
Perturbation Codes

Adi Akavia and Ramarathnam Venkatesan

Abstract— We present a new family of codes with good
asymptotic properties. These codes are constructed from simple
old codes using a new perturbation operator that we introduce.
We provide an error reduction algorithm for these codes that
uses only elementary operations with small precision. We also
present a soft error reduction algorithm for the expander based
codes of Alon-Bruck-Naor-Naor-Roth when concatenated with
any binary code.

I. INTRODUCTION

We present a new family of codes achieving good asymp-
totic properties while admitting an error reduction algorithm
that uses only elementary operations with small precision.
This is done by introducing a new perturbation operator with
which we construct new codes from old codes. In particular
we apply the perturbation operator to combine random linear
codes together with the expander based codes of Alon-Bruck-
Naor-Naor-Roth (ABNNR) [3] achieving a new code that
maintains both the good distance of the random linear codes
as well as the error-reduction capabilities of the ABNNR
codes.

ABNNR codes [3] are expander based codes enabling
distance amplification from any constant normalized distance
to normalized distance approaching 1. This is achieved by
composing an appropriate ABNNR code to a code C0 of
constant normalized distance resulting in a new code C ′ of
normalized distance 1−Θ(1), the same encoding length as
C0, and alphabet size Θ(q) for q the alphabet size of C0.
The resulting code C ′ can be then transformed into a binary
code achieving distance approaching 1

2 and constant rate via
the standard concatenation technique.

Guruswami and Indyk [12] presented an error reduc-
tion algorithm for ABNNR codes concatenated with bi-
nary codes. Their algorithm follows Forney’s Generalized
Minimum Distance (GMD) methodology [8] for decoding
concatenated codes requiring an efficient decoding algorithm
for the inner code, and an algorithm for decoding from
erasures and errors for the outer code. (Here, following
standard terminology, we refer to the non-binary code as
the outer code and to the binary code concatenated with it
as the inner code.)

A. Results

1) New codes: We present a new family of binary codes
achieving normalized distance approaching 1

2 , and constant

This work was not supported in part by Microsoft Research fellowship,
NSF Grant CCF0514167, IAS/DIMACS post-doctoral fellowship.

A. Akavia is with the School of Mathematics, Institute of Advanced
Study, Princeton NJ, USA akavia@ias.edu

R. Venkatesan is with Microsoft Research, Redmond WA, USA and
Bangalore India. venkie@microsoft.com

rate. Furthermore, we present an error reduction algorithm
for these codes. That is, an algorithm that, given a codeword
corrupted by adversarial noise flipping a constant fraction
of its bits, outputs a message that agrees with the original
message on at least (1 − ε)-fraction of its bits, for ε
an arbitrarily small constant. (Specifically, the normalized
distance may be 1

2 − c for arbitrarily small constant c, and
the rate is a constant depending on both c and ε.)

2) New code operator: We present a new code operator –
the perturbation operator– that given any binary linear code
R, outputs a new binary linear code Pert(R) such that
Pert(R) preserves the distance of R, preserves the rate of
R up to a constant factor, and furthermore, Pert(R) admits
an error reduction algorithm even if R does not. The codes
above are obtained by taking R to be random linear code.
The perturbation operator can be viewed as combining the
given code R with a variant of the ABNNR code.

3) Soft error reduction algorithm for ABNNR codes when
concatenated with any binary code: We present soft er-
ror reduction algorithm for the ABNNR codes [3] when
concatenated with any binary code. Our algorithm achieves
similar performance to the previously known algorithm
of Guruswami-Indyk [12], albeit, in a different way. One
particular difference is that we make no use of Forney’s
GMD decoding approach, instead, we take a soft decoding
approach that does not require an erasures-and-errors de-
coding algorithm for the outer code. Our algorithm is easy
to implement both in software as well as in hardware: it
is local, i.e., each message bit is found with O(1) queries
to the codewords, it can be implemented in a constant size
(i.e., NC0) circuit, and it executes only bit-wise operations.
(This is in contrast to arithmetic in finite fields of high
characteristic that is needed in decoding algebraic codes such
as the Reed-Solomon codes).

We remark that improvements of our algorithm to handle
expander graphs with poly-logarithmic degrees were recently
developed and employed by Gopalan-Guruswami [11] in the
context of proving hardness amplification results within the
class NP. The two properties of our algorithm —(1) avoiding
the use of GMD and (2) being local— are crucial for the
applications of [11].

B. Paper Organization

In section II we give some preliminary definitions and
notations. In section III we formally define the perturbation
operator. In section IV we analyze the rate and distance
of perturbation codes. In section V we present the error
reduction algorithm for the perturbation codes. In section VI

we present the soft error reduction algorithm for ABNNR
codes concatenated with binary codes.

II. PRELIMINARIES

We present some preliminary definitions and notations.
We use the notation [n]

def
= {1, . . . , n} for every positive

integer n.

A. Error correcting codes.

A binary error correcting code is an infinite family C =
{Ck}∞k=1 of sets Ck of codewords C(m) ∈ {0, 1}n encoding
messages m ∈ {0, 1}k by length n binary vectors; k is the in-
formation rate, and n is the block length. The rate of the code
is the ratio k/n. The normalized distance of two codewords
C(m), C(m′) ∈ {0, 1}n is the fraction of bits where they dif-
fer δ(C(m), C(m′)) = 1

m |{ i |C(m)i 6= C(m′)i}|; the dis-
tance of Ck is the minimum normalized distance over all pairs
of codewords δ(Ck) = minC(m),C(m′)∈Ck δ(C(m), C(m′));
the distance of C is δ(C) = infk→∞ δ(Ck). Encoding is the
process of mapping messages into codewords. For linear
codes Ck, codewords C(m) = mG are obtained by mul-
tiplying the message m ∈ {0, 1}k by a generating matrix
G ∈ {0, 1}k×n. In the adversarial noise model of parameter
p ∈ [0, 1] codewords are corrupted by noise flipping up to
p-fraction of their bits. Decoding is the process of mapping
corrupted codewords into the messages corresponding to the
original uncorrupted codeword.

B. Small biased sets.

We say that Sm ⊆ {0, 1}m is a γ-biased set if
∀x ∈ {0, 1}m, 1

|Sm|
∣∣∑

α∈Sm χα(x)
∣∣ ≤ γ where χα(x) =

(−1)〈α,x〉. A random set Sm of size |Sm| = O(m/γ2) is γ-
biased with very high probability. Explicit constructions of
γ-biased sets of size O(mΘ(1)/γΘ(1)) are achieved in [17],
[4], [15], [1], [18], [9], [5].

C. Chernoff/Hoeffding bound [14].

Let X1, . . . , Xt be independent random variables of ex-
pectations µ1, . . . , µy and bounded values |Xi| ≤ M .
Then, for any η, Pr[1

t

∑t
i=1Xi − 1

t

∑t
i=1 µi ≥ η] ≤ 2 ·

exp
(
− 2tη2

M2

)
D. Expander graphs.

Let H = ([k], [b], E) be a bipartite graph. We say that
H is (dL, dR)-regular if its left degrees are dL and its right
degrees are dR. We say that H is λ-expander if it satisfies
expander mixing lemma, that is, if for every A ⊆ [k] and
B ⊆ [b], ∣∣∣∣|E(A,B)| − dL |A| |B|

b

∣∣∣∣ < λdL
√
|A| |B|

We remark that the expander mixing lemma is usually
derived from more standard definitions of expander graph,
rather than being given as a definition.

E. ABNNR codes concatenated with binary codes.

We ABNNR codes and their concatenation with binary
codes. Let H = {([n], [n], En)}n∈N be a family of d-regular
λ-expander graphs, and let C0 be a family of binary codes
encoding d bits into O(d) bits. Let m = m1 . . .mn be a
message in {0, 1}n.
• The ABNNR code CH encodes m by the code-

word CHn(m) ∈ ({0, 1}d)n whose i-th symbol is
(mi1 , . . . ,mid) for i1, . . . , id the left neighbors of right
node i in the graph Hn.1

• The concatenation C(H, C0) of an ABNNR code
CH with binary code C0 (“binary ABNNR code”,
in short) is a code in which the codeword
encoding message m is the vector C(m) =
(C0(CHn(m)1), . . . , C0(CHn(m)n) ∈ ({0, 1}O(d))n.

We use the terminology “the i-th block of C(m)” to refer
to bits C0(CHn(m)i) of C(m). We denote the restriction of
C(m) to its i-th block by C(m)i. Likewise, for a corrupted
codeword w, we denote by wi the restriction of w to the bits
corresponding to the i-th codeword block.

III. THE PERTURBATION OPERATOR

In this section we present the perturbation operator.
The perturbation operator, given a generating matrix R ∈

{0, 1}k×n of any binary linear code R, outputs a generating
matrix Pert(R) of a new binary linear code Pert(R).
The columns of the generating matrix Pert(R) are sums
(modulo 2) r ⊕ ` of columns r of R and vectors ` from
low dimensional subspaces of {0, 1}k. We think of the sums
r⊕` as a perturbation of the column r by `. Specifically, the
columns of Pert(R) are all sums r ⊕ ` for r ∈ Ri, ` ∈ Li,
i = 1, . . . ,Θ(n) for Ri and Li chosen as follows.

The Ri’s are random subsets of the columns of R of
size s = Θ(1) that are chosen uniformly at random (with
repetitions).

The Li’s consist of all columns of a generating matrix of
(unbalanced variant of) ABNNR codes concatenated with a
binary code, where each Li consist of the columns corre-
sponding to the i-th symbol of the ABNNR code.

Definition 1 (Perturbation Operator): For any informa-
tion rate k and any perturbation operator parameters
(b, d, s, γ, λ), the perturbation operator is defined by a bi-
partite (bd/k, d)-regular λ-expander graph G = ([k], [b], E),
and γ-biased sets Li ⊆ span {ej | (j, i) ∈ E} (for ej the
standard basis element with 1 at coordinate j and zero
elsewhere) as follows.

For any binary linear code with generating matrix R ∈
{0, 1}k×n, the generating matrix of Pert(R) is composed
of b sub-matrices Pi ∈ {0, 1}k×|Ri||Li|, for i = 1, . . . , b,
such that the columns of each Pi are

Pi’s columns = {r ⊕ ` | r a column of Ri and ` ∈ Li}

for R1, . . . , Rb subsets of the columns of R, each of size s,
chosen uniformly at random (with repetitions).

1The ABNNR code applies to any alphabet Σ. We focus on binary
alphabet for simplicity.

We remark that the random choices in the definition of the
perturbation operator can be derandomized.
Notations. In the following we fix notations
k, b, d, s, γ, λ, {Li}bi=1, R,Pert(R) and {Pi}bi=1 to be
as in the above definition. For all i ∈ [b], we let

Vi = span {ej | (j, i) ∈ E}

be the subspaces of {0, 1}k defined by the structure of the
graph G. We denote by P the generating generating matrix
of Pert(R); and by P (m) (or mP) the encoding of m ∈
{0, 1}k by Pert(R). We index coordinates of codewords
P (m) and corrupted codewords w by pairs r, ` for r ∈ Ri,
` ∈ Li, i ∈ [b] where

P (m)r,` = 〈m, r ⊕ `〉

IV. PERTURBATION CODES: RATE & DISTANCE

In this section we analyze the rate and distance of pertur-
bation codes Pert(R) showing how they relate to the rate ρ
and normalized distance δ of the given code R. In particular,
we show that Pert(R) has rate Θ(ρ), and with probability
at least half its normalized distance is at least δ − Θ(1)
for any ζ > 0 provided that the perturbation parameters
d, s, γ = Θ(1) and b = Θ(k) are sufficiently large. We
remark that the success probability half can be amplified by
increasing s.

Theorem 2: Let R be a binary linear code of rate ρ and
normalized distance δ, the following holds:

1) Pert(R) has rate ρ ·Θ(γ2/s log d)
2) For any ζ ∈ (0, δ), with probability at least half,

Pert(R) has normalized distance at least δ − ζ, as
long as the perturbation parameters s = Θ(1/ζ2)
and b = Θ(k/ζ2) are sufficiently large (where the
probability is taken over the choice of Ri’s).

Proof: Denote by t = Θ(log d/γ2) the size of each of
the γ-biased sets Li. For a message m ∈ {0, 1}k, the length
of the codeword P (m) is

∑b
i=1 |Ri| |Li| = bst. So the rate

of the perturbation code is k/bst = ρ ·Θ(γ2/s log d).
We next show that with probability at least 1

2 , the normal-
ized distance of Pert(R) is at least δ − ζ. The normalized
distance of Pert(R) (as well as any linear code) is equal to
the minimum normalized weight of its non-zero codeword,
where the normalized weight of a codeword xP is the
fraction of non-zero entries in the vector xP . Thus, it
suffices to prove that the minimum normalized weight of
the Perturbation code is at least δ − ζ with probability of
at least 1

2 (where the probability is taken over the random
choices of the perturbation operator).

Fix some non-zero x ∈ {0, 1}k. Observe that the normal-
ized weight of xP is equal to 1

stb‖xP‖
2
2 = 1

stb

∑b
i=1 ‖xPi‖22.

In Claim 2.1 below we show that, with probability at least
1− 1

2k+1 , 1
st‖xPi‖

2
2 ∈ (δ± 2

3ζ) for at least (1− 2
3ζ)b of the

Pi’s where i = 1, . . . , b. This implies that the normalized
weight of xP is at least (δ− 2

3ζ) · (1− 2
3ζ) + 0 · 2

3ζ ≥ δ− ζ.
By union bound this holds for all non-zero x ∈ {0, 1}k with
probability at least 1−2k/2k+1 = 1

2 . Thus, we conclude that

the minimum distance of the code P is at least δ − ζ with
probability at least half.

Claim 2.1: For b = Θ(k/ζ2) sufficiently large, for each
non-zero x ∈ {0, 1}k, with probability at least 1− 1

2k+1 over
the choice of Ri’s, 1

st‖xPi‖
2
2 ∈ (δ± 2

3ζ) for at least (1− 2
3ζ)b

of the Pi’s where i = 1, . . . , b.
Proof: Fix a non-zero x ∈ {0, 1}k. For each i =

1, . . . , b, we say that x is good with respect to Ri if the
fraction of 1’s in the set {〈x, r〉 | r ∈ Ri} is within (δ± 2

3ζ).
We first fix i and show that if x is good with respect to Ri,

then 1
st‖xPi‖

2
2 ∈ (δ ± 2

3ζ). Observe that 1
st‖xPi‖

2
2 is equal

to the fraction of 1’s in the set {〈x, r ⊕ `〉 | r ∈ Ri, ` ∈ Li}.
For each fixed ` ∈ {0, 1}k the fraction of 1’s in the
set

{
〈x, r ⊕ `〉 | r ∈ Ri

}
is within (δ ± 2

3ζ) (because
〈x, r ⊕ `〉 = 〈x, r〉⊕〈x, `〉, where 〈x, `〉 ∈ {0, 1} is constant
when varying only over r, and because x is good w.r. to Ri).
Since this holds for every `, then it holds also when varying
over all ` ∈ Li.

We next show that x is good with respect to Ri with
probability at least 1 − ζ/3. Denote by αi the fraction of
1’s in the set {〈x, r〉 | r ∈ Ri}. Since R has normalized
distance δ and the vectors in Ri are chosen uniformly and
independently at random, then E[αi] = δ, and by Hoeffding
bound, Pr[|αi − δ| ≥ 2

3ζ] ≤ 2 exp(−2s(2
3ζ)2) ≤ ζ/3 where

the last equality hold for our choice of ζ = Θ(
√
s).

Finally, we apply Hoeffding bound to conclude that, with
probability at least 1 − 1

2k+1 , x is good with respect to
Ri for at least 1 − 2

3ζ of the i = 1, . . . , b. Denote by
I1, . . . , Ib indicator random variables such that Ii = 1 if
x is not good with respect to Ri, and Ii = 0 otherwise
(where i = 1, . . . , b). Observe that I1, . . . , Ib are independent
random variables, and by the above, Ii = 1 with probability
at most ζ/3. By Hoeffding bound, Pr[

∣∣∣ 1b∑b
i=1 Ii −

ζ
3

∣∣∣ ≥
ζ
3] ≤ 2 exp(−2b(ζ/3)2) ≤ 1

2k+1 for b = Θ(sk) sufficiently
large.

V. PERTURBATION CODES: ERROR REDUCTION

In this section we present our error reduction algorithm for
perturbations codes Pert(R). The error reduction algorithm,
given a binary vector w which is at normalized distance at
most 1/64 − Θ(1) from P (m) (for P (m) the codeword of
Pert(R) encoding the message m ∈ {0, 1}k), outputs m′ ∈
{0, 1}k which is at normalized Hamming distance to (1− c)
from m for c = Θ(1) an arbitrarily small constant depending
on the parameters of the perturbation operator.

A. The Algorithm

The algorithm is composed of two parts. First we reduce
the problem of error reduction perturbation codes to the
problem of error reduction in another code, specifically,
the ABNNR code used in the perturbation operator when
concatenated with some binary code. Then, we use known
techniques [12] to reduce errors in the latter code.

1) Computing new inputs: The idea in this part of the
algorithm is to map the input w to an input w′ which is
a corrupted codeword of another code: the ABNNR code
corresponding to the graph G from the definition of the

perturbation operator when concatenated with some good
binary code.

The vector w′ is obtained by xor-ing appropriate entries of
w. Specifically, we choose for each Li a uniformly random
matching Lpairsi of the ` ∈ Li into disjoint pairs {`1, `2},
and a uniformly random r ∈ Ri, and define for each pair
{`1, `2} ∈ Lpairsi ,

w′`1,`2 = wr,`1 ⊕ wr,`2

We then for each i ∈ [b] find αi(w′) ∈ Vi with highest
agreement with w′, where the agreement of αi and w′ is

agreei,αi =
{
{`1, `2} ∈ Lpairsi

∣∣∣w′`1,`2 = 〈αi, `1 ⊕ `2〉
}
.

To increase accuracy we repeat the above procedure T =
O(log b) times, and set for each i ∈ [b], αi ∈ Vi to be the
most frequent value out of all repetitions. That is, denoting
by w1, . . . , wT the w′’s from the various repetitions, we have

αi = most frequent value in
{
αi(w1), . . . , αi(wT)

}
.

2) Error reduction: We apply an error reduction algorithm
on the computed values αi. For each left node ` ∈ [k] in the
expander graph G from the definition of perturbation codes,
we set the `-th bit m′` by majority vote over all neighbors i
of `: For each neighbor i of ` and bit value v ∈ {0, 1}, we
say that αi assigns value v to the `-th bit if 〈αi, e`〉 = v.
We set m′` to be v if in at least half of the neighbors i of `,
αi assigns v to the `-th bit (breaking ties arbitrarily).

The outputs of the algorithm is m′ = m′1...m
′
k.

B. Analysis

We give a sketch of the analysis of the algorithm showing
that for (1 − Θ(1)) fraction of the ` ∈ [k], m′ has the
correct value m′` = m`. We remark that the parameters can
be optimized using a tighter proof.

Denote by ρi,α = ∆|Ri×Li(w,P (α)) the distance of w
from P (α) when restricting the view to entries (r, `) ∈
Ri × Li. Denote ρi = ρi,m. Denote by disagreer,Lpairsi ,i,m

the number of entries {`, `′} ∈ Lpairsi s.t. w′`,`′
disagrees with 〈m, `+ `′〉, i.e., disagreer,Lpairsi ,i,m =∣∣∣{{`, `′} ∈ Lpairsi

∣∣∣wr,` ⊕ w4,`′ 6= 〈m, `+ `′〉
}∣∣∣.

We first show that if ∆(w,P (m)) < n′/64, then for at
least (1

2 + Θ(1)) of the i ∈ [b], for at least (1
2 + Θ(1)) of the

r ∈ Ri, it holds that for all Lpairsi , disagreer,Lpairsi ,i,m <

1/4−Θ(1).
Claim 3: If ∆(w,P (m)) < n′/64, then the following

holds. There exists a subset I ⊆ [b] of size |I| ≥ (1
2 +Θ(1))b

s.t. ∀i ∈ I there exists a subset Rgoodi ⊆ Ri of size∣∣∣Rgoodi

∣∣∣ ≥ (1
2 + Θ(1)) |Ri| s.t. for all r ∈ Rgoodi and for

all partitions Lpairsi of Li into disjoint pairs,

disagreer,Lpairsi ,i,m < 1/4−Θ(1).
Proof: Let w be close to P (m) in Hamming distance:

∆(w,P (m)) < εn′ for n′ = O(bsd) the codeword length.

By an averaging argument, this implies that for at least
(1

2 + Θ(1)) of the i ∈ b,

ρi < 2ε |Li ×Ri| .

By definition of ρi, for a random r ∈ Ri, the number
of entries (r, `) ∈ {r} × Li that disagree with 〈m, r + `〉
is expected to be ρi. By averaging argument, for at least
(1

2 + Θ(1)) of the r’s, the number of disagreements is at
most

ρ′i = 2 · 2ε |Li| = 4ε |Li| .

For all such r’s, for any Lpairsi , the number of entries w′`,`′
which disagree with 〈m, `+ `′〉 is at most

disagreer,Lpairsi ,i,m ≤ 2ρ′i ≤ 16ε
∣∣∣Lpairsi

∣∣∣
(because w′`,`′ 6= 〈m, `+ `′〉 iff exactly one of the inequali-
ties holds: wr,` 6= 〈m, r + `〉 or wr,`′ 6= 〈m, r + `′〉).

Setting ε ≤ 1
4

1
16−Θ(1)), we get that for at least (1

2 +Θ(1))
of the i ∈ [b], for at least (1

2 + Θ(1)) of the r ∈ Ri, it holds
that

disagreer,Lpairsi ,i,m < 1/4−Θ(1).

Next, we show that with high probability, αi is equal to the
restriction m|Vi of m to Vi for all i ∈ I; where we say that
αi is equal to the restriction of m to Vi if 〈αi, e`〉 = 〈m, e`〉
for every ` left neighbor of right node i in the expander graph
G from the definition of the perturbation operator.

Claim 4: For (1
2 + Θ(1)) of the i ∈ [b], αi = m|Vi .

Proof: Fix some i ∈ I . We first show that αi(w′) =
m|Vi with probability (1

2 + Θ(1)) over the choice of r and
Lpairsi : By the above claim disagreer,Lpairsi ,i,m < 1/4 −
Θ(1) for (1

2 + Θ(1)) of the r’s. Moreover, for such r’s,
m is unique in satisfying the above, as long as Lpairsi is
a small biased set; where the latter occurs with very high
probability over the choice of the random matching Lpairsi .
So, αi(w′) = m|Vi with probability (1

2 + Θ(1)) over the
choice of r and Lpairsi .

Now, since αi was chosen to be the most frequent value
over all αi(wt)’s, then by Chernoff bound, αi = m|Vi with
probability exp(O(T)) = 1/bc.

Last, by union bound, αi = m|Vi holds for all i ∈ I
with probability 1/bc−1 for C a constant determined by the
number T of repetitions.

Finally, by expansion arguments, for (1 − Θ(1)) fraction
of the left nodes `, the fraction of their neighbors in I and
the fraction of their neighbors in [b] \ I are roughly |I| /b
and 1 − |I| /b respectively.2 Since |I| = (1

2 + Θ(1))b, this
implies that for (1−Θ(1)) fraction of the `’s, most of their
neighbors are in I . By the above claim this implies that for
(1−Θ(1)) fraction of the `’s, for most of their neighbors i,
αi = m|V i . This in turn imply that the value assigned m′` is
correct.

2See details of similar expansion arguments in section VI.

VI. SOFT ERROR REDUCTION FOR CONCATENATED
ABNNR CODES

We present a soft error reduction algorithm that, given a
corrupted codeword w of a binary ABNNR code, recovers
(1 − O(1))-fraction of the bits of the encoded message
x. The soft error reduction algorithm works by finding
independently for each left node ` the best assignment to
its neighbors Γ(`), as follows. For each left node `, we
restrict our attention to the corrupted codeword block wi

corresponding to right neighbors i ∈ Γ(`) of `. We then
find the codeword C(m′) closest to wi on those blocks (by
exhaustive search). If the closest codeword is sufficiently
close, we set the `-th output bit z` to be the value of the `-th
bit of the encoded message m′. We repeat this procedure for
each left node ` ∈ [n], outputting z1, . . . , zn. A pseudo code
follows.

Algorithm 5: Soft Error Reduction Algorithm.
Input: A description of the code C(H, C0), a noise pa-
rameter ε, and a corrupted codeword w ∈ {0, 1}n/r s.t.
∆(C(x), w) ≤ 1

4 − ε.
Output: z ∈ {0, 1}n s.t. ∆(z, x) ≤ (

√
2λ)1/3.

Steps:
1) For each left node ` ∈ [n]

a) By exhaustive search, find assignment y ∈
{0, 1}d

2

to all message bits i ∈ ΓL(ΓR(`)) such
that y minimizes

dist`(y) =
1
d

∑
i∈Γ(`)

∆(C0(y)i, wi)

b) If dist`(y) < 1
4 −

ε
4 , set z` = y`

c) Else set z` = ⊥
2) Output z1 . . . zk
To show that this is an efficient algorithm, we argue that

the exhaustive search step can be done in constant running
time. This is because there is a d = O(1) number of blocks
i neighboring each left node `, and each of these blocks
is determined by a d = O(1) number of message bits
(specifically, the bits corresponding to left neighbors of right
node i). Thus, the number of assignment to be examined in
the exhaustive search is 2d

2
= O(1).

To prove the correctness of this algorithm, we first apply
the Expander Mixing Lemma to show that for the correct
message x, dist`(x) < 1

4 −
ε
4 for at least (1 − O(λ1/3))-

fraction of the bits ` ∈ [n]. Second, we show that for any
y that disagrees with x on the `-th bit (i.e., y` 6= x`),
dist`(y) > 1

4 −
ε
4 . Combined together this proves that the

output z of the algorithm agrees with the encoded message
x on at least (1−O(λ1/3))n of its bits.

We analyze the soft error reduction algorithm a general
case of variants of ABNNR codes constructed from pos-
sibly unbalanced expander graphs. Namely, graphs H =
([k], [b], E), satisfying expander mixing lemma: For every
A ⊆ [k] and B ⊆ [b],∣∣∣∣|E(A,B)| − dL |A| |B|

b

∣∣∣∣ < λdL
√
|A| |B|

Let C(H, C0) be a binary ABNNR code with H a family
of (dL, dR)-regular λ-expander graphs H = ([k], [b], E), and
C0 a family of binary error correcting codes of rate r and
normalized Hamming distance ∆(C0) = 1/2.

Theorem 6 (Soft Error Reduction): For any k ∈ N, a
message x ∈ {0, 1}k, a agreement parameter ε >

8(
√

2λ)1/3, and a corrupted codeword w ∈ {0, 1}k/r s.t.
∆(w,C(x)) ≤ 1

4 − ε, the Soft Error Reduction Algorithm 5,
given ε and w, outputs a message z ∈ {0, 1}k s.t.

∆(x, z) < (
√

2λ)1/3

The running time of the algorithm in O
(
k · 2dLdR

)
.

Proof. Fix an input corrupted codeword w and let x
be the encoded message s.t. ∆(C(x), w) < 1

4 − ε. Re-
call that for each left node `, we denote by dist`(y) =
1
d

∑
i∈Γ(`) ∆(C0(y)i, wi) the average distance from w of

codewords encoding (messages agreeing with) y on the block
corresponding to right neighbors i of left node `.

By Lemma 7 below when assigning γ = ε/8, for at least
(1− ε

8)k of the bits ` ∈ [k] of the encoded message x,

dist`(x) <
1
4
− ε

4
Conversely, by Lemma 8 below, for each left node ` ∈ [k]
and any y ∈ {0, 1}k such that y` 6= x`,

dist`(y) >
1
4
− ε

4
Combining both lemmas together, we conclude that for at
least (1 − ε

8)k of the bits ` ∈ [k], z` = x` (for z` from
Algorithm 5 above). That is, ∆(x, z) < (

√
2λ)1/3.

The running time of this algorithm is k · 2d2 . �
We now prove the lemmas used in the proof of Theorem

6 above. We use the following notation: For each right node
i ∈ [b] and any assignment y ∈ {0, 1}dR to the left neighbors
of i, we denote the distance of the i-th block of w from C0(y)
(i.e., the i-th block of the encoding of any message agreeing
with y) by

∆i(y)
def
= ∆(C0(y)i, wi)

We keep the same notation as in Theorem 6.
Lemma 7 (Main Lemma): Let γ ∈ ((

√
2λ)1/3, 1). Then

for any x ∈ {0, 1}k, for at least (1 − γ)k of the bits ` ∈
1, . . . , k, ∣∣∣∣ E

i∈Γ(`)
[∆i(x)]− E

i∈1,...,b
[∆i(x)]

∣∣∣∣ ≤ 2γ

Proof. We first fix some notation. Denote δ = γ2dL. Fix
some x ∈ {0, 1}k. For j = 1, . . . , 1/γ, denote

Tj = { i ∈ 1, . . . , b |∆i(x) ∈ [(j − 1)γ, jγ)}

Claim 7.1: For any ` ∈ 1, . . . , k, if ∀j ∈ 1, . . . , 1/γ,∣∣∣E({`}, Tj)− dL |Tj |b
∣∣∣ ≤ δ, then∣∣∣∣ E

i∈Γ(`)
[∆i(x)]− E

i∈1,...,b
[∆i(x)]

∣∣∣∣ ≤ 2γ

Proof: First we bound Ei∈Γ(`)[∆i(x)]. Rewriting
Ei∈Γ(`)[∆i(x)] in terms of the Tj’s we get

E
i∈Γ(`)

[∆i(x)] =
1
|Γ(`)|

∑
i∈Γ(`)

∆i =
1
dL

1/γ∑
j=1

∑
i∈Tj∩Γ(`)

∆i

(where in the last step we use the fact that |Γ(`)| = dL,
because H is (dL, dR)-regular). By the definition of Tj , for
all i ∈ Tj , ∆i ∈ [(j − 1)γ, j) for all i ∈ Tj . Therefore,

1
dL

1/γ∑
j=1

|Tj ∩ Γ(`)| (j − 1)γ ≤ E
i∈Γ(`)

[∆i(x)] and

E
i∈Γ(`)

[∆i(x)] <
1
dL

1/γ∑
j=1

|Tj ∩ Γ(`)| jγ

Now, |Tj ∩ Γ(`)| = |E({`}, Tj)| ∈ dL |Tj |b ± δ, therefore,

1
dL

1/γ∑
j=1

(
dL
|Tj |
b

+ δ

)
(j − 1)γ

≤ E
i∈Γ(`)

[∆i(x)]

<
1
dL

1/γ∑
j=1

(
dL
|Tj |
b
− δ
)
jγ

Canceling the dL in the denominator and the nominator we
get

1/γ∑
j=1

(
|Tj |
b
− δ

dL

)
(j − 1)γ ≤ E

i∈Γ(`)
[∆i(x)] (1)

E
i∈Γ(`)

[∆i(x)] <
1/γ∑
j=1

(
|Tj |
b

+
δ

dL

)
jγ (2)

Second, we bound Ei=1,...,b[∆i(x)]. Rewriting
Ei=1,...,b[∆i(x)] in terms of the Tj’s we get

E
i=1,...,b

[∆i(x)] =
1
b

b∑
i=1

∆i =
1
b

1/γ∑
j=1

∑
i∈Tj

∆i

By the definition of Tj , for all i ∈ Tj , ∆i ∈ [(j−1)γ, j) for
all i ∈ Tj . Therefore,

1/γ∑
j=1

|Tj |
b

(j − 1)γ ≤ E
i=1,...,b

[∆i(x)] <
1/γ∑
j=1

|Tj |
b
jγ (3)

Combining the bounds from Equations 1 and 3 we con-
clude that ∣∣∣∣ E

i∈Γ(`)
[∆i(x)]− E

i=1,...,b
[∆i(x)]

∣∣∣∣
≤

1/γ∑
j=1

|Tj |
b
γ +

1/γ∑
j=1

δ

dL
jγ ≤ 2γ

(where the last inequality is true since
∑1/γ
j=1

|Tj |
b γ = γ, and∑1/γ

j=1
δ
dL
jγ = δ

dL
γ

1
γ (1

γ+1)

2 < δ
γdL

= γ for δ = γ2dL).

Claim 7.2: Denote Bad ={
` | ∃j ∈ 1, . . . , 1/γ s.t.

∣∣∣E({`}, Tj)− dL |Tj |b
∣∣∣ > δ

}
.

If λ < γ3/
√

2, then |Bad| < γb
Proof: For each j ∈ 1, . . . , γ, denote

Bad+
j =

{
` | |E({`}, Tj)| > dL

|Tj |
b

+ δ

}
Bad−j =

{
` | |E({`}, Tj)| < dL

|Tj |
b
− δ
}

By a counting argument, there exists j ∈ 1, . . . , 1/γ such that
either

∣∣Bad+
j

∣∣ ≥ γ
2 |Bad| or

∣∣Bad−j ∣∣ ≥ γ
2 |Bad|. Without

loss of generality assume∣∣Bad+
j

∣∣ ≥ γ

2
|Bad| (4)

By definition of Bad+
j , for each ` ∈ Bad+

j ,
|E({`}, Tj)| > dL

|Tj |
b + δ. Therefore,∣∣E(Bad+

j , Tj)
∣∣ >

∣∣Bad+
j

∣∣ (dL |Tj |
b

+ δ

)
(5)

On the other hand, by Expander Mixing Lemma ,∣∣E(Bad+
j , Tj)

∣∣ (6)

≤ dL
∣∣Bad+

j

∣∣ |Tj |
b

+ λdL

√∣∣Bad+
j

∣∣ |Tj | (7)

Combining Equations 5 and 6, we get that∣∣Bad+
j

∣∣ (dL |Tj |
b

+ δ

)
< dL

∣∣Bad+
j

∣∣ |Tj |
b

+ λdL

√∣∣Bad+
j

∣∣ |Tj |
Reorganizing the above expression and assigning δ = γ2dL
and |Tj | ≤ b, we get√∣∣Bad+

j

∣∣ <
λdL
δ

√
|Tj | ≤

λ

γ2

√
b

Combining the above with Equation 4, we conclude that

|Bad| <
2
γ

(
λ

γ2

)2

b < γb

(where the last inequality is true by the condition of λ).
�

Lemma 8: For any x, y ∈ {0, 1}k s.t. x` 6= y`, if
Ei∈Γ(`)[∆i(x)] < 1

4 −
ε
4 then

E
i∈Γ(`)

[∆i(y)] >
1
4
− ε

4

Proof. Recall that xi, yi denote the restrictions of x and x, y,
respectively, to the bits i1, . . . , idR ∈ 1, . . . , k neighboring
the i-th right node of H . For all i ∈ Γ(`), xi 6= yi, because
` is a neighbor of each i ∈ Γ(`), i.e., ` ∈ i1, . . . , idR .
Therefore,

∀i ∈ Γ(`), ∆(xi, yi) ≥ dist(C0) ≥ 1
2
− ε

2
(8)

By the triangle inequality,

∆(xi, yi) ≤ ∆(xi, wi) + ∆(wi, yi) (9)

Combining Equations 8 and 9 above, we get that

∆(wi, yi) ≥ ∆(xi, yi)−∆(xi, wi) ≥ 1
2
− ε

2
−∆(xi, wi)

Taking the expectation over all i ∈ Γ(`), we conclude that

E
i∈Γ(`)

[
∆(wi, yi)

]
≥ 1

2
− ε

2
− E
i∈Γ(`)

[
∆(xi, wi)

]
≥ 1

2
− ε

2
−
(

1
4
− ε

4

)
=

1
4
− ε

4

�

VII. ACKNOWLEDGMENTS

We are grateful to Shafi Goldwasser, Abishek Kumara-
subramanian, Avinash Vaidyanathan, Irit Dinur, Yuval Isahi,
Venkat Guruswami, Alex Samorodnitsky, Adi Shamir, Amir
Shpilka and Madhu Sudan for helpful discussions.

REFERENCES

[1] M. Ajtai, H. Iwaniec, J. Komlos, J. Pintz and E. Szemeredi, ”Con-
structions of a this set with small Fourier coefficients,” Bull. London
Math. Soc. 22, pp. 583–590, 1990.

[2] A. Akavia, S. Goldwasser, and S. Safra. ”Proving Hardcore Predicates
Using List Decoding,” IEEE Symposium on Foundations of Computer
Science, 11-14 October 2003, Cambridge, MA, USA, Proceedings, pp.
146-158.

[3] N. Alon, J. Bruck, J. Naor, M. Naor, R.M. Roth, ”Construction of
asymptotically good low-rate error-correcting codes through pseudo-
random graphs”, IEEE Trans. Inform. Theory, 38 (1992), 509-516.

[4] N. Alon, O. Goldreich, J. Hastad and R. Peralta, ”Simple constructions
of almost k-wise independent random variables,” Journal of random
structures and algorithms, 3:3 (1992), pp. 289–304.

[5] N. Alon and Y. Mansour, ”ε-discrepancy sets and their applications for
interpolation of sparse polynomial,” Information Processing Letters,
54:337–342 (1995).

[6] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan and
Salil Vadhan, “Robust PCPs of Proximity, Shorter PCPs and Appli-
cations to Coding”, ACM Symposium on the Theory of Computing,
2004.

[7] R. Blahut. ”Algebraic Methods for Signal Processing and Communi-
cations Coding,” Springer Verlag, 1991.

[8] G. D. Forney, “Generalized Minimum Distance decoding”, IEEE
Transactions on Information Theory, 12, 125-131, 1966

[9] G. Even, O. Goldreich, M. Luby, N. Nisan and B. Velickovic, ”Ap-
proximations of general independent distributions,” ACM Symposium
on the Theory of Computing’92, pp. 10–16, 1992.

[10] O. Goldreich and L. Levin ”A Hard-Core Predicate for All One-Way
Functions,” ACM Symposium on the Theory of Computing, May 1989,
New York, NY, USA, Proceedings, pp. 25–32.

[11] V. Guruswami and P. Gopalan, ”Hardness Amplification within NP
against Deterministic Algorithms,” IEEE Conference on Computa-
tional Complexity, pp.19–30, 2008.

[12] V. Guruswami and P. Indyk, “Expander-Based Constructions of Effi-
ciently Decodable Codes”, Proc. IEEE Annual Symposium on Foun-
dations of Computer Science (FOCS’01), 658-667, 2001.

[13] , V. Guruswami and P. Indyk, “Near-optimal linear-time codes for
unique decoding and new list-decodable codes over smaller alpha-
bets”, Proc. 34th ACM Annual Symposium on Theory of Computing
(STOC’02), 812–821, 2002.

[14] W. Hoeffding, ”Probability inequalities for sums of bounded random
variables,” American Statistical Association Journal, March 1962, pp.
13-30.

[15] M. Katz, ”An estimate for characters sum,” J. AMS 2, (1963) pp.
197–200.

[16] V.Pless, W.C Huffman R. Brualdi ”Handbook of Coding Theory” Vol
I and II, North Holland. 1999

[17] J. Naor and M. Naor, ”Small biased probability spaces: efficient
constructions and applications,” 22nd ACM Symposium on the Theory
of Computing, pp. 213–223, 1990.

[18] A. A. Razborov, A. Wigderson and E. Szemeredi, ”Constructing
small sets that are uniform in arithmetic progressions,” Combinatorics,
Probability and Computing 2:513–518, 1993.

[19] D. Spielman, “Linear-time encodable and decodable error-correcting
codes”, IEEE Transactions on Information Theory, Vol 42, No 6, pp.
1723-1732. 1996.

