from
earlier passes remains in the active map. This is shown along the ”"T” intersection in the
middle. In addition, magenta points can be seen along the top right corridor where posters
were installed (highlighted in Figure 6-2c). These points remain in the map because the
installation is not removed and thus, the points beyond the installation are unknown, i.e.
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Figure 6-20: The graphs illustrate the rate of growth of the number of constraints and nodes as the
number of passes increases (DPG-SLAM was applied).
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Figure 6-21: The static histograms generated after the robot makes 20 passes through the CSAIL
Reading Room and applying DPG-SLAM to maintain its active map.
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Figure 6-22: On the left are the active, DPG, and dynamic maps for the DPG-SLAM algorithm and
on the right are the same images for the DPG-SLAM-NR algorithm. In this experiment each node
had 8 sectors.
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outside the robot’s FOV. Again, the density of static points from the walls is greater for
the DPG-SLAM-NR than the DPG-SLAM.The size of the DPG is significantly reduced for
the DPG-SLAM algorithm. There are a total of 4,511 nodes and 5,809 constraints for the
DPG-SLAM algorithm, and a total of 8,392 nodes and 11,350 constraints resulting from the
DPG-SLAM-NR algorithm. In the images, the active maps from both algorithms are very
similar even though the size of the DPG for the DPG-SLAM algorithm is nearly half the
size of the DPG from the DPG-SLAM-NR algorithm

Greater density of static points

static

(@) (b)

Figure 6-23: Static histograms of DPG-SLAM (on the left) and DPG-SLAM-NR (on the right) active
maps from 60 passes through the University of Tubingen Robot Lab. The density of static map
points is shown as being darker in the images.

The static histograms of both algorithms are shown in Figure 6-23, and the run time
ratio is shown in Figure 6-24. Clearly the active map from the DPG-SLAM algorithm was
affected by removing nodes and constraints. However, the run time increased significantly
with each iteration.

6.4.2 Short-term Operation, Four Passes

Figure 6-26(a) and Figure 6-26 depict the map after applying Pose Graph SLAM to the
Univ. of Tubingen four passes data set. The resulting pose graph contains 833 nodes and
1,010 constraints.

DPG-SLAM-NR Results

The individual passes used in the short-term experiments are shown in Figure 6-2. The
active map for each of the experiments is given in Figure 6-27 and we describe a few key
observations with the results. The added objects labeled in Figure 6-2c are correctly not
included in the active maps. Remnants of the moveable partition (Figure 6-2d) are evident
mainly in the twelve sectors active map. Lastly, the poster installation which was added
after pass two remained in the active maps. This is because the posters blocked the view
of the robot and thus there was no way to determine if there was a change that occurred
behind the posters.
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Figure 6-24: Run time ratio of 60 passes through the Univ. of Tubingen.

Table 6.7: Total number of change nodes and inactive nodes after the robot makes four passes
through the Univ. of Tubingen Robot Lab. A total of 833 nodes and 1,010 constraints were added
to each DPG and DPG-SLAM-NR was applied.

Sectors | Change | Inactive
1 494 698
4 378 387
8 363 134
12 357 54

Table 6.7 depicts the totals for change and inactive nodes according to the number of
sectors. Figure 6-28 shows how the number of each type of node and number of constraints
increase with each pass. The number of inactive nodes decreases as the number of sectors
increases. This is expected as nodes with more sectors require changes to affect all of the
sectors in order to be labeled inactive.

Moreover, the total number of change nodes resulting from the experiments with four
or more sectors are approximately the same. Similar results, in terms of the number of
change nodes, were also seen in the CSAIL Reading Room experiments. Also, the location
of change nodes does not vary much as each DPG is created, and nodes are in similar
positions in each of the DPGs. Thus, nodes from each experiment that are in areas where
changes are detected are labeled change nodes.

Finally, the static histograms for four passes through the Robot Lab are shown in Figure
6-29. By inspection both the eight sectors and twelve sectors yield sufficient and accurate
results in terms of denoting the static areas. Beginning with the four sectors static his-
togram there are dark areas that increase in intensity and static areas with the eight and
twelve passes.
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(b)

Figure 6-25: Examples of the orthogonal projection, (a), and three-dimensional side-view, (b), of
the pose graph SLAM map generated from the four passes in the short-term experiments. Note,
some of the changes from this data set are hand-labeled in Figure 6-2.
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Figure 6-26: In Figure 6-26(a) the pose graph is shown and the height of each edge is depicted as a
function of time. Figure 6-26(b) is an image of the orthogonal projection with the pose graph edges
shown.
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1 Sector

Figure 6-27: Images of the active maps where DPG-SLAM-NR was applied to four passes through
the University of Tubingen Robot Lab.
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Figure 6-28: Each graph shows the number of nodes, constraints, inactive nodes, and change nodes
for the 1, 4, 8, and 12 sector DPG-SLAM-NR experiments.
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Figure 6-29: The static histograms for the DPG-SLAM-NR 1, 4, 8, and 12 sector experiments. The 8
and 12 sector experiments clearly indicate the walls, except along the left-most corridor where the

walls are at half intensity.
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DPG-SLAM Results

The active maps generated by DPG-SLAM are shown in Figure 6-30. Due to edge and
node removal, pose estimates can change slightly and possibly become less accurate. For
example, there is a minor visible difference between the four sectors active map with DPG-
SLAM (Figure 6-30c), and the four sectors active map with DPG-SLAM-NR (Figure 6-27).
While the remaining DPG-SLAM active maps are comparable to their DPG-SLAM-NR
maps.

The totals of each type of nodes and the number of constraints at the completion of four
passes through the Univ. of Tubingen Robot Lab using DPG-SLAM are given Table 6.8 and
Figure 6-31. It is clear that 1 sector experiments contain the greatest number of inactive
nodes. However, 1 sector has the least removed nodes and constraints. As a result, 1
sector has the largest DPG compared to 4, 8, and 12 sectors. Intuitively, the number of
inactive nodes should be close to the number of removed nodes. As mentioned earlier
1 sector scenarios are particularly sensitive to potentially having an entire pass removed,
and thus the pose chain is too long for removal. More specifically, all nodes in a pass
become inactive in the 1 sector case. Given our criteria, we do not remove all nodes and
edges from a pass, as a result these inactive nodes remain in the DPG.

Table 6.8: Totals for each type of node after the robot makes four passes through the University of
Tubingen Robot Lab DPG-SLAM was applied.

Sectors || Nodes | Constraints | Change | Inactive | Rem Nodes | Rem Constraints
1 785 960 489 696 48 72
4 496 853 370 390 337 217
8 712 855 356 136 121 190
12 765 916 360 60 68 106

Moreover, the graphs in Figure 6-31(a) and 6-31(e) show that nodes begin to be re-
moved during pass three. Figure 6-2a and b, illustrate why node removal does not begin
until pass three. The notable changes between pass one and pass two is the added object
referred to in Figure 6-2b. The object is added and no other low-dynamic objects are moved
or removed, and the object does not cause a significant change; thus, the object remains in
the map and nodes are not removed.

Finally, the static histograms in Figure 6-32 depict how well the walls are shown in the
map. As in the DPG-SLAM-NR results, the walls along the left corridor only have small
portions that are clearly static. The eight and twelve sector experiments yield the best static
histograms.

6.4.3 Long-term Operations, Sixty Passes

In this section we present the long-term operation experiments to illustrate the efficacy of
DPG-SLAM on data collected over five weeks in an indoor environment, the University of
Tubingen Robot Lab [9]. Results for sixty passes over the time period are shown for both
DPG-SLAM-NR and DPG-SLAM. The experiments included nodes with 4, 8, 12, and 16
sectors. The robot traveled a total of 7,373 meters. Figure 6-33 and Figure 6-34 show the
resulting map and pose graph after applying Pose Graph SLAM using iSAM. The pose
graph contains a total of 8,392 nodes and 11,350 constraints. The aim is to show that with
a large number of edges being removed with DPG-SLAM the accuracy of active map as
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Figure 6-30: The active maps generated after applying DPG-SLAM where nodes and edges are
removed.
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Figure 6-31: The graphs depict the growth of the number of constraints and node types over four

passes from the Robot Lab, where DPG-SLAM is applied.
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well as the static histogram is comparable to the results of DPG-SLAM-NR where nodes
and constraints are not removed.

In Figure 6-33 and Figure 6-34 it is apparent that there are numerous spurious laser
range points that derive from high-dynamic objects, such as people walking. As men-
tioned in Figure 6-2, the right-side corridor contains student offices and is a highly popu-
lated and trafficked office area. Recall that the percentage of change in these experiments
is set to 30%. Therefore, the amount of spurious points has to cause a change greater than
30% in order to be filtered out of the active map. This is evident in the active maps gener-
ated by DPG-SLAM-NR and DPG-SLAM below. In general, existing SLAM methods that
address the problem of SLAM in populated environments or SLAM and tracking would
detect and filter out or track these high-dynamic objects [1, 3, 21,32, 54,66, 70,73,75]. In
this work, we focus on the long-term unpredictable changes resulting from low-dynamic
objects.

DPG-SLAM-NR Results

The DPG-SLAM active maps for 4, 8, 12, and 16 sectors is given in Figure 6-35. Both the
twelve and sixteen sector active maps retain range points from most of the passes. While
the four and the eight sectors have mainly ranges from the most recent passes (all of the
earlier passes shown in a lighter magenta color, and are at the bottom of the 3D side-view
maps). It makes sense as the many spurious points would quickly cause the sectors to be
turned off and thus the node would become inactive quickly (particularly in the highly
populated right-corridor).

The total number of change nodes and inactive nodes at the completion of the sixty
passes is given in Table 6.9. The number of change nodes are comparable for 8, 12, and
16 sectors, and are slightly greater for 4 sectors. In addition, as expected, the number of
inactive nodes decreases as the number of sectors increase. Figure 6-36 shows the rate at
which the number of constraints and each type of nodes grows with each iteration and
pass. For example, the rate of grown for the number of change nodes (Figure 6-36(d)) is
quite similar in all the DPG-SLAM-NR experiments.

Table 6.9: Total number of change nodes and inactive nodes after the robot makes sixty passes
through the Univ. of Tubingen Robot Lab and DPG-SLAM-NR was applied. A total of 8,392 nodes
and 11,350 constraints were added to each of the 4, 8, 12, and 16 sectors DPGs.

Sectors | Change | Inactive
4 5,019 6,604
8 4,577 4,513
12 4,523 3,018
16 4,853 2,036

The static histograms from the DPG-SLAM-NR sixty passed are depicted in Figure 6-
37. In general each of the histograms yield accurate results, where the walls are darker
with each increasing number of sectors. The sixteen sectors static histogram contains the
darkest outline of the static parts of the environment.
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(b)

Figure 6-33: Maps of the orthogonal projection, (a), and three-dimensional side-view, (b), generated
from pose graph SLAM applied to 60 passes through the University of Tubingen Robot Lab.

120



g TR
#

(b)

Figure 6-34: In Figure 6-34(a) the pose graph created over 60 passes is shown. The height of each
edges is depicted as a function of time. Figure 6-34(b) is an orthogonal projection of the map and
the pose graph.
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12 Sectors

Figure 6-35: The active maps generated after applying DPG-SLAM-NR for sixty passes through the
Univ. of Tubingen Robot Lab.
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Figure 6-36: Graphs depicting the number of nodes and constraints per iteration (and per pass).

The DPG-SLAM-NR algorithm was applied and the robot made 60 passes through the University
of Tubingen Robot Lab.
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Figure 6-37: The static histograms generated from the active maps resulting from DPG-SLAM-NR
applied to 60 passes through the Robot Lab.
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DPG-SLAM Results

As stated, the analysis of the performance of DPG-SLAM-NR and DPG-SLAM for long-
term operation enables us to interpret the performance of both algorithms on a large, long-
term data set. In particular, we are interested in comparing and contrasting the accuracy
and the computational efficiency resulting from both algorithms.

The active maps from the DPG-SLAM experiments are shown in Figure 6-38. Like
the DPG-SLAM-NR active maps, the twelve and sixteen sectors DPG-SLAM active maps
contain range points from many more passes than the four and eight sectors (see Figure
6-38b,d.f, and h).

Table 6.10: Total number of nodes and constraints remaining in each DPG after the robot makes
sixty passes through the Univ. of Tubingen Robot Lab and DPG-SLAM-NR was applied.

Sectors || Nodes | Constraints | Change | Inactive | Rem Nodes | Rem Constraints
4 3,891 4,904 5,807 5,667 4,501 8,130
8 4,511 5,809 5,058 3,908 3,881 7,324
12 5,485 7,202 4,788 2,620 2,907 5,558
16 6,142 8,187 4,813 1,649 2,250 4,264

Table 6.10 presents the DPG-SLAM total nodes, change nodes, inactive nodes and re-
moved nodes; as well as, the total constraints and removed constraints. The growth of
each of the number of nodes and constraints over all the passes is shown in Figure 6-39.
The four sectors experiment had the greatest number of constraints removed, and thus,
contain the smallest DPG at the end of the passes. Given the total nodes and constraints,
the final size of each DPG increases with the number of sectors. In addition, the number
of change nodes seen in Table 6.10 are comparable, with the smallest number of sectors
having the greatest number of change nodes.

The static histograms for the DPG-SLAM experiments are shown in Figure 6-40. In the
four sectors it is very difficult to see the walls and other static objects. This shows that
overall the active map does not include much, if any, of the ranges from all the passes.

6.5 Summary

This chapter presented analysis and results of both the DPG-SLAM-NR algorithm where
no nodes or constraints are removed from the Dynamic Pose Graph, and the DPG-SLAM
algorithm where nodes and constraints are removed from the DPG. Two distinct collec-
tions of data were used to explore the efficacy of the algorithms: the CSAIL Reading Room
data set and the University of Tubingen Robot Lab data set. The CSAIL Reading Room is
a smaller controlled environment where there were two low-dynamic objects, boxes, that
were moved, removed or added for up to 20 passes. The University of Tubingen Robot
Lab data set is the largest long-term mobile robot data set that was available at the time
of this work. It contained data collected from operating a mobile robot at different times
throughout the day over a 5 week period. We hand labeled distinguishing changes in the
short-term data set in order to analyze the performance of the DPG-SLAM method. For
the long-term operation, data for 60 passes through the environment over the 5 weeks
was used. In each of the data sets, a B21 mobile robot equipped with a forward-facing
laser range finder was used. Our results show that removing nodes and constraints in a
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Figure 6-38: Images of the active maps created by executing DPG-SLAM for sixty passes through
the Univ. of Tubingen Robot Lab.
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Figure 6-39: Each graph depicts the growth of the number of node types and constraints as the
number of iterations increases and DPG-SLAM is applied. The robot made a total of 60 passes
through the Robot Lab.
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Figure 6-40: The static histograms generated from the active maps of DPG-SLAM applied to 60

passes through the University of Tubingen Robot Lab.
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Dynamic Pose Graph effectively improves tractability of pose graph optimization while
maintaining an accurate map. As a result, our method is suitable for mobile robots operat-
ing for long periods in low-dynamic environments.
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Chapter 7

Conclusion

7.1 Discussion

There are a number of applications that benefit from a mobile robot capable of operating in
a dynamic environment over extended periods, such as weeks, months, or even years. For
example, in transportation security such as in airports or train stations, a security robot
can be patrolling the environment looking for unexpected changes and alerting security
personal. Also, in the case of natural disasters, such as after an earthquake or tsunami, a
robot can be placed in a damaged building with an original map of the building and be
able to detect changes in the structure as it moves or shifts over time.

Developing technologies that address the long-term SLAM problem is critical for robots
to operate robustly over the long term with minimal human intervention. Particularly, to
safely navigate, make decisions, and carry out long-term plans, the robot must be able to
maintain an up-to-date and accurate map of the environment. Recall that our long-term
mapping goals were to 1) continuously incorporate new information, 2) represent the en-
vironment history, 3) detect changes and update map online, and 4) address the problem
of tractability as pose graphs grow. This thesis presented, DPG-SLAM, a novel method for
a persistent mobile robot operating for long periods of time in a dynamic environment.
Our research focused on the environments with low-dynamic and static objects. To detect
when these objects are moved, removed or added to the environment, the robot must be
able to makes numerous passes and updates its representation, the active and dynamic
maps.

We presented results from two algorithms, DPG-SLAM-NR and DPG-SLAM. The first
algorithm DPG-SLAM-NR executed the DPG-SLAM method, but nodes and constraints
were not removed. The second algorithm DPG-SLAM addressed the tractability prob-
lem by removing nodes and constraints while maintaining up-to-date active and dynamic
maps. Our results show that there was minimal trade-off in accuracy between the two
algorithms, with a great benefit of computation time for the DPG-SLAM algorithm where
the DPG size is reduced.

There are two recent related works relevant to the long-term mapping approach pre-
sented in this thesis. The first is the work by Biber and Duckett [9,10] where they collected
a long-term data set over 5 weeks. To our knowledge, this was the first long-term opera-
tion experiment for a mobile robot mapping an indoor dynamic environment. The robot
constructed an initial SLAM map from one pass, and then maintained a sample-based dy-
namic map while localizing of the initial SLAM map. The multiple maps were maintained
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at different times scales and points in each of the map faded (were removed) according to
their age. This work however suffers from executing localization after constructing one
map. The initial SLAM map could be noisy and additional information acquired by the
robot as it makes several passes through the environment should be used to improve the
initial SLAM map. In addition, it is difficult to determine the number of maps to maintain
as well as the timing for each of the time-scales on each map. Our work performs con-
tinuous SLAM on this data set and maintains two maps, an active and dynamic map. In
addition, the Biber and Duckett method does not specifically identify changes in the envi-
ronment, unlike the DPG-SLAM method the provides the dynamic map which maintains
a representation of the history of environment changes over time.

The second related work is by Konolige and Bowman [39]. In their work they use
multi-session vision for pose graph SLAM and cluster images at nodes in the pose graph.
of the method on Changes are not specifically detected, rather like images are clustered
and stored at nodes in the graph. They also address the problem of relocation by creating
"weak links”, edges in the graph, when the robot starts at a different position and attempts
to localize itself in the map. These links can potentially be removed if the robot is not able
to localize on its current pass. Their method is demonstrated on a few passes through
an environment. Thus, it remains to show the scalability and efficacy of the method as it
applies to long-term operation and scenarios with a number of low-dynamic objects.

7.1.1 Limitations

There are some limitation of the DPG-SLAM method that were evident in our results. First
is the affect of ghosting where not all stale range points are removed from the active map
as shown in Figure 7-1. A second limitation of DPG-SLAM is the potential for the dynamic
map to have false positives. That is, points that are labeled added or removed, but the
points represent measurements from static objects such as walls (see Figure7-2). A third
limitation of our method is that there may be constraints removed from the graph that
greatly affect the position estimates in a pass. For example, in Figure 7-3, constraints are
removed leaving a sequence of nodes and edges that are not bounded by a loop constraint.
Though this error is localized to one part of one pass, and with the DPG-SLAM method
the DPG was able to maintain accurate pose estimates at later passes.

-

Ghosting

Figure 7-1: Example of ghosting.
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False Positives from the Walls

N

Figure 7-2: Walls should not be considered changes, but as the pose estimates are updates with the
additions and removal of constraints some measurement from walls will not coincide. As a result,
changes are detected.

Figure 7-3: Example of when constraints are removed leaving a sequence of nodes, which have
error that accrue and are not reduced due to no loop constraints.
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7.2 Future Work

There are a number of exciting directions where this research can be furthered. We outline
a few of our future research directions below.

A key part to the DPG-SLAM method is the ability to remove nodes and constraints
from the Dynamic Pose Graph. In this work our criteria for reducing the size of the pose
graph focused on minimizing the amount of information lost by removing nodes and con-
straints. Another criteria that we are exploring is how much the nodes in the DPG move,
more specifically the difference in the positions of the nodes before and after the size of
the DPG is reduced. The purpose of this is to understand how much the pose estimates
are affected by have the selected nodes constraints are removed. Other criteria could be
proposed that account for the covariances of the nodes as a result of node removal. In
addition, we attempt to remove inactive nodes, if they meet the criteria, at one point in
time during each iteration. As a result, there often remain inactive nodes in the graph
that may later meet the criteria and can be removed at a later pass where DPG-SLAM is
applied. Thus, future work for caching inactive nodes that are not immediately removed,
and attempting to remove that are later points in time should be explored.

There are a number of areas for future research. First, a more efficient method for up-
dating the map can be applied by integrating path planning into the map update process.
The path planner could extract information from the map (dynamic pose graph) to decide
which locations the robot should revisit and plan paths based on the potential for data
at these locations to change. Second, with the collection of large amounts of spatiotem-
poral data a number of pattern recognition techniques can be applied in order to learn
probabilistic model for change at various locations. Thirdly, the map representation can be
improved to be able to handle user queries about the environment.

Another key area for future research is in active exploration and map maintenance of
a dynamic environment. The robot will need to trade-off exploration of new areas in the
environment or returning to previously visited area [63]. Developing a policy to actively
explore a dynamic environment given the dynamic map would allow the robot to maintain
an up-to-date map and use the active map to localize off the “more static” parts of the
environment. A probabilistic model to represent changes in the dynamic map can be used
to determine which places the robot revisits. Given the current environment model and the
registration policy, a measure of ”freshness” of the active and dynamic maps can be given.
Freshness, a term adopted from web search engines [13,14], and in mobile robot mapping
it can be used to denote the percentage of the active map that are up-to-date within a given
period.
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Appendix A

Trajectory Estimation Problem
Formulation

In feature-based SLAM, the map is represented as a set of features or landmarks. Features
can be extracted from measurements and are denoted d;, the set of features detected from
measurement z;. Determining the correspondences between measurements and features
is called the data association problem [5,56] and is not addressed in this thesis. The prob-
abilistic formulation for the full SLAM posterior is given as,

P(X1:t7M7 Dl:t|let7U1:t—1)- (A]-)

This sections summarizes the least-squares problem formulation for computing the full
state history. The aim is to compute the maximum-likelihood estimate for the trajectory
given the measurements and control inputs.

The posterior for the robot state history is,

P(Xl:t‘Zlitu Ul:t—l)‘ (AZ)
We apply Bayes’ theorem to Equation (A.2) to get the following,
P(2t| Z14-1, Uty X1:4) P(X1:4| Z1:4-1, Urt) P(Z1:0-1, Ut

P(z|Z1:4—1, Urt) P(Z1:4—1, Ur:)
= nP(%|Z14-1,Urs, X14) P(X1:4| Z1:4-1, Urt) s

P(Xl;t|let> Ul:tfl) =

where n = 1/P(Z|Z1.4—1, U1.t). We can apply the Markov assumption, commonly used
in SLAM [4], for the first term,

P(z¢|Z1:4-1, Ure, X14) = P(2e| X1t)- (A.3)

The second term in A.3 is factored and becomes,

P(X1:4|Z1:4-1,Ur:t) = P(xe| X1:6—1, Z14—1, Ur:t) P(X14—1]Z1:4—1, Ur:e). (A4)

The Markov assumption is applied to get,
Pzt X1, Z14—1,Ura) = P(mefwi—1, wp). (A5)
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Then Equation A.4 becomes,

P(X1.4|Z1:4-1,Urt) = P(X¢|ze—1,ue) P(X1:—1]Z1:4—1, Ure). (A.6)

By combining the above equations we are able to get the following recursive formula,

P(X1.4|Z1:4, Urt) = nP(Z| X1.4) P(X¢|2e—1, ue) P(X1:4—1]Z1:6—1, Ur:t). (A7)

Then we apply induction over time to Equation (A.7), and get
P(X1:4|Z1:¢, Urit) = nP(z1) Hp(xt’utvxt—l)a (A.8)
t

Oftentimes the prior on the initial pose, x1, is dropped from Equation (A.8), resulting
in

P(X1.4|Z1:4,Uit) =1 H P(x|ug, z4-1). (A9)
t

Additionally, P(z¢|u, z;—1) is known as the posterior distribution for the robot motion
model. We adopt the common SLAM assumption to formulate the robot’s motion model
[4,36] as the following Gaussian noise model, where w; is zero-mean Gaussian noise with
covariance (),

xy < fr(wi—1, ue) + wy. (A.10)

Applying the Gaussian assumption to Equation (A.10) results in the following posterior
probability [4],

P(xt\ut, l'tfl) X exp[—l%(xt — ft(l‘tfl, ut)))\t_l(:ct — ft(l't—l, ut))] (Al])

As a result, the full trajectory posterior given in Equation (A.11) is a function of the
robot motion model which adheres to a zero-mean Gaussian noise model. In the following
section, we outline the method used to compute the posterior by adopting a least squares
problem formulation [16,42,69].

A1 Trajectory Estimation as Least Squares Formulation

The pose graph SLAM problem computes the minimum of the sum of all constraints in
the pose graph. The constraints are nonlinear, as a result or the robot’s rotation. Thus
non-linear least squares methods are applied to find the minimum, globally consistent
solution. Here we show the least squares problem formulation for the trajectory estimation
as follows,

X1y = aramaxP(XlztIZu, U). (A.12)

1:t

Then we can expand Equation (A.12) and substitute in Equation (A.8) to get the follow-
ing,
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argmax P(X1.4|Z1.4, U1.)

Xl:t
= argmin —logP(X1.4|Z1:4,U1:t)
X1t
= argmin—logn H P(zug, x4—1)
Xl:t

t
= argmin|[—logn + Z —log P(z¢|ue, x4—1).
X1t t
Finally, we substitute in the motion model which results in the following,
X+, = constant + argmin[» _(z¢ — fr(zi-1,u)) N~ (21 — fulmio1, w))] (A.13)

Xl:t t

If we linearize the motion model then we form a linear least squares problem.
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