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Abstract. This paper considers two questions in cryptography.

Cryptography Secure Against Memory Attacks. A particularly devastating
side-channel attack against cryptosystems, termed the “memory attack”, was pro-
posed recently. In this attack, a significant fraction of the bits of a secret key of
a cryptographic algorithm can be measured by an adversary if the secret key is
ever stored in a part of memory which can be accessed even after power has been
turned off for a short amount of time. Such an attack has been shown to com-
pletely compromise the security of various cryptosystems in use, including the
RSA cryptosystem and AES.
We show that the public-key encryption scheme of Regev (STOC 2005), and the
identity-based encryption scheme of Gentry, Peikert and Vaikuntanathan (STOC
2008) are remarkably robust against memory attacks where the adversary can
measure a large fraction of the bits of the secret-key, or more generally, can com-
pute an arbitrary function of the secret-key of bounded output length. This is
done without increasing the size of the secret-key, and without introducing any
complication of the natural encryption and decryption routines.

Simultaneous Hardcore Bits. We say that a block of bits of x are simulta-
neously hard-core for a one-way function f(x), if given f(x) they cannot be
distinguished from a random string of the same length. Although any candidate
one-way function can be shown to hide one hardcore bit and even a logarithmic
number of simultaneously hardcore bits, there are few examples of one-way or
trapdoor functions for which a linear number of the input bits have been proved
simultaneously hardcore; the ones that are known relate the simultaneous security
to the difficulty of factoring integers.
We show that for a lattice-based (injective) trapdoor function which is a variant of
function proposed earlier by Gentry, Peikert and Vaikuntanathan, an N − o(N)
number of input bits are simultaneously hardcore, where N is the total length of
the input.
These two results rely on similar proof techniques.
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1 Introduction

The contribution of this paper is two-fold.

First, we define a new class of strong side-channel attacks that we call “memory at-
tacks”, generalizing the “cold-boot attack” recently introduced by Halderman et al. [22].
We show that the public-key encryption scheme proposed by Regev [39], and the identity-
based encryption scheme proposed by Gentry, Peikert, and Vaikuntanathan [16] can
provably withstand these side channel attacks under essentially the same intractability
assumptions as the original systems4.

Second, we study how many bits are simultaneously hardcore for the candidate trapdoor
one-way function proposed by [16]. This function family has been proven one-way un-
der the assumption that the learning with error problem (LWE) for certain parameter
settings is intractable, or alternatively the assumption that approximating the length of
the shortest vector in an integer lattice to within a polynomial factor is hard for quan-
tum algorithms [39]. We first show that for the set of parameters considered by [16],
the function family has O( N

logN ) simultaneously hardcore bits (where N is the length
of the input to the function). Next, we introduce a new parameter regime for which
we prove that the function family is still trapdoor one-way and has upto N − o(N) si-
multaneously hardcore bits5, under the assumption that approximating the length of the
shortest vector in an integer lattice to within a quasi-polynomial factor in the worst-case
is hard for quantum algorithms running in quasi-polynomial time.

The techniques used to solve both problems are closely related. We elaborate on the
two results below.

1.1 Security against Memory Attacks

The absolute privacy of the secret-keys associated with cryptographic algorithms has
been the corner-stone of modern cryptography. Still, in practice, keys do get compro-
mised at times for a variety of reasons.

A particularly disturbing loss of secrecy is as a result of side-channel attacks. These
attacks exploit the fact that every cryptographic algorithm is ultimately implemented on
a physical device and such implementations typically enable ‘observations’ which can
be made and measured, such as the amount of power consumption or the time taken
by a particular implementation of a cryptographic algorithm. These side-channel ob-
servations lead to information leakage about secret-keys which can (and have) lead to
complete breaks of systems which have been proved mathematically secure, without
violating any of the underlying mathematical principles or assumptions (see, for exam-
ple, [28, 29, 12, 1, 2]). Traditionally, such attacks have been followed by ad-hoc ‘fixes’
which make particular implementations invulnerable to particular attacks, only to po-
tentially be broken anew by new examples of side-channel attacks.

4 Technically, the assumptions are the same except that they are required to hold for problems
of a smaller size, or dimension. See Informal Theorems 1 and 2 for the exact statements.

5 The statement holds for a particular o(N) function. See Informal Theorem 3.



In their pioneering paper on physically observable cryptography [33], Micali and
Reyzin set forth the goal of building a general theory of physical security against a
large class of side channel attacks which one may call computational side-channel at-
tacks. These include any side channel attack in which leakage of information on secrets
occurs as a result of performing a computation on secrets. Some well-known exam-
ples of such attacks include Kocher’s timing attacks [28], power analysis attacks [29],
and electromagnetic radiation attacks [1] (see [32] for a glossary of examples.) A ba-
sic defining feature of a computational side-channel attack, as put forth by [33] is that
computation and only computation leaks information. Namely, the portions of memory
which are not involved in computation do not leak any information.

Recently, several works [33, 26, 37, 20, 15] have proposed cryptographic algorithms
provably robust against computational side-channel attacks, by limiting in various ways
the portions of the secret key which are involved in each step of the computation [26,
37, 20, 15].

In this paper, we consider an entirely different family of side-channel attacks that are
not included in the computational side-channel attack family, as they violate the basic
premise (or axiom, as they refer to it) of Micali-Reyzin [33] that only computation leaks
information. The new class of attacks, which we call “memory attacks”, are inspired by
(although not restricted to) the “cold-boot attack” introduced recently by Halderman
et al. [22]. The Halderman et al. paper shows how to measure a significant fraction of
the bits of secret keys if the keys were ever stored in a part of memory which could be
accessed by an adversary (e.g. DRAM), even after the power of the machine has been
turned off. They show that uncovering half of the bits of the secret key that is stored
in the natural way completely compromises the security of cryptosystems, such as the
RSA and Rabin cryptosystems.6

A New Family of Side Channel Attacks Generalizing from [22], we define the family
of memory attacks to leak a bounded number of bits computed as a result of applying
an arbitrary function whose output length is bounded by α(N) to the content of the
secret-key of the cryptographic algorithm (where N is the size of the the secret-key).7

Naturally, this family of attacks is inherently parameterized and quantitative in nature.
If α(N) = N , then the attack could uncover the entire secret key at the outset, and there
is no hope for any cryptography. However, it seems that in practice, only a fraction of
the secret key is recovered [22]. The question that emerges is how large a fraction of
the secret-key can leak without compromising the security of the cryptosystems.

For the public-key case (which is the focus of this paper), we differentiate between
two flavors of memory attacks.

The first is non-adaptive α-memory attacks. Intuitively, in this case, a function h
with output-length α(N) (where N is the length of the secret-key in the system) is
first chosen by the adversary, and then the adversary is given (PK, h(SK)), where
(PK,SK) is a random key-pair produced by the key-generation algorithm. Thus, h is

6 This follows from the work of Rivest and Shamir, and later Coppersmith [40, 13], and has been
demonstrated in practice by [22]: their experiments successfuly recovered RSA and AES keys.

7 The special case considered in [22] corresponds to a function that outputs a subset of its input
bits.



chosen independently of the system parameters and in particular, PK. This definition
captures the attack specified in [22] where the bits measured were only a function of
the hardware or the storage medium used. In principle, in this case, one could design
the decryption algorithm to protect against the particular h which was fixed a-priori.
However, this would require the design of new software (i.e, the decryption algorithm)
for every possible piece of hardware (e.g, a smart-card implementing the decryption
algorithm) which is highly impractical. Moreover, it seems that such a solution will
involve artificially expanding the secret-key, which one may wish to avoid. We avoid the
aforementioned disadvantages by showing an encryption scheme that protects against
all leakage functions h (with output of length at most α(N)).

The second, stronger, attack is the adaptive α-memory attacks. In this case, a key-
pair (PK,SK) is first chosen by running the key generation algorithm with security
parameter n, and then the adversary on input PK chooses functions hi adaptively (de-
pending on the PK and the outputs of hj(SK), for j < i) and the adversary receives
hi(SK). The total number of bits output by hi(SK) for all i, is bounded by α(N).

Since we deal with public-key encryption (PKE) and identity-based encryption
(IBE) schemes in this paper, we tailor our definitions to the case of encryption. How-
ever, we remark that similar definitions can be made for other cryptographic tasks such
as digital signatures, identification protocols, commitment schemes etc. We defer these
to the full version of the paper.

New Results on PKE Security. There are two natural directions to take in desiging
schemes which are secure against memory attacks. The first is to look for redundant
representations of secret-keys which will enable battling memory attacks. The works
of [26, 25, 10] can be construed in this light. Naturally, this entails expansion of the
storage required for secret keys and data. The second approach would be to examine
natural and existing cryptosystems, and see how vulnerable they are to memory attacks.
We take the second approach here.

Following Regev [39], we define the learning with error problem (LWE) in dimen-
sion n, to be the task of learning a vector s ∈ Znq (where q is a prime), given m pairs
of the form (ai, 〈ai, s〉 + xi mod q) where ai ∈ Znq are chosen uniformly and inde-
pendently and the xi are chosen from some “error distribution” Ψβ (Throughout, we
one may think of xi’s as being small in magnitude. See section 2 for precise definition
of this error distribution.). We denote the above parameterization by LWEn,m,q,β . The
hardness of the LWE problem is chiefly parametrized by the dimension n: we say that
LWEn,m,q,β is t-hard if no probabilistic algorithm running in time t can solve it.

We prove the following two main theorems.

Informal Theorem 1 Let the parameters m, q and β be polynomial in the security
parameter n. There exist public key encryption schemes with secret-key length N =
n log q = O(n log n) that are:

1. semantically secure against a non-adaptive (N − k)-memory attack, assuming the
poly(n)-hardness of LWEO(k/ logn),m,q,β , for any k > 0. The encryption scheme
corresponds to a slight variant of the public key encryption scheme of [39].



2. semantically secure against an adaptiveO(N/polylog(N))-memory attack, assum-
ing the poly(n)-hardness of LWEk,m,q,β for k = O(n). The encryption scheme is
the public-key scheme proposed by [39].

Informal Theorem 2 Let the parameters m, q and β be polynomial in the security
parameter n. The GPV identity-based encryption scheme [16] with secret-key length
N = n log q = O(n log n) is:

1. semantically secure against a non-adaptive (N − k)-memory attack, assuming the
poly(n)-hardness of LWEO(k/ logn),m,q,β for any k > 0.

2. semantically secure against an adaptiveO(N/polylog(N))-memory attack, assum-
ing the poly(n)-hardness of LWEk,m,q,β for k = O(n).

The parameter settings for these theorems require some elaboration. First, the the-
orem for the non-adaptive case is fully parametrized. That is, for any k, we prove se-
curity in the presence of leakage of N − k bits of information about the secret-key,
under a corresponding hardness assumption. The more the leakage we would like to
tolerate, the stronger the hardness assumption. In particular, setting the parameter k to
be O(N), we prove security against leakage of a constant fraction of the secret-key
bits assuming the hardness of LWE for O(N/ log n) = O(n) dimensions. If we set
k = N ε (for some ε > 0) we prove security against a leakage of all but N ε bits of
the secret-key, assuming the hardness of LWE for a polynomially smaller dimension
O(N ε/ log n) = O((n log n)ε/ log n).

For the adaptive case, we prove security against a leakage of O(N/polylog(N))
bits, assuming the hardness of LWE for O(n) dimensions, where n is the security pa-
rameter of the encryption scheme.

Due to lack of space, we describe only the public-key encryption result in this paper,
and defer the identity-based encryption result to the full version.

Idea of the Proof. The main idea of the proof is dimension reduction. To illustrate the
idea, let us outline the proof of the non-adaptive case in which this idea is central.

The hardness of the encryption schemes under a non-adaptive memory attack relies
on the hardness of computing s givenm = poly(n) LWE samples (ai, 〈ai, s〉+xi mod
q) and the leakage h(s). Let us represent these m samples compactly as (A,As + x),
where the ai are the rows of the matrix A. This is exactly the LWE problem except that
the adversary also gets to see h(s). Consider now the mental experiment where A =
BC, where C ∈ Zm×lq for some l < n. The key observations are that (a) since h(s)
is small, s still has considerable min-entropy given h(s), and (b) matrix multiplication
is a strong randomness extractor. In particular, these two observations together mean
that t = Cs is (statistically close to) random, even given h(s). The resulting expression
now looks like Bt + x, which is exactly the LWE distribution with secret t (a vector in
l < n dimensions). The proof of the adaptive case uses similar ideas in a more complex
way: we refer the reader to Section 3.1 for the proof.

A few remarks are in order.



(Arbitrary) Polynomial number of measurements. We find it extremely interesting to
construct encryption schemes secure against repeated memory attacks, where the com-
bined number of bits leaked can be larger than the size of the secret-key (although any
single measurement leaks only a small number of bits). Of course, if the secret-key is
unchanged, this is impossible. It seems that to achieve this goal, some off-line (random-
ized) refreshing of the secret key must be done periodically. We do not deal with these
further issues in this paper.

Leaking the content of the entire secret memory. The secret-memory may include more
than the secret-keys. For example, results of intermediate computations produced dur-
ing the execution of the decryption algorithm may compromise the security of the
scheme even more than a carefully stored secret-key. Given this, why not allow the def-
inition of memory attacks to measure the entire content of the secret-memory? We have
two answers to this issue. First, in the case of the adaptive definition, when the decryp-
tion algorithm is deterministic (as is the case for the scheme in question and all schemes
in use today), there is no loss of generality in restricting the adversary to measure the
leakage from just the secret-key. This is the case because the decryption algorithm is
itself only a function of the secret and public keys as well as the ciphertext that it re-
ceives, and this can be captured by a leakage function h that the adversary chooses to
apply. In the non-adaptive case, the definition does not necessarily generalize this way;
however, the constructions we give are secure under a stronger definition which allows
leakage from the entire secret-memory. Roughly, the reason is that the decryption algo-
rithm in question can be implemented using a small amount of extra memory, and thus
the intermediate computations are an insignificant fraction of memory at any time.

1.2 Simultaneous Hard-Core Bits

The notion of hard-core bits for one-way functions was introduced very early in the
developement of the theory of cryptography [42, 21, 8]. Indeed, the existence of hard-
core bits for particular proposals of one-way functions (see, for example [8, 4, 23, 27])
and later for any one-way function [17], has been central to the constructions of se-
cure public-key (and private-key) encryption schemes, and strong pseudo-random bit
generators, the cornerstones of modern cryptography.

The main questions which remain open in this area concern the generalized notion
of “simultaneous hard-core bit security” loosely defined as follows. Let f be a one-way
function and h an easy to compute function. We say that h is a simultaneously hard-core
function for f if given f(x), h(x) is computationally indistinguishable from random.
In particular, we say that a block of bits of x are simultaneously hard-core for f(x) if
given f(x), they cannot be distinguished from a random string of the same length (this
corresponds to a function h that outputs a subset of its input bits).

The question of how many bits of x can be proved simultaneously hard-core has
been studied for general one-way functions as well as for particular candidates in [41,
4, 31, 24, 18, 17], but the results obtained are far from satisfactory. For a general one-
way function (modified in a similar manner as in their hard-core result), [17] showed the
existence of an h that outputs O(logN) bits (where we let N denote the length of the
input to the one-way function throughout) which is a simultaneous hard-core function



for f . For particular candidate one-way functions such as the exponentiation function
(modulo a prime p), the RSA function and the Rabin function, [41, 31] have pointed
to particular blocks of O(logN) input bits which are simultaneously hard-core given
f(x).

The first example of a one-way function candidate that hides more thanO(logN) si-
multaneous hardcore bits was shown by Hastad, Schrift and Shamir [24, 18] who proved
that the modular exponentiation function f(x) = gx mod M hides half the bits of x un-
der the intractability of factoring the modulus M . The first example of a trapdoor func-
tion for which many bits were shown simultaneous hardcore was the Pallier function.
In particular, Catalano, Gennaro and Howgrave-Graham [11] showed that N − o(N)
bits are simulatenously hard-core for the Pallier function, under a stronger assumption
than the standard Paillier assumption.

A question raised by [11] was whether it is possible to construct other natural and
efficient trapdoor functions with many simultaneous hardcore bits and in particular,
functions whose conjectured one-wayness is not based on the difficulty of the factoring
problem. In this paper, we present two lattice-based trapdoor functions for which is the
case.

First, we consider the following trapdoor function family proposed in [16]. A func-
tion fA in the family is described by a matrix A ∈ Zm×nq , where q = poly(n) is
prime and m = poly(n). fA takes two inputs s ∈ Znq and a sequence of random bits
r; it first uses r to sample a vector x from (a discretized form of) the Gaussian distri-
bution over Zmq . fA then outputs As + x. The one-wayness of this function is based
on the learning with error (LWE) problem LWEn,m,q,β . Alternatively, the one-wayness
can also be based on the worst-case quantum hardness of poly(n)-approximate shortest
vector problem (gapSVPpoly(n)), by a reduction of Regev [39] from gapSVP to LWE.
We prove that O(N/ logN) bits (where N is the total number of input bits) of fA are
simultaneously hardcore.

Second, for a new setting of the parameters in fA, we show thatN−N/polylog(N)
bits (out of the N input bits) are simultaneously hardcore. The new parameter setting
is a much larger modulus q = npolylog(n), a much smaller m = O(n) and a Gaussian
noise with a much smaller (inverse superpolynomial) standard deviation. At first glance,
it is unclear whether for these new parameter setting, the function is still a trapdoor
(injective) function. To this end, we show that the function is injective, is sampleable
with an appropriate trapdoor (which can be used to invert the function) and that it is one-
way. The one-wayness is based on a much stronger (yet plausible) assumption, namely
the quantum hardness of gapSVP with approximation factor npolylog(n) (For details, see
Section 4.2).

We stress that our results (as well as the results of [24, 18, 11]) show that particular
sets of input bits of these functions are simultaneously hardcore (as opposed to arbitrary
hardcore functions that output many bits).

Informal Theorem 3

1. Let m and q be polynomial in n and let β = 4
√
n/q. There exists an injec-

tive trapdoor function Fn,m,q,β with input length N for which a 1/logN fraction
of the input bits are simultaneously hardcore, assuming the poly(n)-hardness of
LWEO(n),m,q,β .



2. Let m = O(n), q = npolylog(n) and β = 4
√
n/q. There exists an injective trapdoor

function Fn,m,q,β with input lengthN for which a 1−1/polylog(N) fraction of in-
put bits are simultaneously hardcore, assuming the hardness of LWEn/polylog(n),m,q,β .

Our proof is simple and general: one of the consequences of the proof is that a
related one-way function based on the well-studied learning parity with noise problem
(LPN) [7] also has N − o(N) simultaneous hardcore bits. We defer the proof of this
result to the full version due to lack of space.

Idea of the Proof. In the case of security against non-adaptive memory attacks, the
statement we showed (see Section 1.1) is that given A and h(s), As+x looks random.
The statement of hardcore bits is that given A and As+x, h(s) (where h is the particular
function that outputs a subset of bits of s) looks random. Though the statements look
different, the main idea in the proof of security against non-adaptive memory attacks,
namely dimension reduction, carries over and can be used to prove the simultaneous
hardcore bits result also. For details, see Section 4.

1.3 Other Related Work

Brent Waters, in a personal communication, has suggested a possible connection be-
tween the recently proposed notion of deterministic encryption [9, 6], and simultaneous
hardcore bits. In particular, his observation is that deterministic encryption schemes
(which are, informally speaking, trapdoor functions that are uninvertible even if the in-
put comes from a min-entropy source) satisfying the definition of [9] imply trapdoor
functions with many simultaneous hardcore bits. Together with the construction of de-
terministic encryption schemes from lossy trapdoor functions [36] (based on DDH and
LWE), this gives us trapdoor functions based on DDH and LWE with many simulta-
neous hardcore bits. However, it seems that using this approach applied to the LWE
instantiation, it is possible to get only o(N) hardcore bits (where N is the total num-
ber of input bits); roughly speaking, the bottleneck is the “quality” of lossy trapdoor
functions based on LWE. In contrast, in this work, we achieve N − o(N) hardcore bits.

Recently, Peikert [34] has shown a classical reduction from a variant of the worst-
case shortest vector problem (with appropriate approximation factors) to the average-
case LWE problem. This, in turn, means that our results can be based on the classical
worst-case hardness of this variant shortest-vector problem as well.

A recent observation of [38] surprisingly shows that any public-key encryption
scheme is secure against an adaptive α(N)-memory attack, under (sub-)exponential
hardness assumptions on the security of the public-key encryption scheme. Slightly
more precisely, the observation is that any semantically secure public-key encryption
scheme that cannot be broken in time roughly 2α(N) is secure against an adaptive α(N)-
memory attack. In contrast, the schemes in this paper make only polynomial hardness
assumptions. (See Section 3.1 for more details).

2 Preliminaries and Definitions

We will let bold capitals such as A denote matrices, and bold small letters such as a
denote vectors. x · y denotes the inner product of x and y. If A is an m× n matrix and



S ⊆ [n] represents a subset of the columns of A, we let AS denote the restriction of A
to the columns in S, namely the m× |S| matrix consisting of the columns with indices
in S. In this case, we will write A as [AS ,AS ].

A problem is t-hard if no (probabilistic) algorithm running in time t can solve it.
When we say that a problem is hard without further qualification, we mean that it is
poly(n)-hard, where n is the security parameter of the system (which is usually explic-
itly specified).

2.1 Cryptographic Assumptions

The cryptographic assumptions we make are related to the hardness of learning-type
problems. In particular, we will consider the hardness of learning with error (LWE); this
problem was introduced by Regev [39] where he showed a relation between the hard-
ness of LWE and the worst-case hardness of certain problems on lattices (see Proposi-
tion 1).

We now define a probability distribution As,χ that is later used to specify this prob-
lem. For positive integers n and q ≥ 2, a vector s ∈ Znq and a probability distribution
χ on Zq , define As,χ to be the distribution obtained by choosing a vector ai ∈ Znq uni-
formly at random, a noise-term xi ∈ Zq according to χ and outputting (ai, 〈ai, s〉+xi),
where addition is performed in Zq .8

Learning With Error (LWE). Our notation here follows [39, 35]. The normal (or the
Gaussian) distribution with mean 0 and variance σ2 (or standard deviation σ) is the
distribution on R with density function 1

σ·
√

2π
exp(−x2/2σ2).

For β ∈ R+ we define Ψβ to be the distribution on T = [0, 1) of a normal variable
with mean 0 and standard deviation β/

√
2π, reduced modulo 1.9 For any probability

distribution φ : T→ R+ and an integer q ∈ Z+ (often implicit) we define its discretiza-
tion φ̄ : Zq → R+ to be the distribution over Zq of the random variable bq ·Xφe mod q,
where Xφ has distribution φ.10 In our case, the distribution Ψβ over Zq is defined by
choosing a number in [0, 1) from the distribution Ψβ , multiplying it by q, and rounding
the result.

Definition 1. Let s ∈ Znq be uniformly random. Let q = q(n) and m = m(n) be
integers, and let χ(n) be the distribution Ψβ with parameter β = β(n). The goal of
the learning with error problem in n dimensions, denoted LWEn,m,q,β , is to find s (with
overwhelming probability) given access to an oracle that outputs m samples from the
distribution As,χ. The goal of the decision variant LWE-Distn,m,q,β is to distinguish
(with non-negligible probability) between m samples from the distribution As,χ and m
uniform samples over Znq × Zq . We say that LWEn,m,q,β (resp. LWE-Distn,m,q,β) is
t-hard if no (probabilistic) algorithm running in time t can solve it.

8 Here, we think of n as the security parameter, and q = q(n) and χ = χ(n) as functions of n.
We will sometimes omit the explicit dependence of q and χ on n.

9 For x ∈ R, x mod 1 is simply the fractional part of x.
10 For a real x, bxe is the result of rounding x to the nearest integer.



The LWE problem was introduced by Regev [39], where he demonstrated a con-
nection between the LWE problem for certain moduli q and error distributions χ, and
worst-case lattice problems. In essence, he showed that LWE is as hard as solving sev-
eral standard worst-case lattice problems using a quantum algorithm. We state a version
of his result here. Informally, gapSVPc(n) refers to the (worst-case) promise problem
of distinguishing between lattices that have a vector of length at most 1 from ones that
have no vector shorter than c(n) (by scaling, this is equivalent to distinguishing between
lattices with a vector of length at most k from ones with no vector shorter than k ·c(n)).

Proposition 1 ([39]). Let q = q(n) be a prime and β = β(n) ∈ [0, 1] be such that
βq > 2

√
n. Assume that we have access to an oracle that solves LWEn,m,q,β . Then,

there is a polynomial (in n and m) time quantum algorithm to solve gapSVP200n/β for
any n-dimensional lattice.

We will use Proposition 1 as a guideline for which parameters are hard for LWE.
In particular, the (reasonable) assumption that gapSVPnpolylog(n) is hard to solve in quasi-
polynomial (quantum) time implies that LWEn,m,q,β (as well as LWE-Distn,m,q,β) where
q = npolylog(n) and β = 2

√
n/q is hard to solve in polynomial time.

Regev [39] also showed that an algorithm that solves the decision version LWE-Dist
withm samples implies an algorithm that solves the search version LWE in time poly(n, q).

Proposition 2. There is a polynomial (in n and q) time reduction from the search ver-
sion LWEn,m,q,β to the decision version LWE-Distn,m·poly(n,q),q,β , and vice versa (for
some polynomial poly).

Sampling Ψβ . The following proposition gives a way to sample from the distribution
Ψβ using few random bits. This is done by a simple rejection sampling routine (see, for
example, [16]).

Proposition 3. There is a PPT algorithm that outputs a vector x whose distribution
is statistically close to Ψ

m

β (namely, m independent samples from Ψβ) using O(m ·
log(qβ) · log2 n) uniformly random bits.

2.2 Defining Memory Attacks

In this section, we define the semantic security of public-key encryption schemes against
memory attacks. The definitions in this section can be extended to other cryptographic
primitives as well; these extensions are deferred to the full version. We proceed to de-
fine semantic security against two flavors of memory attacks, (the stronger) adaptive
memory attacks and (the weaker) non-adaptive memory attacks.

Semantic Security Against Adaptive Memory Attacks. In an adaptive memory attack
against a public-key encryption scheme, the adversary, upon seeing the public-key PK,
chooses (efficiently computable) functions hi adaptively (depending on PK and the
outputs of hj(SK) for j < i) and receives hi(SK). This is called the probing phase.
The definition is parametrized by a function α(·), and requires that the total number
of bits output by hi(SK) for all i is bounded by α(N) (where N is the length of the
secret-key).



After the probing phase, the adversary plays the semantic security game, namely
he chooses two messages (m0,m1) of the same length and gets ENCPK(mb) for a
random b ∈ {0, 1} and he tries to guess b. We require that the adversary guesses the bit
b with probability at most 1

2 + negl(n), where n is the security parameter and negl is
a negligible function. We stress that the adversary is allowed to get the measurements
hi(SK) only before he sees the challenge ciphertext. The formal definition follows.

Definition 2 (Adaptive Memory Attacks). Let α : N→ N be a function, and letN be
the size of the secret-key output by GEN(1n). Let HSK be an oracle that takes as input
a polynomial-size circuit h and outputs h(SK). A PPT adversary A = (AHSK1 , A2) is
called admissible if the total number of bits that A gets as a result of oracle queries to
HSK is at most α(N).

A public-key encryption scheme PKE = (GEN, ENC, DEC) is semantically secure
against adaptive α(N)-memory attacks if for any admissible PPT adversary A =
(A1, A2), the probability that A wins in the following experiment differs from 1

2 by
a negligible function in n.

(PK, SK)← GEN(1n)
(m0,m1, state)← AHSK1 (PK) s.t. |m0| = |m1|
y ← ENCPK(mb) where b ∈ {0, 1} is a random bit
b′ ← A2(y, state)

The adversary A wins the experiment if b′ = b.

The definitions of security for identity-based encryption schemes against memory
attacks is similar in spirit, and is deferred to the full version.

Semantic Security Against Non-Adaptive Memory Attacks. Non-adaptive memory at-
tacks capture the scenario in which a polynomial-time computable leakage function h
whose output length is bounded by α(N) is fixed in advance (possibly as a function
of the encryption scheme, and the underlying hardware). We require that the encryp-
tion scheme be semantically secure even if the adversary is given the auxiliary input
h(SK). We stress that h is chosen independently of the public-key PK. Even though
this is much weaker than the adaptive definition, schemes satisfying the non-adaptive
definition could be much easier to design and prove (as we will see in Section 3). More-
over, in some practical scenarios, the leakage function is just a characteristic of the
hardware and is independent of the parameters of the system, including the public-key.
The formal definition follows.

Definition 3 (Non-adaptive Memory Attacks). Let α : N → N be a function, and
let N be the size of the secret-key output by GEN(1n). A public-key encryption scheme
PKE = (GEN, ENC, DEC) is semantically secure against non-adaptive α(N)-memory
attacks if for any function h : {0, 1}N → {0, 1}α(N), and any PPT adversary A =
(A1, A2), the probability that A wins in the following experiment differs from 1

2 by a
negligible function in n:



(PK, SK)← GEN(1n)
(m0,m1, state)← A1(PK, h(SK)) s.t. |m0| = |m1|
y ← ENCPK(mb) where b ∈ {0, 1} is a random bit
b′ ← A2(y, state)

The adversary A wins the experiment if b′ = b.

Remarks about the Definitions

A Simpler Definition that is Equivalent to the adaptive definition. We observe that with-
out loss of generality, we can restrict our attention to an adversary that outputs a single
function h (whose output length is bounded by α(N)) and gets (PK, h(PK,SK))
(where (PK,SK) ← GEN(1n)) as a result. Informally, the equivalence holds because
the adversary can encode all the functions hi (that depend on PK as well as hj(SK)
for j < i) into a single polynomial-size circuit h that takes PK as well as SK as inputs.
We will use this formulation of Definition 2 later in the paper.

The Dependence of the Leakage Function on the Challenge Ciphertext. In the adaptive
definition, the adversary is not allowed to obtain h(SK) after he sees the challenge
ciphertext. This restriction is necessary: if we allow the adversary to choose h depend-
ing on the challenge ciphertext, he can use this ability to decrypt it (by letting h be the
decryption circuit and encoding the ciphertext into h), and thus the definition would be
unachievable.

A similar issue arises in the definition of CCA2-security of encryption schemes,
where the adversary should be prohibited from querying the decryption oracle on the
challenge ciphertext. Unfortunately, whereas the solution to this issue in the CCA2-
secure encryption case is straightforward (namely, explicity disallow querying the de-
cryption oracle on the challenge ciphertext), it seems far less clear in our case.

The Adaptive Definition and Bounded CCA1-security. It is easy to see that a bit-
encryption scheme secure against an adaptiveα(N)-memory attack is also secure against
a CCA1 attack where adversary can make at most α(N) decryption queries (also called
an α(N)-bounded CCA1 attack).

3 Public-key Encryption Secure Against Memory Attacks

In this section, we construct a public-key encryption scheme that is secure against mem-
ory attacks. In Section 3.1, we show that the Regev encryption scheme [39] is secure
against adaptive α-memory attacks, for α(N) = O( N

logN ), under the assumption that
LWEO(n),m,q,β is poly(n)-hard (where n is the security parameter and N = 3n log q is
the length of the secret-key). The parameters q,m and β are just as in Regev’s encryp-
tion scheme, described below.

In Section 3.2, we show that a slight variant of Regev’s encryption scheme is se-
cure against non-adaptive (N − k)-memory attacks, assuming the poly(n)-hardness of
LWEO(k/ logn),m,q,β . On the one hand, this allows the adversary to obtain more infor-
mation about the secret-key but on the other hand, achieves a much weaker (namely,
non-adaptive) definition of security.



The Regev Encryption Scheme. First, we describe the public-key encryption scheme
of Regev, namely RPKE = (RGEN, RENC, RDEC) which works as follows. Let n be
the security parameter and let m(n), q(n), β(n) ∈ N be parameters of the system. For
concreteness, we will set q(n) be a prime between n3 and 2n3, m(n) = 3n log q and
β(n) = 4

√
n/q.

– RGEN(1n) picks a random matrix A ∈ Zm×nq , a random vector s ∈ Znq and a vector
x← Ψ

m

β (that is, where each entry xi is chosen independently from the probability
distribution Ψβ). Output PK = (A,As + x) and SK = s.

– RENC(PK, b), where b is a bit, works as follows. First, pick a vector r at random
from {0, 1}m. Output (rA, r(As + x) + bb q2e) as the ciphertext.

– RDEC(SK, c) first parses c = (c0, c1), computes b′ = c1 − c0 · s and outputs 0 if b′

is closer to 0 than to q
2 , and 1 otherwise.

Decryption is correct because the value b′ = r · x + bbq/2c computed by the de-
cryption algorithm is very close to bbq/2c: this is because the absolute value of r · x is
much smaller than q/4. In particular, since ||r||2 ≤

√
m and ||x||2 ≤ mqβ = 4m

√
n

with high probability, |r · x| ≤ ||r||2||x||2 ≤ 4m
√
mn� q/4.

3.1 Security Against Adaptive Memory Attacks

Let N = 3n log q be the length of the secret-key in the Regev encryption scheme. In
this section, we show that the scheme is secure against α(N)-adaptive memory attacks
for any α(N) = O( N

logN ), assuming that LWEO(n),m,q,β is poly(n)-hard, where m, q
and β are as in encryption scheme described above.

Theorem 1. Let the parametersm, q and β be as in RPKE. Assuming that LWEO(n),m,q,β

is poly(n)-hard, the scheme is semantically secure against adaptive α(N)-memory at-
tacks for α(N) ≤ N/10 logN .

Proof. (Sketch.) First, we observe that without loss of generality, we can restrict our at-
tention to an adversary that outputs single function h (whose output length is bounded
by α(N)) and the adversary gets (PK, h(PK,SK)) as a result. Informally, the equiv-
alence holds because the adversary can encode all the functions hi (that depend on PK
as well as hj(SK) for j < i) into a single polynomial (in n) size circuit h that takes
PK as well as SK as inputs.

Thus, it suffices to show that for any polynomial-size circuit h,

(PK, ENCPK(0), h(PK,SK)) ≈c (PK, ENCPK(1), h(PK,SK))

In our case, it suffices to show the following statement (which states that the encryption
of 0 is computationally indistinguishable from uniform)

(A,As + x, rA, r(As + x), h(A, s,x)) ≈c (A,As + x,u, u′, h(A, s,x)) (1)

where u ∈ Znq and u′ ∈ Zq are uniformly random and independent of all other com-
ponents. That is, the ciphertext is computationally indistinguishable from uniformly
random, given the public-key and the leakage h(PK,SK).



We will in fact show a stronger statement, namely that

(A,As + x, rA, rAs, h(A, s,x), rx) ≈c (A,As + x,u, u′, h(A, s,x), rx) (2)

The difference between (1) and (2) is that in the latter, the distributions also contain the
additional information r ·x. Clearly, this is stronger than (1). We show (2) in four steps.

Step 1. We show that rA can be replaced with a uniformly random vector in Znq
while maintaining statistical indistinguishability, even given A,As + x, the leakage
h(A, s,x) and r · x. More precisely,

(A,As+x, rA, rAs, h(A, s,x), r ·x) ≈s (A,As+x,u,u · s, h(A, s,x), r ·x) (3)

where u ∈ Znq is uniformly random.
Informally, 3 is true because of the leftover hash lemma. (A variant of) leftover

hash lemma states that if (a) r is chosen from a distribution over Znq with min-entropy
k ≥ 2n log q + ω(log n), (b) A is a uniformly random matrix in Zm×nq , and (c) the
distributions of r and A are statistically independent, then (A, rA) ≈s (A,u) where
u is a uniformly random vector in Znq . Given r ·x (which has length log q = O(log n)),
the residual min-entropy of r is at least m − log q ≥ 2n log q + ω(log n). Moreover,
the distribution of r given r · x depends only on x, and is statistically independent of
A. Thus, leftover hash lemma applies and rA can be replaced with a random vector u.

Step 2. This is the crucial step in the proof. Here, we replace the (uniformly random)
matrix A with a matrix A′ drawn from another distribution D. Informally, the (effi-
ciently sampleable) distribution D satisfies two properties: (1) a random matrix drawn
from D is computationally indistinguishable from a uniformly random matrix, assum-
ing the poly(n)-hardness of LWEO(n),m,q,β , and (2) given A′ ← D and y = A′s + x,
the min-entropy of s is at least n. The existence of such a distribution follows from
Lemma 1 below.

The intuition behind this step is the following: Clearly, As + x is computationally
indistinguishable from A′s + x. Moreover, given A′s + x, s has high (information-
theoretic) min-entropy. Thus, in some informal sense, s has high “computational en-
tropy” given As + x. This is the intuition for the next step.

Summing up, the claim in this step is that

(A,As+x,u,u · s, h(A, s,x), r ·x) ≈c (A′,A′s+x,u,u · s, h(A′, s,x), r ·x) (4)

where A′ ← D. This follows directly from Lemma 1 below.

Step 3. By Lemma 1, s has min-entropy at least n ≥ N
9 logN given A′s + x. Since

the output length of h is at most N
10 logN and the length of r · x is log q = O(log n), s

still has residual min-entropy ω(log n) given A′,A′s + x, h(A′, s,x) and r · x. Note
also that the vector u on the left-hand side distribution is independent of (A,As +
x, h(A, s,x), r · x). This allows us to apply leftover hash lemma again (with u as the
“seed” and s as the min-entropy source). Thus,

(A′,A′s+x,u,u · s, h(A′, s,x), r ·x) ≈s (A′,A′s+x,u, u′, h(A′, s,x), r ·x) (5)

where u′ ← Zq is uniformly random and independent of all the other components in
the distribution.



Step 4. In the last step, we switch back to a uniform matrix A. That is,

(A′,A′s + x,u, u′, h(A′, s,x), r · x) ≈c (A,As + x,u, u′, h(A, s,x), r · x) (6)

Putting the four steps together proves (2). ut

Lemma 1. There is a distribution D such that

– A ← UZm×nq
≈c A′ ← D, assuming the poly(n)-hardness of LWEO(n),m,q,β ,

where m, q, β are as in Regev’s encryption scheme.
– The min-entropy of s given A′s + x is at least n. That is, H∞(s |A′s + x) ≥ n 11.

Remark: The above lemma is a new lemma proved in [19]; it has other consequences
such as security under auxiliary input, which is beyond the scope of this paper.

A Different Proof of Adaptive Security under (Sub-)Exponential Assumptions. Inter-
estingly, [38] observed that any public-key encryption scheme that is 2α(N)-hard can
be proven to be secure against α(N) adaptive memory attacks. In contrast, our result
(Theorem 1) holds under a standard, polynomial (in the security parameter n) hardness
assumption (for a reduced dimension, namely O(n)). We sketch the idea of the [38]
proof here.

The proof follows from the existence of a simulator that breaks the standard se-
mantic security with probability 1

2 + ε
2α(N) given an adversary that breaks the adaptive

α(N)-memory security with probability 1
2 + ε. The simulator simply guesses the (at

most α(N)) bits of the output of h and runs the adversary with the guess; if the guess is
correct, the adversary succeeds in guessing the encrypted bit with probability 1

2 +ε. The
key observation that makes this idea work is that there is indeed a way for the simulator
to “test” if its guess is correct or wrong: simply produce many encryptions of random
bits and check if the adversary succeeds on more than 1/2 + ε fraction of these encryp-
tions. We remark that this proof idea carries over to the case of symmetric encryption
schemes secure against a chosen plaintext attack (that is, CPA-secure) as well.

3.2 Security Against Non-Adaptive Memory Attacks

In this section, we show that a variant of Regev’s encryption scheme is secure against
non-adaptive N − o(N) memory attacks (where N is the length of the secret-key),
assuming that LWEo(n),m,q,β is poly(n)-hard. The variant encryption scheme differs
from Regev’s encryption scheme only in the way the public-key is generated.

The key generation algorithm picks the matrix A as BC where B is uniformly
random in Zm×kq and C is uniformly random in Zk×nq (as opposed to uniformly random
in Zn×mq ). We will let k = n− α(N)

3 log q (note that k < n). For this modified key-generation
procedure, it is easy to show that the decryption algorithm is still correct. We show:

Theorem 2. The variant public-key encryption scheme outlined above is secure against
a non-adaptive α-memory attack, where α(N) ≤ N − o(N) for some o(N) function,
assuming that LWEo(n),m,q,β is poly(n)-hard, where the parameters m, q and β are
exactly as in Regev’s encryption scheme.
11 The precise statement uses the notion of average min-entropy due to Dodis, Reyzin and

Smith [14].



We sketch a proof of this theorem below. The proof of semantic security of Regev’s
encryption is based on the fact that the public-key (A,As + x) is computationally in-
distinguishable from uniform. In order to show security against non-adaptive memory
attacks, it is sufficient to show that this computational indistinguishability holds even
given h(s), where h is an arbitrary (polynomial-time computable) function whose out-
put length is at most α(N).

The proof of this essentially follows from the leftover hash lemma. First of all,
observe that s has min-entropy at least N − α(N), given h(s) (this is because the
output length of h is at most α(N)). Furthermore, the distribution of s given h(s) is
independent of A (since h depends only on s and is chosen independent of A). By our
choice of parameters,N−α(N) ≥ 3k log q. Thus, leftover hash lemma implies that Cs
is a vector t whose distribution is statistically close to uniform (even given C and h(s)).
Thus, As + x = BCs + x = Bt + x is distributed exactly like the output of an LWE
distribution with dimension k (since t ∈ Zkq ). This is computationally indistinguishable
from random, assuming LWEk,m,q,β = LWEo(n),m,q,β (since k = o(n) by our choice).

4 Simultaneous Hardcore Bits

In this section, we show that variants of the trapdoor one-way function proposed by
Gentry et al [16] (the GPV trapdoor function) has many simultaneous hardcore bits.
For the parameters of [16], we show that a 1/polylog(N) fraction of the input bits are
simultaneously hardcore, assuming the poly(n)-hardness of LWEO(n),m,q,β (here, m
and q are polynomial in n and β is inverse-polynomial in n, the GPV parameter regime).

More significantly, we show a different (and non-standard) choice of parameters
for which the function has N − N/polylog(N) hardcore bits. The choice of parame-
ters is m = O(n), a modulus q = npolylog(n) and β = 4

√
n/q. This result assumes

the poly(n)-hardness of LWEn/polylog(n),m,q,β for these parameters m, q and β. The pa-
rameters are non-standard in two respects: first, the modulus is superpolynomial, and
the noise rate is very small (i.e, inverse super-polynomial) which makes the hardness
assumption stronger. Secondly, the number of samples m is linear in n (as opposed to
roughly n log n in [16]): this affects the trapdoor properties of the function (for more de-
tails, see Section 4.2). Also, note that the hardness assumption here refers to a reduced
dimension (namely, n/polylog(n)).

We remark that for any sufficiently large o(N) function, we can show that the GPV
function is a trapdoor function with N − o(N) hardcore bits for different choices of
parameters. We defer the details to the full version.

4.1 Hardcore Bits for the GPV Trapdoor Function

In this section, we show simultaneous hardcore bits for the GPV trapdoor function.
First, we show a general result about hardcore bits that applies to a wide class of pa-
rameter settings: then, we show how to apply it to get O(N/polylog(N)) hardcore bits
for the GPV parameters, and in Section 4.2, N − N/polylog(N) hardcore bits for our
new setting of parameters.

The collection of (injective) trapdoor functions Fn,m,q,β is defined as follows. Let
m = m(n) be polynomial in n. Each function fA : Znq × {0, 1}r → Zmq is indexed



by a matrix A ∈ Zm×nq . It takes as input (s, r) where s ∈ Znq and r ∈ {0, 1}r, first
uses r to sample a vector x ← Ψ

m

β (that is, a vector each of whose components is
independently drawn from the Gaussian error-distribution Ψβ), and outputs As + x.
Clearly, the one-wayness of this function is equivalent to solving LWEn,m,q,β . Gentry
et al. [16] show that Fn,m,q,β is a trapdoor one-way function for the parameters q =
O(n3), m = 3n log q and β = 4

√
n/q (assuming the hardness of LWEn,m,q,β).

Lemma 2. For any integer n > 0, integer q ≥ 2, an error-distribution χ = Ψβ over Zq
and any subset S ⊆ [n], the two distributions (A,As+x, s|S) and (A,As+x, UZ|S|q

)
are computationally indistinguishable assuming the hardness of the decision version
LWE-Distn−|S|,m,q,β .

Proof. We will show this in two steps.

Step 1. The first and the main step is to show that (A,As+x, s|S) ≈c (A, UZmq , UZ|S|q
).

The distribution on the right consists of uniformly random and independent elements.
This statement is shown by contradiction: Suppose a PPT algorithmD distinguishes be-
tween the two distributions. Then, we construct a PPT algorithmE that breaks the deci-
sion version LWE-Distn−|S|,m,q,β . E gets as input (A′,y′) such that A′ ∈ Zm×(n−|S|)

q

is uniformly random and y′ is either drawn from the LWE distribution (with dimension
n− |S|) or is uniformly random. E does the following:

1. Let AS̄ = A′. Choose AS uniformly at random from Zm×|S|q and set A =
[AS ,AS̄ ].

2. Choose sS ← Z|S|q uniformly at random and compute y = y′ + ASsS .
3. Run D with input (A,y, sS), and output whatever D outputs.

First, suppose (A′,y′) is drawn from the LWE distribution As′,χ for some s′. Let
sS̄ = s′ and let s = [sS , sS̄ ]. Then, (A,y) constructed by E is distributed identical to
As,χ. On the other hand, if (A′,y′) is drawn from the uniform distribution, then (A,y)
is uniformly distributed, and independent of s|S . Thus, if D distinguishes between the
two distributions, then E solves LWE-Distn−|S|,m,q,β .

Step 2. The second step is to show that (A, UZmq , UZ|S|q
) ≈c (A,As + x, UZ|S|q

). This
is equivalent to the hardness of LWE-Distn,m,q,β . ut

The theorem below shows that for the GPV parameter settings, a 1/polylog(N)
fraction of the bits are simultaneously hardcore.

Theorem 3. Let γ = m log(qβ) log2 n/n log q. For any k > 0, assuming that LWEk,m,q,β
is poly(n, q)-hard, the fraction of simultaneous hardcore bits for the family Fn,m,q,β is

1
1+γ (1 − k

n ). In particular, for the GPV parameters as above, the number of hardcore
bits is O(N/polylog(N)).

Proof. We first bound the total input length of a function in Fn,m,q,β , in terms of
n,m, q and β. The number of bits r needed to sample x from Ψ

m

β is mH(β) =



O(m log(qβ) log2 n), by Proposition 3. Thus, the total input length is n log q + r =
n log q +O(m log(qβ) log2 n) = n log q(1 + γ).

By Lemma 2, assuming the hardness of the decision problem LWE-Distk,m,q,β (or,
by Proposition 2, assuming the poly(n, q)-hardness of the search problem LWEk,m,q,β),
the number of simultaneously hardcore bits is at least (n − k) log q. The fraction of
hardcore bits, then, is (n−k) log q

n log q(1+γ) = 1
1+γ (1− k

n ).
For the GPV parameters γ = polylog(N), and with k = O(n), the number of

hardcore bits is O(N/polylog(N)) assuming the hardness of LWEO(n),m,q,β . ut

4.2 A New Setting of Parameters for the GPV Function

In this section, we show a choice of the parameters for the GPV function for which
the function remains trapdoor one-way and an 1 − o(1) fraction of the input bits are
simultaneously hardcore. Although the number of hardcore bits remains the same as in
the GPV parametrization (as a function of n and q), namely (n− k) log q bits assuming
the hardness of LWEk,m,q,β , the length of the input relative to this number will be
much smaller. Overall, this means that the fraction of input bits that are simultaneously
hardcore is larger.

We choose the parameters so that r (the number of random bits needed to sample the
error-vector x) is a subconstant fraction of n log q. This could be done in one (or both)
of the following ways. (a) Reduce m relative to n: note that m cannot be too small
relative to n, otherwise the function ceases to be injective. (b) Reduce the standard
deviation β of the Gaussian noise relative to the modulus q: as β/q gets smaller and
smaller, it becomes easier to invert the function and consequently, the one-wayness of
the function has to be based on progressively stronger assumptions. Indeed, we will
employ both these methods (a) and (b) to achieve our goal.

In addition, we have to show that for our choice of parameters, it is possible to
sample a random function in Fn,m,q,β (that is, the trapdoor sampling property) and that
given the trapdoor, it is possible to invert the function (that is, the trapdoor inversion
property). See the proof of Theorem 4 below for more details.

Our choice of parameters is m(n) = 6n, q(n) = nlog3 n and β = 4
√
n/q.

Theorem 4. Let m(n) = 6n, q(n) = nlog3 n and β = 4
√
n/q. Then, the family of

functions Fn,m,q,β is a family of trapdoor injective one-way functions with an 1 −
1/polylog(N) fraction of hardcore bits, assuming the npolylog(n)-hardness of the search
problem LWEn/polylog(n),m,q,β . Using Regev’s worst-case to average-case connection
for LWE, the one-wayness of this function family can also be based on the worst-case
npolylog(n)-hardness of gapSVPnpolylog(n) .

Proof. (Sketch.) Let us first compute the fraction of hardcore bits. By Theorem 3 ap-
plied to our parameters, we get a 1 − 1

logn fraction of hardcore bits assuming the
hardness of LWE-DistO(n/ logn),m,q,β . By Propositions 2 and 1, this translates to the
assumptions claimed in the theorem.

We now outline the proof that for this choice of parameters, Fn,m,q,β is an injec-
tive trapdoor one-way function. Injectivity12 follows from the fact that for all but an
12 In fact, what we prove is a slightly weaker statement. More precisely, we show that for all

but an exponentially small fraction of A, there are no two pairs (s,x) and (s′,x′) such that



exponentially small fraction of A, the minimum distance (in the `2 norm) of the lat-
tice defined by A is very large; the proof is by a simple probabilistic argument and is
omitted due to lack of space. Inverting the function is identical to solving LWEn,m,q,β .
By Proposition 1, this implies that inverting the function on the average is as hard as
solving gapSVPnlog3n in the worst-case.

Trapdoor Sampling. The trapdoor for the function indexed by A is a short basis for
the lattice Λ⊥(A) = {y ∈ Zm : yA = 0 mod q} defined by A (in a sense described
below). We use here a modification of the procedure due to Ajtai [3] (and its recent
improvement due to Alwen and Peikert [5]) which generates a pair (A,S) such that
A ∈ Zm×nq is statistically close to uniform and S ∈ Zm×m is a short basis for Λ⊥(A).

We outline the main distinction between [3, 5] and our theorem. Both [3] and [5]
aim to construct bases for Λ⊥(A) that is as short as possible (namely, where each basis
vector has length poly(n)). Their proof works for the GPV parameter choices, that is
q = poly(n) and m = Ω(n log q) = Ω(n log n), for which they construct a basis
S such that each basis vector has length O(m3) (this was recently improved to m0.5

by [5]). In contrast, we deal with a much smaller m (linear in n) and a much larger q
(superpolynomial in n). For this choice of parameters, the shortest vectors in Λ⊥(A)
are quite long: indeed, they are unlikely to be much shorter than qn/m = qO(1) (this
follows by a simpler probabilistic argument). What we do is to construct a basis that is
nearly as short; it turns out that this suffices for our purposes. Reworking the result of
Ajtai for our parameters, we get the following theorem. The proof is omitted from this
extended abstract.

Theorem 5. Let m = 6n and q = nlog3 n. There is a polynomial (in n) time algorithm
that outputs a pair (A,S) such that (a) The distribution of A is statistically close to the
uniform distribution in Zm×nq . (b) S ∈ Zm×m is a full-rank matrix and is a short basis
for Λ⊥(A). In particular, SA = 0 mod q. (c) Each entry of S has absolute value at
most q′ = q/m4.

Trapdoor Inversion. As in GPV, we use the procedure of Liu, Lyubashevsky and Mic-
ciancio [30] for trapdoor inversion. In particular, we show a procedure that, given the
basis S for the lattice Λ⊥(A) from above, outputs (s,x) given fA(s, r) (if such a pair
(s,x) exists, and ⊥ otherwise). Formally, they show the following:

Lemma 3. Let n,m, q, β be as above, and let L be the length of the basis S of Λ⊥(A)
(namely, the sum of the lengths of all the basis vectors). If β ≤ 1/Lm, then there is an
algorithm that, with overwhelming probability over the choice of (A,S) output by the
trapdoor sampling algorithm, efficiently computes s from fA(s, r).

The length L of the basis output by the trapdoor sampling algorithm is at most
m2q′ ≤ q/m2. For our choice of parameters, namely β = 4

√
n/q, and m = 6n,

clearly β ≤ 1/Lm. Thus, the inversion algorithm guaranteed by Lemma 3 succeeds
with overwhelming probability over the choice of inputs. Note that once we compute s,
we can also compute the unique value of x. ut

As + x = As′ + x′ where s, s′ ∈ Zm
q and ||x||2, ||x′||2 ≤ β

√
mn. This does not affect the

applications of injective one-way and trapdoor functions such as commitment and encryption
schemes.



5 Open Questions

In this paper, we design public-key and identity-based encryption schemes that are se-
cure against memory attacks. The first question that arises from our work is whether
it is possible to (define and) construct other cryptographic primitives such as signature
schemes, identification schemes and even protocol tasks that are secure against mem-
ory attacks. The second question is whether it is possible to protect against memory
attacks that measure an arbitrary polynomial number of bits. Clearly, this requires some
form of (randomized) refreshing of the secret-key, and it would be interesting to con-
struct such a mechanism. Finally, it would be interesting to improve the parameters of
our construction, as well as the complexity assumptions, and also to design encryption
schemes against memory attacks under other cryptographic assumptions.
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