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Motivation

Expressible in Linear temporal logic (LTL), a flexible specification language 
used in:

• Synthesis of verifiable controllers[1]

• Reinforcement learning[2]

• Goal description in symbolic planning[3]

Aim: Infer task specifications from demonstrations

Approach: Bayesian specification inference for task specifications as LTL 
formula

Bayesian Formulation

𝑃 𝜑 𝑫 =
𝑃 𝜑 𝑃(𝑫|𝜑)

σ𝜑∈𝝋𝑃 𝜑 𝑃(𝑫|𝜑)

• 𝑃(𝜑) must have positive support over all relevant formulas.

• 𝑃(𝑫|𝜑) is the likelihood distribution that honors the size principle:
• Large likelihood for complex formula.
• Small likelihood for simple formula
• Number of conjunctions a measure of formula complexity

• Probabilistic programming languages for sampling based inference[4]

Formula Template

• Every possible LTL formula forms an intractable hypothesis space
• Complex specifications are constructed as compositions of simpler sub-formulas[5]

Key Idea: Define hypothesis space as a conjunction of three templates

Global satisfaction:

Eventual Completion:

Ordering:

𝑆𝑢𝑝𝑝 𝑃 𝜑𝑜𝑟𝑑𝑒𝑟 = 𝑠𝑢𝑝𝑝 𝑃 𝑾𝟐 = All directed acyclic graphs (DAG) over 𝛀

We consider three restrictions

Demonstrator state 
and trajectory

Subtasks:
𝜔𝑖; 𝑖 ∈ 𝛀

True if in the tolerance regions

Threats/Constraints
𝜏𝑗 ∈ 𝑻

False if in the avoidance regions

Conditions
𝜋𝑖

True if waypoint outside an avoidance zone
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Specifications for setting a dinner table:
• Necessity of object placements
• Correct object positions
• No collisions
• Placement orders

Not Markovian in object poses

𝜑𝑔𝑙𝑜𝑏𝑎𝑙 =ሥ

𝜏∈𝝉

𝑮𝜏 𝝉 ⊆ 𝑻
𝑃 𝜑𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑃 𝝉

𝑆𝑢𝑝𝑝 𝑃 𝝉 = ℘(𝑻)

𝜑𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙 = ሥ

𝑖 ∈ 𝐖𝟏

𝜋𝑖 → 𝑭𝜔𝑖 𝐖𝟏 ⊆ 𝛀
𝑃 𝜑𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙 = 𝑃 𝑾𝟏

𝑆𝑢𝑝𝑝 𝑃 𝑾𝟏 = ℘(𝛀)

𝜑𝑜𝑟𝑑𝑒𝑟 = ሥ

𝑤1,𝑤2∈𝑾𝟐

𝜋𝑖 → ¬𝜔𝑤2
𝑼𝜔𝑤1 𝑾𝟐 = { 𝑤1, 𝑤2 : 𝑤1 ∈ 𝛀,w2 ∈ 𝑑𝑒𝑠𝑐(𝑤1)}

Linear Chains Set of linear chains Forest of subtasks

Likelihood Function
Complexity-based likelihood function (CB):

𝑃( 𝜶 ⊨ 𝜑1|𝜑1)

𝑃( 𝜶 ⊨ 𝜑2|𝜑2)
=
2𝑁𝑐𝑜𝑛𝑗1

2𝑁𝑐𝑜𝑛𝑗2
𝑃 𝜶 ¬⊨ 𝜑1 𝜑1
𝑃( 𝜶 ⊨ 𝜑1|𝜑1)

=
𝜖

2𝑁𝑐𝑜𝑛𝑗1

Complexity-independent likelihood function (CI):
𝑃 𝒙 ⊨ 𝜑 𝜑

𝑃( 𝒙 ¬⊨ 𝜑|𝜑)
= 𝑀

𝑀 is a large number

Priors
𝑃 𝜑 = 𝑃 𝜑𝑔𝑙𝑜𝑏𝑎𝑙 𝑃 𝜑𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙 𝑃 𝜑𝑜𝑟𝑑𝑒𝑟

Prior distributions induced by probabilistic program

1. RandomPermuation(𝛀)
2. For 𝑖 ∈ 𝛀 do:

I. Insert into forest:
i. Sample Categorical([Trees], NewTree)
ii. if NewTree create new tree as sibling
iii. Else, Insert into tree for descendant forest of selected tree

Categorical probabilities proportional to tree size

Probability of starting a new tree proportional to 𝑁𝑛𝑒𝑤

Metrics
If ground-truth specification defined by 𝝉∗,𝑾𝟏

∗ ,𝑾𝟐
∗ , compute 

IOU as follows:

𝐿 𝜑 =
𝝉 ∩ 𝝉∗ + 𝑾𝟏 ∩𝑾𝟏

∗ + |𝑾𝟐 ∩𝑾𝟐
∗ |

𝝉 ∪ 𝝉∗ + 𝑾𝟏 ∪𝑾𝟏
∗ + |𝑾𝟐 ∪𝑾𝟐

∗ |

Over the posterior 𝑃 𝜑 𝑫 , compute 

Results
Synthetic Domain

Scenario 1
Visit POI in order 
[1,2,3,4,5]

Scenario 2
Visit POI in order 
{[1,3,5],[2],[4]}

CB vs CI: Effect of Size principle

Scenario 1 (Fully ordered) using Prior 1 (Linear Chains)

• CB performs better 
with more training 
examples

• CB posterior has 
greater confidence in 
predictions

Efficacy across scenarios

Scenario 1: Priors 2 and 3 Scenario 2: Priors 2 and 3

• >90% similarity to 
ground truth with 
more than 10 
demonstrations

Dinner Table Domain

• 6 Demonstrators with 4 
configurations

• 8 Dinner table objects
• >90% similarity to 

ground truth
• Prior 3 shows inductive 

bias towards longer task 
chains


