

Planning with Uncertain Specifications

RSS 2019 Workshop on Combining Learning with Reasoning

Ankit Shah, Julie Shah {ajshah, arnoldj}@mit.edu

Motivation

- Linear temporal logic (LTL) formulas are an expressive means for specifying non-Markovian tasks.
- Prior research relies on LTL to automaton compilation for planning. However this is restricted to a single LTL formula.
- In many application there is an inherent uncertainty in specifications. [1],[2]
- In general specifications are expressed as a belief $P(\varphi)$ over support $\{\varphi\}$.

Question 1: What does satisfying a belief $P(\varphi)$ mean?

Question 2: How do we plan for a collection of LTL formulas $\{\varphi\}$?

Formulation

- Given:
 - $x \in X$: Learner's state representations.
 - $\alpha = f(x)$; $\alpha \in \{0,1\}^{n_{prop}}$: Learner's labeling function and task propositions.
 - A: Learners set of available actions
 - $P(\varphi)$: The task specification as belief over formulas with support $\{\varphi\}$.
- Expected output:
 - $\pi_{P(\varphi)}(\mathbf{x})$: A stochastic policy that best satisfies $P(\varphi)$.

Evaluation Criteria

Most Likely

$$1([\alpha] \models \varphi^*)$$
$$\varphi^* = argmax_{\varphi \in \{\varphi\}} P(\varphi)$$

Satisfy only the most likely formula.

Maximum Coverage

$$\frac{1}{|\{\varphi\}|} \sum_{\varphi \in \{\varphi\}} \mathbb{1}([\alpha] \vDash \varphi^*)$$

Satisfy the largest set of unique formulas.

Minimum Regret

$$\sum_{\varphi \in \{\varphi\}} P(\varphi) \mathbb{1}([\alpha] \models \varphi^*)$$

Maximize satisfaction weighted by probability.

Chance Constrained

$$\sum_{\varphi \in \varphi^{\delta}} P(\varphi) \mathbb{1}([\alpha] \models \varphi^*)$$

 δ is the maximum failure probability.

Automata/MDP Compilation

 $P(\varphi_1) = 0.05$ $G \neg T0 \land FW3 \land \neg W3 \ U \ W2 \land \neg W2 \ U \ W1$

 $P(\varphi_2) = 0.15$ $G \neg T0 \land FW1 \land FW2 \land FW3$

 $P(\varphi_3) = 0.8$ $G \neg T0 \land FW3$

9 states

3 states

Composite automaton $\mathcal{M}_{\{\varphi\}}=\langle\{\langle\varphi'\rangle\},\{0,1\}^{n_{prop}},T_{\{\varphi\}},R\rangle$

- Naïve cross-product: 135 states
- Minimal automaton: 11 states
- Determine task success and reward.

Environment MDP $\mathcal{M}_{env} = \langle X, A, T_{env} \rangle$:

- Determines available actions.
- Determines changes to environment state.

Cross product $\mathcal{M}_{\{\varphi\}} \times \mathcal{M}_{env} = \mathcal{M}_{spec}$

$$\mathcal{M}_{spec} = \langle \{ \langle \varphi' \rangle \} \times X, A, T_{spec}, R \rangle$$

$$T_{spec}(\langle \langle \varphi'_1 \rangle, x_1 \rangle, \langle \langle \varphi'_2 \rangle, x_2 \rangle) = T_{\{\varphi\}}(\langle \varphi'_1 \rangle, \langle \varphi'_2 \rangle) \times T_{env}(x_1, x_2)$$

Results

Max coverage/Min regret

Chance constrained $\delta=0.1$

important.

Classes of belief distributions:

Nature of task executions depends on:

- Nature of distribution.
- Choice of Evaluation criterion.
- Exploration strategy in RL algorithm.

Discussion

- MDP compilation admits formulas of the *Obligation* class of temporal properties.
- Any RL algorithm can be used to solve the compiled MDP, but exploration vs exploitation considerations are still important.

Future Work

- Algorithms to exploit the composition of $\mathcal{M}_{\{oldsymbol{arphi}\}}$ and \mathcal{M}_{env}
- Scaffolding of reward based on automaton structure.
- Allowing temporal properties like *Recurrence, Persistence* and *Reactivity*

[1] Shah, A., Kamath, P., Shah, J. A., & Li, S. (2018). Bayesian inference of temporal task specifications from demonstrations. In *Advances in Neural Information Processing Systems* (pp. 3804-3813).
[2] Kim, J., Banks, C. J., & Shah, J. A. (2017, February). Collaborative planning with encoding of users' high-

Most Likely

Interactive

