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Abstract

We present results in cryptography, coding theory and sublinear algorithms.
In cryptography, we introduce a unifying framework for proving that a Boolean

predicate is hardcore for a one-way function and apply it to a broad family of functions
and predicates, showing new hardcore predicates for well known one-way function
candidates such as RSA and discrete-log as well as reproving old results in an entirely
different way. Our proof framework extends the list-decoding method of Goldreich
and Levin [38] for showing hardcore predicates, by introducing a new class of error
correcting codes and new list-decoding algorithm we develop for these codes.

In coding theory, we introduce a novel class of error correcting codes that we
name: Multiplication codes (MPC). We develop decoding algorithms for MPC codes,
showing they achieve desirable combinatorial and algorithmic properties, including:
(1) binary MPC of constant distance and exponential encoding length for which we
provide efficient local list decoding and local self correcting algorithms; (2) binary MPC
of constant distance and polynomial encoding length for which we provide efficient
decoding algorithm in random noise model; (3) binary MPC of constant rate and
distance. MPC codes are unique in particular in achieving properties as above while
having a large group as their underlying algebraic structure.

In sublinear algorithms, we present the SFT algorithm for finding the sparse
Fourier approximation of complex multi-dimensional signals in time logarithmic in
the signal length. We also present additional algorithms for related settings, differing
in the model by which the input signal is given, in the considered approximation
measure, and in the class of addressed signals. The sublinear algorithms we present
are central components in achieving our results in cryptography and coding theory.
Reaching beyond theoretical computer science, we suggest employing our algorithms
as tools for performance enhancement in data intensive applications, in particular, we
suggest replacing the O(N logN)-time FFT algorithm with our Θ̃(logN)-time SFT
algorithm for settings where a sparse approximation suffices.

Thesis Supervisor: Shafi Goldwasser
Title: RSA Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This thesis presents results in three areas: cryptography, coding theory and sublinear
algorithms.

In cryptography, we introduce a unifying framework for proving that a Boolean
predicate is hardcore for a one-way function and apply it to a broad family of functions
and predicates, showing new hardcore predicates for well known one-way function
candidates such as RSA and discrete-log as well as reproving old results in an entirely
different way. Our proof framework extends the list-decoding method of Goldreich
and Levin [38] for showing hardcore predicates, by introducing a new class of error
correcting codes and new list-decoding algorithm we develop for these codes.

In coding theory, we introduce a novel class of error correcting codes that we
name: Multiplication codes (MPC). We develop decoding algorithms for MPC codes,
showing they achieve desirable combinatorial and algorithmic properties, including:
(1) binary MPC of constant distance and exponential encoding length for which we
provide efficient local list decoding and local self correcting algorithms; (2) binary MPC
of constant distance and polynomial encoding length for which we provide efficient
decoding algorithm in random noise model; (3) binary MPC of constant rate and
distance. MPC are unique in particular in achieving properties as above while having
no underlying field structure, but rather only a group structure.

In sublinear algorithms, we present the SFT algorithm for finding the sparse
Fourier approximation of complex multi-dimensional signals in time logarithmic in
the signal length. We also present additional algorithms for related settings, differing
in the model by which the input signal is given, in the considered approximation
measure, and in the class of addressed signals. The sublinear algorithms we present
are central components in achieving our results in cryptography and coding theory.
Reaching beyond theoretical computer science, we suggest employing our algorithms
as tools for performance enhancement in data intensive applications, in particular, we
suggest replacing the O(N logN)-time FFT algorithm with our Θ̃(logN)-time SFT
algorithm for settings where a sparse approximation suffices.

Organization of this chapter. In section 1.1 we introduce our work on crypto-
graphic hardcore predicates. In section 1.2 we introduce our study of Multiplication
codes. In section 1.3 we define the problem of Learning Characters with Noise (LCN)

13



and introduce our results in its study, and, in particular, the SFT algorithm. In sec-
tion 1.4 we present applications of the SFT algorithm in data intensive algorithms.
Finally, in section 1.5 we conclude and describe the organization of the rest of this
thesis.

1.1 Cryptographic Hardcore Predicates

Let f be a one-way function, namely a function which is easy to compute, but hard to
invert on all but a negligible fraction of its inputs. We say that a Boolean predicate
P is a hardcore predicate for f if P (x) is easy to compute given x, but hard to guess
with non-negligible advantage beyond 50% given only f(x). The notion of hardcore
predicates was introduced and investigated in [18,41] and has since proven central to
cryptography and pseudo-randomness.

The standard proof methodology for showing P is hardcore for f is by a reduction
from inverting f to predicting P . That is, demonstrate an efficient inversion algorithm
for f , given access to a probabilistic polynomial time magic-algorithm B that on
input f(x) guesses P (x) with non-negligible advantage over a random guess. Since f
is assumed to be a one-way function, it follows that no such algorithm B exists and
P is a hardcore predicate.

Blum and Micali [18] were the first to show a hardcore predicates for a function
widely conjectured to be one-way. Let p be a prime and g a generator for Z∗

p . The
function EXPp,g : Zp−1 → Z∗

p , EXPp,g(x) = gx mod p is easy to compute and as
hard to invert as solving discrete logarithm modulo a prime p. Blum and Micali [18]
define the predicate BMp,g(x) = 0 if 0 ≤ x < p−1

2
and 1 otherwise, and prove it is

a hardcore predicate for EXPp,g if the discrete logarithm problem is intractable. In
subsequent years, it was shown for other conjectured one-way functions f and other
predicates P , that P is a hardcore predicates for f [5, 16, 32, 41, 42, 51, 59, 86, 90].
Most notably, for the RSA [75] function RSA : Z∗

n → Z∗
n, RSA(x) = xe mod n, the

predicates Pi(x) = ith bit of x were shown hardcore, first for i = 1, |n| [5] and recently
for any 1 ≤ i ≤ |n| [51].

Goldreich and Levin [38] address the general question of whether every one-
way function (OWF) has some hardcore predicate. They show that for any OWF
f : {0, 1}n → {0, 1}∗ one can define another OWF f ′ : {0, 1}n × {0, 1}n → {0, 1}∗ ×
{0, 1}n by f ′(x, r) = (f(x), r), so that the predicate GL(x, r) =

∑n
i=1 xiri is a hard-

core predicates for f ′.
The work of Goldreich-Levin, which explicitly addressed hardcore predicates for

arbitrary one-way functions, by way of solution gave a polynomial time list-decoding
algorithm for a well known error correcting code – the Hadamard code. It introduced
an interesting connection between hardcore predicatess and list decoding which, as
pointed out by Impagliazzo and Sudan [56,82,87], could potentially lead to a general
list decoding methodology for proving hardcore predicates for one-way functions.

We formalize such a methodology. Given a function f and predicate P , one would
have to:

1. Define a Code. Identify an error-correcting code CP encoding distinct
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x’s, such that given only f(x) and the capability to compute P (z) on input
z, one can query-access the codeword for x, CP

x . In the case of [38] the
code defined was the Hadamard code which is a natural choice as GL(x, r)
is precisely the r-th entry of the Hadamard encoding of string x.

2. List Decode. Show a polynomial-time list-decoding algorithm for
the code CP , which works with query access to a corrupted codeword and
tolerates a < 1

2
− ε fraction of error. In the case of Hadamard code, [38]

indeed provides such a list decoding algorithm.

3. Show that predicting P implies access to a corrupted code-
word. Show that if there exists a magic algorithm B that on input f(x)
predicts P (x) with non-negligible advantage, then there exists an access
algorithm which for a non-negligible fraction of x’s, on input f(x), can
query access a corrupted codeword of x with < 1

2
− ε fraction of errors.

Putting all these together, implies that if B exists then f can be inverted for a
non-negligible fraction of x’s (using the list decoding algorithm). Thus, under the
assumption that f is a one-way function, no such B can exist and predicate P is a
hardcore predicate.

This is no doubt an elegant methodology but is it a useful methodology for
proving hardcore predicate results for natural f ’s and P ’s? At the very least, can we
define appropriate codes and corresponding list decoding algorithms so as to employ
this methodology for proving existing hardcore predicate results of [18] for the EXP
function, and the results of of [5, 51] for the RSA function?

These questions are the starting point for our investigation.

Our Work

We introduce a unifying framework for proving that predicate P is hardcore for a
one-way function f , and apply it to a broad family of functions and predicates,
showing new hardcore predicates for well known one-way function candidates as well
as reproving old results in an entirely different way.

Our framework follows a list decoding methodology. Thus, the technical essence
of the new proofs is to define appropriate codes and to list decode them. These two
tasks are independent of the one-way function in question and depend only on the
predicate. The only consideration given to the one-way function is in devising a way
to access the corrupted codeword.

Our proof framework extends the list-decoding method of Goldreich and Levin [38]
for showing hardcore predicates, by introducing a new class of error correcting codes,
which we name: Multiplication Codes (MPC), and a new list-decoding algorithm we
develop for these codes. In our framework, each predicate corresponds to one error
correcting code in the class of MPC, predicting a predicate corresponds to access to a
corrupted codeword, and the task of inverting one-way functions corresponds to the
task of list decoding a corrupted codeword. A characteristic of the error correcting
codes which emerge and are addressed by our framework is that codewords can be
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approximated by a small number of significant coefficients in their Fourier represen-
tation. Moreover, as long as corrupted words are close enough to legal codewords,
they share a significant Fourier coefficient. To list decode, we first devise a learning
algorithm applied to corrupted codewords for finding their heavy Fourier coefficients,
and then find all codewords for which these coefficients are heavy.

Let us now elaborate on the hardcore predicates and one-way functions for which
we apply our framework.

Segment Predicates: A Class of New Hardcore Predicates

We apply our framework to prove that a wide class of predicates called segment
predicates are hardcore predicates for various well known candidate one-way functions.

A segment predicate is any arbitrary assignment of Boolean values to an arbi-
trary partition of ZN into poly(logN) segments, or a multiplicative shift of such an
assignment. A segment predicate can be balanced (with the same number of 0’s and
1’s) or unbalanced as long as it is far from a constant function. In the latter case
of unbalanced predicates, we naturally adapt the definition of hardcore unbalanced
predicates to be that it is impossible to compute the predicate better than guessing
it at random from f(x).

We prove that any segment predicate is hardcore for any one-way function f
defined over ZN for which, for a non-negligible fraction of the x’s, given f(x) and y,
one can efficiently compute f(xy) (where xy is multiplication in ZN). This includes
the functions EXPp,g, RSA(x), Rabin(x) = x2 mod n, and ECLa,b,p,Q = xQ where
Q is a point of high order on an elliptic curve Ea,b,p,Q(Zp) (naturally the appropriate
N in each case differs).

In particular, this implies that for every i the i-partition-bit is a hardcore predicate
for the RSA function where we define the i-th partition bit of x as 0 if 0 ≤ 2ix ≤
N
2

mod N and 1 otherwise.

In contrast with the notion of segment predicates, we remark that in the past most
all predicates investigated correspond in a fairly direct way with bits in the inverse of
f(x). An exception is the work of [69] showing that Pi(x) = ith bit of ax + b mod p
for randomly chosen a, b, p are hardcore predicates for one-way functions f .

Definition 1.1 (Segment Predicate). Let P = {PN : ZN → {±1}} be a collection of
predicates that are non-negligibly far from constant, namely, ∃ non-negligible function
ρ s.t. majPN

≤ 1− ρ(k) where k = logN .

• We say that PN is a basic t-segment predicate if PN(x+1) 6= PN(x) for at most
t x’s in ZN .

• We say that PN is a t-segment predicate if there exist a basic t-segment predicate
P ′ and a ∈ ZN which is co-prime to N s.t. ∀x ∈ ZN , PN(x) = P ′(x/a).

• If ∀N , PN is a t(N)-segment predicate, where t(N) is polynomial in logN , we
say that P is a collection of segment predicates.
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Theorem 1.2. Let P = {PN : ZN → {±1}} be a collection of segment predicates.
Then, P is hardcore for RSA, Rabin, EXP , ECL, under the assumption that these
are OWFs.

New Proofs of Old Results

It is easy to see that the hardcore predicates of [5, 18, 59] for candidate one-way
functions EXP , RSA, Rabin and ECL, are special cases of the segment predicate
defined above. Thus, we re-prove in an entirely different and uniform manner, all the
results of [5, 18,59]

In contrast to previous proofs, the technical essence of the new proofs is to define
appropriate codes and to list decode them. These two tasks are independent of the
one-way function in question and depend only on the predicate. The only consid-
eration given to the one-way function is for devising a way to access the corrupted
codeword (step 3 in the methodology). A task which turns out to be very simple in all
the cases considered. We stress that the proofs obtained here are completely different
than the previous ones. In particular, the proofs do not require to use the binary gcd
algorithm used in previous proofs of the hardcore predicates for RSA [5, 14, 51], nor
the square root extraction over finite fields as in [18].

We present a new proof method for simultaneous security of many bits. For this
purpose we generalize the notion of balanced hardcore predicates to unbalanced ones.
To prove simultaneous bit security, we will show that any violation of simultaneous
bit security implies a predictor for some unbalanced hardcore predicate. Using this
method we show that a class of functions called segment functions – an extension of
segment predicates, are simultaneously secure for RSA,Rabin, EXP , and ECL. In
particular, this implies simultaneous security of the O(log logN) most significant bits
for those candidate OWFs [64,86] .

Finally, the new framework applies to proving Goldreich-Levin hardcore predicate
in a natural manner where indeed the appropriate code is the Hadamard code.

For a partial summary of these results, see table 1.1.

Predicate (or function) P Function f Code CP = {Cx}x
GL(x, r) f(x) : {0, 1}|r| → {0, 1}∗ {Cx(i) = GL(x, i)}x∈{0,1}n

msbN (x) RSAN,e(x) = xe mod N {Cx(i) = msbN (x · i mod N)}x∈Z∗N
msbp−1(x) EXPp,g(x) = gx mod p {Cx(i) = msbp−1(x · i mod p− 1)}x∈Z∗

p−1

msbq(x) ECLp,Q(x) = xQ {Cx(i) = msbq(x · i mod q)}x∈Z∗
q

TriLsbp−1 EXPp,g(x) = gx mod p {Cx(i) = TriLsbp−1(x · i mod p− 1)}x∈Z∗
p−1

PrefN (x) RSAN,e(x) = xe mod N {Cs
x(i) = D(RSAN,e(x · i mod N), s)}

Table 1.1: Example of predicates (or a function) and codes. Notations details: GL(z, r) =
(−1)〈z,r〉; msbd(z) = 1 if 0 ≤ z < d

2 , −1 o/w; q denotes the order of Q; Assuming p−1 is co-
prime to 3, TriLsbp−1(x) = msb(x/3) (where the division is modulo p−1); PrefN (x1...xk) =
x1...xl for l = log log N , s ∈ {0, 1}l, and D is a distinguisher for PrefN .
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Definition 1.3 (Segment function). Let H =
{
hN : ZN → {0, 1}l(N)

}
N∈I

be a col-

lection of functions. For each s ∈ {0, 1}l(N), define a predicate PH,s
N : ZN → {0, 1},

PH,s
N (x) = 1 if hN(x) = s and 0 otherwise. We say that H is a collection of segment

functions, if P =
{
PH,s

N

}
N∈I,s∈{0,1}l(N)

is a collection of segment predicates.

Theorem 1.4. Let H =
{
hN : ZN → {0, 1}l(N)

}
N

be a collection of segment func-

tions. Then H is hardcore for RSA, Rabin, EXP and ECL, under the assumption
that these are OWFs.

On Diffie-Hellman Hardcore Predicates

The fundamental difference between modern cryptography and the classical one is the
use of public key cryptosystems, namely, cryptosystems in which the communicating
parties exchange only public keys and need not know each others private keys. The
first public key exchange protocol was suggested by Diffie and Hellman in their sem-
inal paper “New Directions in Cryptography” [25]. In the Diffie-Hellman protocol,
the communicating parties, Alice and Bob, each choose private keys ga mod p and
gb mod p, respectively (for p a prime, and g a generator of Z∗

p), and exchange the
public key gab mod p.

The Diffie-Hellman key exchange protocol is based on the Diffie-Hellman (DH)
function

DHg,p(g
a, gb) = gab mod p

for p a prime, and g a generator of the group Z∗
p ; and its security is based on the

Decisional Diffie-Hellman assumption (DDH), which says that no PPT algorithm can
distinguish with non-negligible advantage between the two distributions of 〈ga, gb, gab〉
and 〈ga, gb, gr〉, where a, b, r are chosen uniformly at random from Z∗

p (and all the ex-
ponentiation are modulo p). A –possibly weaker– assumption is the Computational
Diffie-Hellman assumption (CDH), which says that there is no probabilistic polyno-
mial time (PPT) algorithm that, given p, g, ga, gb returns gab (where, again, all the
exponentiation are modulo p).

The Diffie-Hellman function and assumptions have been widely used as funda-
mental primitives in many cryptographic applications. Nonetheless, some of the most
central and essential relevant questions have remained open (for a survey see [20]).
One such fundamental problems is finding a deterministic hardcore predicate for the
Diffie-Hellman function.

Goldreich and Levin [38] showed that for any one-way function f , given f(x) and

a random string r ∈ {0, 1}|x|, it is hard to predict
∑
xiri mod 2. Thus, any one-

way function, including the Diffie-Hellman function, has a “randomized” hardcore
predicate.

What about deterministic hardcore predicates? For example, is it hard to decide
the msbp predicate, namely, whether the secret gab is greater or smaller than p

2
?

For conjectured one-way functions, such as EXP (x) = gx mod p or RSA(x) =
xe mod n, the first deterministic hardcore predicates were discovered roughly twenty
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years ago [5, 18], and many other deterministic hardcore predicates were discovered
since [16,32,41,42,51,59,86,90]. However, not even one single deterministic hardcore
predicates was found for the Diffie-Hellman secret gab. A partial result in this direction
is the work of Boneh and Venkatesan [19] showing that it is hard to compute the
k = O(

√
log p) most significant bits of gab, given ga, gb.

A fundamental question is whether it is possible to improve the result of [19]
in: (1) reducing k to one, and (2) showing that even just predicting the most sig-
nificant bit of gab, given ga and gb, with a non-negligible advantage over a random
guess cannot be done by a probabilistic polynomial time algorithm, under the CDH
assumption. Namely, can we exhibit a deterministic predicate P : Zp → {±1} such
that the existence of a PPT algorithm B that on inputs ga and gb returns P (gab) with
non-negligible advantage over a random guess contradicts the CDH assumption.

We relate the above question to the complexity of the problem of learning char-
acters with noise (LCN), showing that if LCN with random samples access (rLCN)
is in BPP, then every segment predicate is hardcore for the Diffie-Hellman function.
Furthermore, we show that the latter is true even if easier versions of LCN (such as:
LCN with GP-access, that is, with access to samples {(xi, f(xi))}ti=1 with xi’s a ran-
dom geometric progression, or LCN with DH-access, that is, with access to samples
f(gx/gab) for any x = a′b′ s.t. ga′ , gb′ can be efficiently computed given ga, gb) are in
BPP.

These results can be interpreted in two ways. One could either try to find an
efficient algorithm for LCN in one of the above access models, with the goal of proving
segment predicates are hardcore for the Diffie-Hellman function. Alternatively, one
could interpret these results as evidence to the intractability of LCN under those
access models.

Definition 1.5 (invDH). Assuming the hardness of computing the Diffie-Hellman
function yields the following collection of OWFs. Define

invDH = {invDHp,g(g
a, gb, gab) = (ga, gb), invDHp,g : Z3

p → Z2
p}〈p,g〉∈I

for I =
{
〈p, g〉, p prime, g a generator of Z∗

p

}
.

Definition 1.6. The access models that arise in our study of DH functions are defined
as follows.

1. Random samples access. We say that an algorithm Arand provides random
samples access to a function w : Zp → {±1} if, given p, g, ga, gb, Arand outputs
a pair (s, w(s)) of entry location s and the value of w on this entry, for s
distributed uniformly at random in Zp.

2. GP-access. We say that an algorithm AGP provides Geometric Progression
access (GP-access) to a function w : Zp → {±1} if, given p, g, ga, gb and t inte-
gers k1, . . . , kt, AGP outputs t pairs {(sj, w(sj)}tj=1 of entry locations sj and the

values of w(sj) on those entries, where s1 = sk1 , . . . , st = skt for s distributed
uniformly at random in Zp.
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Theorem 1.7. If LCN with random samples access or GP-access is in BPP, then
every segment predicate is hardcore for invDH, under the CDH assumption.

Technique: List Decoding by Learning Algorithm

The basic approach we take in the list decoding algorithm we develop is to analyze the
Fourier representation of codewords and corrupted codewords. In particular, for all
the codes we use, most of the weight in the Fourier representation of every codeword
is concentrated on a small set of characters. We refer to such codes as concentrated
codes. Furthermore, we prove in the concentration and agreement lemma 6.46 that
if w is close to a legal codeword Cx and C is a concentrated code, then there exists a
character χα which has a heavy coefficient in both w and Cx.

The above suggests the following high level description of a list decoding algorithm
on input word w : D → {±1}: First, apply a learning algorithm to find the set of
all characters for which w has heavy Fourier coefficients. Then, apply a recovery
algorithm on each heavy character χα found in the first step, to obtain a list L
containing all x’s for which χα is a heavy character of the codeword Cx.

Turning this into a polynomial-time list decoding algorithm for each code con-
sidered requires showing the existence of a learning algorithm which given access to
an arbitrary function (the corrupted codeword) learns its heavy Fourier coefficients,
as well as a recovery algorithm. Whereas learning and recovery algorithms exist for
the Hadamard code, we develop them anew for the new codes defined here. As it
turns out only one recovery and learning algorithm suffice for the codes we use. The
recovery algorithm is elementary. In contrast, the learning algorithm is interesting
on his own right.

Further details on our list decoding approach and the algorithm for learning the
heavy Fourier coefficients appear in sections 1.2 and 1.3 respectively.

Other Related Works

Hastad and Naslund [51] showed that the ith bit of x (in its binary representation)
is a hardcore predicate for the RSA function. We note that this is different than our
result showing that the ith partition bit is a hardcore predicate for the RSA function.
It is interesting to study further whether the same techniques can be applied to obtain
both sets of results.

Fourier analysis of functions over the Boolean cube {0, 1}n has been looked at
previously in the context of hardcore predicates in the work of Goldmann et al [37].

The literature of hardcore predicates is quite vast and many techniques have been
employed throughout the years, which we cannot elaborate on here. The technique
of Kaliski [59] for proving hardcore predicates for the discrete logarithm problem in
general groups might be another interesting avenue to explore in the context of list
decoding for discrete log based functions; it also does not use square root extraction
of [18] as well.
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1.2 A Study of Multiplication Codes

Error correcting codes encode messages into codewords in a way that allows decod-
ing, i.e., recovery of the original messages even from codewords corrupted by some
noise. Error correcting codes were introduced by Shannon [76] and Hamming [50]
for application such as communication over noisy channels or storage over noisy de-
vices, and have since found many applications in other areas such as complexity and
cryptography.

The performance of error correcting codes is measured by an array of parame-
ters, where the parameters to be emphasized and optimized vary according to the
application in mind. Examples of performance goals arising in various applications
follow.

• Efficiency, rate and distance. In communication applications, classical goals
are to have efficient encoding and decoding algorithms satisfying that the en-
coding has high rate (i.e., it introduces only little redundancy) and the decoding
algorithm handles a wide range of noise patterns. Explicit codes constructions
achieving good performance in terms of the above parameters followed the works
of [76] and [50], examples of such codes include: Reed-Solomon [72] and Reed-
Muller [68,71] codes, Low-Density-Parity-Check codes [34], and expander based
codes [7, 44,78,80].

• Local list decoding. Applications in complexity and cryptography sometimes
introduce alternative goals. For example, Goldreich and Levin [38] in their work
on cryptographic hardcore predicates for any one way function introduce the
goal of locally list decoding, that is, finding all messages whose codeword is close
to a given corrupted codeword while reading only a small number of entries in
the corrupted codeword. The need for locality emerge from their use of the
Hadamard code –a code with exponential encoding length– while working in
an unorthodox input model where corrupted codewords are given by black box
access rather than being transmitted. Goldreich and Levin [38] provide a local
list decoding algorithm for the Hadamard code, presenting the first efficient
(local or non-local) list decoding algorithm. Following [38] and Sudan’s [81] list
decoding algorithm for the Reed-Solomon codes, Sudan-Trevisan-Vadhan [83]
presented a local list decoding algorithm for the Reed-Muller codes.

• Local decoding/self correcting in constant query complexity. Other
applications in complexity and cryptography [9–12,22] achieve stronger locality
for the Hadamard codes and for Reed-Muller based codes, in which: recover-
ing each single message bit is done while reading only a constant number of
corrupted codeword entries. Explicit treatment of such locally decodable codes
appear in [60] and in subsequent works; see a survey in [85]. A related goal is
to locally self correct, that is, to recover the correct value for a single codeword
entry while reading only a constant number of corrupted codeword entries. The
abovementioned locally decodable codes –except those appearing in [12]– are
also locally self correctable.
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In terms of algebraic structure, for the vast majority of error correcting codes, the
underlying algebraic structure is a field. For example, this is the case in all above
codes, and more generally, in all linear codes (which by definition are codes whose
codewords form a subspace of a vector space over some field), as well as in almost
all known non-linear codes. An exception are group codes [58, 79] – a class of codes
extending the class of linear codes by allowing codewords to form a subgroup of a
group Gn (rather than a subspace of a vector space over a field).

The performance of linear codes, and, more generally, group codes, depends on
properties of the underlying group G. In particular, their alphabet size is at least the
size of the smallest (non-trivial) subgroup of G. For example, group codes with G a
cyclic group of prime order p, have alphabet size p. Group codes (and linear codes)
are therefore of interest primarily when the group G (field F) is of small order (or has
small order subgroups).

Our Work

In this work we introduce a new class of error correcting codes: Multiplication codes
(MPC), and develop decoding algorithms for them, showing they achieve desirable
combinatorial and algorithmic properties, including: binary alphabet, constant dis-
tance together with efficient local list decoding and local self correcting algorithms for
codes of exponential encoding length, efficient decoding in random noise model for
codes of polynomial encoding length, and (non-polynomial time) decoding in adver-
sarial noise model for codes of linear encoding length.

Our results give the first (asymptotic family of) codes achieving constant rate and
distance, while having large groups as their underlying algebraic structure.1 Like-
wise, our results give the first (asymptotic families of) codes achieving any of the
algorithmic properties of being uniquely decodable, list decodable, locally list decod-
able or locally self correctable, while having large groups as their underlying algebraic
structure.

Our techniques and algorithms are applicable beyond the scope MPC: (1) Our lo-
cal list decoding algorithm is applicable to any Fourier concentrated and recoverable
codes.2 In particular, our algorithm gives a list decoding algorithm for the homo-
morphism codes over any finite abelian group and into the complex numbers. (2)
We provide a soft local error reduction algorithm for ABNNR codes [7] concatenated
with binary codes. This algorithm offers an alternative to Forney’s GMD decoding
approach for those concatenated codes.

In the following we first define the class of MPC codes. Next, we present the
algorithmic and combinatorial results we achieve for MPC codes. We then elaborate

1By large groups we refer to groups having no (non-trivial) small subgroups, where “small” is,
say, constant size, or size logarithmic in information rate. For example, the additive group ZN of
integers modulo N for N = pq a product of two large primes p, q = Ω(

√
N) is a large group with

respect to the message space Z∗N (which has information rate log N − o(1)).
2A code is concentrated if –when identifying codeword with complex functions over a finite abelian

group– its codewords can be approximated by a sparse Fourier representation; a code is recoverable
if a codeword can be efficiently recognized when given one of its significant Fourier coefficients.
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on some applications of our algorithms beyond the scope of MPC. Finally, we mention
new techniques we developed for our algorithms.

The Class of Multiplication Codes

Historically, we first defined our MPC codes in the context of our study of crypto-
graphic hardcore predicates for number theoretic one-way functions [3]. We defined
there [3] codes CP encoding messages m ∈ ZN by values P (x) for P : ZN → {±1} a
Boolean predicate. Specifically, the codeword encoding m is:

C(m) = (P (m · 1), P (m · 2), . . . , P (m ·N))

where m · i is multiplication modulo N . We gave there [3] a local list decoding
algorithm for such codes CP , provided P is “Fourier well concentrated” (namely,
most of the energy of its Fourier transform is concentrated on a small set of significant
Fourier coefficients α with gcd(α,N) ≤ poly(logN)). This algorithm was inspired by
the Goldreich-Levin [38] local list decoding algorithm for the Hadamard codes.

Going beyond the context of cryptographic hardcore predicates, we extend the
above definition in two ways. First, to include codes of good rate, we extend the
definition of MPC to allow restrictions of the above codewords to a subset S =
s1, . . . , sn ⊆ ZN of their entries. For example, taking S to be a random subset of ZN

of size O(logN) the resulting code CP,const has codewords

Cconst(m) = (P (m · s1), P (m · s2), . . . , P (m · sn))

For this example, we show that for a good choice of the predicate P , the code CP,const

has constant rate and distance.
Furthermore, to include also codes whose underlying algebraic structure is any

abelian group we further extend the definition of MPC as follows:

Definition 1.8 (Multiplication codes (MPC)). For any abelian group G, an alphabet
controlling function P : C → C, and a set S = {s1, . . . , sn} ⊆ G of indexes to code-
word entries,3 we denote by (G,P, S) the MPC code that encode messages m ∈ G by
codewords

C(m) = (P (χm(s1)), P (χm(s2)), . . . , P (χm(sn)))

where χm : G→ C is the homomorphism corresponding to m.4

We use the terminology “MPC code for G”, when we want to emphasize that G is
the underlying group. Similarly, when addressing asymptotic families of MPC codes
with growing underlying groups GN , we use the terminology “MPC code for {GN}N”.

3More generally, we also consider MPC where S ⊆ G× . . .×G.
4The homomorphism χm : G→ C corresponding to m is defined as follows. For G = ZN , χm(s) =

ei2πms/N . For G = ZN1 × . . . × ZNk
, χm1,...,mk

(s1, . . . , sk) = ei2π
Pk

j=1 mjsj/Nj . In general, for G a
multiplicative group with a generating set {g1, . . . , gk} where gj has order Nj , χQk

j=1 g
mj
j

(
∏k

j=1 g
sj

j ) =

ei2π
Pk

j=1 mjsj/Nj .

23



MPC codes as a class of codes extends the class of (abelian) group codes and the
class of linear codes.

Remark 1.9. In retrospect, any MPC code can be thought of as being defined by a
group code C ⊆ Σn

1 together with an alphabet reduction function P : Σ1 → Σ2 mapping
codewords (C1, . . . , Cn) ∈ Σn

1 of the group code C into codewords (P (C1), . . . , P (Cn)) ∈
Σn

2 of the MPC. The challenge is to find group codes C and alphabet reduction func-
tions P that result in an MPC codes achieving good combinatorial and algorithmic
properties.

The alphabet reduction method method we present here is useful even for very large
alphabet. For example, we use it to reduce the alphabet of homomorphism codes (i.e.,
an alphabet which is as large as the message space). This is in contrast to the well
known codes concatenation alphabet reduction method, which is useful only in small
alphabet settings.5

Multiplication Codes Achieving Good Properties

Our main result is presenting three (asymptotic families of) MPC codes for {ZN}N∈N
all achieving binary alphabet and constant distance6 and the following algorithmic
properties and encoding length: (1) Codes of encoding length N which are locally
list decodable and locally self correctable. (2) Codes of encoding length polynomial in
logN , which are decodable in random noise model in time polynomial in logN , and
are decodable in adversarial noise model in time N2εpoly(logN) (for ε the fraction of
flipped bits). (3) Codes of constant rate and distance.

We use the notation (k, n, d)q-code referring to codes of message space size 2k,
encoding length n, normalized Hamming distance d, and alphabet size q.

Theorem 1.10 (MPC codes for {ZN}N∈N). We present three (asymptotic families
of) MPC codes for groups ZN of growing sizes N :

1. Codes with local algorithms: (Θ(logN), N,Θ(1))2-codes, which are effi-
ciently locally list decodable and locally self correctable. The local list decoding
algorithm we present has query complexity and running time poly(logN). The
local self correcting algorithm we present has query complexity Θ(1) and running
time poly(logN). The input to the local self correcting algorithm is restricted
to entries s ∈ Z∗

N . Both algorithms are randomized.7

5In codes concatenation, alphabet Σ1 is reduced to a smaller alphabet Σ2 by encoding each
symbol σ ∈ Σ1 using a code of alphabet Σ2. This method is of interest only when the alphabet Σ1

is considerably smaller than the message space size (otherwise finding a good code for the message
space Σ1 is as hard as finding a good code for the original message space). That is, concatenation
is only useful when the alphabet in not too large to begin with.

6The code distance is the minimum relative Hamming distance between any two of its codewords,
where the relative Hamming distance is the fraction of entries on which they differ.

7In the local list decoding algorithm success probability is taken only over the random coins of
the algorithm, namely, it is independent of the input; success probability 1 − ρ is achieved in time
poly(log N, ln(1/ρ)). In the local self correcting algorithm we present in this chapter, success prob-
ability is taken both over the input and over the random coins of the algorithm; success probability
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2. Polynomial rate codes with efficient decoding: (Θ(logN), poly(logN),Θ(1))2-
codes, which are efficiently decodable in the random noise model. The decoding
algorithm we present runs in time poly(logN). Furthermore, these codes are
decodable in adversarial noise model in time N2εpoly(logN) for ε the fraction
of flipped bits.

3. Codes of constant rate & distance: (Θ(logN),Θ(logN),Θ(1))2-codes.

Remark 1.11. For linear codes, local decodability is implied by any local self cor-
recting algorithm robust against the changes of basis (because there is a basis change
transforming the code to systematic, where message bits appears as part of the code-
word). In contrast, for non-linear codes —as are MPC— a systematic representation
does not necessarily exist, and a relation between local self correcting and local decod-
ing is not known.

Extending the above results to other groups, we present MPC codes for any finite
abelian group with a constant size generating set. These codes achieve parameters as
in the above theorem, albeit with alphabet size 2O(k) for k = Θ(1) the generating set
size. The algorithms we present receive a description of the underlying group by its
generators and their orders as part of the input.

Theorem 1.12 (MPC for groups of small generating sets). For any finite abelian
G with a generating set of size k = O(1), there exists MPC codes for G achieving
performance as in the above theorem, albeit with alphabet size 2O(k).

Remark 1.13. When all generators have the same order, the codes we present have
alphabet size 2k. In particular, for cyclic groups, the alphabet is binary, i.e., of size
2.

Locally List Decoding Fourier Concentrated Codes

Our local list decoding algorithm is applicable to any code C whose codewords are
Fourier concentrated and recoverable (when identified with complex functions over a
finite abelian group). Namely, our algorithm is applicable to codes C ⊆ {C : G→ C},
G a finite abelian group, satisfying that: (1) codewords can be approximated by a
sparse Fourier representation8 and (2) codewords can be efficiently recognized when
given one of their significant Fourier coefficients.

Theorem 1.14. Let C be a Fourier concentrated and recoverable code, denote its `2-
distance by d = minC,C′∈C ‖C − C ′‖22. There is an algorithm that given a corrupted
codeword w and a distance parameter ε ∈ [0, d) returns a short list containing all

1 − ρ is achieved in query complexity poly(1/ρ) and running time poly(log N, 1/ρ). This latter al-
gorithm can be improved to achieve success probability depending only on the random coins of the
algorithm. Such improvements are out of scope for this thesis.

8A sufficient condition is that for any codeword C, the sum of its Fourier coefficients is of size∑
α

∣∣∣Ĉ(α)
∣∣∣ ≤ poly log |G|.
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codewords at `2-distance ‖C − w‖22 ≤ d − ε from w; and its running time at most
poly(log |G| /ε).
Remark. In particular, the output list contains all codewords at normalized Hamming
distance from w of at most d

4
− ε

4
.9

An immediate example of Fourier concentrated and recoverable codes are the
homomorphism codes from a finite abelian group G and into the complex.10 Thus a
corollary of the above is a list decoding algorithm for homomorphism codes w.r. to
`2 distance:

Corollary 1.15. Let C be a homomorphism codes over a finite abelian group G and
into the complex unit sphere. There is an algorithm that given a corrupted codeword
w and a distance parameter ε ∈ [0, 2) returns a short list containing all codewords at
`2-distance ‖C − w‖22 ≤ 2− ε from w; and its running time at most poly(log |G| /ε).
Remark. In particular, the output list contains all codewords at normalized Hamming
distance from w of at most 1

2
− ε

4
.

Remark 1.16. An equivalent way to think of the SFT algorithm is as a local list
decoding algorithm (in the `2 distance) for the homomorphism codes. This is because
a codeword Cm of the homomorphism code is close to a corrupted codeword w in the
`2-distance iff the m-th Fourier coefficient of w is a significant coefficient.

Soft Error Reduction for Concatenated ABNNR Codes

Alon et.al. [7] presented a distance amplification scheme for error correcting codes
relying on expansion properties of expander graphs; aka ABNNR codes. Guruswami
and Indyk [44] presented an error reduction algorithm for binary codes (aka, the inner
code) concatenated with the ABNNR codes (aka, the outer code). The error reduction
algorithm of [44] follows Forney’s GMD methodology [33] for decoding concatenated
codes, where an efficient decoding algorithm is required for the inner code, and an
efficient algorithm for error reducing from erasures and errors is required for the outer
code.

We present an alternative to Forney’s GMD decoding approach that does not
require an erasures-and-errors error reduction algorithm for the outer code. Instead we
take a soft decoding approach where the inner code returns a list of potential codewords
along with their distances from the (corresponding portion of the) received word, and
the outer code incorporates these lists of distances to find the closest codeword.

The algorithm we present is local, namely, each bit of message symbol can be
found with a d2 queries to the codewords for d the degree of the underlying expander
graph.

9This is due to the bound ‖Cm − w‖22/22 ≤ ∆(Cm, w) ≤ ‖Cm − w‖22/ |Σ|
2 for ∆(Cm, w) =

Pr[Cm(s) 6= w(s)] the normalized Hamming distance, and Σ the code alphabet when interpreted as

complex roots of unity of order |Σ|, that is, Σ =
{

ei 2π
|Σ| t
}|Σ|

t=1
.

10Homomorphism code from (say, an additive group) G into the complex unit sphere is the set of
all functions χ : G→ C satisfying that χ(x + y) = χ(x)χ(y) and |χ(x)| = 1 for all x ∈ G.
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Our soft decoding approach gives the same optimal distance performance as in
[44], and may be of interest outside the realm of MPC codes, e.g., for decoding
concatenated codes where the outer code has no efficient erasures-and-errors decoding
algorithm.

New Techniques

Decoding via learning (in query and subset access models). For our de-
coding algorithms we develop a decoding via learning approach, where we identify
codewords with complex functions over a finite abelian group (or, restrictions of such
functions to a subset of their entries), and decode by first finding the significant
Fourier coefficients of the given corrupted codeword, and then mapping the signifi-
cant Fourier coefficients to the messages of the close codewords.

Finding significant Fourier coefficients: For codes whose codewords are functions
over finite abelian groups, we find their significant Fourier coefficients using our SFT
algorithm. For codes whose codewords are restrictions of such functions to a subset
of the finite abelian group, we develop new algorithms for finding their significant
Fourier coefficients. These algorithms find significant Fourier coefficients of a signal
when given values of the signal on a (carefully designed) predetermined set of entries
and where values are corrupted by (random or adversarial) noise.

Mapping significant Fourier coefficients to messages of close codewords: For linear
codes (or, more generally, group codes) the significant Fourier coefficient immediately
map to the messages encoded by the close codewords. For the MPC codes that we
present, such a map is not always immediate. Nevertheless, we show that such a map
exists and can be computed efficiently.

Self correcting via testing. Our local self correcting algorithm is composed of
two parts: (1) A reduction from the self correcting problem to the property testing
problem of distinguishing between signals with high and low Fourier coefficients in a
large interval, and (2) An algorithm for solving the property testing problem.

Both the reduction algorithm and the property testing algorithm make only a
constant number of queries to the given corrupted codeword.

Other Related Works

The idea of list decoding —that is, finding the list of all codewords close to the given
corrupted codeword— was proposed in the 1950’s by Elias [28] and Wozencraft [89]
for dealing with situations where the noise is too great to allow unique decoding.
Efficient list decoding algorithms followed many years later, starting with the Gol-
dreich and Levin [38] list decoding algorithm for the Hadamard code, which is a code
of exponentially small rate (i.e., codeword length is exponential in message length).
A few years later, Sudan [81] presented the first polynomial time list decoding al-
gorithm for codes of polynomial rate: the Reed-Solomon codes. In following years
more list decoding algorithms were presented, including improved list decoding al-
gorithm for Reed-Solomon codes [48], and polynomial time list decoding algorithms
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for: Reed-Muller codes [83], Algebraic Geometric codes [48, 77], Chinese Remainder
codes [39], certain concatenated codes [49], graph based codes [45], “XOR lemma
based” codes [84] (codes defined there), and folded Reed-Solomon codes [47]. Fol-
lowing our work [3], Grigorescu et.al. [43] presented a list decoding algorithm for
homomorphism codes whose domain and range are both any finite abelian group,
their algorithm correct errors up to large relative Hamming distances.

The list decoding algorithms of Goldreich-Levin [38], Sudan-Trevisan-Vadhan [83],
Trevisan [84] and Grigorescu et.al. [43] are local list decoding algorithms, where the
query complexity is polynomial in logN forN the codeword length and in the distance
parameter in [38,43,83], and it is of the order of

√
N and exponential in the distance

parameter in [84].

1.3 Learning Characters with Noise

Fourier Analysis is among the most widely used tools in electrical engineering and
computer science, employed in numerous applications taken from versatile areas such
as polynomial multiplication, filtering noise in audio or visual signals, lossy compres-
sion, and sequence retrieval.

In the context of theoretical computer science, Fourier analysis of functions over
the Boolean cube {0, 1}n has found many applications in areas including cryptogra-
phy, complexity theory, computational learning theory and property testing; a few
examples follow.

In cryptography. Goldreich and Levin [38] in their work on hard-
core predicates for any one-way function, develop as a tool an algorithm
for finding significant Fourier coefficients of boolean functions over the
Boolean cube {0, 1}n in time polynomial in n (when given query access
to the function).11

In complexity. Linial Mansour and Nisan [63] utilize Fourier analy-
sis to prove a lower bound on constant depth circuits AC0 via showing
that an AC0 Boolean function has almost all of its Fourier spectrum on
the low-order Fourier coefficients. Later, Hastad [53] introduces the use
of Fourier analysis to the field of Hardness-of-Approximation, and gives
many tight inapproximability results for well known problems. Dinur and
Safra [26] followed by Khot-Regev [61] further incorporate Fourier analy-
sis to strengthen the previously known hardness-of-approximation results
for the Vertex-Cover problem.

In computational learning. Kushilevitz and Mansour [62] present an
algorithm for learning decision trees, which employs as a central tool the
algorithm of [38] for finding significant Fourier coefficients. Jackson’s [57]
further employ the algorithm of [38] for learning DNF formulas. Both
algorithms are in the membership queries model.

11The use of Fourier analysis is implicit in the paper of Goldreich and Levin [38], and was made
explicit by Kushilevitz and Mansour [62].
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The problem of Learning Parity with Noise (LPN) is also (implicitly)
related to Fourier analysis: In LPN, the goal is to find s ∈ {0, 1}n, when
given samples (a,

∑n
j=1 siai + η) for a ∈ {0, 1}n chosen at random and

η ∈ {0, 1} a noise value satisfying that η = 0 whp. In Fourier language,
the goal is to find the close character χs,

12 when given samples (a, χs(a) ·
η) for noise η ∈ {±1} with η = 1 whp. Different distributions of a
were considered in literature, e.g., uniform distribution, or distribution
generated by a random walk on the hypercube [21].

Without noise, LPN is tractable using Gauss Elimination. With noise,
LPN is believed to be intractable in the worst case, and consequently also
in the average case due to the random self reducibility of LPN. The fastest
algorithm for LPN, given by Blum-Kalai-Wasserman [15], runs in time
2O(n/ log n). The conjectured intractability of LPN (or, equivalently, the
conjectured intractability of decoding random linear codes) is employed
in cryptographic protocols, including the McEliece cryptosystem [66] and
signature scheme [24], the Hopper-Blum authentication protocol [55] and
subsequent works regarding efficient authentication protocols [88].

In property testing. Fourier analysis was employed in several works,
including: the analysis of Bellare et.al. [13] to the Blum Luby and Rubin-
feld [17] linearity test, Hastad’s [52] long code test, and Fischer et.al. [31]
juntas test.

In the context of approximation theory, algorithms extending Goldreich-Levin [38]
algorithm to find significant Fourier coefficients of more general function classes were
developed. Mansour [65] gave such an algorithm for complex functions over groups
ZN1 × . . .× ZNk

provided that N1, . . . , Nk are powers of two. Gilbert et.al. [35] gave
such an algorithm for real functions over ZN for any positive integer N .

In recent years, Fourier analysis of functions over other domains has proved use-
ful also in theoretical computer science: Fourier analysis of functions over real vector
spaces Rn was introduced in the context of lattice based cryptosystems by Regev [73],
and further employed in complexity analysis of lattice problems [1, 67]; Fourier anal-
ysis of functions over additive groups ZN of integers modulo N was introduced in
the context of cryptographic hardcore predicates in a joint work with Goldwasser
and Safra [3];13 and Fourier analysis of functions over small finite fields Zn

p for prime
p ≤ poly(n) was employed by Regev [74], again in the context of lattice based cryp-
tosystems.

We observe that one computational problem underlies many of the aforemen-
tioned uses of Fourier analysis. We name the problem Learning Characters with
Noise (LCN):

LCN (informally). Given a specification of a function f , the goal is to
find all Fourier characters χ that are close to f (in some distance measure).

12The characters over the Boolean cube {0, 1}n are {χs : {0, 1}n → {±1}}s∈{0,1}n defined by

χs(a) = (−1)
Pn

j=1 siai .
13The work of Akavia Goldwasser and Safra [3] is presented as a part of this dissertation.
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For example, in the Goldreich-Levin [38] algorithm for finding significant Fourier
coefficient, the input is boolean functions over the Boolean cube f : {0, 1}n → {0, 1}
specified by query access, and the goal is to find all characters χ close to f in the
Hamming distance.

In the problem of Learning Parity with Noise, the input is taken from the class of
functions f obtained by adding noise to a character χ : {0, 1}n → {0, 1}; the input is
specified by random samples (a, f(a)); and the goal is to find the character χ closest
to f in Hamming distance.

In Mansour’s [65] algorithm for sparse approximation of polynomials, the input
is a complex function f over a field of size 2n (or more generally, a product of such
fields) specified by query access, and the goal is to find all characters highly correlated
with f , i.e., characters close to f in the `2-distance.

Our Work

As part of this thesis we provide a systematic study of the problem of Learning Char-
acters with Noise (LCN). We develop algorithms for the LCN problem for (1) different
function classes, e.g., periodic functions over the integers and functions over general
finite abelian groups; (2) different function specification models, e.g., query access to
the function, and random samples of the function; and (3) different approximation
metrics, e.g., the Euclidean and Hamming metrics.

In LCN, given a specification of a function f , the goal is to find all Fourier char-
acters χ that are close to f (in some distance measure). We define LCN in broad
settings, where the input function f may be any complex function over an abelian
group, the specification of f may be given by any algorithm M that upon request
returns a sample of f , possibly depending on values sent with the request (aka, M-
access), and the distance d may be arbitrarily defined.

Different instantiations of LCN are defined by a class F from which the input
functions are drawn, the access model M and the distance measure d.

Definition 1.17 (LCN). The input to LCN is M-access to f ∈ F and a threshold
τ > 0. The goal is to find all characters14 χ s.t. d(f, χ) ≥ τ .

We study the following instantiations of LCN, differing on their access models,
their considered function classes, and their distance measures:

• qLCN. Given a description15 of a finite abelian group G, τ > 0 and query access
to a function f : G→ C, the goal is to find all τ -significant Fourier coefficients
of f .16

By query access we mean that the learning algorithm can ask and receive the
value f(x) for every x ∈ G in unit time.

14For f : G→ C the characters are all homomorphisms χ over G and into the complex unit sphere
C. For example, for G = ZN the characters are all functions χα(x) = ei2παx/N , α ∈ ZN .

15A description of G is given by its generators and their orders.
16The τ -significant Fourier coefficients of f : G → C are all α s.t.

∣∣∣f̂(α)
∣∣∣2 ≥ τ for f̂(α) =

1
|G|
∑

x∈G f(x)χα(x) the coefficient of the characters χα in the Fourier representation of f .
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• rLCN. Given a description of a finite abelian group G, τ > 0, and random
samples access to a function f : G→ C, the goal is to find the characters χ s.t.
d(χ, f) < τ .

By random samples access we mean that the learning algorithm can ask and
receive samples (x, f(x)) for x drawn uniformly at random from G in unit time.

We consider various distance measures d including: Hamming distance; `∞
distance; `2 distance; combined primes and distinct primes distances which are
measures we define to explore relations between LCN for functions over product
groups (say, {0, 1}n) and LCN for functions over cyclic groups (say, ZN); and
randomized variants of the former models.

• Interval-LCN. Given N , τ > 0 and interval-access to a function f : ZN → C,
the goal is to find all τ -significant Fourier coefficients of f .

By interval-access we mean that the learning algorithm can ask and receive
samples {(xi, f(xi))}mi=1 that are correlated by having all xi’s drawn from the
same (randomly chosen) interval.

• GP -LCN. Given a description of a finite abelian group G, τ > 0 and GP -access
to a function f : G→ C, the goal is to find all τ -significant Fourier coefficients
of f .

By GP -access we mean that the learning algorithm can ask and receive samples
{(xi, f(xi))}mi=1 s.t. x1, . . . , xm form a random geometric progression in the
group G.17

• Q-LCN. Given a description of a finite abelian group G, τ > 0 and Q-access
to a function f : G→ C, the goal is to find all τ -significant Fourier coefficients
of f .

By Q-access we mean that the learning algorithm can ask and receive the value
f(x) for every x ∈ Q in unit time, where Q ⊆ G is a predetermined subset of
G.

Terminology. For G a set of groups (usually, infinite), we abbreviate by saying
“LCN for G” when addressing LCN with function class restricted to the class of
complex functions over groups G ∈ G. E.g., qLCN for finite abelian groups is the
qLCN problem when the input function f is taken from class of complex functions
over finite abelian groups. Likewise, rLCN for {ZN}N∈N is the rLCN problem when
the input functions f is taken from class of complex functions over groups ZN for
some positive integers N .

We focus on algorithms for LCN with running time polynomial in the bit repre-
sentation length of elements in the domain of f , that is, polynomial in logN for N

17More generally, we consider also GP-access where on input integers k1, k2, ..., km, the access
algorithm M outputs samples (r,

{
f(rki)

}m

i=1
) for r ∈ G distributed uniformly at random and where

the power operation is computed in the group G; and its running times is polynomial in m and
log |G|.
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the size of the domain of f ; aka polynomial algorithms. We say that an instantiation
of LCN is tractable if there exists a polynomial algorithm for it, saying it is intractable
otherwise.

In the following we present our results for LCN, first addressing LCN in query
access model, then – LCN in random samples access model, and finally – LCN in
intermediate access models of interval access, GP-access and subset access. Table 1.2
summarizes our algorithmic results for LCN, presenting in rows 1-11 our polynomial
time algorithms, and in rows 12-13 our non-polynomial time algorithms.

Input Model Distance Measure Function Class Running Time
1 query access `2 {f : G→ C}G∈G poly(log |G|)
2 no noise
3 Hamming
4 random samples `∞ {f : ZN → C}N∈N poly(log N)
5 random Hamming
6 random `∞
7 random samples combined primes {f : ZN → C}N∈I1

poly(log N)
8 random samples distinct primes {f : ZN → C}N∈I2

poly(log N)
9 interval access `2 {f : ZN → C}N∈N poly(log N)
10 subset access `2 F ⊆ {f : G→ C}G∈G poly(log |G| , log |F|)
11 subset access `2 well spread faulty F , poly(log |G| , log |F|)

F ⊆ {f : G→ C}G∈G
12 subset access `2 δ-spread faulty F , N2δpoly(log N, log |F|)

F ⊆ {f : ZN → C}N∈N
13 random samples `2 {f : ZN → C}N∈N N1−o(1)

Table 1.2: Algorithms for LCN. This table summarizes our algorithms for various instantiations
of LCN. We assume without loss of generality that the input functions are bounded in range ‖f‖∞ ∈
[−1, 1] and in energy ‖f‖2 ≤ 1. Each row describes one algorithm, specifying the input model,
distance measure and function class to which it is applicable, and its running time dependency on
domain size (omitting dependency on noise parameter). Rows 2-6 all share the same input model,
function class and running time, and vary only on the distance measure. In rows 1,10-11, G is the
set of all finite abelian groups. In row 7, I1 is the set of all positive integers N =

∏t
i=1 pi that are

a product of t > 1 distinct primes s.t.
∑t

i=1
N
pi

is co-prime to N and is efficiently computable. In
row 8, I2 is the set of all positive integers N =

∏t
i=1 pi that are a product of t > 1 distinct primes

s.t. p1, . . . , pt can be efficiently found given N . In rows 10-12, the subset access is to a subset of size
poly(log N, log |F|) for N the size of the domain of f . In rows 11-12, the given function is a faulty
version of a function in F , where faults are “well spread” in row 11, and “δ-spread” in row 12 for
“well-spread” and “δ-spread”, in particular, for Boolean functions, the Binary Symmetric Channel
results in well spread faults (whp), whereas adversarial channel flipping O(δ)-fraction of the bits
results in δ-spread faults.
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LCN in Query Access Model (qLCN)

In qLCN, given a description of a finite abelian group G (by its generators and their
orders), τ > 0 and query access to a function f : G → C; the goal is to find all
τ -significant Fourier coefficients of f .

A naive solution for this problem would compute the entire Fourier transform of
f , and then output only the significant coefficients; thus running in time O(N logN)
for N = |G|. This running time is exponential in the binary representation length
logN of elements in G, which is the parameter we measure our running time against.

The SFT algorithm presented in this thesis solves qLCN over any finite abelian
group G in running time Θ̃(logN) for N = |G|.

Theorem 1.18 (SFT algorithm). There is a probabilistic algorithm solving qLCN in
running time polynomial in log |G|, 1/τ and ‖f‖∞.

Remark. In particular, for f : ZN → {±1}, the running time is Θ̃
(

log N
τ5.5

)
.

We remark that our SFT algorithm is different than the algorithm of [35] even

when restricted to functions over ZN , improving on the latter in achieving Θ̃(logN)
rather than poly(logN) dependency on N .

LCN in Random Samples Access Model (rLCN)

In rLCN for {ZN}N∈N, given N ∈ N, τ > 0, and random samples access to a function
f : ZN → C, the goal is to find the characters χ of ZN s.t. d(χ, f) < τ (for d some
distance measure). We consider various distance measures d.

On the positive side, we show that rLCN for {ZN}N∈N is tractable in Hamming
distance for any τ ∈ [0, 1), and in the `∞ distance for τ poly-logarithmically related
to the group size.

Theorem 1.19 (Tractability in Hamming distance). rLCN over {ZN}N∈N with Ham-
ming distance measure and τ < 1− 1

poly log N
is tractable.

Remark. When τ < 1
2
, the algorithm can return the unique closest character in

running time polynomial in logN and 1/(1
2
− τ). In general, the algorithm returns

the list of O(1/τ) closest characters in running time polynomial in logN and 1/(1−τ).

Theorem 1.20 (Tractability in `∞ distance). rLCN over {ZN}N∈N with `∞ distance
measure and τ < sin(2π

N
poly logN) is tractable.

Remark 1.21. Similar results hold for the random Hamming and random `∞ dis-
tances.

Furthermore, we investigate the correspondence between rLCN for cyclic groups
and rLCN for product groups. For this purpose we define noise models –distinct primes
and combined primes– that simulate a product group structure for cyclic groups ZN

with N = p1p2 . . . pt a product of distinct primes. This is by exploiting the isomor-
phism of such groups ZN with product groups Zp1 × . . . × Zpt . We then explore the
complexity of rLCN in those noise models, showing that its tractability/intractability
depends on properties of the factorization of N .
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On the negative side, we conjecture that rLCN for {ZN}N∈N is intractable in the `2
distance. Moreover, we conjecture it is still intractable even when the input functions
are restricted to be Boolean (aka, “Boolean `2 distance”). We bring supporting evi-
dence to these conjectures relating them to applications in cryptography and coding
theory. Specifically, we show that if these conjectures are false, then we can (1) de-
code random (non-linear) binary codes of constant rate and distance, and (2) present
the first deterministic hardcore predicate for the Diffie-Hellman function.

Theorem 1.22. Let Cconst be the random code from section 1.2. If there is an al-
gorithm solving rLCN over ZN with Boolean `2 distance in poly(logN) time, using
O(logN) samples, and with error probability poly( 1

N
), then there is an algorithm for

decoding Cconst in time poly(logN) and with success probability at least 2/3.

Theorem 1.23. If rLCN over {Zp}prime p with Boolean `2 distance is tractable, then

every segment predicate18 is hardcore for the Diffie-Hellman function.

In addition, we show that in the `2 and the Boolean `2 distances, rLCN for
{ZN}N∈N is random self reducible. That is, with those distances, if no algorithm
solves rLCN on the worst case, then no algorithm solves rLCN on the average case
(within the same input sizes).

Theorem 1.24 (Random self reducibility). rLCN over {ZN}N∈N with `2 distance is
random self reducible. Moreover, it is random self reducible even when restricted to
the class of Boolean functions.

Finally, we present a (non-polynomial time) algorithm for rLCN in the `2 and the
Boolean `2 distances, running in time N1−O(1/(log log N)2) for N the size of the domain
of f . This gives a slight improvement over the O(N logN) running time of the naive
algorithm.19

Theorem 1.25 (algorithm for rLCN). There is a probabilistic algorithm solving
rLCN over {ZN}N∈N with `2 distance and with τ = O(1) sufficiently small in time
N1−poly(1/ log log N).

LCN in Intermediate Access Models (Interval-LCN, GP-LCN,
Q-LCN)

The random samples access and query access models represent two extremes with
respect to the control the learning algorithm has on the samples it gets: Total control
— in the query access, where in turn we have an efficient algorithms for LCN in
`2 distance measure; No control — in the random samples access, where in turn we
conjecture LCN in `2 distance measure to be intractable.

18Segment predicates are defined in Definition 7.8, and include for example the most significant
bit predicate.

19The naive algorithm is an algorithm measuring correlation of O(log N) random samples with
each character of ZN , outputting the character with highest correlation.
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In applications, achieving query access is not always feasible; whereas, partial
control over the samples is sometimes still available. This leads to defining interme-
diate access models where the algorithm has partial, albeit incomplete, control over
the samples it sees. We cosider several examples of such intermediate access models
arising in applications.

In the interval access model, the learning algorithm can ask and receive samples
{(xi, f(xi))}mi=1 that are correlated by having all xi’s drawn from the same (randomly
chosen) interval. We show that interval-LCN (i.e., LCN for {ZN}N∈N with interval
access) is tractable. An application of this result is our (non-polynomial time) algo-
rithm for solving LCN in random samples access model in the `2 distance measure.

Theorem 1.26. Interval-LCN is in BPP.

In the GP-access model, the learning algorithm can ask and receive samples
{(xi, f(xi))}mi=1 s.t. x1, . . . , xm form a random geometric progression in the group
G. We show that tractability of GP-LCN (i.e., LCN with GP-access) is related to
the problem of proving bit security of the Diffie-Hellman (DH) function. In particu-
lar, we show that either GP-LCN is intractable, or several bits of DH are as secure
as DH.

Theorem 1.27. If GP-LCN is tractable, then every segment predicate (as defined in
Definition 7.8) is hardcore for the Diffie-Hellman function.

In the subset access model, the learning algorithm can ask and receive the value
f(x) for every x ∈ Q in unit time, where Q ⊆ G is a predetermined subset of G.
We show that for any family F of functions there are subsets Q of size polynomial in
log |G| , log |F| such that Q-LCN (i.e., LCN with Q-access, that is, subset access to
the subset Q) is tractable for any function f in F . We use extensions of this algorithm
to noisy setting as a component in our algorithms for decoding polynomial rate codes
discussed in section 1.2.

Definition 1.28 ((Q,F)-LCN). Let F = {FN}N∈I be a family of functions FN ⊆
{f : GN → C} over finite abelian groups GN , and let Q = {QN,τ}N∈I,τ∈R+ a family
of subsets QN,τ ⊆ GN . The input to (Q,F)-LCN is a description of a finite abelian
group GN , τ > 0 and QN,τ -access to a function f ∈ FN ; the goal is to find all the
τ -significant Fourier coefficients of f .20

Theorem 1.29. For every family F = {FN}N∈I of functions FN ⊆ {f : GN → C}
over finite abelian groups GN , there exists a family of polynomial size subsets Q =
{QN,τ ⊆ GN}N∈I,τ∈R+ s.t. (Q,F)-LCN is in P.

Remark 1.30. Explicit construction of the sets QN,τ are possible, using explicit con-
struction of small biased sets to GN . Moreover, such explicit constructions of size

20We say that α ∈ GN is a τ -significant Fourier coefficients of f : GN → C if the α Fourier

coefficient of f is of weight at least
∣∣∣f̂(α)

∣∣∣2 ≥ τ , where
∣∣∣f̂(α)

∣∣∣ = 〈f, χα〉 is the coefficient of the
character χα in the Fourier representation of f .
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poly(log |G| ,M) allow solving Q-LCN for any function f satisfying
∑

α

∣∣∣f̂(α)
∣∣∣ ≤M .

(This is similar to Alon and Mansour [6] de-randomization of Mansour’s [65] algo-
rithm solving qLCN for functions over fields Z2n (or products of such fields).)

Other Related Works

Feldman et.al. [30] consider another aspect of average and worst case relation, showing
equivalence of Learning Parity with Noise (LPN) in average case noise, that is, random
noise, and in worst case noise. The corresponding question regarding rLCN is yet to
be determined.

We observe that intermediate access models were (implicitly) studied for LPN in
the subset access model. Specifically, we observe that every linear error correcting
code defines a subset Q ⊆ {0, 1}n such LPN with query access to Q is tractable
when restricted to functions f that are the corrupted codewords. Since there are
linear codes of constant rate, then there are linear size subsets |Q| = O(n) such that
Q-LPN with is tractable (with restricted input functions).

1.4 Algorithms for Data Intensive Applications

Our modern times are characterized by information explosion incurring a need for
faster and faster algorithms. Even algorithms classically regarded efficient —such as
the Fast Fourier Transform (FFT) algorithm with its Θ(N logN) complexity— are
often too slow for data-intensive applications, and linear or even sub-linear algorithms
are imperative. Despite the vast variety of fields and applications where algorithmic
challenges arise, some basic algorithmic building blocks emerge in many of the exist-
ing algorithmic solutions. Accelerating such building blocks can therefore accelerate
many existing algorithms. One of these recurring building blocks is the Fast Fourier
Transform (FFT) algorithm.

Computing the Fourier transform of a signal of length N may be done in time
Θ(N logN) using the Fast Fourier Transform (FFT) algorithm. This time bound
clearly cannot be improved below Θ(N), because the output itself is of length N .
Nonetheless, it turns out that in many applications it suffices to find only the signif-
icant Fourier coefficients, i.e., Fourier coefficients occupying, say, at least 1% of the
energy of the signal.

Our SFT algorithm may offer a great efficiency improvement over the FFT al-
gorithm for applications where it suffices to deal only with the significant Fourier
coefficients. In such applications, replacing the FFT building block with the SFT
algorithm accelerates the Θ(N logN) complexity in each application of the FFT al-

gorithm to Θ̃(logN) complexity. A few examples of such applications follow.

• Lossy Compression. A central component in several transform compression
methods (e.g., JPEG) is to first apply Fourier (or Cosine) transform to the
signal, and then discard many of its coefficients. To accelerate such algorithms
—instead of computing the entire Fourier (or Cosine) transform— the SFT
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algorithm can be used to directly approximate only the significant Fourier coef-
ficients. Such an accelerated algorithm achieves compression guarantee as good
as the original algorithm (and possibly better), but with running time improved

to Θ̃(logN) in place of the former Θ(N logN).

• Data Retrieval. Fourier transform is used in several data retrieval algorithms.
As an example, consider similarity search, namely, a database search where the
goal is to retrieve all sequences within a certain Euclidean distance from a
given query. For large databases, a similarity search might be infeasible, and
instead, it is preferable to conduct the comparison over shorter sequences, called
fingerprints. The fingerprints may be defined in various ways, for example,
in [29,70] the fingerprint of a sequence is its first few Fourier coefficient.

Fingerprinting sequences by their first few Fourier coefficient is a very general
method, and may, in principal, be applied to versatile types of databases, such as
databases of textual data, DNA sequences, images or audio signals. However,
this fingerprinting method is worthwhile only when most of the mass of the
sequences is concentrated on their first few coefficients.

Utilizing our SFT algorithm, we can fingerprint each sequence by its few most
significant Fourier coefficients instead of taking the first ones. This alternative
fingerprinting method might turn worthwhile for applications where the first
Fourier coefficients are not significant, and thus the existing algorithm cannot
be used.

• SETI. When using Fourier transform to analyze the radio telescope data in
search for Extraterrestrial Intelligence (SETI), one is not interested in the spe-
cific values of the Fourier transform, but rather is only interested in distinguish-
ing between the case that the signal is a random noise from the case that the
signal is originated from some Extraterrestrial Intelligence. One way to distin-
guish random noise from a potentially meaningful signal is to find whether the
Fourier transform of the signal has some peak, namely, some entry on which a
noticeable fraction of the signal’s mass is concentrated. Using our SFT algo-
rithm to check whether the signal has a peak may be done in time Θ̃(logN),
instead of the Θ(N logN) complexity when using FFT to compute the entire
Fourier transform.

• Function Approximation. A straightforward application of our SFT al-
gorithm is for finding sparse Fourier approximation for function f over finite
abelian groups, when given query access f .

Related Works

Lossy compression using fast algorithms for qLCN has caught a wide interest under
the name of compressed sensing [27], e.g., in [23]. Applications of fast algorithms
for qLCN to dimensionality reduction were suggested by Gilbert et.al. [36]. More
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examples of function classes that can be efficiently approximated using our SFT
algorithm are presented by Atici and Rocco [8].

1.5 Conclusions & Thesis Organization

In this work we initiated the systematic study of the Learning Characters with Noise
(LCN) problem, presenting in particular efficient algorithms for several of its instan-
tiations. We then employ these algorithms in cryptography and in error correcting
codes.

In cryptography we introduce a unifying framework for proving that a Boolean
predicate is hardcore for a one-way function, and apply it to a broad family of pred-
icates and candidate one-way functions.

In coding theory, we introduce a new class of error correcting codes that we name:
Multiplication codes (MPC). We develop decoding algorithms for MPC codes, showing
they achieve desirable combinatorial and algorithmic properties. MPC are unique in
particular in achieving properties as above while having no underlying field structure,
but rather a large group structure.

An additional contribution of our work is in introducing the use –in cryptographic
and coding theoretic context– of Fourier analysis of complex functions over the group
ZN of integers modulo N for large values of N , and demonstrating its usefulness.

Acknowledgments. Many of the results presented in this thesis are due to joint
work with Goldwasser and Safra [3]. This includes the SFT algorithm, the first
definition of the MPC codes and their local list decoding algorithm, the decoding
via learning approach for concentrated and recoverable codes, and all our results in
cryptography except the ones on Diffie-Hellman function.

Addressing LCN in various access models, its relation to hardcore predicates for
the Diffie-Hellman application, as well as uses of the SFT algorithm in data intensive
application are due to a joint work with Goldwasser [2].

The soft local error reduction algorithm for ABNNR codes concatenated with
binary codes is due to a joint work with Venkatesan [4].

Thesis Organization The organization of the rest of this thesis is as follows. In
chapter 2 we present some preliminary notations, terminology and facts. In chapter
3 we present our results on the LCN problem in the query access model. In chapter 4
we present our results on the LCN problem in the random samples access model. In
chapter 5 we present our results on the LCN problem in intermediate access models.
In chapter 6 we present our results on the MPC codes. In chapter 7 we present our
results on cryptographic hardcore predicates.
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Chapter 2

Preliminaries

In this chapter we survey preliminary definitions, notations and facts that are used
throughout this work.

2.1 Notations and Terminology

We use the terms non-negligible and negligible to address polynomial and smaller than
polynomial sizes: We say that ρ(·) is non-negligible if there exists a constant c ≥ 0
and an integer kc such that ρ(k) > k−c for all k ≥ kc. Another way to think of it is
ρ(k) = k−Θ(1). We say that a function ν(·) is negligible if for every constant c ≥ 0
there exists an integer kc such that ν(k) < k−c for all k ≥ kc. Another way to think
of it is ν(k) = k−ω(1).

We denote the prejudice of Boolean functions f toward their majority and minority
values by majf and minorf : For every Boolean function f : D → {±1} over a domain
D, denote by

majf
def
= max

b∈{±1}
Pr
x∈D

[f(x) = b]

the prejudice of f toward its majority value, and by minorf
def
= 1−majf the prejudice of

f toward its minority value. For a family of Boolean functions F = {fN : DN → {±1}},
denote

majF
def
= lim sup

f∈F
minorfN

and minorF
def
= lim inff∈F minorfN

.
Balanced Boolean functions f have no more than a negligible prejudice toward

their majority value, namely, both minorf and majf are roughly 1
2
: We say that F is

balanced if for every fN ∈ F ,
∣∣minorfN

−majfN

∣∣ < ν(logN) for ν a negligible function.
To simplify expression of running time and sample complexity, we sometimes use

Θ̃ notation which overlooks quantities poly-logarithmic in appearing arguments, that

is, Θ̃(x) = Θ
(
x · (log x)Θ(1)

)
.

We denote the set of natural numbers by N, the set of integers by Z, the set of real
number by R, the set of complex numbers by C, the set of complex number of unit
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magnitude by T. We denote by Z+ and R+ the set of positive integers and positive
reals, respectively.

We denote by ZN the additive group of integers modulo N . For every element
x ∈ ZN , we denote by

abs(x)
def
= min {x,N − x}

the “distance” of x from zero in the group ZN .

2.2 Fourier Transform over Finite Abelian Groups

We specify terminology and facts regarding finite abelian groups and the Fourier
transform of functions over finite abelian groups.

Abelian groups. An abelian (or commutative) group is a pair (G, ∗) for G a set of
elements, and ∗ an operation on the elements in G satisfying the following. G is closed
under the operation ∗, that is, ∀x, y ∈ G, x ∗ y ∈ G; the operation ∗ is associative,
that is, ∀x, y, z ∈ G, x ∗ (y ∗ z) = (x ∗ y) ∗ z; the operation ∗ is commutative, that is,
∀x, y ∈ G, x ∗ y = y ∗ x; and G has a neutral element e with respect to the operation
∗, that is, ∀x ∈ G, x ∗ e = e ∗ x = x. A group is finite if its set of elements G is
finite. In our notation, we often omit the operation ∗ and denote groups by their set
of elements G.

By the Fundamental Theorem of Abelian Groups every finite abelian group G is
isomorphic to a direct product of cyclic groups, that is, G ∼= ZN1 × ZN2 × . . . × ZNk

for some positive integers N1, . . . , Nk. Moreover, there are elements g1, . . . , gk ∈ G
of orders N1, . . . , Nk respectively s.t. each x ∈ G can be uniquely represented as a
product

x = gx1
1 . . . gxk

k

for (x1, . . . , xk) ∈ ZN1× . . .×ZNk
. A description of the group G can therefore be given

by the elements g1, . . . , gk and their orders N1, . . . , Nk. In the following chapters when
we say a description of G by its generators and their orders, we refer to generators
forming a generating set with unique representation.

Definition 2.1 (Group description). Let g1, . . . , gk ∈ G and N1, . . . , Nk their orders1.
For a multiplicative groups G, we say that {(gi, Ni)}ki=1 is a description of G if every

element x ∈ G can be uniquely represented as a product x =
∏k

i=1 g
xi
i for x1, . . . , xk ∈

ZN1 × . . .× ZNk
.

Similarly, for an additive groups G, we say that {(gi, Ni)}ki=1 is a description of

G if every element x ∈ G can be uniquely represented as a sum x =
∑k

i=1 xi · gi for
x1, . . . , xk ∈ ZN1 × . . .× ZNk

.

We denote the description of G by Info(G).

1For a multiplicative group G, N is the order of g ∈ G if gN = 1 and ∀t < N , gt 6= 1. Similarly,
for an additive group G, N is the order of g ∈ G if N · g = 0 and ∀t < N , t · g 6= 0.
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For example, the description of the Boolean cube G = {0, 1}n is k pairs (1, 2);
the description of the additive group G = ZN of integers modulo N is (1, N); the
description of the product group G = ZN1 × . . .× ZNk

is {(1, Ni)}ki=1.

In the following we focus on product groups G = ZN1 × . . .× ZNk
, definitions for

other finite abelian follow from their isomorphism with such product groups.

Characters. Denote by ωN
def
= ei 2π

N the primitive root of unity of order N , that is,
ωN is a complex number of unit magnitude s.t. ωN

N = 1 and ωk
N 6= 1 for any integer

1 ≤ k < N . The characters of G are all homomorphisms from G to the complex
number of unit magnitude. That is,

Characters of G = {χ : G→ T |χ(x+ y) = χ(x) · χ(y) ∀x, y ∈ G}

The characters of G with coordinate-wise addition form a group which is isomorphic
to G. In particular, the number of characters of G is equal to the number of elements
in G. We index the characters of G by elements G. For G = ZN1 × . . . × ZNk

and
each (α1, . . . , αk) ∈ G, the character χ(α1,...,αk) : G→ T is defined by

χ(α1,...,αk)(x1, . . . , xk) = ωα1x1
N1

. . . ωα1xk
Nk

Similarly, characters of arbitrary finite abelian groups G are defined according to
the group ZN1 × . . . × ZNk

isomorphic to G. That is, for G a finite abelian group

of description {(gi, Ni)}ki=1, its characters are
{
χg

α1
1 ...g

αk
k

: G→ T
}

(α1,...,αk)∈ZN1
×...×ZNk

defined by
χg

α1
1 ...g

αk
k

(gx1
1 . . . gxk

k ) = ωα1x1
N1

. . . ωα1xk
Nk

Inner product, norms and convolution. For any functions f, g : G → C, their
inner product (or, correlation) is

〈f, g〉 def
=

1

|G|
∑
x∈G

f(x)g(x)

The `2-norm (or, energy) of f is

‖f‖2
def
=
√
〈f, f〉

and its `∞-norm (or, maximal amplitude) is

‖f‖∞
def
= max {|f(x)| |x ∈ G}

The convolution of f and g is the function f ∗ g : G→ C defined by

f ∗ g(x) def
=

1

|G|
∑
y∈G

f(y)g(x− y)

41



Fourier transform, significant coefficients and their approximation. The
Fourier transform of functions f : G → C is the function f̂ : G → C that measures
the correlation of f with the characters in G, that is, for each α ∈ G,

f̂(α)
def
= 〈f, χα〉

For any α ∈ G, valα ∈ C and τ, ε ∈ R+, we say that α is a τ -significant Fourier
coefficient iff ∣∣∣f̂(α)

∣∣∣2 ≥ τ

we say that valα is an ε-approximation for f̂(α) iff∣∣∣valα − f̂(α)
∣∣∣ < ε

We denote the set of τ -significant Fourier coefficients of f by Heavyτ (f), that is,

Heavyτ (f)
def
=
{
α ∈ G | |〈f, χα〉|2 ≥ τ

}
The Fourier transform has several useful properties: (1) The Fourier transform

of the convolution of two functions is equal to the coordinate-wise product of their
Fourier transforms. (2) The inner product of two functions is equal (up to normal-
ization) to the inner product of their Fourier transforms. (3) The Fourier transform
of a phase shifted function is a translation of its its Fourier transform prior to the
phase shift. (4) The Fourier transform of a function whose inputs are multiplica-
tively shifted by an element a is equal to a multiplicative shift by an elements a−1

of its Fourier transform prior to the multiplicative shift. These properties are stated
formally in the following theorem.

Theorem 2.2 (Properties of Fourier Transform). Let f, g : ZN → C.

1. Convolution-Multiplication Duality: ∀α ∈ ZN , f̂ ∗ g(α) = f̂(α) · f̂(α)

2. Plancherel Theorem or Parseval Identity: 〈f, g〉 =
∑

α∈ZN

∣∣∣f̂(α)
∣∣∣2 |ĝ(α)|2

3. Translation: If ∃α0 ∈ ZN s.t. ∀x ∈ ZN , g(x) = f(x)χ−α0(x), then ∀α ∈
ZN , ĝ(α) = f̂(α− α0) (where subtraction is modulo N)

4. Dilation: If ∃a ∈ Z∗
N s.t. ∀x ∈ ZN , g(x) = f(ax), then ∀α ∈ ZN , ĝ(α) =

f̂(α/a) (where multiplication and division are modulo N)

2.3 Error Correcting Codes

Error correcting codes encode messages in a way that allows recovery of the original
message even in the presence of noise.
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Codes and binary codes. A code C = {Cx}x∈D ⊆ Σn is a set of length n vectors
over an alphabet Σ. The vectors Cx ∈ C are called codewords. Each codeword Cx

encodes a message x taken from a message space denoted by D. A binary code has
alphabet Σ = {±1}.

We identify the alphabet Σ with a set of complex numbers, and restrict our at-
tention to codes with codewords of bounded `2-norm, ‖Cx‖22 ≤ 1 ∀x ∈ D. We often
think of codewords as complex valued functions mapping entry location to codeword
value.

Rate and distance. The rate of the code measures the amount of information it
contains per codeword bit, i.e.,

r(C) =
log |D|
log |Σn|

The Hamming distance of two vectors f, g ∈ Σn is the number of entries on which
they differ,

Hamming(f, g) = |{i ∈ [n] | fi 6= gi}|

The relative Hamming distance of f, g is the Hamming distance normalized by the
vectors length,

∆(f, g) =
1

n
Hamming(f, g)

The relative code distance is the minimum relative Hamming distance over all code-
words, i.e.,

∆(C) = min
Cx,Cy∈C

∆(Cx, Cy)

For any w ∈ Σn and η ≥ 0, the Hamming ball of radius η around w in C is the set
of codewords at relative Hamming distance at most η from w, that is,

BC,Hamming(w, η) = {Cx ∈ C |∆(Cx, w) < η}

The `2 ball of radius η around w in C is the set of codewords at normalized `2 distance
at most η from w, that is,

BC,`2(w, η) =
{
Cx ∈ C | ‖Cx − w‖22 < η

}
When the distance measure and the code are clear from context we sometimes omit
them and denote the ball by B(w, η).

Notation. We say that a code C = {Cx}x∈D ⊆ Σn is a

(n, k, δ)q-code

if the message space is of information length log |D| = k, the encoding length is n,the
code distance is ∆(C) ≥ δ, and the alphabet is of size |Σ| = q.
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Noise Models. The Binary Symmetric Channel noise model of parameter ε, de-
noted BSCε, corrupts codewords Cx ∈ C by flipping each bit independently at random
with probability ε. That is, on input a codeword Cx ∈ {±1}n the BSCε channel out-
puts a vector Cx + η ∈ {±1}n for η ∈ {−2, 0, 2}n a noise pattern s.t. ∀i ∈ [n] the
value on entry i is chosen independently at random to be ηi = 0 with probability 1−ε
and ηi = −2Cx(1) otherwise.

Adversarial noise model of parameter ε corrupts codewords Cx ∈ C by changing
them to the worst case vector w in the Hamming ball of radius ε around Cx. We also
consider adversarial noise of parameter ε w.r. to the `2 distance, where the channel
outputs the worst case vector w in the `2 ball or radius ε around the input codeword
Cx.

Infinite families of codes. We consider infinite families of codes C = {CN}N∈I for
I is an infinite set of indexes, and for CN = {CN,x}x∈DN

⊆ ΣnN
N codes with codewords

of length nN and alphabet ΣN that encode messages from the message space DN .
The rate of the code family C is

r(C) = lim inf
N∈I

r(CN)

The relative distance of the code family C is

∆(C) = lim inf
N∈I

∆(CN)

For n, k, δ, q functions from I to the positive integers, we say that the code family C
is a (n, k, δ)q-code, if for all N ∈ I, CN is a (nN , kN , δN)qN

-code.

Codes and groups. In our work we study codes C = {Cx}x∈D ⊆ Σn corresponding
to finite abelian groups G. We define codes corresponding to groups G as follows:
The messages are taken from the group G, that is, the message space D is a subset
of G. The codewords entries are identified with a subset S ⊆ G of size |S| = n. The
codewords are identified with complex valued functions over S, Cx : S → Σ, mapping
entry location s ∈ S to the codeword value Cx(s) on that entry.

List Decoding. For binary codes C = {Cx : G→ {±1}}x∈D with balanced code-
words, we say that C is list decodable, if there is an algorithm that, given a corrupted
codeword w : G→ {±1} and a distance parameter ε ∈ [0, 1

2
), returns a list

L ⊇ BallC,Hamming(w, ε)

containing all messages x′ whose codeword Cx′ is in the ball of radius ε around w; and
its running time is polynomial in log |G| and 1/(1

2
− ε). We remark that the running

time bound in particular implies that the list size |L| is polynomial in log |G| and
1/(1

2
− ε).

For unbalanced binary codes the definition is similar, only replacing 1
2

with minorw.
That is, ε ∈ [0,minorw) and the running time is polynomial in log |G| and 1/(minorw−
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ε).
Equivalently, one can think of a list decoding algorithm as returning a list L

containing all codewords Cx′ highly correlation with w, that is,

L ⊇ {x′ | 〈w,Cx′〉 ≥ ŵ(0) + 2ε}

(This is by observing that for binary codes 〈f, g〉 = 1 − 2∆(f, g) and 1
2
− 1

2
|ŵ(0)| =

minorw.)
For non binary codes C = {Cx : G→ Σ}x∈D, we say C is list decodable if there is

an algorithm that, given a corrupted codeword w : G→ Σ and a distance parameter
ε > 0, returns a list L containing all codewords that are highly correlated with w,
that is,

L ⊇ {x′ | 〈w,Cx′〉 ≥ ŵ(0) + ε}

We remark that, in particular, when Cx, w accept values in the unit complex sphere
T, the list decoding algorithm returns all codewords in the Hamming ball of radius
ε′ = 1

2
− 1

2
(ŵ(0) + ε) around w.2

2.4 One-Way Functions and Hardcore Predicates

We study the cryptographic primitive called one-way functions, focusing on hardcore
predicates for one-way functions. Let us formally define those primitives.

A one-way function is a function that is easy to compute but hard to invert. There
are two equivalent definitions of (strong) one-way functions one may work with. The
first is a single function defined over an infinite domain which is asymptotically hard to
invert with high probability (where the probability is taken over all strings of the same
length). The second definition is suitable for number theoretic OWFs candidates, and
therefore, we use this formulation in this work.

Definition 2.3 (OWF). We say that F = {fi : Di → Ri}i∈I is a collection of one-way
functions (OWFs) (where I is an infinite set of indexes, Di and Ri are finite), if (1)
one can efficiently sample i ∈ I∩{0, 1}k (2) ∀i ∈ I, one can efficiently sample x ∈ Di

(3) ∀i ∈ I, x ∈ Di, one can efficiently compute fi(x) and (4) ∀i ∈ I, fi is (strongly)
hard to invert, namely, for every PPT algorithm A there exists a negligible function
νA such that

Pr[fi(z) = y : y = fi(x), z = A(i, y)] < νA(k)

(here the probability is taken over random choices of i ∈ I ∩{0, 1}k, x ∈ Di, and over
the coin tosses of A).

2We show that the correlation ball Bc = {Cx | 〈Cx, w〉 ≥ ε + ŵ(0)} of radius ŵ(0) + ε around w
contains the Hamming ball Bh = BallC,Hamming(w, ε′) of radius ε′ = 1

2 (1 − ŵ(0) − ε) around w.
Let Cx ∈ Bh, we show that Cx ∈ Bc. Denote η = w − Cx. We express the correlation of w,Cx

in terms of η: 〈w,Cx〉 = 〈Cx, Cx〉 + 〈η, Cx〉. The first summand 〈Cx, Cx〉 is equal to 1, since Cx

accepts values on the unit sphere. The second summand is 〈η, Cx〉 is at least −2ε′, because η(i) is 0
on at least 1− ε′ fraction of its entries for Cx in Hamming ball of radius ε′, and for non zero entries
η(i)Cx(i) ≥ −2 for Cx, w accepting values on the unit sphere. For ε′ = 1

2 (1− ŵ(0)− ε) we get that
〈w,Cx〉 ≥ 1− 2ε′ = ŵ(0) + ε, implying that Cx ∈ Bc.
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A hardcore predicate captures the hardness in inverting the one-way function by
singling out a Boolean predicate whose value is as hard to predict as it is hard to
invert the one-way function. A Boolean function P is a hardcore predicate for a
function f if (1) it is easy to compute P (x) given x, but (2) it is hard to predict the
value of P (x) given f(x) with any non-negligible advantage over a random guess. We
are interested in Boolean predicates, usually considering predicates taking ±1 values
rather than 0, 1 values.

Definition 2.4 (Predicts). Let P = {Pi : Di → {±1}}i∈I be a collections of Boolean
predicates. Denote by majPi

= maxb∈{±1} Prx[Pi(x) = b] the prejudice of P toward its
majority value. We say that an algorithm B predicts Pi from fi if ∃ a non-negligible
function ρ s.t.

Pr[B(i, fi(x)) = Pi(x)] ≥ majPi
+ ρ(k)

where the probability is taken over the random coins tosses of B and choices of x ∈
Di ∩ {0, 1}k.

In particular, for balanced predicates P,3 we say that an algorithm B predicts Pi

from fi if ∃ a non-negligible function ρ s.t.

Pr[B(i, fi(x)) = Pi(x)] ≥
1

2
+ ρ(k)

where the probability is taken over the random coins tosses of B and choices of x ∈
Di ∩ {0, 1}k.

Definition 2.5 (Hardcore predicates). Let P = {Pi : Di → {±1}}i∈I be a collection
of Boolean predicates, and F = {fi : Di → Ri}i∈I a collection of one-way functions.
We say that P is hardcore for F if (1) it there is a PPT algorithm that computes
Pi(x) given i and x, but (2) there is no PPT algorithm that predicts Pi from fi.

In what follows we fix a one-way function fi ∈ F and a predicate Pi ∈ P , i ∈ I,
and present an efficient reduction from inverting fi with non-negligible probability
to predicting Pi(x) given fi(x). This will suffice for showing that P is a hardcore
predicate for F . In this case, we abuse notations and say that Pi is hardcore of fi.

For a full definition of one-way collection of functions and hardcore predicatess
for collections see [40].

2.5 Tail Inequalities in Probability

Tail inequalities bound the probability that a random variable accept values far from
its expectations. Two such inequalities are stated below.

Theorem 2.6 (Chernoff/Hoeffding Bound [54]). Suppose that X1, . . . , Xt are inde-
pendent random variables of expectation µi each. Further suppose that they assume

3P = {Pi : Di → {±1}}i∈I is a collection of balanced predicates if ∀i ∈ I,
|Prx[Pi(x) = 1]− Prx[Pi(x) = −1]| < ν(k) for some negligible function ν.
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values only from {0, . . . ,M}. Then, for any η,

Pr

[
1

t

t∑
i=1

Xi −
1

t

t∑
i=1

µi ≥ η

]
≤ 2 · exp

(
−2tη2

M2

)
Theorem 2.7 (Chebyshev). Let X be a random variable with expectation µ and
variance σ2. Then for any real number k > 0,

Pr [|X − µ| > kσ] <
1

k2
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Chapter 3

Learning Characters with Noise in
Query Access Model

In this chapter we present our SFT algorithm for finding significant coefficients in the
Fourier transform of complex function over arbitrary finite abelian groups.

3.1 Introduction

In this chapter we study the problem of Learning Characters with Noise with query
access model and `2 distance measure. In this problem, given query access to a
function f , the goal is to find all characters that are close to f in the `2 norm.1

Equivalently, the goal is to find all α s.t. the α Fourier coefficient of f ,
∣∣∣f̂(α)

∣∣∣2, is

large. We denote this problem by qLCN.

Definition 3.1 (Query access). Let f : G → C. We say that an algorithm is given
query access to f , if it can request and receive the value f(x) for any x ∈ G in unit
time.

Definition 3.2 (qLCN). The input to qLCN is a description2 of a finite abelian group
G, a noise parameter τ ∈ R+ and query access to a function f : G → C; the goal is
to find all τ -significant Fourier coefficients of f .3

A naive solution to qLCN is to compute the Fourier transform of f , and output
only the significant coefficients. This naive algorithm runs in time O(N logN) for
N = |G|, which is exponential in the the binary representation length n = logN of
elements in G – the parameter we measure our running time against.

1We focus in this chapter on the `2 distance measure. The problem of Learning Characters with
Noise in other distance measures are studied in chapter 4. For several distance measures (e.g., the
Hamming distance) we show there that LCN is tractable already in the more challenging access
model of random samples access. This in particular implies tractability in the query access model.

2A description of G is given by its generators and their orders as specified in Definition 2.1.
3We say that α ∈ G is a τ -significant Fourier coefficient of f iff

∣∣∣f̂(α)
∣∣∣2 ≥ τ .
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We present an efficient algorithm —that is, with running time polynomial in
n = logN— that solves qLCN over any abelian group G. We name our algorithm
the SFT Algorithm.

Theorem 3.3 (SFT algorithm). There is a probabilistic algorithm solving qLCN in
running time polynomial in log |G|, 1/τ and ‖f‖∞.

Remark. In particular, for f : ZN → {±1}, the running time is Θ̃
(

log N
τ5.5

)
.

The SFT algorithm follows a line of works solving qLCN in restricted function
classes. Goldreich and Levin [38] gave an algorithm for Boolean functions over {0, 1}n.
In the context of approximation theory, Mansour [65] gave an algorithm for complex
functions over ZN1 × . . . × ZNk

provided that N1, . . . , Nk are powers of two. Gilbert
et.al. [35] gave an algorithm for real functions over ZN for any positive integer N .

Our SFT algorithm is different than the algorithm of [35] even when restricted

to real functions over ZN , improving on the latter in achieving Θ̃(logN) rather than
poly(logN) dependency on N .

Our SFT algorithm for functions over product groups Zk
N combines our technique

developed for functions over ZN with techniques similar to those used by [38] for
functions over the product group Zk

2.

Remarks.

1. The SFT algorithm is non adaptive, namely, the queries to the function f are
independent of the progress of the algorithm.

2. The SFT algorithm is probabilistic, that is, it returns the correct output with
probability at least 2

3
, where probability is taken over the internal coin tosses of

the algorithm. The error probability can be made any arbitrarily small δ with
a factor of ln 1

δ
increase in the running time and the sample complexity.

We point out that there is only one randomized step in the SFT algorithm: the
step where we choose the entries q ∈ G on which to query f .

3. The output of the SFT Algorithm is a list L of elements α ∈ G for which

the Fourier coefficient
∣∣∣f̂(α)

∣∣∣ is large. Computing ε-approximations4 for these

Fourier coefficients is straightforward. Specifically, the values

valα =
1

m

m∑
i=1

f(xi)χα(xi)

for m = Θ( 1
ε2 ln δ

|L|) and x1, . . . , xm chosen uniformly at random from G satisfy

with probability at least 1− δ that
∣∣∣valα − f̂(α)

∣∣∣ < ε for all α ∈ L.

4We say that valα is an ε-approximation for the Fourier coefficients f̂(α) if
∣∣∣valα − f̂(α)

∣∣∣ < ε.
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SFT Applications in Computational Learning Theory

The SFT algorithm has many applications (examples are given in section 1.4, chapter
1). We elaborate here on SFT applications in computational learning.

A common task in computational learning is to find a hypothesis h approximating
a function f , when given only samples of the function f . Samples may be given in
a variety of forms, e.g., via query access to f . We consider the following variant
of this learning problem: f and h are Boolean functions over a finite abelian group
G = ZN1 × . . . × ZNk

. The goal is to find h such that ‖f − h‖22 ≤ γ for γ > 0 an
approximation parameter, and samples of f are given via query access.

A straightforward application of our SFT algorithm gives an efficient solution to
the above learning problem, provided that there is a small set Γ ⊆ G s.t.

∑
α∈Γ f̂(α)2 >

(1− γ
3
). The learning algorithm operates as follows. It first runs the SFT algorithm

to find all α = (α1, . . . , αk) ∈ G that are γ
|Γ| -significant Fourier coefficients of f along

with their γ
|Γ| -approximations valα, and then returns the hypothesis

h(x)
def
=

∑
α is γ/|Γ|-significant

valα · χα(x)

This hypothesis h satisfies that ‖f − h‖22 ≤ γ. The running time of this learning
algorithm and the number of queries to f it makes is polynomially bounded in log |G|,
1/γ and |Γ|.

We remark that knowing the size of |Γ| in inessential for the above sketched
algorithm. When |Γ| is not known we can apply the above algorithm with doubling
guessed values for it, until a value large enough is reached. We can identify that this
is the case by estimating ‖f − h‖22 and verifying that it is indeed less than γ.

More examples of function classes that can be efficiently learned using our SFT
algorithm are given in [8].

Organization The rest of this chapter is organized as follows. In section 3.3 we
analyze the correctness and running time of the SFT algorithm. Parts of the analysis
rely on properties of filter functions ha,b, hαt,a,b defined there; the properties of these
functions are proved in section 3.4.

3.2 The SFT Algorithm

In this section we present the SFT algorithm. We begin with describing the SFT
algorithm for functions over ZN (in section 3.2.1). We then describe the SFT algo-
rithm for functions over ZN1 × . . .× ZNk

(in section 3.2.2). Finally we conclude with
describing the SFT algorithm for functions over arbitrary finite abelian groups (in
section 3.2.3).
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3.2.1 The SFT Algorithm over ZN

We first describe the SFT algorithm for functions over ZN . The input in this case is
a group size N , a threshold τ and query access to a function f : ZN → C. The output
is a short list containing all τ -significant Fourier coefficients, that is, all α ∈ ZN s.t.∣∣∣f̂(α)

∣∣∣2 ≥ τ .

Algorithm overview. The SFT algorithm operates in a binary search fashion. The
τ -significant Fourier coefficients may appear anywhere among the elements {0, . . . , N−
1} of ZN , and the SFT algorithm “zooms into them” via logN steps of gradually re-
fining the initial interval {0, . . . , N − 1} into smaller and small subintervals. At each
such refinement step, the SFT algorithm maintains a list of intervals such that (i)
each τ -significant Fourier coefficients belongs to some interval in the list, (ii) the
list is short, and (iii) the length of the intervals in the list is half the length of the
intervals in the list of the previous refinement step. For example, at the first refine-
ment step, the SFT algorithm partitions the initial interval {0, . . . , N − 1} into two
halves

{
0, . . . , N

2
− 1
}

and
{

N
2
, . . . , N − 1

}
, and decides whether to keep or discard

each half by applying a “distinguishing procedure” on it (details below). Likewise, at
each subsequent refinement step, the SFT algorithm partitions into two halves each
interval in the list maintained by the previous refinements step, and decides whether
to keep or discard each half by applying the distinguishing procedure. After log2N
refinement steps, the algorithm holds a short list of length 1 intervals that contains
all τ -significant coefficients of f . This list is the output of the SFT algorithm.

The distinguishing procedure is the heart of the SFT algorithm. Ideally we’d like
the distinguishing procedure to keep an interval iff it contains a τ -significant Fourier
coefficient. Such a distinguishing procedure would immediately guarantee property
(i) above; moreover, it would also guarantee property (ii) above, because the number
of τ -significant Fourier coefficients is not too large.5 Unfortunately, it is not known
how to efficiently compute such a distinguishing procedure. Nevertheless, we present
a distinguishing procedure with similar guarantee: it keeps all intervals that contain
a τ -significant Fourier coefficient, yet keeping only few intervals.

The distinguishing procedure we present, given an interval {a, . . . , b}, computes
(an approximation of) a weighted sum of squared Fourier coefficients

est ≈
∑

α∈ZN

cα ·
∣∣∣f̂(α)

∣∣∣2
such that the weights cα are high (i.e., close to 1) for α in the interval, and the
weights cα are fast decreasing as α gets farther and farther away from the interval.
The distinguishing procedure keeps the interval iff this (approximate) weighted sum
is sufficiently large. The threshold for being “sufficiently large” is determined such

5Specifically, the number of τ -significant Fourier coefficients is at most ‖f‖22/τ . This is because

by Parseval identity
∑

α∈G

∣∣∣f̂(α)
∣∣∣2 = ‖f‖22 implying that the number for elements τ -significant α is

at most τ/‖f‖22.
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that property (i) holds, that is, intervals containing a τ -significant Fourier coefficient
are kept. Moreover, with further analysis it is possible to show that property (ii)
holds as well, that is, the number of kept intervals is not too large (specifically, it is
polynomial in ‖f‖22/τ).

A central part of the distinguishing procedure is computing (an approximation
of) the weighted sum discussed above. To achieve this, we define a “filter function”
h whose (squared) Fourier coefficients are equal to the above coefficients cα. This
allows us to express the above weighted sum as the norm of the convolution of h and
f , that is, ∑

α∈ZN

cα ·
∣∣∣f̂(α)

∣∣∣2 = ‖h ∗ f‖22

Observing that ‖h ∗ f‖22 = Ex∈ZN
(Ey∈ZN

h(y)f(x− y))2, we approximate this value
by taking an average over randomly chosen values of x, y in ZN .

Pseudo-code for the SFT algorithm over ZN . In algorithms 3.4-3.7 below, we
present the SFT algorithm over ZN in pseudo-code. Let us briefly describe each of
these algorithms.

The SFT Algorithm 3.4 is the main procedure. The input to this algorithm is
the value N describing the group ZN , the threshold τ on the weight of the Fourier
coefficients that we seek, a confidence parameter δ s.t. the algorithm succeeds with
probability 1 − δ, and query access to the function f : ZN → C whose Fourier co-
efficients the algorithm finds. The output of this algorithm is a short list L that
contains all τ -significant Fourier coefficients of f with probability at least 1− δ. The
steps of this algorithm are as follows. The algorithm first calls the Generate Queries
Algorithm 3.5 where the set Q ⊆ ZN of queries to f is chosen. It then asks and
received the value f(q) for each q ∈ Q. Next, the algorithm calls the Fixed Queries
SFT Algorithm 3.6 where the search for the significant Fourier coefficients is executed
when using only the values {(q, f(q))}q∈Q. Finally it outputs the list L returned by
the Fixed Queries SFT Algorithm 3.6.

In the Generate Queries Algorithm 3.5 the set Q ⊆ ZN of queries to f is chosen.
The set Q is a random set chosen as follows. The Generate Queries Algorithm 3.5 fixes
parameters mA,mB, and then chooses a set A of mA elements uniformly at random
from ZN and sets B1, . . . , Blog N of mB elements s.t. for each ` = 1, . . . , logN , B` is
chosen uniformly at random from

{
0, . . . , 2`−1 − 1

}
. The set of queries Q is defined

to be

Q = A−
log N⋃
`=1

B`

(where for any two sets X, Y , we denote X − Y = {x− y |x ∈ X, y ∈ Y }).
The Fixed Queries SFT Algorithm 3.6 is where the search for the significant

Fourier coefficients is executed, when using only the values {(q, f(q))}q∈Q. The search
operates by gradually refining a (short) list Candidates`, ` = 0, . . . , logN − 1, of
intervals {a, b} as discussed in the overview above. The list Candidateslog N contains
intervals of length 1 corresponding to a list of elements in ZN containing all significant
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Fourier coefficients of f , which is the output of the algorithm.

The Distinguishing Algorithm 3.7 is the heart of the refining steps in the Fixed
Queries SFT Algorithm 3.6. This algorithm, given an interval {a, b} of length N/2`

and sets A and B = B`+1 (as were sampled in the Generate Queries Algorithm 3.5),
decides whether to keep or discard it. To do this, it computes

esta,b =
1

|A|
∑
x∈A

(
1

|B|
∑
y∈B

χ−a+b
2

(y)f(x− y)

)2

and decides to keep the interval {a, b} iff esta,b is greater than some threshold. In
the analysis we show that (with high probability over the choice of A,B`+1), esta,b

approximates ‖h ∗ f‖22 for a filter function h as discussed in the overview, implying
that {a, b} is kept if it contains a τ -significant Fourier coefficient, and that not too
many {a, b} are kept.

Algorithm 3.4. SFT
Input: N ∈ N, τ ∈ R+, δ′ ∈ (0, 1) and query access to f : ZN → C.
Output: L ⊆ ZN

Steps:

1. Run Generate Queries Algorithm 3.5 on input N , τ
36

, ‖f‖∞ and δ for δ =

δ′/O

((
‖f‖22

τ

)1.5

logN

)
. Denote its output by A,B1, . . . , Blog N and denote Q =

A−
⋃log N

` B`

2. Query f to find values f(q) for all q ∈ Q

3. Run Fixed Queries SFT Algorithm 3.6 on input N , τ , A,B1, . . . , Blog N and
{(q, f(q))}q∈Q; denote its output by L.

4. Output L

Algorithm 3.5. Generate Queries Algorithm.
Input: N ∈ N, γ ∈ R+, ‖f‖∞ and δ ∈ (0, 1)
Output: A,B1, . . . , Blog N ⊆ ZN

Steps:

1. Let mA = Θ
(

1
γ2 ln 1

δ

)
and mB = Θ

(
1
γ2 ln 1

δγ

)
2. Choose A ⊆ ZN a random subset of mA elements

3. For each ` = 1, . . . , logN , choose B` ⊆
{
0, . . . , 2`−1 − 1

}
be a random subset of

min
{
mB, 2

`−1
}

elements

4. Output A,B1, . . . , Blog N
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Algorithm 3.6. Fixed Queries SFT Algorithm
Input: N ∈ N, τ ∈ R+, A,B1, . . . , Blog N ⊆ ZN and {(q, f(q))}q∈Q for Q = A −⋃log N

`=1 B`

Output: L ⊆ ZN

Steps:

1. Candidate0 ← {{0, N}}, ∀` = 1, . . . , logN , Candidate` = φ

2. For ` = 0, . . . , log2N − 1

(a) For each {a′, b′} ∈ Candidate`

For each {a, b} ∈
{{
a′, a′+b′

2

}
,
{

a′+b′

2
+ 1, b′

}}
i. Run Distinguishing Algorithm 3.7 on input {a, b}, τ , A,B`+1, and
{(q, f(q))}q∈Q; denote its output by “decision”

ii. If decision = 1, Candidate`+1 ← Candidate`+1

⋃
{{a, b}}

3. Output L = {α | {α, α} ∈ Candidatelog N}

Algorithm 3.7. Distinguishing Algorithm.
Input: {a, b} ∈ ZN × ZN , τ ∈ R+, A,B ⊆ ZN , {(q, f(q))}q∈A−B

Output: 1 or 0
Steps:

1. Compute esta,b ← 1
|A|
∑

x∈A

(
1
|B|
∑

y∈B χ−b(a+b
2

)c(y)f(x− y)
)2

2. If esta,b ≥ 5
36
τ , decision = 1, else decision = 0

Remark 3.8. To simplify the presentation of Algorithm 3.5 above, we set the values
mA,mB under the assumption that the function f is bounded by some constant, say,

‖f‖∞ = 1. In general, for unbounded f , we set mA,mB to be mA = Θ

((
‖f‖∞

η

)2

ln 1
δ

)
and mB = Θ

((
‖f‖∞

η

)2

ln ‖f‖∞
δγ

)
for η = Θ

(
min

{
γ,
√
γ, γ

‖f‖∞

})
.

To simplify the presentation of Algorithm 3.6, we ignored the question of whether
a′+b′

2
is an integer. More precisely, instead of taking a′+b′

2
as written above, we parti-

tion {a′, . . . , b′} into two disjoint subintervals {a′, . . . , c}, {c+ 1, . . . , b′} of roughly the
same length, namely −1 ≤ |{c+ 1, . . . , b′}|− |{a′, . . . , c}| ≤ 1, and proceed with esta

′,c

and estc+1,b′. Moreover, to ease the analysis we make sure that at each iteration `, all
intervals are of length exactly d(N/2`)e. To achieve this we reorganize the intervals
(possibly adding a few extra elements).

3.2.2 The SFT Algorithm over ZN1
× . . .× ZNk

We next describe the SFT algorithm for functions over G = ZN1 × . . . × ZNk
. The

input in this case is a description of the group by N1, . . . , Nk, a threshold τ and query
access to a function f : G→ C. The output is a short list containing all τ -significant

Fourier coefficients, that is, all α ∈ G s.t.
∣∣∣f̂(α)

∣∣∣2 ≥ τ .
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Algorithm overview. The SFT algorithm finds the τ -significant Fourier coeffi-
cients (α1, . . . , αk) ∈ ZN1 × . . .×ZNk

by gradually revealing its coordinates one after
the other. At the first step, the algorithm finds the first coordinates of all the τ -
significant Fourier coefficients, that is, it finds length 1 prefixes of the τ -significant
Fourier coefficients. At the second step, the algorithm extends each length 1 prefix
to all its continuation into length 2 prefixes of the τ -significant Fourier coefficients.
The algorithm continues in extending prefixes of the τ -significant Fourier coefficients
one coordinate at a time. After k step, the algorithm holds length k prefixes, which
are the list of τ -significant Fourier coefficients.

To extend a length t− 1 prefix (α1, . . . , αt−1) of a τ -significant Fourier coefficient
to a prefix of length t, the algorithm searches for all values αt of the t-th coordinate
such that (α1, . . . , αt−1, αt) is a length t prefixes of a τ -significant Fourier coefficient.
This search is done in a binary search fashion, similarly to the SFT algorithm for func-
tions over ZNt . Namely, the search proceeds by gradually refining the initial interval
{0, . . . , Nt} into smaller and smaller subintervals, each time applying a distinguishing
procedure to decide whether to keep or discard a subinterval.

The distinguishing procedure we use here is different than the one used for the case
of functions over ZN . Ideally we’d like the distinguishing procedure to keep an inter-
val iff it contains αt such that (α1, . . . , αt−1, αt) is a length t prefix of a a τ -significant
Fourier coefficient. It is not known how to efficiently compute such a distinguishing
procedure. Nevertheless, we present a distinguishing procedure with similar guaran-
tee: it keeps all intervals that contain a τ -significant Fourier coefficient, yet keeping
only few intervals. Specifically, the distinguishing procedure, given a length t − 1
prefix α = (α1, . . . , αt−1) and an interval {a, . . . , b}, computes (an approximation of)
a weighted sum of squared Fourier coefficients

est ≈
∑

αt∈ZNt

cαt ·
∑

α′∈ZNt+1
×...×ZNk

∣∣∣f̂(ααtα
′)
∣∣∣2

such that the weights cαt are high (i.e., close to 1) for αt in the interval, and the
weights cαt are fast decreasing as α gets farther and farther away from the interval.
The distinguishing procedure keeps the interval iff this (approximate) weighted sum
is sufficiently large. To compute (an approximation of) this weighted sum, we define a

“filter function” h whose (squared) Fourier coefficients
∣∣∣ĥ(β)

∣∣∣2 are equal to the above

coefficients cαt when the length t prefix of β is the given prefix α, and they are zero
otherwise. With this filter function we express the above weighted sum as the norm
of the convolution of h and f , which we in turn approximate by taking an average
over randomly chosen values

Pseudo-code for SFT Algorithm over ZN1 × . . .×ZNk
. In Algorithms 3.9-3.12

below, we present the SFT algorithm for functions over ZN1×. . .×ZNk
in pseudo-code.

The overall structure of the algorithm is similar to the one for functions over
ZN . There are differences in the Fixed Queries SFT Algorithm 3.11 and in the
Distinguishing Algorithm 3.7. In the Fixed Queries SFT Algorithm 3.11 there is
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an additional outer loop iterating over t = 1, . . . , k in which we gradually construct
lists length t prefixes of τ -significant Fourier coefficients of f . In the Distinguishing
Algorithm 3.7, given a length t−1 prefix αt = (α1, . . . , αt−1) and interval {a, . . . , b} ⊆
ZNt , the task is to distinguish whether or not there is a τ -significant Fourier coefficient
β whose length t prefix is αtαt for some αt ∈ {a, . . . , b}. This is achieved as discussed
in the overview above.

Algorithm 3.9. SFT
Input: A description {(1, Ni)}ki=1 of the group G = ZN1 × . . . × ZNk

, τ ∈ R+,
δ′ ∈ (0, 1), and query access to f : G→ C.
Output: L ⊆ ZN1 × . . .× ZNk

Steps:

1. Run Generate Queries Algorithm 3.10 on input {(1, Ni)}ki=1,
τ
36

, ‖f‖∞ and

δ′/Θ

(
1
τ

(
‖f‖22

τ

)1.5

log |G|
)

. Denote its output by A, {Bt,`}t∈[k],`∈[log Nt]
, and de-

note Q = A−
⋃

t∈[k],`∈[log Nt]
Bt,`

2. Query f to find values f(q) for all q ∈ Q

3. Run Fixed Queries SFT Algorithm 3.11 on input {(1, Ni)}ki=1, τ , A, {Bt,`}t∈[k],`∈[log Nt]

and {(q, f(q))}q∈Q for Q = A−
⋃

t∈[k],`∈[log Nt]
Bt,`. Denote its output by L.

4. Output L

Algorithm 3.10. Generate Queries Algorithm.
Input: A description {(1, Ni)}ki=1 of the group G = ZN1 × . . .× ZNk

, γ ∈ R+, ‖f‖∞
and δ ∈ (0, 1)
Output: A, {Bt,`}t∈[k],`∈[log Nt]

Steps:

1. Let mA = Θ
(

1
γ2 ln 1

δ

)
and mB = Θ

(
1
γ2 ln 1

δγ

)
2. Choose A ⊆ G a random subset of mA elements

3. For each t ∈ [k], ` ∈ [logNt], choose B ⊆ ZN1×. . .×ZNt−1×
{
0, . . . , 2`−1 − 1

}
×

{0} × . . .× {0} a random subset of mB elements

4. Output A, {Bt,`}t∈[k],`∈[log Nt]

Algorithm 3.11. Fixed Queries SFT Algorithm
Input: A description {(1, Ni)}ki=1 of the group G = ZN1 × . . . × ZNk

, τ ∈ R+, A,
{Bt,`}t∈[k],`∈[log Nt]

and {(q, f(q))}q∈Q for Q = A−
⋃

t∈[k],`∈[log Nt]
Bt,`

Output: L ⊆ ZN1 × . . .× ZNk

Steps:

1. Let Prefixes0 = {the empty string}, Prefixes1, . . . , P refixesk = φ

2. For t = 1, . . . , k
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(a) For each αt = (α1, . . . , αt−1) ∈ Prefixest−1

i. Candidateαt,0 ← {{0, Nt}}, ∀` = 1, . . . , logN`, Candidateαt,` = φ

ii. For ` = 0, . . . , log2Nt − 1

A. For each {a′, b′} ∈ Candidateαt,`

For each {a, b} ∈
{{
a′, a′+b′

2

}
,
{

a′+b′

2
+ 1, b′

}}
• Run the Distinguishing Algorithm 3.12 on input αt, {a, b}, τ ,
A,Bt,`+1 and {(q, f(q))}q∈A×Bt,`+1

; denote its outputs be “decision”

• If decision = 1, Candidateαt,`+1 ← Candidateαt,`+1

⋃
{{a, b}}

iii. For each {a, a} ∈ Candidateαt,log Nt denote αta = (α1, . . . , αt−1, a).
Let

Lt(α
t) =

{
αta

∣∣ {a, a} ∈ Candidatesαt,log Nt

}
(b) Let Prefixest ←

⋃
αt∈Prefixest−1

L(αt)

3. Output Prefixesk

Algorithm 3.12. Distinguishing Algorithm.
Input: αt ∈ ZN1 × . . . × ZNt−1, {a, b} ∈ ZNt × ZNt, τ ∈ R+, A,B ⊆ G and
{(q, f(q))}q∈A−B.
Output: 1 or 0
Steps:

1. Compute

estα
t,a,b ← 1

|A|
∑
x∈A

(
1

|B|
∑
y∈B

χαt(yt)χ−b(a+b
2

)c(yt) · f(x− y)

)2

for χαt(yt) =
∏t−1

j=1 e
i 2π

Nj
·αt

jyt
j an evaluation of the αt character of the group ZN1×

. . . × ZNt−1, and χ−b(a+b
2

)c(yt) = e
−i 2π

Nt
·b(a+b

2
)cyt an evaluation of the −b(a+b

2
)c

character of the group ZNt.

2. If estα
t,a,b ≥ 5

36
τ , decision = 1, else decision = 0

Remark 3.13. To simplify the presentation of Algorithm 3.10 above, we set the values
mA,mB under the assumption that the function f is bounded by some constant, say,

‖f‖∞ = 1. In general, for unbounded f , we set mA,mB to be mA = Θ

((
‖f‖∞

η

)2

ln 1
δ

)
and mB = Θ

((
‖f‖∞

η

)2

ln ‖f‖∞
δγ

)
for η = Θ

(
min

{
γ,
√
γ, γ

‖f‖∞

})
.

To simplify the presentation of Algorithm 3.11, we ignored the question of whether
a′+b′

2
is an integer. More precisely, instead of taking a′+b′

2
as written above, we parti-

tion {a′, . . . , b′} into two disjoint subintervals {a′, . . . , c}, {c+ 1, . . . , b′} of roughly the
same length, namely −1 ≤ |{c+ 1, . . . , b′}|− |{a′, . . . , c}| ≤ 1, and proceed with esta

′,c

and estc+1,b′. Moreover, to ease the analysis we make sure that at each iteration `, all
intervals are of length exactly d(N/2`)e. To achieve this we reorganize the intervals
(possibly adding a few extra elements).
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3.2.3 The SFT Algorithm over Finite Abelian Groups

The SFT Algorithm for arbitrary finite abelian groups G is defined by utilizing the
isomorphism between G and a direct product group.6 as follows.

Given a description {(gj, Nj)}kj=1 of the group G, a threshold τ and query access to
a function f : G→ C, we simulate query access to a function f ′ over a direct product
group isomorphic to G, and apply the SFT Algorithm 3.9 on input a description
of the direct product group, the threshold τ and query access to f ′. Output L ={∏k

j=1 g
xj

j

∣∣∣ (x1, . . . , xk) ∈ L′
}

for L′ the output of the SFT Algorithm 3.9.

To complete the description of the algorithm we define the function f ′ and explain
how to efficiently simulate query access to f ′ when given query access to f . The
function f ′ is defined by f ′(x1, . . . , xk) = f(

∏k
j=1 g

xj

j ). The function f ′ is computable
in time polynomial in log |G|.

3.3 Analysis of the SFT Algorithm

In this section we analyze the SFT algorithm. Analyze the SFT algorithm for
functions over ZN in section 3.3.1; analyzing the SFT algorithm for functions over
ZN1 × . . .×ZNk

in section 3.3.2; and analyzing the SFT algorithm for functions over
arbitrary finite abelian groups in section 3.3.3.

3.3.1 Analysis of the SFT Algorithm over ZN

In this section we analyze the SFT Algorithm 3.4, that is, the SFT algorithm for
complex functions f over ZN .

To prove the correctness of the SFT algorithm, we first define a filter function
ha,b, and define a criterion on when the sets A,B1, . . . , Blog N chosen by the Generate
Queries Algorithm 3.5 are “good”. We then show in Theorem 3.16 that the SFT
algorithm succeeds if the set A,B1, . . . , Blog N chosen by the Generate Queries Algo-
rithm 3.5 are good, and show moreover, that the event of A,B1, . . . , Blog N being good
happens with high probability (where the probability is taken over the random coins
of the Generate Queries Algorithm 3.5).

The filter function ha,b
N that we define is a phase shift of a periodic square function

defined as follows. For {−a, . . . , a} a symmetric interval around zero,7 h−a,a
N (y) = 2a

is constant for all y ∈ {0, . . . , N/2a}, and h−a,a
N (y) = 0 otherwise. For general intervals

{a, . . . , b}, ha,b
N (y) = χ−s(y)h

−s,s
N (y) is a phase shift of h−s,s

N by a shift s = b+a
2

chosen
to translate the center of the interval {a, . . . , b} to zero.

6Recall that if G a finite abelian group generated by g1, . . . , gk of orders N1, . . . , Nk, respectively,
then G is isomorphic to the direct product group ZN1 × . . . × ZNk

by mapping (x1, . . . , xk) ∈
ZN1 × . . .× ZNk

to
∏k

j=1 g
xj

j ∈ G.
7For any a ∈ ZN , we denote by −a the group element N − a.
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Definition 3.14 (ha,b
N ). For any positive integer N and a ≤ b in ZN , we define a

filter function ha,b
N : ZN → C as follows. If a < b,

ha,b
N (y)

def
=


N
t
· χ−b(a+b

2
)c(y) if y ∈ {0, . . . , t− 1}

0 otherwise

for t = b( N
2(b−a)

)c and χ−b(a+b
2

)c(y) = ei 2π
N
b(a+b

2
)cy a character in the group ZN . If a = b,

ha,a
N (y) = χ−a(y)

When N is clear from the context we often omit it and denote ha,b = ha,b
N .

We say that the sets A,B1, . . . , Blog N chosen by the Generate Queries Algo-
rithm 3.5 are good, if the values esta,b computed by the Distinguishing Algorithm
3.7 throughout the execution of the SFT algorithm all satisfy that

esta,b ≈ ‖ha,b ∗ f‖22

for f the input function.

Definition 3.15 (Good A,B). For every positive integer N , a function f : ZN → C,
subsets A,B ⊆ ZN , an interval {a, . . . , b} in ZN , and a threshold γ ∈ R+, we say that
A,B are γ-good w.r. to f, a, b, if∣∣esta,b − ‖ha,b ∗ f‖22

∣∣ < γ

for esta,b = 1
|A|
∑

x∈A

(
1
|B|
∑

y∈B χ−b(a+b
2

)c(y)f(x− y)
)2

the value computed by the Dis-

tinguishing Algorithm 3.7 on input a, b, τ, A,B and {(q, f(q))}q∈A−B.
We say that a call to the Distinguishing Algorithm with parameters {a, b}, τ , A,B,

{(q, f(q))}q∈A−B is good if A,B are τ
36

-good w.r. to f, a, b.

Analyzing SFT Algorithm 3.4

In Theorem 3.16 below we show the SFT algorithm returns a short list containing
all significant Fourier coefficients of f , and that its running time is polynomial in
logN, 1

τ
.

The proof of Theorem 3.16 builds on three lemmata: In Lemma 3.20 we show that
the sets A,B1, . . . , Blog N chosen by the Generate Queries Algorithm 3.5 are good with
high probability. In Lemma 3.18 we show that when A,B1, . . . , Blog N are good then
all calls to the Distinguishing Algorithm 3.7 are good. In Lemma 3.17 we show that
when all calls to the Distinguishing Algorithm 3.7 are good, then the Fixed Queries
SFT Algorithm 3.6 outputs a short list containing every significant Fourier coefficient
of f . This in turn implies that the SFT Algorithm 3.4 outputs a short list containing
every significant Fourier coefficient of f .
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Theorem 3.16 (Analyzing SFT Algorithm 3.4). Let the input to the SFT Algorithm
3.4 be N ∈ N, τ ∈ R+, δ′ ∈ (0, 1) and query access to f : ZN → C; denote its output
by L. Then, with probability at least 1− δ′, the following hold:

1. L ⊇ Heavyτ (f), i.e., L contains all τ -significant Fourier coefficients of f

2. |L| ≤ O(1/τ), i.e., L is short

3. The running time of the SFT Algorithm 3.4 is at most polynomial in logN, 1
τ

Remark. Details on the running time of the SFT Algorithm 3.4 are as follows. For
Boolean f the running time is at most Θ̃

(
log N
τ5.5 · ln 1

δ′

)
. For general functions f , the

running time is at most Θ̃

(
logN ·

(
‖f‖22

τ

)1.5

·
(
‖f‖2∞

η2 · ln 1
δ

)2
)

for η = Θ
(
min

{
τ,
√
τ , τ

‖f‖∞

})
and δ = δ′/O

((
‖f‖22

τ

)1.5

logN

)
.

Proof. Let δ be as set in step 1 of the SFT Algorithm 3.4. Below we show that all
calls to the Distinguishing Algorithm in step 2(a)i of the Fixed Queries Algorithm

are good with probability at least 1 − logN · Θ
(
(‖f‖22/τ)

1.5
)
· δ. Assigning δ =

δ′/
(
logN ·Θ

(
(‖f‖22/τ)

1.5
))

as was set in step 1 of the SFT Algorithm we get that

the above all calls to the Distinguishing Algorithm in step 2(a)i of the Fixed Queries
Algorithm are good with probability at least 1 − δ′. By Lemma 3.17 this concludes
the proof.

In the following we abbreviate by saying “call” to refer to a call to the Distin-
guishing Algorithm in step 2(a)i of the Fixed Queries Algorithm. By Lemma 3.20,
each single call is good with probability at least 1 − δ. We show that all calls are
good with high probability using induction and union bound as follows. For ` = 0,
|Candidate0| = 1, so there is a single call, an by the above it is good with probability
at least 1− δ. Assuming all calls in iterations 0, . . . , `−1 were good, we show that all

calls in iteration ` are good as well. By Lemma 3.17, |Candidate`| ≤ Θ
(
(‖f‖22/τ)

1.5
)
,

so by union bound the calls for all {a, b} ∈ Candidate` are good with probability

at least 1 − Θ
(
(‖f‖22/τ)

1.5
)
· δ. Finally, applying union bound over all iterations

` = 0, . . . , logN − 1, we conclude that all calls are good with probability at least

1− logN ·Θ
(
(‖f‖22/τ)

1.5
)
· δ. �

Analyzing Fixed Queries SFT Algorithm 3.6

In Lemma 3.17 below we show that when all calls to the Distinguishing Algorithm 3.7
are good, then the Fixed Queries SFT Algorithm 3.6 outputs a short list containing
every significant Fourier coefficient of f .

We prove this lemma by induction, showing that for every `, the list of intervals
Candidate` which is maintained by the Fixed Queries SFT Algorithm 3.6 satisfy that
every significant Fourier coefficient belongs to some interval in the list, and moreover,
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the number of intervals in the list is not too large. The details of the induction are
given in Lemma 3.17.1.

Lemma 3.17 (Analyzing Fixed Queries SFT Algorithm 3.6). Let the input to the
Fixed Queries Algorithm 3.6 be N ∈ N, τ ∈ R+, A,B1, . . . , Blog N ⊆ ZN and

{(q, f(q))}q∈Q for Q = A −
⋃log N

` B`; denote its output by L. If all calls to the
Distinguishing Algorithm in step 2(a)i of the Fixed Queries Algorithm are good, then
the following holds:

1. L ⊇ Heavyτ (f), i.e., L contains all τ -significant Fourier coefficients of f

2. |L| ≤ O(1/τ), i.e., L is short, and

3. The running time of the Fixed Queries SFT Algorithm 3.6 is at most

Θ

(
logN ·

(
‖f‖22

τ

)1.5

· |Q|
)

Proof. Let Candidate` be as defined in Fixed Queries SFT Algorithm 3.4. Observe
that each Candidate` consists of intervals on length N/2`. In Lemma 3.17.1 below
we show that ∀` = 1, . . . , logN , Candidate` satisfies the following:
(1)
⋃
{a,b}∈Candidate`

{a, . . . , b} ⊇ Heavyτ (f), and

(2) |Candidate`| ≤ Θ
(
(‖f‖22/τ)

1.5
)
.

In particular, this implies that Candidatelog N is a list of intervals, each of length 1,
s.t. {α | {α, α} ∈ Candidatelog N} ⊇ Heavyτ (f), and therefore

L = {a | {a, a} ∈ Candidatelog N} ⊇ Heavyτ (f)

Moreover, by Lemma 3.17.1, for all {a, a} ∈ Candidatelog N , a is O(τ)-significant
Fourier coefficient of f . This implies that there are at most O(1/τ) such intervals in
Candidatelog N . Therefore, the output list L = {a | {a, a} ∈ Candidatelog N} is of size
at most O(1/τ).

The running time is T =
∑log N

`=1 |Candidate`| · |A| · |B`|. Assigning the bound on
|Candidate`| from Lemma 3.17.1, we get that

T ≤ Θ

(
|Q| ·

(
‖f‖22
τ

)1.5

logN

)

Lemma 3.17.1. Let ` ∈ 0, . . . , logN − 1. If for every `′ < `, in all iterations `′ all
call to the Distinguishing Algorithm in step 2(a)i of the Fixed Queries Algorithm were
good, then the following holds for the `-th iteration:

1.
⋃
{a,b}∈Candidate`

{a, . . . , b} ⊇ Heavyτ (f)

2. |Candidate`| ≤ Θ
(
(‖f‖22/τ)

1.5
)

Moreover, for ` = logN , ∀{a, a} ∈ Candidatelog N , a is O(τ)-significant Fourier
coefficient of f .

62



Proof. We prove by induction that the two conditions in the above invariant hold.
At the first step of the algorithm Candidate0 = {{0, N − 1}}, which trivially satisfies
the above two conditions.

Next we show that if the conditions of the theorem hold for Candidate`, then they

also hold for Candidate`+1. First we prove that condition 1 holds. If
∣∣∣f̂(α)

∣∣∣2 ≥ τ , then

by the induction hypothesis there exists a pair {a, b} ∈ Candidate` s.t. α ∈ {a, . . . , b}.
Trivially, either α ∈

{
a, . . . , a+b

2

}
or α ∈

{
a+b
2

+ 1, . . . , b
}
. If α ∈

{
a, . . . , a+b

2

}
, then

by Lemma 3.18, decision = 1 and therefore,
{
a, a+b

2

}
∈ Candidate`+1. Similarly, if

α ∈
{

a+b
2

+ 1, . . . , b
}
, then

{
a+b
2

+ 1, b
}
∈ Candidate`+1. Namely,⋃

{a,b}∈Candidate`

{a, . . . , b} ⊇ Heavyτ (f)

Second, we prove that condition 2 holds. Recall that {a, b} ∈ Candidate`+1 implies
that in the `-th iteration of main loop of Algorithm 3.6 decision = 1. By Lemma

3.18, this implies that
∑

α∈Exta,b

∣∣∣f̂(α)
∣∣∣2 ≥ τ/12 (for Exta,b = {α | abs(α − a+b

2
) ≤

∆ · 2(b − a)} where ∆ =
√

24
τ
‖f‖2 as in Theorem 3.18). By Parseval identity, there

are at most 12
τ
‖f‖22 intervals {a, . . . , b} with disjoint extensions Exta,b such that the

weight
∑

α∈Exta,b

∣∣∣f̂(α)
∣∣∣2 is at least τ/12. Each such extension Exta,b intersects with

at most 2∆ + 1 disjoint intervals {a′, . . . , b′} of size b− a. Implying that

|Candidate`+1| ≤
12

τ
‖f‖22 · (2∆ + 1) = Θ

((
‖f‖22/τ

)1.5
)

Finally, we show that |Candidatelog N | ≤ O(1/τ). Recall that for all {a, a} ∈
Candidatelog N , A,Blog N are τ/36-good w.r. to f, a, a, i.e., |esta,a − ‖ha,a ∗ f‖22| <
τ/36. By Proposition 3.31 ‖ha,a ∗ f‖22 =

∣∣∣f̂(a)
∣∣∣2. Combining the two we conclude

that

∣∣∣∣esta,a −
∣∣∣f̂(a)

∣∣∣2∣∣∣∣ < τ/36. Namely, for each {a, a} ∈ Candidatelog N , a is 35
36
τ -

significant. �
�

Analyzing Distinguishing Algorithm 3.7

In Lemma 3.18 we show that when the sets chosen by the Generate Queries Algorithm
3.5 are good, then the Distinguishing Algorithm keeps all intervals {a, b} that contain
a significant Fourier coefficient of f , and moreover, it keeps not too many intervals.

The proof of Lemma 3.18 relies on properties of the filter ha,b. These properties
are stated in Lemma 3.19 below. The proof of these properties is deferred to section
3.4.1.

Lemma 3.18 (Analyzing Distinguishing Algorithm 3.7). Let the input to the Dis-
tinguishing Algorithm 3.7 be {a, b} ∈ ZN × ZN , τ ∈ R+, A,B ⊆ ZN s.t. that A,B
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are τ/36-good w.r. to f, a, b, and {(q, f(q))}q∈A−B; denote its output by “decision”.
Then the following holds:

• If ∃α ∈ {a, . . . , b} with
∣∣∣f̂(α)

∣∣∣2 ≥ τ , then decision = 1

• If decision = 1, then
∑

α∈Exta,b

∣∣∣f̂(α)
∣∣∣2 ≥ τ/12 for Exta,b = {α | abs(α− a+b

2
) ≤

∆ · 2(b − a)} an extension of the interval {a, . . . , b} defined with respect to a

parameter ∆ =
√

24
τ
‖f‖2.

Proof. Let esta,b = 1
|A|
∑

x∈A

(
1
|B|
∑

y∈B χ−a+b
2

(y)f(x− y)
)2

as defined in the Distin-

guishing Algorithm 3.7. Since A,B are τ/36-good w.r. to f, a, b then∣∣esta,b − ‖ha,b ∗ f‖22
∣∣ < τ/36

Recall that the Distinguishing Algorithm outputs decision = 1 iff esta,b > 5
36
τ . By

Lemma 3.19 when assigning γ = τ/36 and λ = 5
6
τ , the conditions of this lemma hold,

namely, if ∃α0 ∈ {a, . . . , b} with
∣∣∣f̂(α0)

∣∣∣2 ≥ τ , then esta,b ≥ 5
36
τ , and if esta,b ≥ 5

36
τ ,

then
∑

α∈Exta,b

∣∣∣f̂(α)
∣∣∣2 ≥ 1

12
τ . �

Lemma 3.19 (Properties of ‖ha,b ∗ f‖22). For any γ > 0, f : ZN → C and esta,b ∈ R,
if
∣∣esta,b − ‖ha,b ∗ f‖22

∣∣ ≤ γ, then the following holds:

• esta,b ≥
∑

α∈{a,...,b}
| bf(α)|2

6
− γ. In particular, if ∃α0 ∈ {a, . . . , b} with

∣∣∣f̂(α0)
∣∣∣2 ≥

τ , then esta,b ≥ τ
6
− γ

• For all λ > 0, if esta,b ≥ λ, then
∑

α∈Exta,b

∣∣∣f̂(α)
∣∣∣2 ≥ λ − 2γ for Exta,b ={

α | abs(α− a+b
2

) ≤ ∆ · 2(b− a)
}

an extension of the interval {a, . . . , b} defined

with respect to a parameter ∆ =
√

2
3γ
‖f‖2.

Proof. Proof appears in section 3.4.1. �

Analyzing Generate Queries Algorithm 3.5

In Lemma 3.20 we show that the sets A,B1, . . . , Blog N chosen by the Generate Queries
Algorithm 3.5 are good with high probability.

Lemma 3.20 (Analyzing Generate Queries Algorithm 3.5). Let the input to the Gen-
erate Queries Algorithm 3.5 be N ∈ N, γ ∈ R+, ‖f‖∞ and δ ∈ (0, 1) Denote its output
by A, B1, . . . , Blog N and Q = A −

⋃log N
`=1 B`. Then for each ` ∈ {0, . . . , logN − 1}

and a, b ∈ ZN s.t. b − a = d(N/2`)e, A,B` are γ-good w.r. to f, a, b with probability
at least 1− δ.
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Proof. Fix ` ∈ {0, . . . , logN − 1} and a, b s.t. b − a = d(N/2`)e. Applying Lemma
3.21 below, with γ, δ and A,B` as in Generate Queries Algorithm 3.5 we conclude
that A,B are γ-good w.r. to f, a, b with probability at least 1− δ. �

Lemma 3.21. Let ` ∈ {0, . . . , logN − 1}, a, b ∈ ZN s.t. b − a = d(N/2`)e, A a
random subset of ZN and B a random subset of

{
0, . . . , 2`−1 − 1

}
. For any γ > 0

and δ ∈ (0, 1), denote η = O
(
min

{
γ,
√
γ, γ

‖f‖∞

})
, if |A| = Θ

((
‖f‖∞

η

)2

ln 1
δ

)
and

|B| = Θ

((
‖f‖∞

η

)2

ln ‖f‖∞
δγ

)
are sufficiently large, then A,B are γ-good w.r. to f, a, b

with probability at least 1− δ.
Remark. In particular for Boolean f : for any γ > 0 and δ ∈ (0, 1), if |A| =

Θ
(

1
γ2 ln 1

δ

)
and |B| = Θ

(
1
γ2 ln 1

δγ

)
, then A,B are γ-good w.r. to f, a, b with proba-

bility at least 1− δ.

Proof. For every x ∈ A, denote esta,b(x) = 1
|B|
∑

y∈B χ−b(a+b
2

)c(y)f(x− y). Let esta,b =
1
|A|
∑

x∈A

∣∣esta,b(x)
∣∣2. Observe that A,B are γ-good w.r. to f iff∣∣esta,b − ‖ha,b ∗ f‖22

∣∣ < γ

By triangle
∣∣esta,b − ‖ha,b ∗ f‖22

∣∣ is at most∣∣∣∣∣esta,b − 1

|A|
∑
x∈A

∣∣ha,b ∗ f(x)
∣∣2∣∣∣∣∣+

∣∣∣∣∣ 1

|A|
∑
x∈A

∣∣ha,b ∗ f(x)
∣∣2 − ‖ha,b ∗ f‖22

∣∣∣∣∣
We bounds these two terms in the claims below, showing that for any k > 1 and
η > 0, with probability at least 1− 1

k
− 2 exp (−2|A|η2/‖f‖2∞),

∣∣esta,b − ‖ha,b ∗ f‖22
∣∣ ≤ η(η + 2‖f‖∞) + 4k‖f‖2∞ exp

(
−2|B|η2

‖f‖2∞

)
+ η

Assigning k = 2/δ and η, |A|, |B| as in the lemma statement, we conclude that∣∣esta,b − ‖ha,b ∗ f‖22
∣∣ ≤ γ with probability at least 1− δ.

Claim 3.21.1. For any x ∈ A,
∣∣esta,b(x)− ha,b ∗ f(x)

∣∣ < η, with probability at least
1− 2 exp (−2|B|η2/‖f‖2∞).

Proof. By definition of the convolution operator and of ha,b,

ha,b ∗ f(x) = E
y∈{0,...,2`−1−1}

[
χ−b(a+b

2
)c(y)f(x− y)

]
Since esta,b(x) = 1

|B|
∑

y∈B χ−b(a+b
2

)c(y)f(x−y) forB a random subset of
{
0, . . . , 2`−1 − 1

}
,

then by Chernoff bound, ∣∣esta,b(x)− ha,b ∗ f(x)
∣∣ < η
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with probability at least 1− 2 exp (−2|B|η2/‖f‖2∞).

Claim 3.21.2 (Bounding the first term). For any k > 1 and η > 0,∣∣∣∣∣esta,b − 1

|A|
∑
x∈A

∣∣ha,b ∗ f(x)
∣∣2∣∣∣∣∣ ≤ η(η + 2‖f‖∞) + 4k‖f‖2∞ exp

(
−2|B|η2

‖f‖2∞

)
with probability at least 1− 1

k

Proof. Fix some k > 1, η > 0 and x ∈ A. By Claim 3.21.1,
∣∣esta,b(x)− ha,b ∗ f(x)

∣∣ <
η, with probability at least 1− 2 exp (−2|B|η2/‖f‖2∞).

Next we observe that
∣∣esta,b(x)− ha,b ∗ f(x)

∣∣ < η implies that∣∣∣∣∣esta,b(x)
∣∣2 − ∣∣ha,b ∗ f(x)

∣∣2∣∣∣ ≤ η(η + 2‖f‖∞)

This is by using the algebraic manipulations |u2 − v2| = |(u− v)(u+ v)| ≤ |u− v| (|u− v|+
2 |v|) on u = esta,b(x) and v = ha,b ∗f(x) and recalling that by Item 4 in Lemma 3.31,
ha,b ∗ f(x) ≤ ‖f‖∞.

We next show that with probability 1 − 1
k
,
∣∣∣∣∣esta,b(x)

∣∣2 − ∣∣ha,b ∗ f(x)
∣∣2∣∣∣ ≤ η(η +

2‖f‖∞) for at least 1 − k · 2 exp (−2|B|η2/‖f‖2∞) of the x ∈ A. By the above, the

expected number of x ∈ A s.t.
∣∣∣∣∣esta,b(x)

∣∣2 − ∣∣ha,b ∗ f(x)
∣∣2∣∣∣ > η(η+2‖f‖∞) is at most

2 exp (−2|B|η2/‖f‖2∞). By Markov bound, with probability at most 1
k
, the number

of such x’s is k times its expectation.

Consider the case that indeed
∣∣∣∣∣esta,b(x)

∣∣2 − ∣∣ha,b ∗ f(x)
∣∣2∣∣∣ ≤ η(η + 2‖f‖∞) for

at least 1 − k · 2 exp (−2|B|η2/‖f‖2∞) of the x ∈ A. Observe that for any x ∈
A,
∣∣∣∣∣esta,b(x)

∣∣2 − ∣∣ha,b ∗ f(x)
∣∣2∣∣∣ ≤ 2‖f‖2∞. Putting it together we conclude that∣∣∣esta,b − 1

|A|
∑

x∈A

∣∣ha,b ∗ f(x)
∣∣2∣∣∣ is upper bounded by

η(η + 2‖f‖∞) ·
(

1− 2k exp

(
−2|B|η2

‖f‖2∞

))
+ 4k‖f‖2∞ exp

(
−2|B|η2

‖f‖2∞

)
which is trivially upper bounded by η(η + 2‖f‖∞) + 4k‖f‖2∞ exp

(
−2|B|η2

‖f‖2∞

)
Claim 3.21.3 (Bounding the second term). For every η > 0,∣∣∣∣∣ 1

|A|
∑
x∈A

∣∣ha,b ∗ f(x)
∣∣2 − ‖ha,b ∗ f‖22

∣∣∣∣∣ ≤ η

with probability at least 1− 2 exp (−2|A|η2/‖f‖2∞).

Proof. The claim follows from Chernoff bound.

� �
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3.3.2 Analysis of the SFT Algorithm over ZN1
× . . .× ZNk

In this section we analyze the SFT Algorithm 3.9, that is, the SFT algorithm for
complex functions f over ZN1 × . . .× ZNk

.
To prove the correctness of the SFT algorithm, we first define a filter function

hαt,a,b, and define a criterion on when the sets A,Bt,`, t ∈ [k], ` ∈ [logNt] chosen by
the Generate Queries Algorithm 3.10 are good. We then analyze the SFT algorithm
showing in Theorem 3.24 that the algorithm succeeds when the set A,Bt,` chosen by
the Generate Queries Algorithm 3.10 are good, and that these sets A,Bt,` are good
with high probability (where the probability is over the random coins of the Generate
Queries Algorithm 3.10).

Notation. Let G = ZN1×, . . . ,×ZNk
. For any t ∈ [k] and α = (α1, . . . , αk) ∈ G,

denote αt = (α1, . . . , αt−1), ᾱ
t = (αt+1, . . . , αk).

The filter function hαt,a,b
G that we define is a phase shift of a periodic square

function over the group ZNt . The phase shift if by phase χβ for β = (αt,− b+a
2
, 0, . . . , 0)

an element of G whose first t− 1 coordinates are equal to αt, whose t-th coordinate
is −s for s the center of the interval {a, . . . , b} and whose following k− t coordinates

are all zero. The function is normalized by the factor
(∏k

i=t+1Ni

)
· Nt

b(Nt/2(b−a))c .

Definition 3.22 (hαt,a,b
G ). For every finite abelian group G = ZN1×, . . . ,×ZNk

, an
index t ∈ [k], a vector αt = (α1, . . . , αt−1) in ZN1 × . . .× ZNt−1 and a ≤ b in ZNt, we

define a filter function hαt,a,b
G : G→ C by

hαt,a,b
G (y)

def
=


(∏k

i=t+1Ni

)
· χαt(yt) · ha,b

Nt
(yt) if ȳt = 0k−t

0 otherwise

for ha,b
Nt

as in Definition 3.14 and χαt(yt) =
∏t−1

j=1 e
i 2π

Nj
αjyj

a character in the group
ZN1 × . . . × ZNt−1. When G is clear from the context, we often omit it, and denote

hαt,a,b = hαt,a,b
G .

We say that the sets A,Bt,` chosen by the Generate Queries Algorithm 3.10 are
good, if the values estα

t,a,b computed by the Distinguishing Algorithm 3.12 throughout
the execution of the SFT algorithm all satisfy that

estα
t,a,b ≈ ‖hαt,a,b ∗ f‖22

for f the input function.

Definition 3.23 (Good A,B). For every finite abelian group G = ZN1× . . .×ZNk
, a

function f : G→ C, subsets A,B ⊆ G, an index t ∈ [k], a vector αt = (α1, . . . , αt−1)
in ZN1 × . . . × ZNt−1, an interval {a, . . . , b} in ZNt, and a threshold γ ∈ R+, we say
that A,B are γ-good w.r. to f, αt, a, b, if∣∣∣estαt,a,b − ‖hαt,a,b ∗ f‖22

∣∣∣ < γ

67



for estα
t,a,b = 1

|A|
∑

x∈A

(
1
|B|
∑

y∈B χαt(yt)χ−b(a+b
2

)c(yt) · f(x− y)
)2

the value computed

by the Distinguishing Algorithm 3.12 on input αt, a, b, τ, A,B and {(q, f(q))}q∈A−B.
We say that a call to the Distinguishing Algorithm 3.12 with parameters αt, {a, b},

τ , A,B, {(q, f(q))}q∈A−B is good if A,B are τ
36

-good w.r. to f, at, a, b.

Analyzing SFT Algorithm 3.9

In Theorem 3.24 below we show the SFT algorithm returns a short list containing
all significant Fourier coefficients of f , and that its running time is polynomial in
log |G| , 1

τ
.

The proof of Theorem 3.24 builds on three lemmata: In Lemma 3.28 we show
that the sets A,Bt,` chosen by the Generate Queries Algorithm 3.10 are good with
high probability. In Lemma 3.26 we show that when A,Bt,` are good then all calls
to the Distinguishing Algorithm 3.12 are good. In Lemma 3.25 we show that when
all calls to the Distinguishing Algorithm 3.12 are good, then the Fixed Queries SFT
Algorithm 3.11 outputs a short list containing every significant Fourier coefficient of
f . This in turn implies that the SFT Algorithm 3.9 outputs a short list containing
every significant Fourier coefficient of f .

Theorem 3.24 (Analyzing Algorithm 3.9). Let the input to the SFT Algorithm 3.9
be a description {(1, Ni)}ki=1 of the group G = ZN1 × . . . × ZNk

, τ ∈ R+, and query
access to a function f : G→ C; denote its output by L. Then, with probability at least
1− δ′, the following hold:

1. L ⊇ Heavyτ (f), i.e., L contains all τ -significant Fourier coefficients of f

2. |L| ≤ O(1/τ), i.e., L is small, and

3. The running time of the SFT Algorithm 3.9 is at most polynomial in log |G| , 1
τ

Remark. Details on the running time of the SFT Algorithm 3.9 are as follows.

For Boolean f the running time is at most Θ̃
(

log|G|
τ6.5 · ln 1

δ′

)
. For general functions

f , the running time is at most Θ̃

(
log |G| · 1

τ
·
(
‖f‖22

τ

)1.5

·
(
‖f‖2∞

η2 · ln 1
δ

)2
)

for η =

Θ
(
min

{
τ,
√
τ , τ

‖f‖∞

})
and δ = δ′/O

(
1
τ
·
(
‖f‖22

τ

)1.5

log |G|
)

.

Proof. Let δ be as set in step 1 of the SFT Algorithm 3.9. Below we show that all
calls to the Distinguishing Algorithm in step 2(a)iiA of the Fixed Queries Algorithm

2(a)iiA are good with probability at least 1− log |G| ·Θ
(

1
τ
· (‖f‖22/τ)

1.5
)
·δ. Assigning

δ = δ′/
(
log |G| ·Θ

(
1
τ

(‖f‖22/τ)
1.5
))

as was set in step 1 of the SFT Algorithm 3.9,

we get that the all calls to the Distinguishing Algorithm 3.12 in step 2(a)iiA of the
Fixed Queries Algorithm are good with probability at least 1 − δ′. By Lemma 3.25
this concludes the proof.
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In the following we abbreviate by saying “call” to refer to a call to the Distin-
guishing Algorithm 3.12 in step 2(a)iiA of the Fixed Queries Algorithm 3.11. By
Lemma 3.28, each single call is good with probability at least 1 − δ. We show that
all calls are good with high probability using induction and union bound as follows.

For t = ` = 0,
∣∣∣Candidateempty string,0

∣∣∣ = 1, so there is a single call, an by the

above it is good with probability at least 1 − δ. Fix t, `. Assuming all previous

calls were good then |Prefixedt−1| ≤ O(1/τ) and |Candidateαt,`| ≤ Θ
(
(‖f‖22/τ)

1.5
)
.

Therefore, if all calls were good, then the total number of calls is bounded by∑k
t=1

∑
αt∈Prefixest

∑log Nt

`=1 |Candidateαt,`| ≤ log |G| · Θ
(

1
τ

(‖f‖22/τ)
1.5
)
. By union

bound all calls are good with probability at least 1− log |G| ·Θ
(

1
τ

(‖f‖22/τ)
1.5
)
· δ. �

Analyzing Fixed Queries SFT Algorithm 3.11

In Lemma 3.25 below we show that when all calls to the Distinguishing Algorithm 3.12
are good, then the Fixed Queries SFT Algorithm 3.11 outputs a short list containing
every significant Fourier coefficient of f .

Terminology. Let t = 0, . . . , k and α = (α1, . . . , αt) ∈ ZN1 × . . . × ZNt . For
any β = (β1, . . . , βk) ∈ ZN1 × . . . × ZNk

, we say that β is a completion of α if
βi = αi ∀i = 1, . . . , t. We say that α is a τ -significant t-prefix, if there exists a τ -
significant completion of α. Let α′ = (α′1, . . . , α

′
t+1) ∈ ZN1 × . . .× ZNt+1 , we say that

α′ is a continuation of α if α′i = αi ∀i = 1, . . . , t.

Lemma 3.25 (Analyzing Fixed Queries SFT Algorithm 3.11). Let the input to
the Fixed Queries Algorithm 3.6 be a description {(1, Ni)}ki=1 of the group G =
ZN1 × . . . × ZNk

, τ ∈ R+, A, {Bt,`}t∈[k],`∈[log Nt]
⊆ G and {(q, f(q))}q∈Q for Q =

A−
⋃

t∈[k],`∈[log Nt]
Bt,`; denote its output by L.

If all calls to the Distinguishing Algorithm 3.12 in step 2(a)i of the Fixed Queries
Algorithm 3.11, are good, then the following holds:

1. L ⊇ Heavyτ (f), i.e., L contains all τ -significant Fourier coefficients

2. |L| ≤ O(1/τ), i.e., L is short, and

3. The running time of the Fixed Queries SFT Algorithm 3.11 is at most

Θ

(
log |G| · 1

τ
·
(
‖f‖22

τ

)1.5

· |Q|
)

Proof. We first show that for each t ∈ [k], Prefixest is a list of size at most O(1/τ)
that contains all τ -significant t-prefixes of f . We prove by induction over t. At
the first step of the algorithm Prefixes0 = {empty string}, which trivially satisfies
the above two properties. Next we show that if the conditions of the theorem hold
for Prefixest−1, then they also hold for Prefixest. By Lemma 3.25.1 below, for
every t ∈ [k] and αt ∈ Prefixest−1, Lt(α

t) contains all τ -significant continuations of
αt, moreover, all elements in L(αt) are O(τ)-significant t-prefixes. Since by induction
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assumption Prefixest−1 covers all τ -significant (t−1)-prefixes of f , then the following
holds: (1) Prefixest =

⋃
αt∈Prefixest−1

Lt(α
t) covers all τ -significant t-prefixes of

f , and (2) all elements if Prefixest are O(τ) significant t-prefixes, implying that
|Prefixest| ≤ O(1/τ).

The running time is T =
∑k

t=1 |Prefixest| · TNt where TNt is the running time
of the Fixed Queries SFT Algorithm for functions over ZNt . Recall that TNt ≤

Θ

(
logNt ·

(
‖f‖22

τ

)1.5

· |Q|
)

and |Prefixest| ≤ O(1/τ). The running is therefore at

most Θ

(∑k
t=1 logNt · 1

τ
·
(
‖f‖22

τ

)1.5

· |Q|
)

.

Lemma 3.25.1. For any t ∈ [k] and αt ∈ Prefixest−1, Lt(α
t) is a set that con-

tains all τ -significant continuations of αt, and each α ∈ Lt(α
t) is a τ/2-significant

continuation of αt.

Proof. The proof is analogous to the proof of Lemma 3.17.1 while replacing Lemma
3.18 by Lemma 3.26. Details omitted. � �

Analyzing Distinguishing Algorithm 3.12

In Lemma 3.26 we show that when the sets chosen by the Generate Queries Algorithm
3.10 are good, then the Distinguishing Algorithm keeps all intervals {a, b} that contain
a significant Fourier coefficient of f , and moreover, it keeps not too many intervals.

The proof of Lemma 3.26 relies on properties of the filter hαt,a,b. These properties
are stated in Lemma 3.27 below. The proof of these properties is deferred to section
3.4.3.

Lemma 3.26 (Analyzing Distinguishing Algorithm 3.12). Let the input to the Dis-
tinguishing Algorithm 3.12 be αt ∈ ZN1 × . . . × ZNt−1, {a, b} ∈ ZNt × ZNt, τ ∈ R+,
A,B ⊆ G s.t. that A,B are τ/36-good w.r. to f, αt, a, b, and {(q, f(q))}q∈A−B; denote
its output by “decision”. Then the following holds:

• If ∃β ∈ G s.t. βt = αt, βt ∈ {a, . . . , b} and
∣∣∣f̂(β)

∣∣∣2 ≥ τ , then decision = 1

• Denote ∆ =
√

24
τ
‖f‖2 and Exta,b =

{
α | abs(α− a+b

2
) ≤ ∆ · 2(b− a)

}
. If

decision = 1, then
∑

β s.t. βt=αt,βt∈Exta,b

∣∣∣f̂(α)
∣∣∣2 ≥ τ/12

Proof. The proof follows similarly to the proof of Lemma 3.18 while replacing the use
of Lemma 3.19 regarding ha,b by use of Lemma 3.27 regarding hαt,a,b.

Let us elaborate. Let estα
t,a,b = 1

|A|
∑

x∈A

(
1

|Bt,`+1|
∑

y∈Bt,`+1
χαt(yt)χ−b(a+b

2
)c(yt)f(x− y)

)2

as defined in the Distinguishing Algorithm 3.12. Since A,B are τ/36-good w.r. to
f, αt, a, b then ∣∣∣estαt,a,b − ‖ha,b ∗ f‖22

∣∣∣ < τ/36
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Recall that the Distinguishing Algorithm outputs decision = 1 iff esta,b > 5
36
τ . By

Lemma 3.27 when assigning γ = τ/36 and λ = 5
6
τ , the conditions of this lemma holds.

Namely, if ∃β ∈ G s.t. βt = αt, βt ∈ {a, . . . , b} and
∣∣∣f̂(β)

∣∣∣2 ≥ τ , then estα
t,a,b ≥ 5

36
τ ;

conversely, if estα
t,a,b ≥ 5

36
τ , then

∑
β,βt=αt,βt∈Exta,b

∣∣∣f̂(β)
∣∣∣2 ≥ 1

12
τ . �

Lemma 3.27 (Properties of ‖hαt,a,b ∗ f‖22). Let f : ZN1 × . . . × ZNk
→ C, t ∈ [k],

αt ∈ ZN1× . . .×ZNt−1 and estα
t,a,b ∈ R. For any γ > 0, if

∣∣esta,b − ‖hαt,a,b ∗ f‖22
∣∣ ≤ γ,

then the following holds:

• estα
t,a,b ≥

∑
β,βt=αt,βt∈{a,...,b}

| bf(β)|2
6
− γ. In particular, if ∃β ∈ ZN1 × . . . × ZNk

s.t. βt = αt, βt ∈ {a, . . . , b} and
∣∣∣f̂(β)

∣∣∣2 ≥ τ , then estα
t,a,b ≥ τ

6
− γ

• Denote ∆ =
√

2
3γ
‖f‖2 and Exta,b =

{
α | abs(α− a+b

2
) ≤ ∆ · 2(b− a)

}
. For all

λ > 0, if estα
t,a,b ≥ λ, then

∑
β s.t. βt=αt,βt∈Exta,b

∣∣∣f̂(β)
∣∣∣2 ≥ λ− 2γ

Proof. Proof appears in section 3.4.3. �

Analyzing Generate Queries Algorithm 3.10

In Lemma 3.28 we show that the sets A,Bt,` chosen by the Generate Queries Algo-
rithm 3.10 are good with high probability.

Lemma 3.28 (Analyzing Generate Queries Algorithm 3.5). Let the input to the
Generate Queries Algorithm 3.5 be a description {(1, Ni)}ki=1 of the group G = ZN1×
. . . × ZNk

, γ ∈ R+, ‖f‖∞ and δ ∈ (0, 1). Denote its output by A, {Bt,`}t∈[k],`∈[log Nt]

and {(q, f(q))}q∈Q for Q = A −
⋃

t∈[k],`∈[log Nt]
Bt,`. Then for each t ∈ [k], αt ∈

ZN1 × . . . × ZNt−1, ` ∈ {0, . . . , logNt} and a, b ∈ ZNt s.t. b − a = d(N/2`)e, A,Bt,`

are γ-good w.r. to f, αt, a, b with probability at least 1− δ.

Proof. Fix t ∈ [k], αt ∈ ZN1 × . . . × ZNt−1 , ` ∈ {0, . . . , logNt} and a, b ∈ ZNt s.t.
b− a = d(N/2`)e.

Denote estα
t,a,b = 1

|A|
∑

x∈A

(
1
|B|
∑

y∈B χαt(yt)χ−b(a+b
2

)c(y)f(x− y)
)2

.

By Lemma 3.29 below, with γ, δ and A,Bt,` as in Generate Samples Algorithm
3.10 ∣∣∣estαt,a,b − ‖hαt,a,b ∗ f‖22

∣∣∣ < γ

with probability at least 1 − δ. Namely, A,Bt,` are good w.r. to f, αt, a, b with
probability at least 1− δ. �

Lemma 3.29. Let γ ∈ R+, δ ∈ (0, 1), αt ∈ ZN1× . . .×ZNt−1, ` ∈ {0, . . . , logNt − 1},
a, b ∈ ZNt s.t. b−a = d(Nt/2

`)e and f : ZN1×. . .×ZNk
→ C. Let A ⊆ ZN1×. . .×ZNk

and B ⊆ ZN1 × . . .× ZNt−1 × {a, . . . , b} × {0} × . . .× {0} be random subsets.
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For any γ > 0 and δ ∈ (0, 1), denote η = O
(
min

{
γ,
√
γ, γ

‖f‖∞

})
, if |A| =

Θ

((
‖f‖∞

η

)2

ln 1
δ

)
and |B| = Θ

((
‖f‖∞

η

)2

ln ‖f‖∞
δγ

)
are sufficiently large, then A,B

are γ-good w.r. to f, αt, a, b with probability at least 1− δ.
Remark. In particular for Boolean f : for any γ > 0 and δ ∈ (0, 1), if |A| =

Θ
(

1
γ2 ln 1

δ

)
and |B| = Θ

(
1
γ2 ln 1

δγ

)
, then A,B are γ-good w.r. to f, αt, a, b with

probability at least 1− δ.

Proof. The proof is similar to proof of Lemma 3.21. The only difference is that we
replace Claim 3.21.1 with the claim below.

Claim 3.29.1. For any x ∈ A,
∣∣estαt,a,b(x)− hαt,a,b ∗ f(x)

∣∣ < η, with probability at
least 1− 2 exp (−2|B|η2/‖f‖2∞).

Proof. By definition of the convolution operator and of hαt,a,b,

hαt,a,b ∗ f(x) = E
y∈ZN1

×...×ZNt×{0}×...×{0}

[
χαt(yt) · χ−b(a+b

2
)c(yt) · f(x− y)

]
Since esta,b(x) = 1

|B|
∑

y∈B χ−αt(yt) · χ−b(a+b
2

)c(yt) · f(x− y) for B a random subset of

ZN1 × . . .× ZNt × {0} × . . .× {0}, then by Chernoff bound,∣∣∣estαt,a,b(x)− hαt,a,b ∗ f(x)
∣∣∣ < η

with probability at least 1− 2 exp (−2|B|η2/‖f‖2∞).

�

3.3.3 Analysis of SFT Algorithm over Finite Abelian Groups

In this section we analyze the SFT Algorithm for complex functions f over arbitrary
finite abelian groups.

Theorem 3.30 (Analyzing SFT Algorithm over Finite Abelian Groups). Let the
input to the SFT Algorithm 3.9 be a description {(gj, Nj)}kj=1 of the group G, τ ∈ R+,
and query access to a function f : G → C; denote its output by L. Then, with
probability at least 1− δ′, the following hold:

1. L ⊇ Heavyτ (f), i.e., L contains all τ -significant Fourier coefficients of f

2. |L| ≤ O(1/τ), i.e., L is small, and

3. The running time of the SFT Algorithm is at most polynomial in log |G| , 1
τ

Proof. We first recap the description of the SFT algorithm for functions f over finite
abelian groups G and then prove the theorem.
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Let G be a finite abelian group of generators g1, . . . , gk with orders N1, . . . , Nk.
The SFT algorithm utilizes the isomorphism between G and a direct product group
ZN1 × . . .×ZNk

to operate as follows. It first finds the significant Fourier coefficients

of the function f ′ over a direct product group defined by f ′(x1, . . . , xk) = f(
∏k

j=1 g
xj

j )
using the SFT Algorithm 3.9 and then maps the output list L′ of τ -significant Fourier

coefficients of f ′ to a list L =
{∏k

j=1 g
xj

j

∣∣∣ (x1, . . . , xk) ∈ L′
}

of elements in G.

To show that this SFT algorithm finds the τ -significant Fourier coefficients of
the function f : G → C it suffices to show that

∏k
j=1 g

xj

j is a τ -significant Fourier
coefficient of f iff (x1, . . . , xk) is a τ -significant Fourier coefficient of f ′. This follows
immediately from the definition of the Fourier coefficients of f : Fix (α1, . . . , αk) ∈
ZN1 × . . .× ZNk

, we show that f̂(
∏k

j=1 g
αj

j ) = f̂ ′(α1, . . . , αk). The Fourier coefficient

f̂(
∏k

j=1 g
αj

j ) is:

f̂(
k∏

j=1

g
αj

j ) =
1

|G|
∑

Qk
j=1 g

xj
j ∈G

f(
k∏

j=1

g
xj

j )
k∏

j=1

e
i 2π

Nj
αjxj

The Fourier coefficient f̂ ′(α1, . . . , αk) is:

f̂ ′(α1, . . . , αk) =
1∏k

j=1Nj

∑
(x1,...,xk)∈ZN1

×...×ZNk

f ′(x1, . . . , xk)
k∏

j=1

e
i 2π

Nj
αjxj

These two expressions are equal since f ′(x1, . . . , xk) = f(
∏k

j=1 g
xj

j ) and |G| = 1Qk
j=1 Nj

.

The fact that |L| ≤ O(1/τ) follows immediately from Theorem 3.24 since |L| = |L′|
for L′ the output of the SFT Algorithm 3.9.

The bound on the running time is immediate from the bound on the running time
of the SFT Algorithm 3.9 proved in Theorem 3.24 together with the fact that query
access to f ′ can be simulated in time log |G|. �

3.4 Properties of Filters ha,b and hα
t,a,b

In this section we prove the properties of the filter functions ha,b and hαt,a,b that we
use in the analysis of the SFT algorithm. In section 3.4.1 we prove Lemma 3.19 on
the properties of ha,b. In section 3.4.2 we prove a technical proposition on characters
sum which we use in the proof of Lemma 3.19. In section 3.4.3 we prove Lemma 3.27
on the properties of hαt,a,b.

3.4.1 Properties of ha,b: Proof of Lemma 3.19

In this section we present the proof of lemma 3.19. To ease the reading we first repeat
the lemma below, and then present its proof.
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Lemma 3.19. For any γ > 0, f : ZN → C and esta,b ∈ R, if
∣∣esta,b − ‖ha,b ∗ f‖22

∣∣ ≤
γ, then the following holds:

• esta,b ≥
∑

α∈{a,...,b}
| bf(α)|2

6
− γ. In particular, if ∃α0 ∈ {a, . . . , b} with

∣∣∣f̂(α0)
∣∣∣2 ≥

τ , then esta,b ≥ τ
6
− γ

• For all λ > 0, if esta,b ≥ λ, then
∑

α∈Exta,b

∣∣∣f̂(α)
∣∣∣2 ≥ λ − 2γ for Exta,b ={

α | abs(α− a+b
2

) ≤ ∆ · 2(b− a)
}

an extension of the interval {a, . . . , b} defined

with respect to a parameter ∆ =
√

2
3γ
‖f‖2.

Remark. We can strengthen the first part of the lemma to show that for any

γ′ ∈ [0, 1], esta,b ≥
∑

abs(α−a+b
2

)≤γ′ b−a
2

(
1− 5

6
(γ′)2

) ∣∣∣f̂(α)
∣∣∣2 − γ

Proof. We prove the first part of the lemma. By Parseval Identity and the Convolution-
Multiplication Duality (see Theorem2.2 in Section 2.2),

‖ha,b ∗ f‖22 =
∑

α∈ZN

∣∣∣ĥa,b(α)
∣∣∣2 ∣∣∣f̂(α)

∣∣∣2

which implies that ‖ha,b ∗ f‖22 ≥
∑

α∈{a,...,b}

∣∣∣ĥa,b(α)
∣∣∣2 ∣∣∣f̂(α)

∣∣∣2 which by Item 1 of

Proposition 3.31, is at least as large as
∑

α∈{a,...,b}
| bf(α)|2

6
. Now,

∣∣esta,b − ‖ha,b ∗ f‖22
∣∣ ≤

γ implies that

esta,b ≥
∑

α∈{a,...,b}

∣∣∣f̂(α)
∣∣∣2

6
− γ

Next, we prove the second part of the lemma. If esta,b ≥ λ then∑
α∈ZN

∣∣∣ĥa,b(α)
∣∣∣2 ∣∣∣f̂(α)

∣∣∣2 = ‖ha,b ∗ f‖22 ≥ λ− γ

On the other hand,∑
α/∈Exta,b

∣∣∣ĥa,b(α)
∣∣∣2 ∣∣∣f̂(α)

∣∣∣2 ≤ ( max
α/∈Exta,b

∣∣∣ĥa,b(α)
∣∣∣2) · ∑

α∈ZN

∣∣∣f̂(α)
∣∣∣2

which by Item 2 in Proposition 3.31 is smaller than

2

3

(
(b− a)

∆ · 2(b− a)

)2

· ‖f‖22 = γ

(where the equality follows from the choice of ∆). Observe that we obtained a lower
bound on the sum over all α’s, and an upper bound on the sum over α /∈ Exta,b;
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combining the two together we get that∑
α∈Exta,b

∣∣∣ĥa,b(α)
∣∣∣2 ∣∣∣f̂(α)

∣∣∣2 = ‖ha,b ∗ f‖22 −
∑

α/∈Exta,b

∣∣∣ĥa,b(α)
∣∣∣2 ∣∣∣f̂(α)

∣∣∣2 > (λ− γ)− γ

Finally, recall that by Item 3 of Proposition 3.31
∣∣∣ĥa,b(α)

∣∣∣2 ≤ 1, therefore we conclude

that ∑
α∈Exta,b

∣∣∣f̂(α)
∣∣∣2 > λ− 2γ

�

Proposition 3.31 (Properties of ha,b). If b− a ≤ N
2
, then ha,b satisfies the following

properties.

1. Pass Band: ∀α ∈ ZN , if abs(α− a+b
2

) ≤ γ b−a
2

, then
∣∣∣ĥa,b(α)

∣∣∣2 > 1− 5
6
γ2

2. Fast decreasing: ∀α ∈ ZN ,
∣∣∣ĥa,b(α)

∣∣∣2 < ( 2(b−a)

abs(α−a+b
2

)

)2

3. Fourier bounded: ∀α ∈ ZN ,
∣∣∣ĥa,b(α)

∣∣∣2 ≤ 1

4. Convolution bounded: ∀f : ZN → C, ‖ha,b ∗ f‖∞ ≤ ‖f‖∞

Moreover, if a = b, then ĥa,b(α) = 1 iff α = a, and ĥa,b(α) = 0 otherwise.

Proof. By definition of the Fourier coefficient and of ha,b, ĥa,b(α) = 1
t

∑t−1
y=0 χα−b(a+b

2
)c(y).

Namely,

ĥa,b(α) = St

(
α− a+ b

2

)
for St as in Definition 3.32. Items 1-3 therefore follow immediately from Proposition
3.33 in section 3.4.2.

We prove Item 4. By definition of the convolution operator,

∣∣ha,b ∗ f(x)
∣∣ =

∣∣∣∣∣ 1

N

N−1∑
y=0

ha,b(y)f(x− y)

∣∣∣∣∣
By triangle inequality this is upper bounded by 1

N

∑N−1
y=0

∣∣ha,b(y)
∣∣ |f(x− y)|. By def-

inition of ha,b this is upper bounded by 1
t

∑t−1
y=0 |f(x− y)| which is clearly upper

bounded by ‖f‖∞.

3.4.2 Technical Proposition on Consecutive Characters Sum

We present a technical proposition on sums of consecutive characters. We use this
proposition in the proof of Lemma 3.19.
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Definition 3.32 (St(α)). For any integer t ∈ 1, . . . , N , let St : ZN → C be the
function defined by

St(α)
def
=

1

t

t−1∑
x=0

χα(x)

Proposition 3.33. Let t ∈ 1, . . . , N , and St as in the above definition, then the
following properties hold.

1. |St(α)|2 =
1−cos( 2π

N
αt)

1−cos( 2π
N

α)

2. Pass Band: ∀α ∈ ZN and γ ∈ [0, 1], if abs(α) ≤ γN
2t

, then |St(α)|2 > 1− 5
6
γ2

3. Fast decreasing: ∀α ∈ ZN , |St(α)|2 < 2
3

(
N/t

abs(α)

)2

4. Fourier bounded: ∀α ∈ ZN , |St(α)|2 ≤ 1

Proof. Proof of Item 1. Recall that χα(x) = ωαx for ω = ei 2π
N a primitive root of

unity of order N . By the formula for geometric sum

St(α) =
1

t

ω−αt − 1

ω−α − 1

Implying that

|St(α)|2 =
1− cos(2π

N
αt)

1− cos(2π
N
α)

Proof of Item 2. For all α ∈ ZN with abs(α) ≤ γN
2t

, we can utilizing Taylor

approximation of the cosine function (namely, 1− θ2

2!
≤ cos(θ) ≤ 1− θ2

2!
+ θ4

4!
) to have:

|St(α)|2 ≥ 1− π2

12

(
2tabs(α)

N

)2

≥ 1− π2

12
γ2

and this is greater than 1− 5
6
γ2 since π2 < 10.

Proof of Item 3. As cos θ = cos(−θ) and since abs(α) ≤ N
2

we can, again, utilize
Taylor approximation to have:

|St(α)|2 ≤
(

N/t

abs(α)

)2
1

π2

(
1− ( 2π

N
abs(α))

2

12

) ≤ 2

3

(
N/t

abs(α)

)2

(where in the last inequality we used the bounds abs(α) ≤ N/2 and 9 < π2 < 10).

Proof of Item 4. By triangle inequality, |St(α)| ≤ 1
t

∑t−1
x=0 |χα(x)| which is in

turn equal to 1.
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3.4.3 Properties of hαt,a,b: Proof of Lemma 3.27

In this section we give the proof of lemma 3.27. To ease the reading we first repeat
the lemma below, and then present its proof.

Lemma 3.27. Let f : ZN1 × . . . × ZNk
→ C, t ∈ [k], αt ∈ ZN1 × . . . × ZNt−1 and

estα
t,a,b ∈ R. For any γ > 0, if

∣∣esta,b − ‖hαt,a,b ∗ f‖22
∣∣ ≤ γ, then the following holds:

• estα
t,a,b ≥

∑
β,βt=αt,βt∈{a,...,b}

| bf(β)|2
6
− γ. In particular, if ∃β ∈ ZN1 × . . . × ZNk

s.t. βt = αt, βt ∈ {a, . . . , b} and
∣∣∣f̂(β)

∣∣∣2 ≥ τ , then estα
t,a,b ≥ τ

6
− γ

• Denote ∆ =
√

2
3γ
‖f‖2 and Exta,b =

{
α | abs(α− a+b

2
) ≤ ∆ · 2(b− a)

}
. For all

λ > 0, if estα
t,a,b ≥ λ, then

∑
β s.t. βt=αt,βt∈Exta,b

∣∣∣f̂(β)
∣∣∣2 ≥ λ− 2γ

Proof. The proof follows from Lemma 3.19 and Proposition 3.34. �

Proposition 3.34 (Properties of hαt,a,b). ‖hαt,a,b ∗ f‖22 =
∑

β,βt=αt

∣∣∣ĥa,b(β)
∣∣∣2 ∣∣∣f̂(β)

∣∣∣2
Proof. By Parseval Identity (see Theorem 2.2), ‖hαt,a,b ∗ f‖22 =

∑
β

∣∣∣ ̂hαt,a,b ∗ f(β)
∣∣∣2.

By the Convolution-Multiplication Duality (see Theorem 2.2), this is equal to∑
β

∣∣∣ĥαt,a,b(β)
∣∣∣2 ∣∣∣f̂(β)

∣∣∣2. By the claim below ĥαt,a,b(β) = 0 if αt 6= βt and ĥa,b(βt)

otherwise. Therefore we conclude that ‖hαt,a,b ∗ f‖22 =
∑

β s.t. βt=αt

∣∣∣ĥa,b(β)
∣∣∣2 ∣∣∣f̂(β)

∣∣∣2.
Claim 3.34.1. For all β ∈ ZN1 × . . .× ZNk

,

ĥαt,a,b(β) =

 ĥa,b(βt) if αt = βt

0 otherwise

Proof. By definition of Fourier transform, ĥαt,a,b(β) = 1
|G|
∑

y∈G h
αt,a,b(y)χ−β(y). By

definition of hαt,a,b we get that

ĥαt,a,b(β) =
1∏t

i=1Ni

∑
y∈G,ȳt=0k−t

χαt(yt)ha,b(yt)χ−β(y)

Using the fact that χ−β(y) = χ−βt(yt)·χ−βt+1(yt+1)·χ−β̄t+1(ȳt+1) and that χ−β̄t(0k−t) =
1, we get that

ĥαt,a,b(β) =
1∏t

i=1Ni

∑
yt∈ZN1

,...,ZNt−1

χαt(yt)χ−βt(yt)
∑

yt∈ZNt

ha,b(yt)χ−βt(yt)
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By definition of the Fourier transform of ha,b, 1
Nt

∑
yt∈ZNt

ha,b(yt)χ−βt(yt) = ĥa,b(βt),

thus,

ĥαt,a,b(β) = ĥa,b(βt) ·
1∏t−1

i=1 Ni

∑
yt∈ZN1

,...,ZNt−1

χαt(yt)χ−βt(yt)

Finally, since 1Qt−1
i=1 Ni

∑
yt∈ZN1

,...,ZNt−1
χαt(yt)χ−βt(yt) = 1Qt

i=1

∑
yt∈ZN1

,...,ZNt−1
χαt−βt(yt)

is 1 iff αt = βt and is 0 otherwise, we conclude that

ĥαt,a,b(β) =

 ĥa,b(β) if αt = βt

0 otherwise

� �
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Chapter 4

Learning Characters with Noise in
Random Samples Access Model

In this chapter we study the problem of Learning Characters with Noise in the ran-
dom samples access model (rLCN). We investigate definitional issues regarding rLCN
studying various noise models by which the input character may be corrupted. We
examine the tractability of rLCN in the various noise models, showing it is tractable
in some and conjecturing it is intractable in others. For rLCN in the conjectured
intractable noise models, we explore average vs. worst case relations showing it is
random self reducible. Finally, we present a (non polynomial time) algorithm for
rLCN in the conjectured intractable noise models.

4.1 Introduction

In this chapter we define and study the problem of Learning Characters with Noise
in the random samples access model (rLCN, in short). In the rLCN problem the
algorithm is given random samples access to a complex function f : G → C over a
finite abelian group G and the goal is to find characters of G that are close to f .
By random samples access we mean that the algorithm cannot choose the specific
values of f it sees; instead the algorithm has access to values (x, f(x)) for x chosen
independently and uniformly at random from G. The closeness of f to a character
may be measured by various models, e.g., Hamming distance, `∞-distance and `2-
distance.

To allow a broad array of models by which closeness of f to a character χ is
measured, it is convenient to think of f as being generated by adding noise to χ,
where the noise may be added by any algorithm. Each noise adding algorithm defines
some noise model; thus allowing a broad spectrum of noise models. We say that “f
is a noisy α-character in noise model S” if f was obtained by adding noise to the
character χα in noise model (i.e., algorithm) S. With this terminology, the goal of
rLCN is to find the character χα when given a noisy α-character f .

Definition 4.1 (Random samples access). Let f : G→ C. We say that an algorithm
is given random samples access to f , if it can request and receive in unit time a pair
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(x, f(x)) where x is drawn independently and uniformly at random from G.

Definition 4.2 (rLCN in noise model S). The input to rLCN in noise model S is a
description of a finite abelian group G by its generators and their orders and random
samples access to a function f : G → C which is a noisy α-character in noise model
S; the goal is to find α.

Considering the random samples access model is motivated by applications where
query access is unattainable, and yet we are interested in finding characters close to a
given function. Such applications arise in diverse areas, including data analysis, error
correcting codes and cryptography; examples follow.

rLCN & data analysis. An algorithm solving rLCN could be useful
in data analysis tasks. Consider for example a biological study of gene
expression patterns, where the input is a pool of cells, each labeled “sick”
or “healthy” according to the tissue from which it was taken. Each cell
exhibits some gene expression pattern modeled as a vector p ∈ Zk

N for N
denoting the number of measured expression levels and k the number of
examined genes. We identify the data with a Boolean function over Zk

N ,
and focus on cases where analyzing the Fourier characters close to f is
of interest. Observe that it is feasible to sample (x, f(x)) for a random
gene expression pattern x out of the patterns in the studied cells. This
is by sampling a random cell in the pool, analyzing its gene expression
pattern x and reading its label f(x). In contrast, finding the value f(x)
for a specific pattern x is by far more demanding, requiring analysis of
practically all cells in the data to find one with the desired gene expression
pattern (if exists).

rLCN & error correcting codes. We show that an algorithm solving
rLCN (in `2-distance while seeing O(logN) samples) would be useful for
an error correcting tasks. Specifically, it would allow us to efficiently
decode the family of binary codes of constant rate and distance presented
in chapter 6.

rLCN & cryptography. We show that an algorithm solving rLCN (in
`2-distance) would be useful for solving a long standing open problem in
cryptography. Specifically, it would allow proving for several deterministic
predicates (e.g., the most significant bit) that they are hardcore predicates
for the Diffie-Hellman function. This would be a breakthrough result as
there is no known deterministic hardcore predicate for the Diffie-Hellman
function.

We remark that conversely, if rLCN is intractable, this could also be use-
ful from a cryptographic point of view. In modern cryptography, crypto-
graphic protocols are based on computational intractability assumption.
Existing assumptions come from Number Theory (e.g., RSA, Discrete-
Log, Diffie-Hellman), Geometry of Numbers (e.g., finding the shortest
vector in a lattice) and Computational Learning (e.g., Learning Parity
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with Noise). It is desirable to have cryptographic protocols based on ver-
satile assumptions in case some assumptions prove to be false. Should
rLCN be intractable, it could present a new candidate to base crypto-
graphic protocols on.

For functions over the Boolean cube {0, 1}n the problem of learning characters
with noise in random samples access model has been studied extensively under the
name Learning Parity with Noise (LPN).1 LPN has been studied in settings where
there is no noise and in the Hamming noise model (adversarial or random). In the no-
noise settings, LPN is known to be tractable by Gauss Elimination. In the Hamming
noise model, LPN is believed to be intractable. This intractability conjecture is often
referred to as the intractability of decoding random linear codes. LPN is random self
reducible, that is, worst case instances are as hard as random ones (within the same
input sizes). Feldman et.al. [30] consider another aspect of average and worst case
relation, showing equivalence of LPN in average case noise, that is, random noise,
and in worst case noise. Blum-Kalai-Wasserman [15] gave an algorithm solving rLPN
in time 2O(n/ log n). LPN has applications analogous to some of the applications we
consider for rLCN: Tractability of LPN (when seeing O(n) samples) would imply an
efficient decoding algorithm for random linear codes. Conversely, intractability of
LPN is employed in cryptographic protocols, including the McEliece cryptosystem
[66] and signature scheme [24], the Hopper-Blum authentication protocol [55] and
subsequent works regarding efficient authentication protocols [88].

For functions over product groups {0, 1, . . . , p}n of small prime characteristic p ≤
poly(n), Regev [74] suggested a generalization of LPN, conjectured it is intractable
in the Gaussian noise model, and presented a cryptosystem based on this conjecture.

In this work, we focus our study on functions f : ZN → C over cyclic groups ZN of
large characteristic N . We measure complexity in terms of the binary representation
length of elements in ZN , that is, an efficient algorithm has running time polynomial
in logN .

We study rLCN in a variety of noise models, including models where noise is
bounded by some distance measure (including: Hamming distance, `∞-distance,
stochastic versions of the Hamming and `∞ distances, `2-distance and Boolean `2-
distance),2 as well as noise models designed to simulate product group structure in
cyclic groups ZN with N of small prime factors.

1The term parity emanates from the fact that the characters χ(α1,...,αn)(x1, . . . , xk) of the Boolean
cube {0, 1}n measure the parity of the number of i ∈ [n] s.t. both αi = 1 and xi = 1.

2Let f : G → C be a function, and χα : G → C a character of the group G. We say that f is a
noisy α-character in the Hamming noise model of parameter ε, if f(x) 6= χα(x) for at most ε fraction
of entries x ∈ G. We say that f is a noisy α-character in the a stochastic version of Hamming noise
model of parameter ε, if f(x) = χα(x) with probability 1 − ε independently at random for each
x ∈ G, and f(x) may be chosen adversarially or at random otherwise. We say that f is a noisy
α-character in the `∞-noise model of parameter ε, if ‖f − χα‖∞ ≤ ε. We say that f is a noisy
α-character in a stochastic version of the `∞ noise model of parameters ε, σ2, if f(x) − χα(x) is a
random variable with expectation ε and variance σ2. We say that f is a noisy α-character in the `2
noise model of parameter ε if ‖f − χ‖22 ≤ ε. We say that f is a noisy α-character in the Boolean `2
noise model of parameter ε if f is a Boolean function, and ‖f − χ‖22 ≤ ε.
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Studying rLCN in a variety of noise models is motivated by two goals. On the
positive side, we’d like to find efficient algorithms for rLCN in any noise model that
may arise in practice. Thus, we are interested in proving tractability of rLCN in
a variety of noise models. On the negative side, we’d like to find a noise model
where rLCN is intractable. Such an intractability result could potentially be used in
cryptography as an alternative to known functions on which cryptographic protocols
are based.

Our Results

On the positive side, we show that rLCN over groups3 {ZN}N is tractable in Hamming
noise of parameter ε ∈ [0, 1), and in the `∞ noise of parameter ε poly-logarithmically
related to the group size. Similar results hold for the stochastic versions of the
Hamming and `∞ noise models. We remark that in the Hamming noise case, when ε <
1
2
, the algorithm can return the unique closest character in running time polynomial

in logN and 1/(1
2
− ε), whereas in general the algorithm returns the list of O(1/ε)

closest characters in running time polynomial in logN and 1/(1− ε).
On the negative side, we conjecture that rLCN is intractable in the `2 noise model

and the Boolean `2 noise model. We bring supporting evidence to this conjecture
relating it to applications in cryptography and coding theory. Specifically, we show
that if this conjecture is false, then we can (1) decode random (non-linear) binary
codes of constant rate and distance, and (2) present the first deterministic hardcore
predicate for the Diffie-Hellman function.

Furthermore, we show that in the (Boolean) `2 noise model, rLCN is random self
reducible. That is, in these noise models, if there is no algorithm solving rLCN on
the worst case, then there is no algorithm solving rLCN on the average case (within
the same input sizes).

We present a (non-polynomial time) algorithm for rLCN in (Boolean) `2 noise,
running in time N1−O(1/(log log N)2) for N the size of the domain of f . This gives a
slight improvement over the O(N logN) running time of the naive algorithm.4

Finally, we investigate the correspondence between learning characters with noise
for functions over cyclic groups and functions over product groups. We observe that
for N = p1p2 . . . pt a product of distinct primes, the cyclic group ZN is isomorphic
to the product group Zp1 × . . . × Zpt . We then define noise models for functions
over ZN that simulate noise models for functions over product groups Zp1 × . . . ×
Zpt . We explore whether the complexity of rLCN in those noise models is similar
to its complexity for functions over product groups, showing it is not. Instead, the
tractability/intractability of rLCN in these noise models depends on properties of the
factorization of N .

3We say rLCN over groups {ZN}N to refer to rLCN when the input functions is function f : ZN →
C over the group ZN .

4The naive algorithm is an algorithm measuring correlation of O(log N) random samples with
each character in G, outputting the character with highest correlation.
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Chapter Organization

In section 4.2 we give an overview of our definitions and results. In section 4.3 we give
the proofs of our tractability results. In section 4.4 we give the proof of our random
self reducible result. In section 4.5 we present and analyze our (non polynomial time)
algorithm for solving rLCN in the (Boolean) `2 noise model.

4.2 Overview of Definitions and Results

In this section we give an overview of our definitions and results regarding the problem
of Learning Characters with Noise in random samples access model. That is, the
problem of finding α, when given random samples access to a function f which is a
noisy α-character in some noise model S.

We focus on the case that f is a function over the group ZN of integers modulo N
for N a large number. We measure complexity in terms of the binary representation
length logN of elements in ZN . We use the terminology rLCN over {ZN}N∈I when
we want to address rLCN on input restricted to functions over groups ZN with N in
the (possibly infinite) set I ⊆ N.

We consider various noise models S by which the noisy α-character f is generated.
These noise models fall into two categories: “noise of bounded distance” where the
distance of f from χα is bounded by some distance measure (e.g., Hamming, `∞,
and `2 distances), and “noise simulating product group structure” which is defined in
correspondence to factorization of N into prime numbers.

In the following we first define the bounded distance noise models we consider
and survey our investigation of rLCN in these noise models (in section 4.2.1). We
then define noise models simulating product group structure and survey our results
for rLCN in these noise models (in section 4.2.2).

4.2.1 rLCN in Bounded Distance Noise Models

We define the bounded distance noise models we consider, and survey our results on
rLCN in these noise models.

Definition 4.3 (Bounded distance noise models). Let f : G→ C be a complex func-
tion over a finite abelian group G, and let χα : G → C be a character of the group
G.

• Hamming noise: We say that f is a noisy α-character in the Hamming noise
model of parameter ε, if f(x) 6= χα(x) for at most ε fraction of entries x ∈ G.

We say that f is a noisy α-character in the a stochastic version of Hamming
noise model of parameter ε, if f(x) = χα(x) with probability 1−ε independently
at random for each x ∈ G.

• `∞ noise: We say that f is a noisy α-character in the `∞-noise model of
parameter ε, if ‖f − χα‖∞ ≤ ε.
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We say that f is a noisy α-character in a stochastic version of the `∞ noise
model of parameters ε, σ2, if f(x)−χα(x) is a random variable with expectation
ε and variance σ2.

• `2 noise: We say that f is a noisy α-character in the `2 noise model of param-
eter ε if ‖f − χ‖22 ≤ ε.

We say that f is a noisy α-character in the Boolean `2 noise model of parameter
ε if f is a Boolean function, and ‖f − χ‖22 ≤ ε.

• No noise: We use the terminology f is a noisy α-character in the no noise
model, if f = χα.

Remark 4.4. 1. In all above noise models, noise may be adversarial where worst
case f is chosen, or random.

2. We assume without lost of generality that f(x) ∈ {χα(x)}x∈G ∀x. Otherwise,
we can (efficiently) round each f(x) to its closest value there.

3. Stochastic `∞ noise model with parameter σ2 = 0 is identical to the `∞ noise
model.

4. If f is a noisy α-character in the `2 noise model of parameter ε, then f is
positively correlated with χα, specifically, 〈f, χα〉 > 1 − ε

2
+ 1

2
(1− ‖f‖22). In

particular, for Boolean f , 〈f, χα〉 ≥ 1− ε
2
.

5. Let {ψG,α}G,α∈G be a family of functions defined over finite abelian groups G.
The above noise models can be applied to ψG,α just as they were applied to the
characters.

Tractability Results for Bounded Distance Noise

We investigate the computational difficulty of rLCN in bounded distance noise mod-
els. We prove that rLCN is tractable under some noise models, and conjecture it is
intractable for others.

Our tractability statements refer to rLCN over {ZN}N∈N (that is, on inputs re-
stricted to noisy characters f over groups ZN). We do not believe that our tractability
results extend to general abelian groups, because, in particular, this would contra-
dict the assumed intractability of the the problem of Learning Parity with Noise in
random samples access model.

We show that rLCN is tractable in the noise models of: no noise, Hamming noise,
`∞ noise and stochastic versions of Hamming and `∞ noise models.

Theorem 4.5. rLCN over {ZN}N∈N is in BPP in each of the following noise models:

• No noise
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• Hamming noise and stochastic Hamming noise with parameter ε ∈ [0, 1).

When ε < 1
2
, the algorithm can return the unique closest character in running

time polynomial in logN and 1/(1
2
−ε). In general, the algorithm returns the list

of O(1/ε) closest characters in running time polynomial in logN and 1/(1−ε).

• `∞ noise with parameter ε ≤ sin(2π
N
poly logN), and stochastic `∞ noise with

parameters ε, σ ≤ sin(2π
N
poly logN)

Intractability Conjecture for Boolean `2 Noise

We conjecture the rLCN over {ZN}N∈N is intractable in the `2 noise model. Further-
more, we conjecture it is intractable even for the restricted class of Boolean functions,
that is, in the Boolean `2 noise model.

Conjecture 4.6. rLCN over {ZN}N∈N in `2 noise model is intractable. Moreover,
rLCN over {ZN}N∈N is intractable even in the Boolean `2 noise model.

This conjecture rises from our experience with rLCN and from analogies between
rLCN and the believed-to-be hard rLPN. Two of our results can be viewed as pro-
viding supporting evidence for this conjecture. We stress however that these results
are by no mean the reason we make this conjecture. We elaborate on these results.

rLCN in Boolean `2 Noise vs. Decoding Random (non-linear) Codes Let
Cconst be the family of binary constant rate (non linear) codes define in Example
6.59 (in section 6.6 of chapter 6). We show that if there is an efficient algorithm
solving rLCN over {ZN}N∈N in Boolean `2 noise model, then a random code in Cconst

is efficiently decodable.

There are strong analogies between the code Cconst and random linear codes. Both
codes are defined by taking a random subset S of a group G (G = ZN for Cconst, and
G = {0, 1}n for random linear codes), and encoding elements x in the group by
a restriction of the character χx to the set S. (More accurately, a restriction of
a boolean-ized version of χx, in the case of Cconst.) Both codes are binary and of
constant rate and distance. It is widely believed that random linear codes are not
efficiently decodable. By way of analogy it may very well be that random constant
rate Multiplication Code are also not efficiently decodable.

Theorem 4.7. Let C be the random code from Example 6.59. If there is an efficient
algorithm solving rLCN over ZN with O(logN) samples and with error probability
poly( 1

N
), then C is efficiently decodable, with probability at least 2/3.

(By “efficient algorithm” we refer to algorithms with running time poly(logN).)

Proof. See details in Theorem 6.37 in section 6.2.5. �
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rLCN in Boolean `2 Noise vs. Diffie-Hellman Hardcore Predicates We
relate rLCN to the question of proving deterministic hardcore predicates for the Diffie-
Hellman function.

Let us briefly present the relevant definitions. The Diffie-Hellman function DH =
DHp,g : Z∗

p → Z∗
p for p a prime and g a generator of Z∗

p is defined by DH(ga, gb) = gab

mod p. The Computational Diffie-Hellman (CDH) assumption asserts that DH is in-
tractable (when considering the asymptotic family ofDHp,g functions with growing p).
The best known algorithm solvingDH runs in time O

(
exp

(
O(log n)1/3(log log n)2/3

))
for n = log p the bit representation length of elements in Zp. For a predicate
P : Zp → {±1}, we say that and algorithm B predicts P w.r. to DH if the probability
that B(ga, gb) = P (DH(ga, gb)) has non-negligible advantage over a random guess.
We say that P is hardcore predicate for DH, if given an algorithm B that predicts P
w.r. to DH, there is an algorithm A that computes DH with a non-negligible success
probability (where the probability is taken over the inputs to the inversion algorithm
A and over its random coins); and the running time of A is TB · poly logN for TB the
running time of B.

We show that if rLCN over {Zp}prime p is in BPP, then every segment predicate

(see Definition 7.8) is hardcore for DH. In particular, this implies the most significant
bit of gab (i.e., whether it is smaller or greater than p/2) is hardcore for DH.

Finding any hardcore predicate for DH is a long standing open problem (see a
detailed discussion in section 7.5 in chapter 7). This leads to viewing this result as
evidence on the intractability of rLCN over {Zp}prime p.

We stress however that our result relating rLCN and DH hardcore predicates, al-
beit providing evidence for the hardness of rLCN, is by no mean the reason we believe
rLCN to be hard. In fact, we believe rLCN to be harder than the problem of proving
hardcore predicates for DH. Specifically, given a predictor algorithm B, DH can be
solved in time O

(
exp

(
O(log n)1/3(log log n)2/3

))
(for n = log p the bit representation

length of elements in Zp) by ignoring B and using the best known algorithm for com-
puting DH. Our result relating rLCN and DH cannot therefore show that rLCN is
harder to compute in time better than O

(
exp

(
O(log n)1/3(log log n)2/3

))
. Whereas,

we believe rLCN to be even harder than that.

Theorem 4.8. If rLCN over {Zp}prime p in Boolean `2 noise model is in BPP, then

every segment predicate is hardcore for the Diffie-Hellman function.

Proof. See details in section 7.5 in chapter 7. �

Random Self Reducibility in `2 and Boolean `2 Noise

We explore the average-case vs. worst-case hardness of rLCN. Recall that a problem
is random self reducible if solving it on the worst case is efficiently reducible to solving
it on the average case. In the case of rLCN over {ZN}N∈N in `2 noise we show that
worst case χα is as hard as average case χβ when β is chosen uniformly at random from
ZN . That is, we show an efficient reduction algorithm that given N, (xi, f(xi))

m
i=1 for

f a noisy α-character, computes an instance N, (x′i, f
′(x′i))

m
i=1 such that f ′ is a noisy β
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character for β distributed uniformly at random in ZN , and such there is an efficient
mapping from β to α.

Moreover, we show a reduction that maps Boolean f to Boolean f ′, thus also
showing that rLCN in Boolean `2 noise is random self reducible.

Theorem 4.9. rLCN over {ZN}N∈N in `2 noise model is random self reducible. More-
over, it is random self reducible even in the Boolean `2 noise model.

Algorithm for rLCN in `2 Noise

For the `2 noise model where we conjecture rLCN to be intractable, we present an
algorithm for rLCN running in time N1−O(1/(log log N)2). This gives a slight improve-
ment over the O(N logN) running time of the naive algorithm. (Where the naive
algorithm is an algorithm measuring correlation of O(logN) random samples with
each character in G, outputting the character with highest correlation.)

Theorem 4.10 (algorithm for rLCN). There is an probabilistic algorithm that solves
rLCN over {ZN}N∈N in the Boolean `2 noise model of parameter ε = O(1) running
in time N1−poly(1/ log log N)).

This algorithm is based on two ingredients. The first ingredient is our algorithm
solving LCN in interval access model (see details in chapter 5). In this access model,
the algorithm receives samples of the form {(xi, f(xi))}ki=1 where x1, . . . , xk all fall
in a length 2` interval of ZN for a random ` in 0, . . . , logN . The second ingredient
is an algorithm simulating interval access in the random samples access. This al-
gorithm simply waits until random samples happen to fall in small intervals. In a
“birthday sampling lemma” we analyze the number of random samples requires in
order to obtain a sufficient number of samples simulating interval access, showing it
is N1−O(1/(log log N)2).

4.2.2 rLCN in Noise Models Simulating Product Group Struc-
ture

We define noise models simulating product group structure, and survey our results
on rLCN in these noise models.

We restrict our attention to functions over groups ZN where N = p1p2 . . . pt is
a product of t > 1 distinct primes. In this case, there is an isomorphism5 between
ZN and the direct product group Zp1 × . . .× Zpt . With this direct product structure
in mind, we consider analogies between rLCN and LPN leading to our noise models
definitions.

Recall that LPN is defined with respect to functions over the direct product group
Z2 × . . . × Z2 = {0, 1}t. For each ᾱ = (α1, . . . , αt), x̄ = (x1, . . . , xt) ∈ {0, 1}t, recall

5For N = p1, . . . , pt a product of t > 1 distinct primes, the isomorphism between ZN and
Zp1 × . . . × Zpt is defined by mapping each x ∈ ZN to (x1, . . . , xt) s.t. xi ≡ x mod pi. This
transformation as well as its inverse are both efficiently computable, where the inverse transformation
in computed using the Chinese Remainder Theorem.
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that the ᾱ-character over {0, 1}t is defined by

χ̄ᾱ(x̄) =
t∏

i=1

χαi
(xi)

for χαi
(xi) = (−1)αixi is the αi-character of the group Z2. The noisy character f̄ of

rLPN is a noisy version of χ̄ᾱ in Hamming noise model.

Analogously to χ̄ᾱ, in G ∼= Zp1 × . . .× Zpt we define for every α ∈ G a function

ϕα(x) =
k∏

i=1

χpi,αi
(xi)

for χpi,αi
the αi-character of the group Zpi

and αi = α mod pi, xi = x mod pi.
Analogously to f̄ above, we define f to be a noisy version of ϕα (in any bounded
distance noise model). We name this noise the combined primes noise model. We use
the terminology S-noisy combined primes noise model for S some bounded distance
noise (say, S the Hamming noise) to specify that ϕα is corrupted by noise model S.

We also define a related (and seemingly less challenging) noise model, where in-
stead of combining all χpi,αi

to one value by taking their product, the algorithm is
given random samples access to a noisy version of χpi,αi

for a random i ∈ 1, . . . , t.
Namely, the algorithm receives random samples of the form (x, i, fi(x)) for x ∈ ZN

and i ∈ [t] both chosen uniformly at random, and fi is a noisy version of χpi,αi
in

one of the bounded distance noise models. We name this noise the distinct primes
noise model. We use the terminology S-noisy distinct primes noise model for S some
bounded distance noise (say, S the Hamming noise) to specify that the character
χpi,αi

are corrupted by noise model S.

Definition 4.11 (Noise simulating product group structure). Let N =
∏t

i=1 pi a
product of t > 1 distinct primes, f : ZN → C a complex function over ZN , and S be
a noise model from Definition 4.3.

We use the following notation. For each α ∈ ZN , αi ≡ α mod pi, let χpi,αi
: Zpi

→
C is the αi-character of the group Zpi

, let ϕN,α : ZN → C be defined by ϕN,α(x) =∏k
i=1 χpi,αi

(xi) and let ϕrand
N,α : ZN → [t]×C be defined by ϕrand

N,α (x) = (i, χpi,αi
(xi)) for

i ∈ [t] chosen uniformly at random independently for each x ∈ ZN .

We define the following noise models:

• S-noisy combined primes: We say that f is a noisy α-character in the S-
noisy combined primes noise model, if f is a corruption of ϕN,α in noise model
S.

• S-noisy distinct primes: We say that f is a noisy α-character in the S-noisy
distinct primes noise model, if f is a corruption of ϕrand

N,α in noise model S.
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Tractability of rLCN with Noise Respecting Group Structure

We investigate the computational difficulty of rLCN in noise simulating product group
structure. We show that the tractability of rLCN in the combined primes and distinct
primes noise models depend on the factorization of N .

Theorem 4.12. Let I = {N |N is a product of t > 1 distinct primes p1, . . . , pt}.
Let S be one of the noise models in Theorem 4.5.

1. If N can be efficiently factored, then rLCN over {ZN}N∈I in S-noisy distinct
primes noise model is in BPP.

2. If
∑t

i=1
N
pi

is co-prime to N and it can be efficiently computed, then rLCN

{ZN}N∈I in S-noisy combined primes noise model is in BPP.

Remark 4.13. The factorization of N or
∑t

i=1
N
pi

can be given as advice instead of
being computed by the algorithm.

4.3 Proof of Tractability Results

In this section we prove our tractability results. We describe the algorithms solving
rLCN over {ZN}N∈N in each of the noise models considered in Theorems 4.5 and
4.12. All algorithms and analyzes are simple, computation details are sometimes only
sketched.

In the following we fix N ∈ N and f : ZN → C s.t. the input to our algorithms is
N and random samples access to f . Denote TN = T ∩

{
ωk

N

}
k∈N for ωN = ei 2π

N . We
assume without loss of generality that f(x) ∈ TN , otherwise, we can round f(x) to
the closest value in TN .

Proof of Theorem 4.5

No noise model. Consider first the no noise model. The algorithm for finding α
given a random sample (x, χα(x)) is as follows: If x is co-prime to N , translate χα(x)
to z = αx mod N (this is by translating the complex number χα(x) to its polar
representation of angle θ and radius 1, and computing α = θ · N

2π
), and output z · x−1

mod N , else, fail. The success probability is 1− |ZN\Z∗N |
|ZN | . Repeating the algorithm on

fresh samples, the success probability can be amplified.

Hamming noise model of parameter ε. Consider next the Hamming noise
model of parameter ε. The algorithm for finding α is as follows. Ask for m = O(1)
random samples (x, f(x)). For each sample (x, f(x)) compute a guess for α using
the above algorithm for the no noise case. Output all α appearing in more than
1 − ε − O(1) fraction of the guesses. This algorithm succeed with high probability:
let α ∈ ZN be s.t. f(x) = χα(x) on 1− ε fraction of the x ∈ ZN , then f(x) = χα(x)
on 1 − ε − O(1) fraction of the samples with probability at least O(1). We remark
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that in case ε > 1
2
, this algorithm returns a unique α, whereas if ε ≤ 1

2
, the algorithm

returns a list of length at most O(1/ε) containing with high probability all α s.t.
∆(χα, f) < ε.

This algorithm extends to handle stochastic Hamming noise models with param-
eter ε′ < ε− ρ for a non negligible function ρ. This is because for a noisy α-character
f in stochastic Hamming noise of parameter ε′, ∆(f, χα) ≤ ε with overwhelming
probability for ∆ the relative Hamming distance.

`∞ noise model of parameter ε. Consider third the `∞ noise model with param-
eter ε. In this noise model, it may be the case that all samples are noisy so we cannot
use the above algorithm. The algorithm finding for α is as follows. Round the noise
parameter ε to the closest value in ε′ ∈ TN and map ε′ to the corresponding M ∈ ZN

(this is by translating the complex number ε′ to its polar representation of angle θ
and radius 1, and computing M = θ · N

2π
). Likewise, for each sample (x, f(x)) map

f(x) ∈ TN to the corresponding value f ′(x) ∈ ZN . By definition of the `∞ noise
model, for each sample (x, f ′(x)), it holds that χα(x) ∈ {f ′(x)−M, . . . , f(x) +M}.
By constraint on ε, M ≤ poly logN and thus we can exhaustively try all values of
(x, f ′(x) + s) for s = −M, . . . ,M until reaching the correct value (x, χα(x)) from
which we can find α using the algorithm for the no noise case above. We can verify
that a guess α′ is correct by checking that |f ′(x)− (a′x mod N)| ≤M for sufficiently
many samples.

Stochastic `∞ noise model of parameters ε, σ. Finally consider the stochastic
`∞ noise model of parameters ε, σ. The algorithm for finding α in this noise model
is the same as the algorithm for the `∞ model, only replacing the parameter ε with
ε′ = ε+O(

√
m)σ, where m is the number of samples requested by the algorithm for

the `∞ noise model of parameter ε. This algorithm succeeds, because for such ε′, with
high probability, for all m samples |f(x)− χα(x)| ≤ ε. �

Proof of Theorem 4.12

Let p1, . . . , pt be a factorization of N to t > 1 distinct primes.

Distinct primes noise model. Consider the distinct primes noise model, and
assume the factorization on N is given as advice to the algorithm. Recall that the
samples are of the form (x, f(x)) where f(x) = (i, χpi,αi

(xi)), x is uniformly random
in ZN and i is uniformly random in 1, . . . , t. The algorithm for finding α is as follows.
Ask for m = O(logN) samples. For each i = 1, . . . , t, denote by Si be the set of
all samples (x, (i, χpi,αi

(xi)). For each i = 1, . . . , t, run our algorithm for the no
noise model on input pi and samples Si; denote its output by αi. Apply the Chinese
Remainder Theorem to combine all these values α1, . . . , αt to α mod N .

To show that the this algorithm succeed, observe first that for m = O(logN), with
high probability, |Si| is greater than some constant for all i = 1, . . . , t. In this case,
with high probability the no noise algorithm succeeds in outputting αi on each of its
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applications. In this case, applying the Chinese Remainder Theorem would indeed
return α.

Noisy distinct primes noise model. Consider next the S ′-noisy distinct primes
noise model, where S ′ is one of the noise models considered in theorem 4.5. Assume
again the factorization of N is given as advice to the algorithm. In these settings
an algorithm similar to the above works, only that we replace the ingredient where
we ran the algorithm for the no noise model, with an algorithm for S ′ noise model.
Analysis follows from the success probability of the algorithm for S ′, similarly to the
no noise case.

Combined primes noise model. Consider the combined primes noise model. Ob-
serve that for a divisor pi of N , ωpi

= ω
N/pi

N , and thus χα,pi
(x) = (ωαx

N )N/pi . Therefore
we can rewrite ϕα(x) as follows.

ϕα(x) =
t∏

i=1

χα,pi
(x) = ω

αx·
Pt

i=1
N
pi

N

Consider the case that
∑t

i=1
N
pi

is co-prime to N . In this case, if
∑t

i=1
N
pi

is known

to the algorithm, then it operates as follows. Compute
(∑t

i=1
N
pi

)−1

mod N and

x−1 mod N (using Extended Euclid algorithm), compute αx ·
∑t

i=1
N
pi

(this is by

representing the complex value f(x) in a polar representation with radius 1 and angle
θ and computing θ · N

2π
). Output the product of these three values.

This algorithm succeeds provided that there exists a sample (x, f(x)) s.t. x is co-

prime to N . For a single sample (x, f(x)), this happens with probability 1− |ZN\Z∗N |
|ZN | .

By taking several sample success probability can be amplified.

Noisy combined primes noise model. Consider next the S ′-noisy combined
primes noise model, where S ′ is one of the noise models considered in theorem 4.5.
Assume again that

∑t
i=1

N
pi

is given as advice to the algorithm. In these settings,
we combine algorithms for noise models of Theorem 4.5 with the above algorithm
for the combined primes noise model. Specifically, we first apply the algorithm for
the S ′ noise to find correct values of (x, ϕα(x)), and then apply our algorithm for
the combined primes noise to deduce α from (x, ϕα(x)). Analysis follows from the
analyzes of both algorithms. Let us give two examples.

In the Hamming noise model with parameter ε, we apply the above algorithm
for the combined primes noise model on each sample (x, f(x)), and output all values
appearing in 1−O(ε) fraction of the samples.

In the `∞ noise model with parameter ε, for each sample (x, f(x)), we map the
complex value f(x) to the corresponding element f ′(x) ∈ ZN . We round ε to ε′ ∈ TN

and map ε′ to a corresponding element in M ∈ ZN . We then apply our algorithm
for the combined primes noise model on the set of samples (x, f ′(x) + s) for each
s = −M, . . . ,M .

91



�

Remark 4.14. In the distinct primes noise model, we gave an algorithm provided that
the factorization of N is known (or can be efficiently found). Even if the factorization
of N is hard to find, our algorithm can still return α mod pi for all i = 1, . . . , t
(despite not knowing p1, . . . , pt). We do not know however how to combine these
values into α without knowing p1, . . . , pt.

4.4 Proof of Random Self Reducibility Result

In this section we prove Theorem 4.9 on the random self reducibility of rLCN.

To prove that worst case rLCN is reducible to average case rLCN, we define
a transformation mapping samples (x, f(x)) for f a noisy α-character to samples
(x′, f ′(x′)) for f ′ a noisy β-character s.t. β is uniformly random from ZN and s.t.
given β we can efficiently find α. We consider two transformations. Both satisfy the
above. One transformation also has the property that if f is Boolean than so if f ′,
namely, it proves random self reducibility within the Boolean `2 noise model.

The first transformation is as follows. Choose a random α′ ∈ ZN , and map each
(x, f(x)) into

(x, f(x)) 7→ (x, f(x)χα′(x))

This maps f a noisy α character to f ′ a noisy β character for β = α + α′ where if f
was noisy in `2 noise model with parameter ε, the so is f ′. To see this, first note that
χαχα′ = χα+α′ . Second, note that for η = f − χα, η′ = f ′ − χα′ denoting the noises
patterns of f and f ′, respectively, η′ = ηχα′ , which implies that |η′(x)| = |η(x)| ∀x ∈
ZN , and therefore, ‖η′‖2 = ‖η‖2.

We remark that this transformation also preserves distance in the no noise, Ham-
ming noise, `∞ noise and stochastic `∞ noise models.

The second transformation we consider is as follows. Choose a random α′ ∈ Z∗
N ,

and map each (x, f(x)) into

(x, f(x)) 7→ (xα′, f(x))

The effect of this transformation on the Fourier coefficients is that f̂ ′(α) = f̂(α/α′).
Therefore, if f was a noisy α character, then f ′ is a noisy β character for β = α/α′, and
the distance remains unchanged, be it with respect to Hamming, `∞ or `2 measure.
The samples locations x1β

−1, . . . , xmβ
−1 are independent random locations in ZN if

so were x1, . . . , xm.

The advantage of the second transformation over the first is that {f ′(x)}x∈ZN
=

{f(x)}x∈ZN
. In particular, if f is Boolean than so is f ′. Namely, this transformation

gives random self reducibility within the restricted class of Boolean functions f . �
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4.5 Algorithm for rLCN: Proof of Theorem 4.10

In this section we prove Theorem 4.10 giving an algorithm solving rLCN in time
N1−O(1/(log log N)2) in the `2 noise model of parameter ε = O(1).

Recall that the SFT algorithm executes logN refinement, and in each step ` =
1, . . . , logN , it requires k = O((log logN)2) samples chosen uniformly at random
from an interval of length 2`. According to the birthday sampling lemma below, we
can simulate the samples needed for all steps ` using

log N−1∑
`=1

k ·
(
N

2`

)1− 1
k

= O(N1− 1
k logN)

random samples. Namely, with running time O(N1−O(1/(log log N)2) logN) we can run
the SFT algorithm in the random samples access model, obtaining an algorithm for
rLCN.

Lemma 4.15 (Birthday sampling lemma). For any δ > 0, N, k ∈ N and ` ∈
{0, . . . , logN}, a random subset X ⊆ ZN of size |X| > k ·

(
δ · N

2`

)1− 1
k contains k

elements all falling in a length 2` interval of ZN , with probability at least δ.

Proof. Denote m = |X|. The probability that X contains k samples at a fixed

interval of length 2` is at least C(m, k)
(

2`

N

)k

. Partitioning ZN to N
2` disjoint length 2`

intervals, the probability that X contains k samples in one of those intervals is at least

N
2` ·C(m, k) ·

(
2`

N

)k

≥
(

m
k

)k ·(2`

N

)k−1

. This is greater than δ iff m > k ·
(
δ ·
(

N
2`

)k−1
)1/k

.

� �
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Chapter 5

Learning Characters with Noise in
Intermediate Access Models

In this chapter we explore the problem of Learning Characters with Noise in access
models which are not as permissive as the query access model and yet not as restrictive
as the random samples access model.

The input to the problem of learning characters with noise (LCN) are samples
{(xi, f(xi))}mi=1 of a function f : G → C over a group G and the output is the sig-

nificant Fourier coefficients of f , that is, all α ∈ G s.t.
∣∣∣f̂(α)

∣∣∣2 ≥ τ . The access

model governs the mechanism by which the samples {(xi, f(xi))}mi=1 are given to the
learning algorithm.

In chapters 3 and 4 we considered the query access model and the random samples
access model. In this chapter we consider intermediate access models, in which the
xi’s are neither at the complete discretion of the learning algorithm (as was the case
for the query access model), nor completely random (as was the case for the random
samples access model). Access models that we consider include: interval access where
the samples are correlated by having all xi’s drawn from the same (randomly chosen)
interval, GP-access where x1, . . . , xm form a geometric progression in the group G,
and subset access where the x1, . . . , xm are restricted to lie in a predetermined subset
Q ⊆ G.

We explore the complexity of LCN in the above intermediate access models and
present applications of our findings. In the interval access model, we show that LCN
is tractable. An application of this result is a (non-polynomial time) algorithm for
solving LCN in random samples access model discussed in chapter 4. In the subset
access model, we show that for any family F of functions there are subsets Q of size
polynomial in log |G| , log |F| such that LCN with subset access to Q is tractable for
any function f in F . Applications of this tractability results are decoding algorithms
for polynomial rate codes, discussed in chapter 6. In the GP-access model, we show
that tractability of LCN is related to the problem of proving bit security of the Diffie-
Hellman (DH) function. In particular, we show that either LCN in GP-access model is
intractable, or several bits of DH are as secure as DH. This places use in a “win-win”
situation from the perspective of finding hard problems for cryptographic protocols.
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5.1 Introduction

In this chapter we explore the complexity of the Learning Characters with Noise
problem in access models which are not as permissive as the query access model and
yet not as restrictive as the random samples access model.

The input to the problem of learning characters with noise (LCN) is a description
of a finite abelian group G, a threshold τ ∈ R+ and samples {(xi, f(xi))}mi=1 of a
complex function f : G→ C over the group G. The output is the τ -significant Fourier

coefficients of f , that is, all α s.t. the α Fourier coefficient has weight
∣∣∣f̂(α)

∣∣∣2 at least

τ . The access model governs the mechanism by which the samples {(xi, f(xi))}mi=1 are
given to the learning algorithm. The access models we consider are not as permissive
as the query access model, because the xi’s are not at the discretion of the learning
algorithm. The are also not as restrictive as the random samples access model,
because the xi’s are not completely random.

Definition 5.1 (LCN in access model M). The input to LCN in M-access model is a
description of a finite abelian group G by its generators and their orders, a threshold
τ ∈ R+ and M-access to a function f : G→ C, that is, samples of f are generated via
oracle access to algorithm M; the goal is to find all τ -significant Fourier coefficients
of f .1

The motivation for considering intermediate access models arises from applications
where it is impossible to gain query access to the function whose significant Fourier
coefficients are of interest, and yet, it is possible to obtain samples that are not merely
random.

Access models we consider include the following examples. We consider the GP-
access model, where samples {(xi, f(xi))}mi=1 satisfy that x1, . . . , xm form a geometric
progression in the group G. We relate the tractability of LCN in GP-access model
to bit security of the Diffie-Hellman (DH) function, showing that either LCN in GP-
access model is intractable, or several bits of DH are as secure as DH (details in
chapter 7).

We consider the subset access model, where samples {(xi, f(xi))}mi=1 satisfy that
x1, . . . , xm are restricted to lie in a predetermined subset Q ⊆ G, and are otherwise
completely in the power of the learning algorithm. We show that there exists poly-
nomial size sets Q s.t. LCN with subset access to Q is tractable provided that the
input functions is drawn from a predetermined family of functions. This algorithm is
a component in an efficient decoding algorithms in Binary Symmetric Channel noise
model we give for polynomial rate codes discussed in chapter 6.

For functions over ZN ,2 we consider interval access model. In this access model,
the samples {(xi, f(xi))}mi=1 are correlated by having all xi’s drawn from the same
(randomly chosen) interval. We show that LCN in interval access model is tractable.
This algorithm is a component in our (non-polynomial time) algorithm for solving
LCN in random samples access model (details in chapter 4).

1We say that α ∈ G is a τ -significant Fourier coefficient of f iff
∣∣∣f̂(α)

∣∣∣2 ≥ τ .
2ZN denotes the additive group of integers modulo N
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Related Works

For the special case case when the functions f are over the Boolean Cube {0, 1}n,
intermediate access models were previously considered for the problem of Learning
Parity with Noise (LPN). One example of an intermediate access model studied for
LPN is the random walk model where samples q̄ ∈ {0, 1}n are generated by a random
walk on the hypercube (see [21] and references therein).

Another example where intermediate access models were (implicitly) studied for
LPN is the subset access model. Specifically, we observe that every linear error
correcting code defines a subset Q ⊆ {0, 1}n such LPN with query access to Q is
tractable when restricted to functions f that are the corrupted codewords. Let us
elaborate. A linear code is defined by a generating matrix A ∈ {0, 1}k×n such that
encoding of messages x ∈ {0, 1}k is by codewords xA ∈ {0, 1}n. Let Q ⊆ {0, 1}k be
the set of all columns of A. We observe that the decoding algorithm solves Q-LCN on
the restricted class of functions whose restriction to Q is xA+ η for some x ∈ {0, 1}k
and for η a noise vector. Since there are linear codes of constant rate,3 then there are
subsets Q ⊆ {0, 1}k of linear size |Q| = O(k) such that LPN with subset access to Q
is tractable (with restricted input functions).

By the above, when restricting attention to functions over the Boolean cube
{0, 1}n, there are linear size subsets Q ⊆ {0, 1}k such that LCN with subset ac-
cess to Q is tractable (with restricted input functions). For functions over arbitrary
finite abelian groups G, we show that there are subsets Q ⊆ G of polynomial size
|Q| = poly log |G| s.t. LCN is tractable with subset access to Q (again, with restricted
input functions). Finding sets Q of linear size |Q| = O(log |G|) is an open problem.
The problem is open even for the case G = ZN .

5.2 Overview of Definitions and Results

We consider the access models of interval access, GP-access, subset access and DH-
access, defined below, and explore the complexity of LCN in these access models. We
show that LCN is tractable in interval access model; relate the tractability of LCN in
GP-access and DH-access models to bit security of the Diffie-Hellamn function; and
show that there exists polynomial size sets Q s.t. LCN with subset access to Q is
tractable when the input functions is drawn from a restricted family of functions.

The considered access models are intermediate access models in the sense that
they are strictly less powerful than the query access model and strictly more powerful
than the random samples access model.

Proposition 5.2. The interval access and GP-access models are strictly stronger
than the random samples access model, and are strictly weaker than the query access
model. The subset access model to subset Q 6= φ,G is incomparable to the random
samples access model (i.e., it is neither stronger nor weaker), and is strictly weaker
than the query access model.

3A linear error correcting code has constant rate if its generating matrix has dimension k× n for
n = O(k)
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Proof. Proof is deferred to section 5.3 �
In the following we formally define these access models, discuss our results regard-

ing the complexity of LCN in these access models, and mention applications of our
results.

5.2.1 Interval Access Model

In the interval access model, the samples {(xi, f(xi))}mi=1 are correlated by having all
xi’s drawn from the same (randomly chosen) interval.

Definition 5.3 (Interval access). Let f : ZN → C be a complex function over the
additive group ZN of integers modulo N . Interval access to f is given by an algorithm
M that, on input m, outputs samples

((x, `, (y1, . . . , ym)), f(x+ y1), . . . , f(x+ ym))

for x ∈ ZN chosen uniformly at random, ` ∈ {1, . . . , logN} chosen uniformly at
random, and y1, . . . , ym in the interval

{
0, . . . , 2` − 1

}
chosen independently and uni-

formly at random; and its running time is polynomial in m and logN .

We show that LCN is tractable in the interval access model, namely, there is an
algorithm solving LCN in this access model in time polynomial in logN and 1/τ .

Theorem 5.4. LCN in interval access model is in BPP.

Proof. Examining the SFT algorithm from Chapter 3 reveals that it did not use
the full power of the query access model. The queries it makes are in fact chosen
independently at random from random intervals of size 2` for ` = 1, . . . , logN . Such
queries can be simulated using poly(logN, 1/τ) samples generated in the interval
access model. �

Remark 5.5 (random walk interval access). For functions f : G→ C over a product
of cyclic groups G = ZN1 × . . .× ZNk

, the interval access model can be extended to a
random walk interval (RWI) access model, and LCN is tractable in this RWI-access
model. The RWI-access model combines the interval access model with the random
walk access model as follows. We think of G as a k dimensional cube with axis i of
length Ni, and samples are given via a random walk on the nodes of the cube where
in each node (x1, . . . , xk), some axis i ∈ [k] is chosen uniformly at random, and m
samples ((y1, . . . , yk), f(y1, . . . , yk)) are given with yj = xj for all j 6= i whereas yi are
values chosen according to the interval access model in ZNi

.

LCN in the RWI-access model is tractable by an algorithm combining our algo-
rithm for LCN in interval access model together with a generalization of the algorithm
Bshouty et.al. [21] gave for function over the Boolean cube {0, 1}n.

An analogous access model and a corresponding learning algorithm can be given for
any finite abelian group, when given its generator and their orders. This is by relying
on the isomorphism between finite abelian groups and product of cyclic groups.
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5.2.2 GP-Access Model and DH-Access Model

In the GP-access model the samples {(xi, f(xi))}mi=1 satisfy that x1, . . . , xm form a
geometric progression in the group G.

Definition 5.6 (GP-Access). Let f : G → C be a complex function over an abelian
group G. GP-access to f is given by an algorithm M that, on input integers k1, k2, ..., km,
outputs samples

(r,
{
f(rki)

}m

i=1
)

for r ∈ G distributed uniformly at random and where the power operation is computed
in the group G; and its running times is polynomial in m and log |G|.

Another access model we consider is the DH-access model. The DH-access model
arises in our study of cryptographic hardcore predicates for the Diffie-Hellman func-
tion,4 and its samples are tailored for that application.

Definition 5.7 (DH-access). Let f : ZN → C be a complex function over the additive
group ZN of integers modulo N . DH-access to f is given by an algorithm M that, on
input a prime p ∈ N, a generator g of Z∗

p and ga, gb, ga′ , gb′ ∈ Z∗
p, outputs f(ga′b′/gab)

in time T , for T the time of computing ga′ , gb′ given p, g, ga, gb.

Determining whether LCN in GP-access or DH-access is tractable is an open
problem. Using known (non polynomial time) algorithms for computing the Diffie-
Hellman function, it is possible to reduce (in non-polynomial time) LCN in DH access
model to LCN in query access model (qLCN). Combined with our SFT algorithm
solving qLCN in time polynomial in logN and 1/τ this gives an algorithm solving
LCN in DH-access in times polynomially related to the time of computing the Diffie-

Hellman function, currently bounded by 2O((logN)1/3(log log N)2/3).

Theorem 5.8. There is an algorithm solving LCN in DH-access model in time TDH ·
poly(logN, 1/τ) ≤ 2O((log N)1/3(log log N)1/3) for TDH the time for computing the DH
function.

Proof. To solve LCN in DH-access model we first reduce this problem to LCN in
query access model in time TDH , and then apply the SFT Algorithm 3.4 to solve
LCN in the query access model in time poly(logN, 1/τ). Combined together, this
gives the running time stated in the theorem.

Reducing LCN in DH-access model to LCN in query access model, is by using
DH-access oracle M to simulate query access oracle M’ as follows. For any R ∈ Z∗

p,
we define

M ′(p, g, ga, gb, R) = M(DH(ga, gb) · gr, g)

Observe that DH(ga, gb) · R = gab+r for r the Discrete Logarithm of R, that is,
gr = R. By the definition of the DH-access model M , this implies that that the
output of M ′ = M(gab+r) is the value of f on input R, because g(ab+r)·1−ab = R.

4The Diffie-Hellman (DH) function is the function DHp,g : Z∗p × Z∗p → Z∗p for p a prime and g a
generator of Z∗p, defined by DHp,g(ga, gb) = gab for any ga, gb ∈ Z∗p.
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The running time of M ′ is dominated by the time for TDH computing DH(ga, gb).
�

We show that tractability of LCN in GP-access or DH-access models would have
applications in cryptography. Specifically, it would allow proving security of bits of
the Diffie-Hellman function – a long standing open problem (see discussion in chapter
7). This result places us in a “win-win” situation from the perspective of designing
cryptographic protocols: Either LCN is easy in GP-access or DH-access model, which
would imply a security result regarding the Diffie-Hellman function. Or alternatively,
LCN is intractable in these access models, in which case, LCN with these access
models poses a new candidate hard function to base cryptographic protocols on.

Theorem 5.9. If there is a polynomial time algorithm solving LCN in DH-access
model or in GP-access model, then every segment predicate (as defined in Definition
7.8) is hardcore for the Diffie-Hellman function.

Proof. Details are given in Chapter 7 section 7.5. �

5.2.3 Subset Access Model

In the subset access model for some fixed and predetermined set Q ⊆ G, the learning
algorithm is allowed to query functions f : G → C on any x ∈ Q. We use the
terminology Q-access referring to subset access when Q is the set from which queries
are given.

Definition 5.10 (Q-access). Let f : G → C be a complex function over an abelian
group G, and Q ⊆ G a subset of G. Q-access to f is given by an algorithm M that,
on input x in the subset Q, outputs the value f(x) in unit time.

We focus on a variant of LCN –named, (Q,F)-LCN– where the input function
is restricted to come from some family F of complex valued functions over a group
G and the queries are taken from a subset Q ⊆ G. Asymptotically, this problem
is defined with respect to a family of subsets QN,τ corresponding to groups GN of
growing sizes and to varying thresholds τ .

Definition 5.11 ((Q,F)-LCN). Let F = {FN}N∈I be a family of functions FN ⊆
{f : GN → C} over finite abelian groups GN , and let Q = {QN,τ}N∈I,τ∈R+ a family
of subsets QN,τ ⊆ GN . The input to (Q,F)-LCN is a description of a finite abelian
group GN ,5 τ ∈ R+ and QN,τ -access to a function f ∈ FN ; the goal is to find all the
τ -significant Fourier coefficients of f .6

We explore the complexity of LCN in Q-access model (Q-LCN, in short). The
tractability of this problem depends on the choice of the subset Q. For example, when
Q = G is the entire domain, then Q-access is identical to the query access, and Q-
LCN is tractable as shown in chapter 3. In contrast, for empty set Q = φ, Q-access

5A description of a group G is given by its generators and their orders
6We say that α ∈ GN is a τ -significant Fourier coefficients of f : GN → C if the α Fourier

coefficient of f is of weight at least
∣∣∣f̂(α)

∣∣∣2 ≥ τ .
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provides no information on the function f and thus solving Q-LCN is information
theoretically infeasible.

The challenge is to devise small sets Q s.t. Q-LCN is tractable. This goal is
motivated by applications where fixed queries have much smaller cost than varying
queries, and by applications in coding theory, examples follow.

One motivation for the subset access model is drawn from settings where querying
fixed locations is less costly than querying varying locations. As an example, consider
functions f measuring existence of seismic activity in various geographic locations.
When identifying geographic locations with the group G = ZN1 × ZN2 representing
longitudes and latitudes (up to some finite precision), f is a Boolean function over
G. It is possible to place in various geographic locations Q ⊆ G sensors/transmitters
that would sense whether there is a seismic activity and transmit the findings to a
control center. To allow initial placement of sensor/transmitters, the set Q must be
of reasonable size. Once sensors in locations Q are fixed, there is only a minor cost
in collecting the data f(q) for q ∈ Q. In contrast, it is very expensive to query f
on new locations q /∈ Q, as this requires placing a new sensor in location q. When
interested in Fourier analysis of the seismic data f , the challenge in to find small sets
Q s.t. Q-LCN is tractable.

Another motivation for the subset access model is taken from coding theory. In
chapter 6 we present a new family of error correcting codes –Multiplication Codes–
that encode messages x ∈ G by the string (Px(q))q∈Q for {Px}x∈G Boolean functions
and Q ⊆ G. A central component in our decoding algorithm for these codes is an
algorithm solving Q-LCN applied on codewords corrupted by noise. When taking
Q = G, these codes are efficiently decodable due to the tractability of LCN in the
query access model, but their encoding uses a great deal of redundancy, namely, it
has a bad rate. Taking smaller sets Q, we can achieve much better rate, e.g., for
Q = O(log |G|), the rate is constant. The challenge is to devise small sets Q s.t.
Q-LCN is tractable, which would allow efficiently decoding these codes.

We show there exists polynomial size sets Q with which (Q,F)-LCN is tractable.
That is, for every family of functions F over a group G, we present polynomial size
sets Q s.t. Q-LCN is tractable w.r. to input functions f ∈ F , and the size of Q is
polynomial in log |G|, log |F| and 1

τ
. Moreover, we present a randomized algorithm

that efficiently finds such sets Q with high probability.
Our idea for finding polynomial size subsets with which we can solve LCN in the

subset access model is as follows. We define Q to be the set of queries asked by our
SFT Algorithm (see chapter 3) on a fixed function f ∈ F , and hope that these queries
allow solving LCN on any f ∈ F , that is, that (Q,F)-LCN is tractable. The set Q
is indeed of polynomial size, because the SFT algorithm makes only poly(|G| , 1/τ)
queries. For the fixed function f , indeed it is possible to solve Q-LCN, because the
SFT algorithm solves LCN when querying f only on x ∈ Q. For other functions
f ∈ F , however, it is not immediately clear whether queries in Q suffice for solving
LCN. In particular, our analysis of the SFT algorithm in chapter 3 relies on choosing
fresh queries for every given function f , whereas, in the subset access model the set
of queries Q must be good for all functions f ∈ F . Nevertheless, with a moderate
increase in the size Q (essentially, taking log(|GN | · |FN |) rather than log log |GN |

101



queries), we can show that Q is good for all f ∈ F with high probability. This is
simply by using union bound.

We use the following terminology. Let GN be a finite abelian group, and τ ∈ R+

a threshold. For QN,τ a subset of GN , we say that QN,τ is of polynomial size if its
size is upper bounded by a polynomial in log |GN |, log |FN | and 1/τ . Let FN ⊆
{f : GN → C} be a family of functions over GN , we say that (QN,τ ,FN)-LCN is in
P, if there is an algorithm solving (QN,τ ,FN)-LCN for all f ∈ FN and τ ′ ≥ τ and
its running time is polynomial in log |GN |, log |FN | and 1/τ . Asymptotically, for
F = {FN}N and Q = {QN,τ}N,τ , we say that (Q,F)-LCN is in P, if (QN,τ ,FN)-LCN
is in P for every N, τ .

Theorem 5.12. For every family F = {FN}N∈I of functions FN ⊆ {f : GN → C}
over finite abelian groups GN , there exists a family of polynomial size subsets Q =
{QN,τ ⊆ GN}N∈I,τ∈R+ s.t. (Q,F)-LCN is in P.

Moreover, there is a randomized algorithm that, given a description of the group
GN , a threshold τ and the size |FN |, outputs a polynomial size subset QN,τ ⊆ GN s.t.
with high probability (QN,τ ,FN)-LCN is in P.

Proof. Given, a description of the group GN , |FN | and τ , we define Q to be the output
of the Generate Queries Algorithm 3.5 on input a description of the group GN , τ and
confidence parameter δ = 1

3|FN | . We show that the Fixed Queries SFT Algorithm 3.6

is a polynomial time algorithm solving (Q,FN)-LCN (with high probability over the
choice of Q): For any fixed function f over GN , the Fixed Queries SFT Algorithm 3.6
outputs all τ -significant Fourier coefficients of f with probability at least 1 − δ over
the choice of Q (see Lemma 3.17). By union bound, this holds for all f ∈ FN with
probability at least 1− |FN | δ = 2/3 �

5.2.4 Further Results

In the applications we consider for LCN in subset access model, it is often natural
to consider settings where some of the functions values f(q) are faulty. For example,
in the seismic activity example above, it is reasonable to expect some of the sensors
to break down with time and stop sending data or send false data. In the coding
application the codewords are expected to be corrupted by noise during transmission.

We extend our results to address “faulty” functions, showing there are (efficiently
computable) polynomial size sets Q s.t. (Q,F)-LCN is in P even when given a Q-
access to a faulty version f ′ of a function f ∈ F .

We define two models measuring how evenly the faulty values are distributed in
the accessed subset Q: “well spread faults” and “δ-spread faults”. These models are
related to well known noise models: Noise generated by a Binary Symmetric Channel
yields (with high probability) well spread faults. Noise generated by an adversary
flipping at most δ fraction of the values yields O(δ)-spread faults.

For well spread faults, we show that there are polynomial size sets Q such that
faulty (Q,F)-LCN is in P. That is, there is an algorithm finding all τ -significant
Fourier coefficients of a function f ∈ F in time polynomial in log |G| , log |F| and
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1/τ , when given Q-access to a functions f ′ : G→ {±1} which is a corruption of f by
well spread faults.

For δ-spread faults, we show there are polynomial size sets Q such that faulty
(Q,F)-LCN is solvable in time |G|O(δ). That is, there is an algorithm finding all

τ -significant Fourier coefficients of a function f ∈ F in time polynomial in |G|O(δ) ·
poly(log |G| , log |F| , 1/τ), when given Q-access to a function f ′ : G→ {±1} which is
a corruption of f by δ-spread faults.

To simplify the presentation we focus on the case of Boolean functions over ZN .
Results extend to non-Boolean functions over arbitrary finite abelian groups.

In the following F = {FN}N∈N for FN ⊆ {f : ZN → {±1}} a family of Boolean
functions over ZN , Q = {QN,τ ⊆ ZN}N∈N,τ∈(0,1) is a family of subsets, and Fδ is a
corruption of F by δ-spread faults, defined as follows.

Definition 5.13 (δ-spread faults). Let QN,τ = A −
⋃

`∈[log N ]B` for A,B1, . . . , B` ⊆
ZN . Let f, f ′ : ZN → {±1} be Boolean functions over ZN . We say that f ′ is a
corruption of f by δ-spread faults if for at least (1 − δ) fraction of the ` ∈ [logN ],
f ′(q) = f(q) on at least (1−O(1))-fraction of the q ∈ A−B`. That is,∣∣∣∣{` ∈ [logN ] | # {q ∈ A−B` | f ′(q) 6= f(q)}

|A−B`|
> ε

}∣∣∣∣ < δ logN

for some ε = O(1) sufficiently small. When δ = 0, we say that the faults are well
spread.

Definition 5.14 (δ-Faulty (Q,F)-LCN). The input to δ-faulty (Q,F)-LCN is a
description of a group ZN , a threshold τ ∈ (0, 1) and Q-access to a function f ′ : ZN →
{±1} which is a corruption of some function f ∈ F by δ-spread faults; the goal is to
find all τ -significant Fourier coefficients of f .

Theorem 5.15 (δ-Faulty (Q,F)-LCN). For every family F of Boolean functions
over groups {ZN}N∈N, there exists a family of subsets Q = {QN,τ ⊆ ZN}N∈N,τ∈(0,1)

s.t.

1. For δ = 0, δ-Faulty (Q,F)-LCN is in P. That is, there is an algorithm solving
δ-faulty (Q,F)-LCN is in running time poly(logN, log |FN | , 1/τ).

2. For δ > 0, there is an algorithm solving δ-faulty (Q,F)-LCN is in running time
N2δ · poly(logN, log |FN | , 1/τ).

Proof. Proof omitted. �

5.3 Omitted Proofs

Proof of Proposition 5.2

We say that access model M is stronger than access model M’, if samples generated
by model M’ can be generated in polynomial time in model M. We say that M is
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strictly stronger than M’, if M is stronger than M’ but M’ is not stronger than M.
Conversely, we say that access model M is weaker than access model M’, if M’ is
(strictly) stronger than M.

Proposition 5.2. The interval access and GP-access models are strictly stronger
than the random samples access model, and are strictly weaker than the query access
model. The subset access model to subset Q 6= φ,G is incomparable to the random
samples access model (i.e., it is neither stronger nor weaker), and is strictly weaker
than the query access model.

Proof. We compare the interval access model to the random samples access model
and the query access model. We first argue that the interval access model is strictly
stronger than the random samples access model. To see this, first observe that in-
tervals access model is stronger than the random samples model, because random
samples can be generated by the interval access model when setting the number of
samples to be m = 1. Next observe that random samples model is not stronger than
intervals access model, because for example, in interval access, when setting m = 2,
there is probability 1/(logN + 1) of receiving values f(x) and f(x + 1) for some
x ∈ ZN , whereas in contrast in the random samples access, the probability of this
event is 1/

√
N .

We next argue that the interval access model is strictly weaker than the query
access model. For example, in interval access, for each fixed x, the probability of
receiving f(x) in time O(1) is O(1/N), whereas in the query access this value can be
asked and received in unit time.

We compare the GP-access model to the random samples access model and the
query access model. We first argue that GP-access is strictly stronger than the random
samples model. GP-access is stronger than random samples access, because for setting
t, k = 1 it give a sample (x, f(x)) for x distributed uniformly at random. Random
samples access is not stronger than GP-access, because in the random samples access
model the probability of receiving three samples (x, f(x)), (y, f(y)), (z, f(z)) with
x, y, z forming a geometric progression is Pr[y/x = z/x] = 1/N , whereas such samples
are obtained with probability 1 in the GP-access model.

We next argue that GP-access is strictly weaker than query access model. For
example, in GP-access model, for each fixed x, the probability of receiving f(x) in
time O(1) is O(1/ |G|), whereas in the query access this value can be asked and
received in unit time.

We compare the Q-access model for a non empty subset Q strictly contained in G
to the random samples access model and the query access model. We first show that
Q-access is not stronger than random samples access, because for any x not in Q, the
probability of getting sample (x, f(x)) is zero in Q-access whereas its greater than
zero in random samples access model. We next show that random samples access
model is not stronger than Q-access model, because for x ∈ Q the probability of
getting sample (x, f(x)) in the random samples access model is 1/ |G|, whereas it can
be received in unit time in the Q-access model. Finally, Q-access is clearly strictly
weaker than query access. �
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Chapter 6

Codes for Finite Abelian Groups:
Multiplication Codes

In this chapter we present the new class of error correcting codes: Multiplication codes
(MPC). We present our decoding algorithms for MPC codes, showing they achieve
desirable combinatorial and algorithmic properties, including: (1) binary MPC of
constant distance and exponential encoding length for which we provide efficient local
list decoding and local self correcting algorithms; (2) binary MPC of constant distance
and polynomial encoding length for which we provide efficient decoding algorithm in
random noise models; (3) binary MPC of constant rate and distance for which we
provide (non polynomial time) decoding algorithm in adversarial noise model. MPC
codes are unique in particular in achieving properties as above while having a large
group as their underlying algebraic structure.

6.1 Introduction

Error correcting codes encode messages into codewords in a way that allows decod-
ing, i.e., recovery of the original messages even from codewords corrupted by some
noise. Error correcting codes were introduced by Shannon [76] and Hamming [50]
for application such as communication over noisy channels or storage over noisy de-
vices, and have since found many applications in other areas such as complexity and
cryptography.

The performance of error correcting codes is measured by an array of parame-
ters, where the parameters to be emphasized and optimized vary according to the
application in mind. Examples of performance goals arising in various applications
follow.

• Efficiency, rate and distance. In communication applications, classical goals
are to have efficient encoding and decoding algorithms satisfying that the en-
coding has high rate (i.e., it introduces only little redundancy) and the decoding
algorithm handles a wide range of noise patterns. Explicit codes constructions
achieving good performance in terms of the above parameters followed the works
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of [76] and [50], examples of such codes include: Reed-Solomon [72] and Reed-
Muller [68,71] codes, Low-Density-Parity-Check codes [34], and expander based
codes [7, 44,78,80].

• Local list decoding. Applications in complexity and cryptography sometimes
introduce alternative goals. For example, Goldreich and Levin [38] in their work
on cryptographic hardcore predicates for any one way function introduce the
goal of locally list decoding, that is, finding all messages whose codeword is close
to a given corrupted codeword while reading only a small number of entries in
the corrupted codeword. The need for locality emerge from their use of the
Hadamard code –a code with exponential encoding length– while working in
an unorthodox input model where corrupted codewords are given by black box
access rather than being transmitted. Goldreich and Levin [38] provide a local
list decoding algorithm for the Hadamard code, presenting the first efficient
(local or non-local) list decoding algorithm. Following [38] and Sudan’s [81] list
decoding algorithm for the Reed-Solomon codes, Sudan-Trevisan-Vadhan [83]
presented a local list decoding algorithm for the Reed-Muller codes.

• Local decoding/self correcting in constant query complexity. Other
applications in complexity and cryptography [9–12,22] achieve stronger locality
for the Hadamard codes and for Reed-Muller based codes, in which: recover-
ing each single message bit is done while reading only a constant number of
corrupted codeword entries. Explicit treatment of such locally decodable codes
appear in [60] and in subsequent works; see a survey in [85]. A related goal is
to locally self correct, that is, to recover the correct value for a single codeword
entry while reading only a constant number of corrupted codeword entries. The
abovementioned locally decodable codes –except those appearing in [12]– are
also locally self correctable.

In terms of algebraic structure, for the vast majority of error correcting codes, the
underlying algebraic structure is a field. For example, this is the case in all above
codes, and more generally, in all linear codes (which by definition are codes whose
codewords form a subspace of a vector space over some field), as well as in almost
all known non-linear codes. An exception are group codes [58, 79] – a class of codes
extending the class of linear codes by allowing codewords to form a subgroup of a
group Gn (rather than a subspace of a vector space over a field).

The performance of linear codes, and, more generally, group codes, depends on
properties of the underlying group G. In particular, their alphabet size is at least the
size of the smallest (non-trivial) subgroup of G. For example, group codes with G a
cyclic group of prime order p, have alphabet size p. Group codes (and linear codes)
are therefore of interest primarily when the group G (field F) is of small order (or has
small order subgroups).
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Our Work

In this work we introduce a new class of error correcting codes: Multiplication codes
(MPC), and develop decoding algorithms for them, showing they achieve desirable
combinatorial and algorithmic properties, including: binary alphabet, constant dis-
tance together with efficient local list decoding and local self correcting algorithms for
codes of exponential encoding length, efficient decoding in random noise model for
codes of polynomial encoding length, and (non-polynomial time) decoding in adver-
sarial noise model for codes of linear encoding length.

Our results give the first (asymptotic family of) codes achieving constant rate and
distance, while having large groups as their underlying algebraic structure.1 Like-
wise, our results give the first (asymptotic families of) codes achieving any of the
algorithmic properties of being uniquely decodable, list decodable, locally list decod-
able or locally self correctable, while having large groups as their underlying algebraic
structure.

Our techniques and algorithms are applicable beyond the scope MPC: (1) Our lo-
cal list decoding algorithm is applicable to any Fourier concentrated and recoverable
codes.2 In particular, our algorithm gives a list decoding algorithm for the homo-
morphism codes over any finite abelian group and into the complex numbers. (2)
We provide a soft local error reduction algorithm for ABNNR codes [7] concatenated
with binary codes. This algorithm offers an alternative to Forney’s GMD decoding
approach for those concatenated codes.

In the following we first define the class of MPC codes. Next, we present the
algorithmic and combinatorial results we achieve for MPC codes. We then elaborate
on some applications of our algorithms beyond the scope of MPC. Finally, we mention
new techniques we developed for our algorithms.

The Class of Multiplication Codes

Historically, we first defined our MPC codes in the context of our study of crypto-
graphic hardcore predicates for number theoretic one-way functions [3]. We defined
there [3] codes CP encoding messages m ∈ ZN by values P (x) for P : ZN → {±1} a
Boolean predicate. Specifically, the codeword encoding m is:

C(m) = (P (m · 1), P (m · 2), . . . , P (m ·N))

where m · i is multiplication modulo N . We gave there [3] a local list decoding
algorithm for such codes CP , provided P is “Fourier well concentrated” (namely,
most of the energy of its Fourier transform is concentrated on a small set of significant

1By large groups we refer to groups having no (non-trivial) small subgroups, where “small” is,
say, constant size, or size logarithmic in information rate. For example, the additive group ZN of
integers modulo N for N = pq a product of two large primes p, q = Ω(

√
N) is a large group with

respect to the message space Z∗N (which has information rate log N − o(1)).
2A code is concentrated if –when identifying codeword with complex functions over a finite abelian

group– its codewords can be approximated by a sparse Fourier representation; a code is recoverable
if a codeword can be efficiently recognized when given one of its significant Fourier coefficients.
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Fourier coefficients α with gcd(α,N) ≤ poly(logN)). This algorithm was inspired by
the Goldreich-Levin [38] local list decoding algorithm for the Hadamard codes.

Going beyond the context of cryptographic hardcore predicates, we extend the
above definition in two ways. First, to include codes of good rate, we extend the
definition of MPC to allow restrictions of the above codewords to a subset S =
s1, . . . , sn ⊆ ZN of their entries. For example, taking S to be a random subset of ZN

of size O(logN) the resulting code CP,const has codewords

Cconst(m) = (P (m · s1), P (m · s2), . . . , P (m · sn))

For this example, we show that for a good choice of the predicate P , the code CP,const

has constant rate and distance.
Furthermore, to include also codes whose underlying algebraic structure is any

abelian group we further extend the definition of MPC as follows:

Definition 6.1 (Multiplication codes (MPC)). For any abelian group G, an alphabet
controlling function P : C → C, and a set S = {s1, . . . , sn} ⊆ G of indexes to code-
word entries,3 we denote by (G,P, S) the MPC code that encode messages m ∈ G by
codewords

C(m) = (P (χm(s1)), P (χm(s2)), . . . , P (χm(sn)))

where χm : G→ C is the homomorphism corresponding to m.4

Example 6.2. Two examples of binary Multiplication codes for the group ZN are the
codes Chalf = (ZN , halfN ,ZN) with codeword encoding messages m in ZN defined by

Cm = (halfN(1 ·m), halfN(2 ·m), halfN(3 ·m), . . . , halfN(N ·m))

where halfN : ZN → {0, 1} is defined by

halfN(x) =


1 iff min {x,N − x} ≤ N/4

0 otherwise

and the codes Chalf,const = (ZN , halfN , RN) with codeword encoding messages m in ZN

defined by
Cconst

m = (halfN(r1 ·m), . . . , halfN(rn ·m))

where RN = {r1, . . . , rn} is a random subset of ZN of size O(logN).

We use the terminology “MPC code for G”, when we want to emphasize that G is
the underlying group. Similarly, when addressing asymptotic families of MPC codes
with growing underlying groups GN , we use the terminology “MPC code for {GN}N”.

3More generally, we also consider MPC where S ⊆ G× . . .×G.
4The homomorphism χm : G→ C corresponding to m is defined as follows. For G = ZN , χm(s) =

ei2πms/N . For G = ZN1 × . . . × ZNk
, χm1,...,mk

(s1, . . . , sk) = ei2π
Pk

j=1 mjsj/Nj . In general, for G a
multiplicative group with a generating set {g1, . . . , gk} where gj has order Nj , χQk

j=1 g
mj
j

(
∏k

j=1 g
sj

j ) =

ei2π
Pk

j=1 mjsj/Nj .
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MPC codes as a class of codes extends the class of (abelian) group codes and the
class of linear codes.

Remark 6.3. In retrospect, any MPC code can be thought of as being defined by a
group code C ⊆ Σn

1 together with an alphabet reduction function P : Σ1 → Σ2 mapping
codewords (C1, . . . , Cn) ∈ Σn

1 of the group code C into codewords (P (C1), . . . , P (Cn)) ∈
Σn

2 of the MPC. The challenge is to find group codes C and alphabet reduction func-
tions P that result in an MPC codes achieving good combinatorial and algorithmic
properties.

The alphabet reduction method method we present here is useful even for very large
alphabet. For example, we use it to reduce the alphabet of homomorphism codes (i.e.,
an alphabet which is as large as the message space). This is in contrast to the well
known codes concatenation alphabet reduction method, which is useful only in small
alphabet settings.5

Multiplication Codes Achieving Good Properties

Our main result is presenting three (asymptotic families of) MPC codes for {ZN}N∈N
all achieving binary alphabet and constant distance6 and the following algorithmic
properties and encoding length: (1) Codes of encoding length N which are locally
list decodable and locally self correctable. (2) Codes of encoding length polynomial in
logN , which are decodable in random noise model in time polynomial in logN , and
are decodable in adversarial noise model in time N2εpoly(logN) (for ε the fraction of
flipped bits). (3) Codes of constant rate and distance.

We use the notation (k, n, d)q-code referring to codes of message space size 2k,
encoding length n, normalized Hamming distance d, and alphabet size q.

Theorem 6.4 (MPC codes for {ZN}N∈N). We present three (asymptotic families of)
MPC codes for groups ZN of growing sizes N :

1. Codes with local algorithms: (Θ(logN), N,Θ(1))2-codes, which are effi-
ciently locally list decodable and locally self correctable. The local list decoding
algorithm we present has query complexity and running time poly(logN). The
local self correcting algorithm we present has query complexity Θ(1) and running
time poly(logN). The input to the local self correcting algorithm is restricted
to entries s ∈ Z∗

N . Both algorithms are randomized.7

5In codes concatenation, alphabet Σ1 is reduced to a smaller alphabet Σ2 by encoding each
symbol σ ∈ Σ1 using a code of alphabet Σ2. This method is of interest only when the alphabet Σ1

is considerably smaller than the message space size (otherwise finding a good code for the message
space Σ1 is as hard as finding a good code for the original message space). That is, concatenation
is only useful when the alphabet in not too large to begin with.

6The code distance is the minimum relative Hamming distance between any two of its codewords,
where the relative Hamming distance is the fraction of entries on which they differ.

7In the local list decoding algorithm success probability is taken only over the random coins of
the algorithm, namely, it is independent of the input; success probability 1 − ρ is achieved in time
poly(log N, ln(1/ρ)). In the local self correcting algorithm we present in this chapter, success prob-
ability is taken both over the input and over the random coins of the algorithm; success probability
1− ρ is achieved in query complexity poly(1/ρ) and running time poly(log N, 1/ρ). This algorithm
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2. Polynomial rate codes with efficient decoding: (Θ(logN), poly(logN),Θ(1))2-
codes, which are efficiently decodable in the random noise model. The decoding
algorithm we present runs in time poly(logN). Furthermore, these codes are
decodable in adversarial noise model in time N2εpoly(logN) for ε the fraction
of flipped bits.

3. Codes of constant rate & distance: (Θ(logN),Θ(logN),Θ(1))2-codes.

Remark 6.5. For linear codes, local decodability is implied by any local self correcting
algorithm robust against the changes of basis (because there is a basis change trans-
forming the code to systematic, where message bits appears as part of the codeword).
In contrast, for non-linear codes —as are MPC— a systematic representation does
not necessarily exist, and a relation between local self correcting and local decoding is
not known.

Extending the above results to other groups, we present MPC codes for any finite
abelian group with a constant size generating set. These codes achieve parameters as
in the above theorem, albeit with alphabet size 2O(k) for k = Θ(1) the generating set
size. The algorithms we present receive a description of the underlying group by its
generators and their orders as part of the input.

Theorem 6.6 (MPC for groups of small generating sets). Let G be a finite abelian
group with a generating set {g1, . . . , gk} of size k = O(1). Denote N1, . . . , Nk the
orders of g1, . . . , gk, and denote by N =

∏k
i=1Ni the size of G. We present three

MPC codes for groups G:

1. Codes with local algorithms: (Θ(logN), N,Θ(1))2O(k)-codes, which are effi-
ciently locally list decodable and locally self correctable. The local list decoding
algorithm we present has query complexity and running time poly(logN). The
local self correcting algorithm we present has query complexity Θ(1) and running
time poly(logN). The input to the local self correcting algorithm is restricted
to entries s ∈ G∗. Both algorithms are randomized.8

2. Polynomial rate codes with efficient decoding: (Θ(logN), poly(logN),
Θ(1))2O(k)-codes, which are efficiently decodable in the random noise model. The
decoding algorithm we present runs in time poly(logN). Furthermore, these
codes are decodable in adversarial noise model in time

∑k
i=1N

2ε
i poly(logNi) for

ε the fraction of flipped bits.

3. Codes of constant rate & distance: (Θ(logN),Θ(logN),Θ(1))2O(k)-codes.

can be improved to achieve success probability depending only on the random coins of the algorithm.
8In the local list decoding algorithm success probability is taken only over the random coins of

the algorithm, namely, it is independent of the input; success probability 1 − ρ is achieved in time
poly(log N, ln(1/ρ)). In the local self correcting algorithm we present in this chapter, success prob-
ability is taken both over the input and over the random coins of the algorithm; success probability
1− ρ is achieved in query complexity poly(1/ρ) and running time poly(log N, 1/ρ). This algorithm
can be improved to achieve success probability depending only on the random coins of the algorithm.

110



Remark 6.7. 1. When all generators have the same order, i.e., N1 =, . . . ,= Nk,
the alphabet of the codes from the above theorem is of size 2k. In particular, for
cyclic groups, the alphabet is binary, i.e., of size 2.

2. Binary MPC codes achieving properties as the above can be obtained by con-
catenating the above codes with a good binary code. Such a bianry code can be
efficiently found, e.g., by exahustive search, since the alphabet size is constant.

3. The list decoding algorithm returns a list of polynomial size. This is a direct
result of the polynomial running time bound.

4. Explicit constructions can be derived from small biased sets for G.

Remark 6.8. An application of the local self correcting algorithm is for improving
the running time complexity of the list decoding algorithm. This is by reducing the
noise in the given corrupted codeword via locally self correcting each of the queries the
decoding algorithm makes to the corrupted codeword. This improvement is possible in
the noise range ε ≤ 0.15 where the local self correction algorithm is applicable, and
improves the running time dependency on the noise ε by a constant, e.g., by a factor
of roughly 105 for ε = 0.15.

New Techniques

Decoding via learning (in query and subset access models). For our de-
coding algorithms we develop a decoding via learning approach, where we identify
codewords with complex functions over a finite abelian group (or, restrictions of such
functions to a subset of their entries), and decode by first finding the significant
Fourier coefficients of the given corrupted codeword, and then mapping the signifi-
cant Fourier coefficients to the messages of the close codewords.

Finding significant Fourier coefficients: For codes whose codewords are functions
over finite abelian groups, we find their significant Fourier coefficients using our SFT
algorithm. For codes whose codewords are restrictions of such functions to a subset
of the finite abelian group, we develop new algorithms for finding their significant
Fourier coefficients. These algorithms find significant Fourier coefficients of a signal
when given values of the signal on a (carefully designed) predetermined set of entries
and where values are corrupted by (random or adversarial) noise.

Mapping significant Fourier coefficients to messages of close codewords: For linear
codes (or, more generally, group codes) the significant Fourier coefficient immediately
map to the messages encoded by the close codewords. For the MPC codes that we
present, such a map is not always immediate. Nevertheless, we show that such a map
exists and can be computed efficiently.

The decoding via learning is applicable to any Fourier concentrated and recover-
able codes, that is, codes whose codewords can be approximated by few significant
coefficients in their Fourier transform and such that there is an efficient mapping from
a Fourier coefficient to all codewords for which it is significant.
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Self correcting via testing. Our local self correcting algorithm is composed of
two parts: (1) A reduction from the self correcting problem to the property testing
problem of distinguishing between signals with high and low Fourier coefficients in a
large interval, and (2) An algorithm for solving the property testing problem.

Both the reduction algorithm and the property testing algorithm make only a
constant number of queries to the given corrupted codeword.

Soft Error Reduction for Concatenated ABNNR Codes We present an al-
ternative to Forney’s Generalized Minimum Distance (GMD) methodology [33] for
decoding concatenated ABNNR codes [7] with binary codes. Our algorithm takes a
soft decoding approach to replace the hard decision in the Forney’s methodology. The
algorithm we present is local, namely, each bit of message symbol can be found with
a d2 queries to the codewords for d the degree of the expander graph underlying the
ABNNR code.

Other Related Works

The idea of list decoding —that is, finding the list of all codewords close to the given
corrupted codeword— was proposed in the 1950’s by Elias [28] and Wozencraft [89]
for dealing with situations where the noise is too great to allow unique decoding.
Efficient list decoding algorithms followed many years later, starting with the Gol-
dreich and Levin [38] list decoding algorithm for the Hadamard code, which is a code
of exponentially small rate (i.e., codeword length is exponential in message length).
A few years later, Sudan [81] presented the first polynomial time list decoding al-
gorithm for codes of polynomial rate: the Reed-Solomon codes. In following years
more list decoding algorithms were presented, including improved list decoding al-
gorithm for Reed-Solomon codes [48], and polynomial time list decoding algorithms
for: Reed-Muller codes [83], Algebraic Geometric codes [48, 77], Chinese Remainder
codes [39], certain concatenated codes [49], graph based codes [45], “XOR lemma
based” codes [84] (codes defined there), and folded Reed-Solomon codes [47]. Fol-
lowing our work [3], Grigorescu et.al. [43] presented a list decoding algorithm for
homomorphism codes whose domain and range are both any finite abelian group,
their algorithm correct errors up to large relative Hamming distances.

The list decoding algorithms of Goldreich-Levin [38], Sudan-Trevisan-Vadhan [83],
Trevisan [84] and Grigorescu et.al. [43] are local list decoding algorithms, where the
query complexity is polynomial in logN forN the codeword length and in the distance
parameter in [38,43,83], and it is of the order of

√
N and exponential in the distance

parameter in [84].

Chapter Organization

The rest of this chapter is organized as follows. In section 6.2 we give a detailed
overview of the techniques and algorithms we develop for proving our results. In
sections 6.3-6.8 we give formal statement of our algorithms and complete proofs which
were omitted from the overview. In details: We present our decoding via learning
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approach and show how it applies to concentrated and recoverable codes in section
6.3. We analyze the combinatorial properties of our codes for ZN in section 6.4. We
present our local self correcting algorithm for codes for ZN in section 6.5. We show
how to obtain codes of linear encoding length from codes of super linear encoding
length while preserving the code distance in section 6.6. We present codes for groups
of small generating sets in section 6.7. We present our soft error reduction algorithm
for concatenated ABNNR codes in section 6.8.

6.2 Overview of Results and Techniques

In this section we give a detailed overview of the techniques and algorithms we develop
for proving our results. We start by presenting our decoding via learning approach
in section 6.2.1, and show how it implies list decoding algorithms for MPC codes for
ZN and for homomorphism codes over arbitrary finite abelian groups. We then focus
on MPC codes for groups ZN , presenting distance bound, and local self correcting
algorithm for them in sections 6.2.2-6.2.3. Next we address MPC codes for groups
of small generating sets in section 6.2.4. We then show how to obtain MPC codes
of linear encoding length and constant distance from the exponential length codes
we already constructed in section 6.2.5. Finally, we describe our soft error reduction
algorithm in section 6.2.6.

6.2.1 List Decoding via Learning

In this section we present our decoding via learning approach, and show how it implies
list decoding algorithms for MPC codes for ZN and for homomorphism codes over
arbitrary finite abelian groups.

A code is locally list decodable if there is an algorithm that returns all codewords
in a given radius from a given a corrupted codeword w, while reading only a number
of entries in w poly logarithmic in its length.

Definition 6.9 (List decoding). We say that a code is (ε, T )-list decodable if there
is an algorithm that, given a description of the group G by its generators and their
orders, query access9 to a corrupted codeword w and a noise parameter ε outputs all
codewords within relative Hamming distance at most ε from w (with probability at
least 2/3) and its running time is at most T . When T is smaller than the encoding
length, the algorithm does not read the entire corrupted codeword, and we say that the
code is (ε, T )-locally list decodable.

Remark 6.10. 1. The success probability of 2/3 in the local list decoding or local
self correcting algorithms can be amplified to (2

3
)c by standard methods incurring

a running time and query complexity increase by a factor of c.

9We say that an algorithm is given query access to w ∈ ΣS if it can ask and receive the value of
w on each entry s ∈ S in unit time.
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2. In the list decoding algorithm, the bound T on the running time in particular im-
plies a bound T on the length of the outputted list. When we want to emphasize
a (possibly, tighter) bound on the list size, we say that the code is (ε, `, T )-list
decodable for ε, T as in Definition 6.9 above, and ` a bound on the size of the
outputted list.

3. We use the terminology list decoding in `2 distance to describe an algorithm that,
given a corrupted codeword w and a distance parameter ε, returns all codeword
in the ball BC,`2(w, ε) = {C ∈ C, ‖C − w‖22 ≤ ε} around w according to the `2
rather than the Hamming distance measure.

Decoding via Learning in Query Access

Our list decoding algorithm follows our decoding via learning approach, where a key
algorithmic component is finding the significant Fourier coefficients of the given cor-
rupted codeword in polynomial time (i.e., in time polynomial in the information
rate).

Abstractly, our list decoding algorithm is applicable to any “concentrated” and
“recoverable” code over a “learnable domain”; defined as follows. Let C be a code
with codewords Cx : G → C identified with complex functions over a finite abelian
group G. We say that C is concentrated if its codewords can be approximated by a
small number of significant coefficients in their Fourier representation. We say that
C is recoverable if there is an efficient algorithm mapping each Fourier coefficient α
to a short list of codewords for which α is a significant Fourier coefficient. We say
that G is over a learnable domain if there is an algorithm that, finds the significant
coefficients of functions f over G when given a description of G, and threshold τ and
query access to f , and its running time is polynomial in log |G| , 1/τ .

Definition 6.11. Let G = {GN}N∈N be a family of finite abelian groups indexed by
integers N . Let C = {CN,x : GN → C}N∈N,x∈DN

be a code with codewords CN,x of
length |GN | that encode elements x from a message space DN .

1. Fourier concentration. Let F = {fN : GN → C}N∈N be a family of functions.
We say that F is Fourier concentrated if for every ε > 0 there exists a small
set Γ of characters s.t. |Γ| ≤ poly(log |GN | /ε) and

‖
∑
χα∈Γ

f̂N(α)χα − fN‖22 ≤ ε

We say that a code C = {CN,x : GN → C}N∈N,x∈DN
is Fourier concentrated if

its codewords are Fourier concentrated functions.

2. Fourier recoverable codes. For each code C = {CN,x : GN → C}N∈N,x∈DN
,

threshold τ ∈ R+ and character index 0 6= β ∈ GN , denote by InvHeavyN,τ,β(C)
the set of all messages x ∈ DN s.t. the β-Fourier coefficients of the codeword
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CN,x encoding x is τ -heavy (i.e., its squared magnitude at least τ)

InvHeavyN,τ,β(C) def
=

{
x ∈ DN |

∣∣∣ĈN,x(β)
∣∣∣2 ≥ τ

}
We say that C is recoverable if ∀N ∈ N, τ ∈ R+, 0 6= β ∈ GN ,

∣∣InvHeavyN,τ,β(C)
∣∣ ≤

poly(log |GN | /τ). We say that C is efficiently recoverable, if there exists a re-
covery algorithm, that given N, τ, β 6= 0, returns a list L ⊇ InvHeavyN,τ,β(C);
and its running time is at most poly(log |GN | /τ).
Remark. If C is efficiently recoverable, then, in particular, C is recoverable,
because a running time bound implies a bound on output size.

3. Learnable domain. We say that G = {GN}N∈N is a learnable domain if qLCN
with query access to G is in BPP. Namely, there is an algorithm that given N, τ
and query access to any function fN : GN → C, outputs a list of length O(1/τ)
that contains all τ -significant Fourier coefficients of fN ; and the running time
of this algorithm is poly(log |GN |/τ).
Similarly, we say that Q = {QN,τ ⊆ GN}N∈N,τ∈R+ is a learnable domain w.r.
to a code C if (Q, C)-LCN is in BPP (see definition 5.14).

The key property of concentrated codes is that received words w share a significant
Fourier coefficient with all close codewords Cx. The high level structure of our list
decoding algorithm is therefore as follows. First it runs an algorithm that finds all
significant Fourier coefficients α of the received word w. Second for each such α,
it runs the recovery algorithm to find all codewords Cx for which α is significant.
Finally, it outputs all those codewords Cx. The running time of this list decoding
algorithm is polynomial in log |G|.

Theorem 6.12 (List decoding). Let C = {CN,x : GN → {0, 1}}N∈N,x∈DN
be a family

of balanced10 binary codes.

1. Combinatorial list decoding bound. If C is a Fourier concentrated and
recoverable code, then for any CN,x ∈ C and ε ∈ [0, 1

2
), the number of codewords

in the ball of radius ε around CN,x is at most∣∣∣∣BC,Hamming(CN,x,
1

2
− ε)

∣∣∣∣ ≤ poly(log |GN | /ε)

where BC,Hamming(CN,x,
1
2
− ε) =

{
C ∈ C |∆(C,CN,x) ≤ 1

2
− ε
}

is the set of
codewords in the Hamming ball of radius 1

2
− ε around CN,x.

2. Efficient list decoding algorithm. If C is a Fourier concentrated and ef-
ficiently recoverable code and G = {GN}N∈N is a learnable domain, then C is
(1

2
− ε, poly(log |GN | /ε))-list decodable with for any ε ∈ [0, 1

2
).

10We say that a code is balanced if for each codeword, the number of 0 val-
ues entries is roughly the same as the number of 1 values entries, that is, ∀CN,x,
||{s ∈ GN |CN,x(s) = 1}| − |{s ∈ GN |CN,x(s) = 1}|| < ν(log N) for ν a negligible function.
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Remark 6.13. 1. The theorem extend to non binary codes as long as codewords
have bounded `2-norm, ‖C‖2 ≤ 1.

2. The theorem extends to the `2 distance. That is, denote by d = minC,C′∈C ‖C − C ′‖22
the code distance with respect to the `2-distance, then (1) under the conditions
of above theorem part 1, |BC,`2(CN,x, d− ε)| ≤ poly(log |GN | /ε) for all ε ∈ [0, d)
and CN,x ∈ C where BC,`2(CN,x, d − ε) = {C ∈ C | ‖C − CN,x‖22 ≤ d− ε} is the
set of codewords in the `2 ball of radius d − ε around CN,x, and (2) under the
conditions of above theorem part 2, C is (d− ε, poly(log |GN | /ε))-list decodable
with respect to the `2-distance for any ε ∈ [0, d).

3. The theorem extend to unbalanced codes provided that ε ∈ [0, d − bias) for

bias = maxN,x

∣∣∣ĈN,x(0)
∣∣∣ and d is the code distance in the norm of interest (`2

norm of relative Hamming norm).

4. We already proved that any finite abelian group G is a learnable domain (this
is by our SFT algorithm discussed in chapter 3). Therefore, for codes with
codewords identified as functions over a finite abelian group G, we only need to
prove that the code is concentrated and recoverable.

Decoding via Learning in Subset Access

Fourier concentrated and recoverable codes C ⊆ {C : G→ C} have encoding length
|G| which is exponential in their information rate.11 Better rate codes C|S can be
obtained by restricting all codewords of C to a subset S ⊆ G of their entries. This
results in codes achieving polynomial encoding length when taking S to be of size
|S| = poly(log |G|).

We show that restrictions C|S of Fourier concentrated and recoverable codes are
efficiently decodable in random noise models, as long as S has the following property:
There is an efficient algorithm finding the significant Fourier coefficients of any code-
word C ∈ C when given access —only to the entries in S— to a corruption of C in
random noise models.

More generally, the above holds for any noise model: For any noise model M , we
say that M-Faulty (S, C)-LCN is in solvable in time T if there is an algorithm finding
the significant Fourier coefficients of any codeword C ∈ C when given access —only
to the entries in S— to a corruption of C in noise model M ; and the running time of
the algorithm is T . We show that if M -Faulty (S, C)-LCN is solvable in time T , then
C is decodable in time T · poly(log |G|). Namely, there is an algorithm that given a
codeword corrupted in noise model M , outputs the encoded message, and its running
time is T · poly(log |G|).

Theorem 6.14. Let M be a noise model, C = {C : G→ C} a Fourier concentrated
and recoverable code, and S ⊆ G a subset s.t.M-Faulty (S, C)-LCN is solvable in time

11The message space of recoverable codes is at most |G| · poly log |G| (because each Fourier coef-
ficients is mapped to a list of poly log |G| codewords); namely, their information rate is Θ(log |G|).
The encoding length |G| is thus exponential in the information rate.
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T . Then C is decodable in time T · poly(log |G|).

Proof. The proof of this theorem is analogous to the proof of Theorem 6.12, while
replacing the use of the SFT algorithm with the algorithms for finding significant
Fourier coefficients of M -faulty functions in the S-access model. Details omitted. �

We show that there are polynomial size sets S, |S| = poly log |G|, s.t. M -Faulty
(S, CN)-LCN is efficiently solvable, for M the random noise model (see chapter 5,
Theorem 5.15). Therefore, any Fourier concentrated and recoverable codes C can be
restricted to codes C|S of polynomial encoding length that are efficiently decodable in
random noise models.

Corollary 6.15. Let M be a noise model independently flipping each codeword symbol
uniformly at random with probability ε for ε = O(1) sufficiently small. Let C =
{C : G→ C} a Fourier concentrated and recoverable code. There exists a subset S ⊆
G of size |S| = poly(log |G| , 1/ε) s.t. C|S is decodable in noise model M in time
poly(log |G|).

For M an adversarial noise model flipping ε-fraction of the codewords entries,
we show there are linear size sets S, |S| = Θ(log |N |), s.t. M -Faulty (S, CN)-LCN is
solvable in time N2ε ·poly logN (see chapter 5, Theorem 5.15). Therefore, any Fourier
concentrated and recoverable codes C can be restricted to codes C|S of linear encoding
length that are decodable in adversarial noise model in time N2ε · poly logN .

Corollary 6.16. Let M be an adversarial noise model flipping ε-fraction of the code-
words entries for ε = O(1) sufficiently small. Let C = {ZN : G→ C} a Fourier
concentrated and recoverable code. There exists a subset S ⊆ ZN of size |S| =
Θ(logN)poly(1/ε) s.t. C|S is decodable in noise model M in time N2ε · poly logN .

Remark 6.17. To be more precise, the above theorem and corollaries actually address
asymptotic families of Fourier concentrated and recoverable codes and of subsets.

Applying the Decoding via Learning Approach

We present examples of Fourier concentrated and efficiently recoverable codes. For
any finite abelian groups G, homomorphism codes over G into the complex are Fourier
concentrated and efficiently recoverable codes. This is because the Fourier spectrum
of their codewords has all its energy on a single element, the elements corresponding
to the encoded message. We conclude therefore that homomorphism codes are locally
list decodable.

Proposition 6.18. For any finite abelian group G, the homomorphism code over G
into the complex CG = {χm : G→ C |χm(x+ y) = χm(x)χm(y)} are Fourier concen-
trated and efficiently recoverable.

Corollary 6.19. For any finite abelian group G, the homomorphism code over G into
the complex CG = {χm : G→ C |χm(x+ y) = χm(x)χm(y)} are (2−ε, poly(log |G| , 1/ε))-
locally list decodable with respect to the `2 distance.
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Remark 6.20. 1. Homomorphism codes over G and into the complex can be rep-
resented by a Multiplication code (G,PG, G) by setting the alphabet controlling

function PG : G → C to be PG(x1, . . . , xm) = e
i

Pk
j=1

2π
Nj

xj
for (x1, . . . , xm) ∈

ZN1 × . . . × ZNk
where N1, . . . , Nk are the orders of the generators of G given

as input to the algorithm.

2. An equivalent way to think of the SFT algorithm is as a local list decoding
algorithm (in the `2 distance) for the homomorphism codes. This is because
a codeword Cm of the homomorphism code is close to a corrupted codeword w
in the `2-distance iff the m-th Fourier coefficient of w is heavy, specifically,
‖Cm − w‖22 = 2(1− |ŵ(m)|).12

3. The SFT algorithm also provides a local list decoding algorithm in the relative
Hamming distance, because the list of codewords at distance at most ε from w
in the `2-norm contains the list of all codewords at distance at most 4ε from w
in the relative Hamming distance.

For the additive groups ZN of integers modulo N , we show that Multiplication
codes (ZN , PN ,ZN) are concentrated and efficiently recoverable if the functions PN

are “well concentrated” and efficiently computable,13 where we say P is well con-
centrated if PN can be approximating by a poly logN number of coefficients in its
Fourier transform, and all these coefficients have small greatest common divisor with
N . An example of an efficiently computable and well concentrated function is the
function halfN presented in Example 6.2. We conclude therefore that the codes
Chalf = (ZN , halfN ,ZN) presented in Example 6.2 are locally list decodable. These
results generalize to any finite abelian cyclic groups.

Definition 6.21 (Well concentrated). For any family of functions P = {PN : ZN → C}N∈N.
We say that P is well concentrated if ∀N ∈ N, ε > 0, exists a small set Γ ⊆ ZN of
Fourier coefficients s.t. (i) |Γ| ≤ poly(logN/ε), (ii) ‖

∑
α∈Γ P̂N(α)χα − PN‖22 ≤ ε,

and (iii) for all α ∈ Γ, gcd(α,N) ≤ poly(logN/ε) (where gcd(α,N) is the greatest
common divisor of α and N).

Theorem 6.22. Let P be a family of well concentrated functions, then the Multipli-
cation codes CP = {(ZN , PN ,ZN)}N∈N are Fourier concentrated and recoverable. If P
are efficiently computable, then CP is also efficiently recoverable.

12The correspondence ‖Cm − w‖22 = 2(1 − |ŵ(m)|) between `2-distance and Fourier coefficients

is derived as follows. By Parseval Identity ‖Cm − w‖22 =
∑

α

∣∣∣Ĉm − w(α)
∣∣∣2, which is equal to∑

α

∣∣∣Ĉm(α)− ŵ(α)
∣∣∣2 due to the linearity of the Fourier transform. Since Ĉm(α) = 1 iff α = m

and 0 otherwise, this is equal to
∑

α6=m |ŵ(α)|2 + |1− ŵ(m)|2. Rearranging this expression we get∑
α |ŵ(α)|2 + 1 − 2 |ŵ(m)|. By Parseval Identity

∑
α |ŵ(α)|2 = 1 for w accepting values on the

complex unit sphere (where recall that we identified the code alphabet with elements on the unit
sphere). Thus we conclude that ‖Cm − w‖22 = 2(1− |ŵ(m)|).

13P = {PN : ZN → {0, 1}}N∈N is a family of efficiently computable functions if there is algorithm
that given any N ∈ N and x ∈ ZN outputs PN (x) in time poly(log N).
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Lemma 6.23. For any N ∈ N, the function half : ZN → {0, 1} defined by halfN(x) =
1 iff min {x,N − x} ≤ N/4 is efficiently computable and well concentrated.

Corollary 6.24. For any N ∈ N, the codes (ZN , halfN ,ZN) presented in Example
6.2 are is (1

2
− ε, poly(log |G| , 1/ε))-locally list decodable.

We obtain polynomial rate codes along with decoding algorithms by taking re-
striction of the codes Chalf = (ZN , halfN ,ZN) to subsets S ⊆ ZN of their entries
satisfying the following: There is an algorithm for finding the significant Fourier co-
efficients of codewords, when given access —only to entries in S— of a corrupted
codeword. Specifically, taking the polynomial size subset S guaranteed by Theorem
5.15 in chapter 5, we obtain polynomial rate codes which are decodable in the random
(adversarial) noise model in time poly logN (N2ε · poly logN). These codes achieve
properties as stated in parts 2 and 3 of theorem 6.4.

6.2.2 Self Correcting via Testing

We present our local self correcting algorithm for the codes Chalf = (ZN , halfN ,ZN)
for groups ZN (where halfN is as defined in Example 6.2).

The local self correcting algorithm, given query access to a corrupted codeword
C ′

m and an entry location, reads only a constant number of entries of C ′
m and returns

the value on the given entry of the codeword Cm closets to C ′
m (with high probability).

This holds provided that the distance of the corrupted codeword C ′
m from the closest

codeword Cm is smaller than some fixed constant ε = O(1). The success probability is
taken both over the input and over the internal coins of the algorithm: for (1−O(1))-
fraction of the codeword entries, the algorithm succeeds with high probability over its
internal coins, whereas for O(1) fraction of the codeword entries the algorithm fails.

We remark that this local list decoding utilizes particular properties of the func-
tions halfN and is not generally applicable to other Multiplication codes. This is in
contrast to the local list decoding algorithm which is applicable to all concentrated
and efficiently recoverable codes.

Let Chalf
N = (ZN , halfN ,ZN) the MPC code as in Example 6.2. Denote τmax =

maxα∈ZN

∣∣∣ĥalfN(α)
∣∣∣2, ε ∈ [0, τmax − 1

4
). We show that τmax >

1
4

+ Θ(1).

Theorem 6.25 (Local self correcting). There is an algorithm that given N ∈ N,
ε ∈ [0, τmax− 1

4
), ρ ∈ (0, 1), an entry location s ∈ Z∗

N and query access to a corrupted
codewords w s.t. ∆(w,Cm) < ε for Cm ∈ Chalf

N , outputs the value Cm(s) with proba-
bility at least 1 − ρ, while making q ≤ poly(1/(τmax − 1

4
− ε), 1/ρ) queries to w, and

running in time T ≤ poly(log |G| , 1/(τmax − 1
4
− ε), 1/ρ).

Remark 6.26. We extend the algorithm presented here to achieve success probability
1 − ρ with logarithmic ln 1

ρ
query and running time dependency on ρ (rather than

the polynomial dependency presented here). This extension is out of scope for this
dissertation.

The algorithmic core of our local self correcting algorithm is (1) a reduction from
the self correcting problem of the codes Chalf to a property testing problem, and (2)
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an algorithm for solving the property testing problem. Both the reduction and the
property testing algorithm that we present are computable with constant number of
queries to the given corrupted codeword, and with running time polynomial in logN ;
thus yielding a local self correcting algorithm with constant number of queries to the
given corrupted codeword, and with running time polynomial in logN .

The property testing problem to which we reduce the local self correcting task
is the problem of distinguishing two cases regarding the Fourier weight of a given
function f : ZN → C over an interval I ⊆ ZN , where the Fourier weight of f over I is
the sum of squared Fourier coefficients of f over I,

weight(I)
def
=
∑
α∈I

∣∣∣f̂(α)
∣∣∣2

The two cases two be distinguished are as follows.

• YES case: weight(I) > τ

• NO case: weight(Ī) < τ −O(1) for Ī ⊇ I an extension of of the interval I to a
slightly larger interval

That is, given a description of an interval I ⊆ ZN , a threshold τ > 0 and query access
to a function f : ZN → C, the algorithms outputs 1 if weight(I) > τ , outputs 0 if
weight(I) < τ −O(1) and may output 0 or 1 otherwise.

We present below our reduction from the self correcting problem to the prop-
erty testing problem, our algorithm for solving the property testing problem and its
analysis.

Local Self Correcting the codes Chalf: Algorithm & Analysis Overview

The high level structure of the local self correcting algorithm is as follows. The input
is query access to a corrupted codeword C ′

m, and an entry location s ∈ ZN . To
locally self correct, our algorithm simulates query access to a corruption C ′

ms of the
codeword encoding ms ∈ ZN in the code Chalf , and outputs 1 iff the heaviest Fourier
coefficient of C ′

ms is in [−N
4
, N

4
] (where we denote by [−N

4
, N

4
] the set of all α ∈ ZN

s.t. min {α,N − α} ≤ N
4
).

We first argue why this gives the value of the s-th entry in the codeword closest
to C ′

m. By definition of the codes Chalf , Cm(s) = 1 iff ms ∈ [−N
4
, N

4
] (for ms the

product of m and s in the group ZN). Fourier analysis of the codeword Cms shows
that its heaviest Fourier coefficients lie on the characters ±ms. Thus, Cm(s) = 1
iff the heaviest Fourier coefficients of Cms are within [−N

4
, N

4
]. This holds also for

the corrupted codeword C ′
ms, because the noise we consider is smaller than the

difference between the heaviest and second heaviest Fourier coefficients implying that
the heaviest Fourier coefficients of Cm and C ′

m are located on the same characters.
We next elaborate on how to implement the steps of the algorithm with constant

query complexity and poly logN running time, starting with explaining how we gain
implicit access to C ′

ms. Implicit access to C ′
ms is gained by answering each query s′
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with value C ′
m(ss′) (i.e., outputting the entry of C ′

m indexed by s · s′ ∈ ZN). This
gives a corrupted codeword C ′

ms whose distance from Cms is the same as the distance
of the given corrupted codeword C ′

m from Cm, because by definitions of codewords
of CHalf it holds that Cms(s

′) = Cm(ss′). The complexity of answering each query to
C ′

ms is a single query to C ′
m and poly logN running time for computing ss′ mod N .

We next explain how to decide whether or not the heaviest Fourier coefficient of
C ′

ms lies in [−N
4
, N

4
] with O(1) queries to C ′

ms and O(1) running time. Consider first
the special case when we have the promise that the heaviest Fourier coefficient either
lies within an interval I ⊆ [−N

4
, N

4
] or it lies outside of [−N

4
, N

4
], for an interval I

satisfying the following: (i) I is symmetric14, (ii) |I| = O(N) is sufficient small, and
(iii) I is bounded away from ±N

4
.15 In this case, we show that the problem of deciding

where the heaviest Fourier coefficient reduces to the problem of distinguishing the
case weight(I) > 1

2
+O(1) from the case weight([−N

4
, N

4
]) < 1

2
−O(1); where for each

interval [a, b] in ZN we denote by weight([a, b]) the sum of squared Fourier coefficients

of C ′
ms over [a, b], that is, weight([a, b]) =

∑
α∈[a,b]

∣∣∣Ĉ ′
ms(α)

∣∣∣2.16 We distinguish these

two cases using adaptation of our techniques in [3] for estimating approximate sums
of Fourier coefficients over intervals.17 Due to the O(1) gap in value between the two
cases, distinguishing can achieved in constant time and query complexity.

Consider next the general case when there’s no promise on the location of the
heaviest Fourier coefficient. In this case, we partition18 the interval [−N

4
, N

4
] to O(1)

intervals I that are symmetric, sufficiently small and bounded away from ±N
4
; apply

the above distinguishing procedure on each of those intervals; and output 1 iff at least
one of these procedures outputted YES indicating that the heaviest Fourier coefficient
is in I.

We sketch that analysis of this algorithm. We consider separately the three fol-
lowing cases regarding the location of the heaviest Fourier coefficient of C ′

ms: (i) The
heaviest coefficient is in one of the intervals I in the partition, (ii) The heaviest co-
efficient is not in [−N

4
, N

4
] and moreover, it is bounded away from ±N

4
, and (iii) The

14We say that an interval I ⊆ ZN is symmetric if there are integers 0 ≤ a < b < N s.t. I =
[a, b]

⋃
[−b,−a] where [a, b] = {α ∈ ZN | a ≤ α ≤ b} and [−b,−a] = {α ∈ ZN |N − b ≤ α ≤ N − a}.

15For an interval I ⊆ ZN and an element a ∈ ZN , we say that I is bounded away from a ∈ ZN if
I does not contain any elements that are close to a, that is, I

⋂
[a(1−O(1)), a(1 + O(1))] = φ.

16To prove this reduction we analyze the Fourier spectrum of Cms showing that its heaviest
Fourier coefficient αmax is of squared magnitude at least |Cms(αmax)|2 > 1

4 + O(1), and moreover,
the Fourier spectrum is symmetric, that is, |Cms(α)|2 = |Cms(N − α)|2 for all α ∈ ZN . This implies
that if the character αmax with heaviest Fourier coefficient lies in I, then so does N − αmax (due
to symmetry of I), and thus the sum of squared Fourier coefficients over I is greater than twice
the maximal Fourier coefficient, that is, 1

2 + O(1). Moreover, weight(I) > 1
2 + O(1) implies that

weight(I ′) < 1
2−O(1) for any disjoint interval I ′, because by Parseval identity for Boolean functions

the sum of all squared Fourier coefficients is at most 1. The same holds for the corrupted codewords
C ′

ms with the considered noise bound.
17Specifically, to approximate the Fourier weight of an interval I we estimate the norm of the

convolution of C ′
ms with a filter that attenuates coefficients outside of I. Estimating this norm is by

taking appropriate averages over random (though correlated) entries of C ′
ms.

18More precisely, the intervals I form a partition of [−(1−O(1))N
4 , (1−O(1))N

4 ], as they are all
bounded away from ±N

4 .
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heaviest coefficient is not bounded away from ±N
4
. In the first case, the interval I, in

which the heaviest Fourier coefficient lies, satisfies the conditions of the special case
considered above, and thus the algorithm outputs 1 (with high probability). In the
second case, each interval I in the partition satisfies the conditions of special case
considered above, and thus all runs return NO, and the algorithm returns 0 (with
high probability). In the third case, we do not have a guarantee regarding the output
of the algorithm, and the algorithm may return a false answer. Nevertheless, the
probability that this third case occurs is small: The heaviest Fourier coefficient is not
bounded away from ±N

4
iff ms is in a small neighborhood around N

4
or −N

4
. The

probability that this event happens for a random entry s is proportional to the size
of this neighborhood, because the map from entry s to location ms of the heaviest
Fourier coefficient of Cms is one-to-one.

6.2.3 Distance Bounding using Fourier Analysis

We bound the distance of the codes CP = (ZN , PN ,ZN) for groups ZN . We lower
bound the distance of these codes in terms of the Fourier spectrum of the alphabet
controlling functions PN : ZN → C.19 To enable giving our distance bound, we
slightly restrict the message space of the considered codes to be the set

MN = Z∗
N ∩

{
1, . . . , b(N

2
)c
}

This restriction incurs only a small reduction in size of the message space.

Theorem 6.27. For any N ∈ N and PN : ZN → {±1}, the Multiplication code
(ZN , PN ,ZN) with message space MN is a code of rate (logN−O(1))/N and distance
at least (∣∣∣P̂N(α1)

∣∣∣− ∣∣∣P̂N(α2)
∣∣∣)2

for α1, α2 ∈ ZN defined by

α1 = arg max
α∈ZN

∣∣∣P̂N(α)
∣∣∣

α2 = arg max
α∈ZN ,α 6=±α1

∣∣∣P̂N(α)
∣∣∣

where P̂N(α) = Ex∈ZN

[
PN(x)ei 2π

N
αx
]
.

In particular, we show the codes Chalf = (ZN , halfN ,ZN) have constant distance.
To show this we analyze the Fourier spectrum of the functions halfN bounding from

19To relate the distance of two codewords C1, C2 to their Fourier spectrum we first shift to ±1 nota-
tion of binary values, then express the distance in terms of inner product: ∆(C1, C2) = 1

2 −〈C1, C2〉,
and finally observe that by Plancharel Identity 〈C1, C2〉 = 〈Ĉ1, Ĉ2〉. To bound this expression we
then employ the definition of codewords C1, C2 of CP to show that their two heaviest Fourier coeffi-
cients cannot collide. This in turn implies a bound on the inner product of their Fourier spectrums
〈Ĉ1, Ĉ2〉.
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below their heaviest Fourier coefficient by 2
π
, and bounding from above their second

heaviest Fourier coefficient by 2
3π

(
1 +O

(
1
N

))
.

Corollary 6.28. For any N ∈ N, the Multiplication code (ZN , halfN ,ZN) with mes-
sage space MN is a binary code of rate (logN − O(1))/N and distance at least(

4
3π

)2 (
1−O

(
1
N

))
≈ 0.18.

6.2.4 Codes for Groups with Small Generating Set

We present MPC codes for groups G of small generating sets.
Our codes for groups of small generating sets are constructed from our codes for

the groups ZNi
, for Ni the orders of the generators of G:

• When G = Zk
N , encoding a message m = (m1, . . . ,mk) ∈ Zk

N is done by first
encoding each coordinate mi ∈ ZN by a code for the group ZN and then com-
bining the resulting k codewords into one codeword in which each symbol is the
concatenation of the k corresponding symbols.

• When G = ZN1 × . . .× ZNk
has generators of varying orders, encoding is again

done by first encoding each coordinate mi ∈ ZNi
by a code for ZNi

and then
combining all these codewords together into one codeword. A combining step
different than the one used for Zk

N is however needed due to a discrepancy in
length between the resulting codewords. The combining step we use relies on
an expander graph to ensure a good mixing of all codewords symbols.

• When G is an arbitrary finite abelian group with generators of orders N1, . . . , Nk

we exploit the isomorphism between G and a group G′ = ZN1 × . . . × ZNk
to

derive codes for G from the codes for G′.

We elaborate on each of these cases below.

Codes for Zk
N .

We present Multiplication codes CZk
N

= (Zk
N , PZk

N
, SZk

N
) for groups Zk

N . We construct

these codes using as a building-block codes CZN
= (ZN , PN , SN) for the groups ZN . In

the codes CZk
N
, encoding a message m = (m1, . . . ,mk) ∈ Zk

N is done as follows. First,
each coordinate mi ∈ ZN is encoded by the code CZN

. This results in k codewords of
length |SN |. Next, these k codewords are joint together into one codeword of length
|SN | in which each symbol is the concatenation of the k corresponding symbols.

Definition 6.29. Given a Multiplication code CZN
= (ZN , PN , SN) for the group

ZN with alphabet controlling function PN : ZN → Σ, we define a Multiplication code
CZk

N
= (Zk

N , PZk
N
, SZk

N
) for the group Zk

N as follows. The alphabet controlling function

PZk
N

: Zk
N → Σk is defined by

PZk
N
(y1, . . . , yk) = (PN(y1), . . . , PN(yk))
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and the set of indexes SZk
N
⊆ Zk

N is defined by

SZk
N

=
{
sk
}

s∈SN

where sk ∈ Zk
N is the elements with all k coordinates equal to s.

Properties of the resulting code CZk
N

= (Zk
N , PZk

N
, SZk

N
) naturally depend on prop-

erties of the building-block codes CZN
= (ZN , PN , SN). In terms of combinatorial

properties: CZk
N

has alphabet size 2k, and rate and distance equal to those of CZN
.20

In terms of algorithmic properties, the derivation of properties of CZk
N

from properties

of CZN
is as follows. If CZN

is (ε, `, q, T )-list decodable then CZk
N

is (ε, `k, q, kT )-list

decodable; where we say that a code is (ε, `, q, T )-list decodable if there is an algo-
rithm that given a corrupted codeword w and a distance parameter ε output a list of
length at most ` containing all codewords at distance at most ε from w in running
time time T and with q queries to w. If CZN

is (ε, q, T, 1− ρ)-locally self correctable
then CZk

N
is (ε, q, kT, (1− ρ)k)-locally self correctable.

Theorem 6.30. Let CZN
be a code for the group ZN of alphabet Σ, rate r, relative

Hamming distance ∆, which is (ε, `, q, T )-list decodable and (ε, q, T, 1− ρ)-locally self
correctable. Let CZk

N
be the code for the group Zk

N built from the code CZN
as in

Definition 6.29. Then the code CZk
N

is a code for the group Zk
N of alphabet Σk, rate

r, relative Hamming distance ∆, which is (ε, `, q, kT )-list decodable and (ε, q, kT, (1−
ρ)k)-locally self correctable.

To prove the above algorithmic properties we assume there exists an algorithm A
for CZN

, and use it to construct an algorithm A′ for CZk
N
. The algorithm A′ operates

as follows: First, A′ decompose the given corrupted codeword into the k corrupted
codeword corresponding to the codewords in ZN encoding the symbols m1, . . . ,mk

of the message m = (m1, . . . ,mk) ∈ Zk
N . Second, A′ runs the algorithm A on each

corrupted codeword. Finally A′ combines the outputs of all k runs of the algorithm A
to one output of the algorithm A′. The combining step differs depending on the task
at hand. For (local) list decoding, the output of the i-th run of A is a list Li ⊆ ZN

of length `, and A′ outputs the product list L = {(x1, . . . , xk) |xi ∈ Li, i = 1, . . . , k}
of length `k. For unique decoding, the output of the i-th run of A is a single value
m′

i ∈ ZN corresponding to the i-th symbol of the encoded message m, and A′ outputs
the product of all these values m′ = (m′

1, . . . ,m
′
k). For local self correcting, the output

of the i-th run of A is a single bit bi indicating the value of codeword encoding each mi

on entry s, and A′ outputs the product of all these values v = (b1, . . . , bk) ∈ {0, 1}k.

20In details, the rate of CZk
N

is
log2k |(Zk

N )∗|˛̨̨̨
SZk

N

˛̨̨̨ (for (Zk
N )∗ the set of invertible elements in Zk

NG), which

is equal to the rate log2|Z
∗|

|SZN |
of CZN

, because log2k

∣∣(Zk
N )∗

∣∣ = 1
k log2

∣∣(Zk
N )∗

∣∣ and
∣∣(Zk

N )∗
∣∣ = |Z∗N |

k.

The distance of CZk
N

is clearly at least as large as the distance of CZN
, because restricting the blocks

of each symbol to, say, the first bit we get the distance of CZN
. The distance of CZk

N
is at most the

distance of CZN
, because for each m,m′ ∈ ZN the distance of the encodings of mk and m′k in CZk

N

are equal to the distance of the encodings of m and m′ in CZN
.
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Combining the derivation rules in Theorem 6.30 with the properties of our Multi-
plication codes for ZN proves there exists codes for the group Zk

N achieving parameters
as stated in Theorem 6.6

Codes for ZN1 × . . .× ZNk
.

We present Multiplication codes for groups G = ZN1 × . . .×ZNk
. We construct these

codes using as a building-block codes (ZNi
, PNi

, SNi
) for the groups ZNi

, i ∈ [k].

We describe the algorithm for encoding messages m = (m1, . . . ,mk) ∈ G. In a
high level, the encoding is similar to the one for Zk

N , namely, we first encode each
coordinate mi ∈ ZNi

by the code (ZNi
, PNi

, SNi
) for the group ZNi

, and then combine
all these codewords together into one codeword. The combining step however is
different from the one used for Zk

N , due to the discrepancy in length between the
codewords Cmi

. Let us first demonstrate why the combining algorithm used for Zk
N

is not satisfactory for the case G = ZN1 × . . .×ZNk
, and then describe the combining

step we do use here.

To demonstrate why the combining algorithm used for Zk
N won’t do, consider for

example encoding a message m = (m1,m2) in the group Z2 × ZN using the code
(Z2, half2,Z2) to encoding m1 and the code (ZN , halfN ,ZN) to encode m2. The re-
sulting codewords have lengths 2 and N respectively. Using the former combining
algorithm results in a codeword of length N where the first two symbols are a con-
catenation of values from each of the two codewords, whereas the other symbols are
simply the values of the second codeword. This results in a code of a very bad dis-
tance: by flipping only the first two symbols of the resulting codeword all information
regarding m1 is lost and no decoding is possible.

Our combining step for G = ZN1 × . . . × ZNk
mixes together the entries of all

codewords in a way ensuring that to destroy information on any mi an adversary
must destroy a considerable fraction of the symbols in the combined codeword. To
achieve this guarantee we rely on properties of expander graphs as follows. Denote
n = maxi∈[k] |SNi

| and let Hi = ([Ni], [n], [Ei]) be a bipartite expander graph of right
degreed d = O(1), ∀i ∈ [k]. To combine all codewords we first encode each Cmi

using
ABNNR encoding [7] corresponding to the graph Hi. That is, we encode Cmi

to a
length n codeword CHi

mi
with alphabet {0, 1}d s.t. its j-th entry is the concatenation

of the values of Cmi
on entries j1, . . . , jd the neighbor of right node j in the graph Hi.

This results in k codewords CH1
m1
, . . . , CHk

mk
each of length n and alphabet {0, 1}d. We

now combine these codewords by defining a new codeword Cm whose j-th entry is
the concatenation of the j-th entries of all codewords CH1

m1
, . . . , CHk

mk
. This results in a

codeword of length n and alphabet {0, 1}kd. The set of indexes to the entries of this
codewords is SG ⊆ Gd the set of all elements ((s1j

1 , . . . , s
1j
k ), . . . , (sdj

1 , . . . , s
dj
k )) ∈ Gd

with s`j
i the `-th neighbor of right node j in expander graph Hi.

Definition 6.31. Given binary Multiplication codes (ZNt , PNt , SNt) for t = 1, . . . , k
and bipartite expander graphs Ht = ([Nt], [n], [Et]) of right degreed d = O(1), for
each t = 1, . . . , k, we define a Multiplication code (G,PG, SG) for the group G =
ZN1 × . . . × ZNk

as follows. The alphabet controlling function PG : Gd → {0, 1}kd is
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defined by

PG((y1
1, . . . , y

1
k), . . . , (y

d
1 , . . . , y

d
k)) = ((PN1(y

1
1), . . . , PNk

(y1
k)), . . . , (PN1(y

d
1), . . . , PNk

(yd
k)))

and the set of indexes SG ⊆ Gd is defined by

SG =
{

((s1j
1 , . . . , s

1j
k ), . . . , (sdj

1 , . . . , s
dj
k ))
}

j∈[Nk]

for sij
t the i-th neighbor of right node j in the graph Ht.

The combinatorial and algorithmic properties of the resulting code CG = (G,PG, SG)
naturally depend on properties of the building-block codes CNi

= (ZNi
, PNi

, SNi
). In

terms of combinatorial properties: CG has alphabet size 2dk, rate21 O( 1
kd

log N
N

) for
N = maxi∈[k]Ni, and distance 1 − Od(1).22 In terms of algorithmic properties, if all
codes CNi

are uniquely decodable, then so is the code CG; likewise, if all codes CNi
are

self correctable, then so is the code CG. The parameters of the algorithms for CG are
derived from those for CNi

as described in the theorem below.
We remark that the current encoding does not admit to list decoding. The bottle

neck is the ABBNR encoding layer. Possibly the ABNNR codes could be substituted
with the list decodable code of Guruswami and Indyk [46] to achieve list decodable
codes for G.

Theorem 6.32. For i = 1, . . . , k, let CZNi
be codes for the groups ZNi

of alpha-
bet Σ, rate r, relative Hamming distance ∆, which are (O(1), `, q, T )-decodable and
(O(1), q, T, 1 − ρ)-locally self correctable. Let CG be the code for the group G =
ZN1 × . . . × ZNk

built from the code CZN
as in Definition 6.31. Then the code CG is

a code for the group Zk
N of alphabet Σk, rate r, relative Hamming distance 1−O(1),

which is (1
2
− O(1), 1, q, kT )-decodable and (1

2
− O(1), q, kT, (1− ρ)k)-locally self cor-

rectable.

To prove the above algorithmic properties we construct an algorithm A′ for our
codes for G from given algorithms A1, . . . , Ak for the codes for ZN1 , . . . ,ZNk

. The
first step in the algorithm A is a decomposing step where the corrupted codeword of
CG is decomposed to k corrupted codewords of CZN1

, . . . , CZNk
. This decomposition

step is done by tracing back the combining step in the encoding and decoding the
ABNNR encoding layer. A subtle point is that the decomposition step requires local
decoding.23 That is, the entries of the k codewords are produced in time independent
of the length of the given corrupted codeword. This is necessary for example, when
the encoding length is exponential, or for the local self correcting algorithm. We

21The rate is 1
dk

O(log N)
N = Odk( log N

N ), because the encoding length is N = maxi∈[k] Ni and the
information rate is log2kd |G∗| ≥ 1

kdO(log N).
22The distance is at least the distance of the code when restricting each block to the values of CHi

mi

for some fixed i ∈ [k]. The distance of this restriction is the distance of the ABNNR code which is
1−Od(1) as shown by [7].

23More accurately, the decomposition procedure is a local error reduction procedure, namely, given
an entry location in one of the k codewords, it output the correct value on this location with high
probability. Thus the decomposition procedure provides access to k corrupted codewords.
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achieve local decoding with a constant number of queries –even in cases when the
degree of the expander graph is non constant– by applying the decoding algorithm
on a constant size neighbors set chosen by random sampling. On the chosen set
of neighbors, decoding may be done using the majority vote rule as in Guruswami-
Indyk [44].The rest of the steps of algorithm A′ are constructed from A1, . . . , At

similarly to the our construction of algorithms for Zk
N from algorithms for ZN .

The derivation rules of Theorem 6.32 combined with the properties of our Multi-
plication codes for ZN yield codes achieving parameters as stated in Theorem 6.6.

Codes for Groups with Small Generating Set

For G an arbitrary finite abelian group, there is an isomorphism between G and a
group G′ = ZN1 × . . . × ZNk

for N1, . . . , Nk the orders of generators in a generating
set of G. We exploit this isomorphism to derive Multiplication codes for the group G
from our Multiplication codes for the group G′.

Definition 6.33. Let G be a group generated by g1, . . . , gk of orders N1, . . . , Nk,
denote by G′ the direct product group ZN1 × . . . × ZNk

and let CG′ = (G′, PG′ , SG′)
be a Multiplication code for the group G′. We define a Multiplication code CG =
(G,PG, SG) for the group G by setting

PG(
k∏

i=1

gxi
i ) = PG′(x1, . . . , xk)

and

SG =

{
(

k∏
i=1

gxi1
i , . . . ,

k∏
i=1

gxid
i ) ∈ Gd

∣∣∣∣∣ ((x11, . . . , xk1), . . . , (x1d, . . . , xkd) ∈ G′d

}

The resulting Multiplication for G′ code achieve alphabet, rate, distance and de-
codability parameters identical to those of the Multiplication codes for G. Combined
with our results on codes for ZN , this completes the proof of Theorem 6.6

6.2.5 Linear Encoding Length via Restrictions

We present codes for finite abelian groups of linear encoding length, constant distance
and constant list decoding bound. We do not have however an efficient decoding
algorithm for this code.

Theorem 6.34 (Linear encoding length). For any γ < 0.17 and any finite abelian
group G, there exists Multiplication codes C for G of alphabet Σ, rate O( 1

γ2 log|Σ|), con-

stant distance, and satisfying the following list decoding bound:
∣∣BallC(C, 1

2
− 2γ)

∣∣ ≤
poly(log |G| , 1/γ), ∀C ∈ C.24. The alphabet size |Σ| depends on the underlying group:
|Σ| = 2 for cyclic groups, |Σ| = O(1) for groups with constant size generating set, and

24BallC(C, r) denotes the set of codewords of C within relative Hamming distance at most r from
C.
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|Σ| = |G| for arbitrary finite abelian groups. Algebraic operations in these decoding
algorithms are computed in the group G.

The codes of linear encoding length are constructed by taking random restrictions
of the previously constructed codes achieving exponential encoding, constant distance
and constant list decoding bound. The restriction C(S ′) of a code C = (G,P, S) to a
subset S ′ ⊆ S of its codewords entries is the code whose codewords are restrictions
of the codewords of C to the entries indexed by elements in S ′. We say that the code
C(S ′) is an n-random restriction, if S ′ is a set of size n chosen uniformly at random
from S. We show that the code C(S ′) maintains roughly the same distance and list
decoding bound as C, while achieving linear encoding length. We thus obtain codes
of linear encoding length and constant distance and list decoding bound.

Definition 6.35 (Restrictions). For any code C ⊆ ΣS with entries indexed by ele-
ments in S and a subset S ′ ⊆ S, we defined the restriction of C to S ′ to be the code
C(S ′) =

{
C|S
}

C∈C for C|S ∈ ΣS the restriction of C to entries whose index s is in S ′.
We say that C(S ′) is an n-random restriction of C if the set S ′ is a a subset of S of
size n chosen uniformly at random.

Lemma 6.36. Let C ⊆ ΣS be a code of non-linear encoding length |S| = ω(log |C|) and
with relative Hamming distance at least δ. For any γ > 0 and any n = Θ(logN/γ2)
sufficiently large, the n-random restriction of C has linear encoding length of O(1/γ2)
and its relative Hamming distance is at least δ− γ with probability at least 1−O( 1

|C|)

(where the probability is taken over the choice of the random restriction S ′ ⊆ S).

The problem of decoding these codes is related to the problem of Learning Char-
acters with Noise in the random samples access model (aka, rLCN); see Definition 4.1.
Specifically, an efficient solution to rLCN would imply an efficient decoding algorithm
for these constant rate codes. We conjecture however that rLCN is intractable.

We use the following terminology and notations for defining the relation between
the algorithmic properties of Cconst and rLCN: We say that algorithm A (s, t, e)-solves
rLCN, if, on input a description of a finite abelian group G, a threshold γ and random
samples access to f : ZN → C, A asks for s samples of f , runs in time t, and outputs
L ⊇ Heavyγ(f) with probability at least 1− e.

For each γ, we denote by ε(γ) the threshold guaranteed by the Agreement lemma
6.46 for which ∆(w,CN,x) < ε implies that ∃0 6= β ∈ Heavyγ(w) ∩ Heavyγ(CN,x). In
particular, for P = Ψ, ε(γ) = O(

√
γ).

Theorem 6.37 (Algorithmic properties). For any group G, γ > 0 and C a con-
centrated and recoverable code, if there is an algorithm A that (s, t, e)-solves rLCN

with s = O( log|G|
γ2 ), t = poly(log |G| , 1

γ
) and e = poly(1/ |G|), then the O(log |G| /γ2)-

random restriction code of C is algorithmically (1
2
− γ − ε, poly(log |G| , 1/ε))-list de-

codable, with probability at least 2/3 (where the probability is taken over the choice of
random restriction).

We remark that the random restriction codes can be viewed as a non-linear ana-
logue of random linear codes. The analogy between these codes and random linear
codes is both in the definition of the codes, where we observe that random linear
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codes can be viewed as restrictions of the Hadamard codes to random subsets of the
Boolean Cube Fk

2. The analogy is also the codes properties, where both the constant
rate Multiplication Codes and the random linear codes exhibit good combinatorial
properties, but poor algorithmic properties.

6.2.6 Soft Local Error Reduction for Concatenated ABNNR
Codes

In this section we present our soft error reduction algorithm for concatenated ABNNR
codes.

Alon et.al. [7] presented a distance amplification scheme for error correcting codes
relying on expansion properties of expander graphs. Their scheme produces from
a base code C0 of alphabet q and distance δ = O(1) a new code –aka, ABNNR
code– of alphabet O(q) and distance 1 − O(1). To achieve a binary code, one can
concatenate the ABNNR code with a small binary code, that is, encode each symbol
in the codeword of the (non-binary) ABNNR code with a binary code. Following
standard terminology, we refer to the non-binary code as the inner code and to the
binary code concatenated with it as the outer code.

Guruswami and Indyk [44] presented a decoding algorithm for codes concate-
nated with the ABNNR codes. The decoding algorithm of [44] follows Forney’s GMD
methodology [33] for decoding concatenated codes requiring an efficient error reduc-
tion algorithm for the outer code, and an algorithm for decoding from erasures and
errors for the inner code.

We present an alternative to the Forney decoding approach that does not require
an erasures-and-errors decoding algorithm for the inner code. Instead we take a soft
decoding approach where the outer code returns a list of potential codewords (of the
outer code) along with their distances from the received word, and the inner code
incorporates these lists of distances to find the closest codeword.

The algorithm we present is local, namely, each bit of message symbol can be
found with a d2 queries to the codewords for d the degree of the underlying expander
graph.

Our soft decoding approach for decoding concatenated ABNNR codes gives the
same optimal distance performance as the Forney decoding approach employed in [44],
and may be of interest outside the realm of Multiplication codes, e.g., for decoding
concatenated codes where the inner code has no efficient erasures-and-errors decoding
algorithm.

In our context, we use the soft decoding approach in decoding our binary codes
for groups of few generators of varying orders, which were obtained by concatenating
the ABNNR layer with a small binary code (see Remark 6.7).

To state our theorem and present our soft error reduction algorithm, let us first
present the definitions of expander graphs and ABNNR codes concatenated with
binary codes.

Definition 6.38 (Expander Graphs). Let H = ([n], [n], E) be a d-regular bipartite
graph. Let λ be the second largest (in absolute value) eigenvalue of the normalized
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Figure 6-1: Illustration of a binary ABNNR code

adjacency matrix of H, then, we say that H is a λ-expander. In particular, When
λ ≤ 2/

√
d, we say that H is a Ramanujan graph.

Fact 6.39. For any d ≥ 3, and for all n ∈ N, a random d-regular bipartite graph
H = ([n], [n], E) is Ramanujan with high probability.

Definition 6.40 (binary ABNNR code [7]). Let H = {([n], [n], En)}n∈N be a family
of d-regular λ-expander graphs, and let C0 be a family of binary codes encoding d bits
into O(d) bits. Let m = m1 . . .mn be a message in {0, 1}n, we define the encoding of
m in the ABNNR and binary ABNNR codes (Illustration provided in Figure 6-1):

1. ABNNR code. The ABNNR code CH encodes m by the codeword CHn(m) ∈
({0, 1}d)n whose i-th symbol is (mi1 , . . . ,mid) for i1, . . . , id the left neighbors of
right node i in the graph Hn.

25

2. binary ABNNR code. Denote by C(H, C0) the ABNNR code CH concatenated
with C0. That is, the codeword in C(H, C0) encoding message m is the vector

C(m) = (C0(CHn(m)1), . . . , C0(CHn(m)n) ∈ ({0, 1}O(d))n.

Notations. We use the terminology “the i-th block of C(m)” to refer to bits
C0(CHn(m)i) of C(m). We denote the restriction of C(m) to its i-th block by
C(m)i. Likewise, for a corrupted codeword w, we denote by wi the restriction
of w to the bits corresponding to the i-th codeword block.

Remark 6.41. ABNNR code is often employed for encoding messages m which are
in themselves codewords of some code C1 of (small) constant distance and constant
rate. This is because in order for the ABNNR codes to amplifies distance, there must
be some initial distance to begin with. See illustration in Figure 6-1.

We present a soft error reduction algorithm that, given a corrupted codeword w of
a binary ABNNR code, recovers (1−O(1))-fraction of the bits of the encoded message
x. The soft error reduction algorithm works by finding independently for each left
node ` the best assignment to its neighbors Γ(`), as follows. For each left node `,
we restrict our attention to the corrupted codeword block wi corresponding to right
neighbors i ∈ Γ(`) of `. We then find the codeword C(m′) closest to wi on those
blocks (by exhaustive search). If the closest codeword is sufficiently close, we set the
`-th output bit z` to be the value of the `-th bit of the encoded message m′. We
repeat this procedure for each left node ` ∈ [n], outputting z1, . . . , zn. A pseudocode
follows.

Algorithm 6.42. Soft Error Reduction Algorithm.
Input: A description of the code C(H, C0), a noise parameter ε, and a corrupted

codeword w ∈ {0, 1}n/r s.t. ∆(C(x), w) ≤ 1
4
− ε

4
.

25The ABNNR code applies to any alphabet Σ. We focus on binary alphabet for simplicity.
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Output: z ∈ {0, 1}n s.t. ∆(z, x) ≤ λ1/3.
Steps:

1. For each left node ` ∈ [n]

(a) By exhaustive search, find assignment y ∈ {0, 1}d
2

to all message bits
i ∈ ΓL(ΓR(`)) such that y minimizes

dist`(y) =
1

d

∑
i∈Γ(`)

∆(C0(y)
i, wi)

(b) If dist`(y) <
1
4
− ε

4
, set z` = y`

(c) Else set z` = ⊥

2. Output z1 . . . zk

To show that this is an efficient algorithm, we argue that the exhaustive search
step can be done in constant running time. This is because there is a d = O(1) number
of blocks i neighboring each left node `, and each of these blocks is determined by a
d = O(1) number of message bits (specifically, the bits corresponding to left neighbors
of right node i). Thus, the number of assignment to be examined in the exhaustive
search is 2d2

= O(1).
To prove the correctness of this algorithm, we first apply the Expander Mixing

Lemma to show that for the correct message x, dist`(x) <
1
4
− ε

4
for at least (1 −

O(λ1/3))-fraction of the bits ` ∈ [n]. Second, we show that for any y that disagrees
with x on the `-th bit (i.e., y` 6= x`), dist`(y) >

1
4
− ε

4
. Combined together this proves

that the output z of the algorithm agrees with the encoded message x on at least
(1−O(λ1/3))n of its bits.

Theorem 6.43 (Soft Error Reduction). Let C(H, C0) be a binary ABNNR code with
H a family of d-regular λ-expanders, and C0 a family of binary error correcting codes
of rate r and relative Hamming distance ∆(C0).

There is a soft error reduction algorithm that for each n ∈ N, a message x ∈
{0, 1}n and a noise parameter ε ∈ [0, 1−2∆(C0)), given w ∈ {0, 1}n/r s.t. ∆(w,C(x)) ≤
1
4
− ε for C(x) ∈ C(H, C0) the encoding of x in the binary ABNNR code, outputs

z ∈ {0, 1}n s.t.
∆(z, x) ≤ (

√
2λ)1/3

and its running time is O
(
n · 2d2

)
.

Remark 6.44. The theorem extends to codes obtained when replacing the balanced
expander graph H = ([n], [n], E) with an unbalanced expander graphs H = ([k], [b], E)
with left degree dL, as long as as the following the expander mixing property holds:
For every A ⊆ [k] and B ⊆ [b],∣∣∣∣|E(A,B)| − dL |A| |B|

b

∣∣∣∣ < λdL

√
|A| |B|
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6.3 List Decoding via Learning

In this section we present our list decoding via learning: In section 6.3.1 we show that
every Fourier concentrated and recoverable code is combinatorially list decodable;
thus proving part 1 of theorem 6.12. In section 6.3.2 we show that every Fourier
concentrated and efficiently recoverable code is efficiently list decodable; thus proving
part 2 of theorem 6.12. In both cases we address the case of unbalanced binary codes.
In section 6.3.3 we present the concentration and agreement lemma which is the main
lemma we use in the proof of the above results. This lemma shows that if w is close
(in Hamming distance) to a codeword or a concentrated codes, then w must share a
heavy Fourier coefficient with the close codeword.

Next we present Multiplication codes to which we apply the decoding via learning
approach: In section 6.3.4 we show that the Multiplication codes CP = {(ZN , PN ,ZN)}N∈N
are Fourier concentrated and efficiently recoverable as long as P = {PN : ZN → C}N∈N
is a family of efficiently computable and well concentrated functions; thus prov-
ing Theorem 6.22. Combined with the above decoding via learning approach, we
conclude that CP is efficiently list decodable whenever P is a family of efficiently
computable and well concentrated functions. In section 6.3.5 we study the codes
Chalf = (ZN , halfN ,ZN) presented in Example 6.2, showing that the functions halfN

are efficiently computable and well concentrated, and concluding that the codes Chalf

are (1
2
− ε, poly(log |G| , 1/ε))-locally list decodable; thus proving Corollary 6.24.

Notations and Terminology. We use the following notation to address the bias
in frequency of 0 and 1 symbols in binary codes: For C : GN → {0, 1} we denote the
fraction of entries whose value is the less frequent symbol out of 1, 0 by

minorC = min
b∈{0,1}

1

|GN |
|{s ∈ GN |C(s) = b}|

and denote the fraction of entries with the more frequent symbol by majC = 1−minorC .
For example, for balanced codes, minorC = majC = 1

2
for any codeword C.

We extend the notion of a recovery algorithm to include algorithms receiving a
list of coefficients instead of a single coefficient: Recall that a recovery algorithm
is an algorithm that given N ∈ N, τ ∈ R and 0 6= β ∈ GN returns a list Lβ ⊇
InvHeavyN,τ,β(C), and its running time is poly(log |GN | /τ). In the following we slightly
abuse terminology naming a “recovery algorithm” also algorithms that receive as
input a list L′ of β 6= 0’s in GN (instead of a single β), and outputs the union L =⋃

0 6=β∈L′ Lβ of the output lists Lβ. The running time of this recovery algorithm |L′|T
for T = poly(log |GN | /τ) the running time of the recovery algorithm in Definition
6.11.
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6.3.1 Combinatorial List Decoding Bound:
Proof of Theorem 6.12 Part 1

We show that every Fourier concentrated and recoverable code is combinatorially list
decodable; thus proving part 1 of theorem 6.12. We address the case of unbalanced
binary codes; for balanced codes, each occurrence of minorC in the theorem statement
and its proof below is replaced by 1

2
.

Theorem 6.12 part 1 for unbalanced binary codes. Let C = {CN,x : GN → C}N∈N,x∈DN

be a concentrated and recoverable code. Then for any codeword CN,x ∈ C and any
ε ∈ [0,minorCN,x

), ∣∣BC(CN,x,minorCN,x
− ε)

∣∣ ≤ poly(log |GN | /ε)

for BC(CN,x,minorCN,x
− ε) =

{
C ∈ C |∆(C,CN,x) ≤ minorCN,x

− ε
}

the set of code-
words in C in the Hamming ball of radius minorCN,x

− ε around CN,x.

Proof. Fix 0 ≤ ε < minorCN,x
. By Corollary 6.47 for each CN,x and every CN,y ∈

BC(CN,x,minorCN,x
− ε), CN,x, CN,y share a (non zero) heavy Fourier coefficient:

∃α 6= 0, α ∈ Heavyτ (CN,x) ∩ Heavyτ (CN,y)

for τ = poly(ε/ log |GN |).
For each α ∈ GN , denote Lα = {z |α ∈ Heavyτ (CN,z)}. Observe that∣∣BC(CN,x,minorCN,x

− ε)
∣∣ ≤ ∑

α∈Heavyτ (CN,x)

|Lα|

To bound the cardinality of the ball, we therefor bound |Lα| and |Heavyτ |: Since
C is recoverable, then |Lα| ≤ poly(log |GN | /τ). By Parseval Identity and since
‖CN,x‖22 ≤ 1, then |Heavyτ (CN,x)| ≤ ‖CN,x‖22/τ ≤ 1/τ . Combining both bounds
these bounds while assigning τ = poly(ε/ log |GN |), we conclude that∣∣BC(CN,x,minorCN,x

− ε)
∣∣ ≤ poly(log |GN | /ε)

�

6.3.2 List Decoding Algorithm:
Proof of Theorem 6.12 Part 2

We show that every Fourier concentrated and efficiently recoverable code is efficiently
list decodable; thus proving part 2 of theorem 6.12. We address the case of unbalanced
binary codes; for balanced codes each occurrence of minorC in the theorem statement
and its proof below is replaced by 1

2
.
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Theorem 6.12 part 1 for unbalanced binary codes. Let C = {CN,x : GN → C}N∈N,x∈DN

be a concentrated and efficiently recoverable code over a learnable domain G =
{GN}N∈N. Then C is (d − ε, poly(log |GN | /ε))-list decodable (in the Hamming dis-
tance) for any ε ∈ [0, d) where d = minC∈C minorC

Proof. Let w : GN → C be a corrupted codeword, we show a list decoding Al-
gorithm that outputs all codewords CN,x s.t. ∆(w,CN,x) < minorCN,x

− ε in time
poly(log |GN | , 1/ε). By Corollary 6.47 if CN,x is close to w, then there exists α0 6= 0
which is τ0-significant both for Cx and for w, where

τ0 = poly(ε, 1/ log |GN |)

Denote by Learn the learning algorithm implied by the fact that G is learnable.26

Denote by Recover the recovery algorithm implied by the fact that C is recoverable.27

With τ0, Learn and Recover as defined above, here is the list decoding algorithm:

Algorithm 6.45. List decoding via Learning
Input: Query access to a corrupted codeword w : GN → C
Output: A list of all CN,x s.t. ∆(CN,x, w) < minorCN,x

− ε
Steps:

1. Apply the learning algorithm Learn on input N , τ0 and query access to w; denote
its output by L′.

2. Apply the recovery algorithm Recover on input L′; denote its output by L.

3. Output L

We show that the output of Algorithm 6.45 is indeed all codewords close to the
input w. Let Cx be s.t. ∆(Cx, w) ≤ minorCx − ε. We show that x ∈ L. By the
above, ∃α0 6= 0, α0 ∈ Heavyτ0(CN,x) ∩ Heavyτ0(w). Since G is a learnable domain,
α0 ∈ Heavyτ0(w) implies that α0 ∈ L′. Since C is a recoverable code and α0 ∈
Heavyτ0(CN,x) ∩ L′, then x ∈ L.

Finally, by the definitions of learnable domains and efficiently recoverable codes,
clearly Algorithm 6.45 runs in time poly(log |GN | , 1/ε). �

6.3.3 Concentration and Agreement Lemma

The main lemma used in the above proofs is the following “concentration and agree-
ment lemma”. This lemma shows that if w is close (in Hamming distance) to a
codeword C of a concentrated code, then w must share a heavy Fourier coefficient
with C.

26That is, given query access to a function w : GN → C and a threshold τ , Learn outputs a list
L′ ⊇ Heavyτ (w) containing finding all τ -significant Fourier coefficients of w, and its running time is
poly(log |GN | , 1/τ).

27That is, given a list L′ of β 6= 0’s in GN , Recover outputs a list L ⊇
⋃

0 6=β∈L′ InvHeavyN,τ,β(C)

for InvHeavyN,τ,β(C) =
{

x ∈ DN |
∣∣∣ĈN,x(β)

∣∣∣2 ≥ τ

}
, and its running time is |L′| poly(log |GN | /τ).
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Lemma 6.46 (Concentration and Agreement). Let f, g : GN → C s.t. ‖f‖2, ‖g‖2 ≤
1, f is Fourier concentrate, and 〈f, g〉 > ε + f̂(0)ĝ(0) for some ε > 0. Then, there
exists an (explicit) threshold τ which is polynomial in ε, 1/log |GN | such that

∃α 6= 0, α ∈ Heavyτ (f) ∩ Heavyτ (g)

Proof. Let Γ be a set of characters on which f is concentrated to within o(ε) – namely,
so that, if we denote by Γ̄ its complement, it is the case that ε′ = ‖f|Γ̄‖2 ≤ o(ε). Note
that, by Cauchy-Schwartz

〈f|Γ̄, g|Γ̄〉2 ≤ ‖f|Γ̄‖22 · ‖g|Γ̄‖22 ≤ ε′2 · 1 = ε′2

and since the Fourier basis is orthonormal∑
α∈Γ

f̂(α)ĝ(α) = 〈f|Γ, f|Γ〉 ≥ 〈f, f〉 −
∣∣〈f|Γ̄, f|Γ̄〉∣∣ ≥ ε+

∣∣∣f̂(0)ĝ(0)
∣∣∣− ε′

This implies that there exists a α 6= 0 s.t. χα ∈ Γ and f̂(α)ĝ(α) ≥ ε− ε′

|Γ| . Now, as

both f̂(α), ĝ(α) ≤ 1, it must be that both f̂(α), ĝ(α) ≥ ε− ε′

|Γ| = τ . �

Corollary 6.47. Let C = {CN,x : GN → {±1}}N∈N,x∈DN
be a Fourier concentrated

binary code, and let CN,x, w : GN → {±1} s.t. ∆(CN,x, w) < minorCN,x
− ε. There

there exists τ = poly(ε/ log |GN |) s.t. ∃α 6= 0, α ∈ Heavyτ (CN,x) ∩ Heavyτ (w).

Proof. We first show that for any CN,x, w, if ∆(CN,x, w) < minorCN,x
− ε then

〈CN,x, w〉 > 2ε +
∣∣∣ĈN,x(0)ŵ(0)

∣∣∣. This is because for binary codes, 〈CN,x, w〉 =

1−2∆(CN,x, w), and because 1−2(minorCN,x
−ε) = majCN,x

−minorCN,x
=
∣∣∣ĈN,x(0)

∣∣∣ ≥∣∣∣ĈN,x(0)ĈN,y(0)
∣∣∣ where the last inequality is true since |ŵ(0)| ≤ 1 for any Boolean w.

Thus, by Concentration and Agreement Lemma 6.46, since C is concentrated, then
for each CN,x and every w ∈ B(CN,x,minorCN,x

− ε),

∃α 6= 0, α ∈ Heavyτ (CN,x) ∩ Heavyτ (CN,y)

for τ = poly(ε/ log |GN |). �

6.3.4 List Decoding Codes CP for Well Concentrated P:
Proof of Theorem 6.22

We show that codes CP = {(ZN , PN ,ZN)}N∈N with P = {PN : ZN → C}N∈N a family
of efficiently computable and well concentrated functions28 are Fourier concentrated
and efficiently recoverable; thus proving Theorem 6.22. By Theorem 6.12 Part 2
combined with the learnability of ZN proved in Theorem 3.16, this implies that the

28Recall that a function is well concentrated if it is concentrated on a small set of characters with
low gcd (greatest common divisor) with N .
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codes CP are locally list decodable when P is a family of efficiently computable and
well concentrated functions.

Theorem 6.22 Let P be a family of well concentrated functions, then the Multi-
plication codes CP = {(ZN , PN ,ZN)}N∈N are Fourier concentrated and recoverable.
If the functions in P are efficiently computable (in addition to being Fourier concen-
trated and recoverable), then CP is efficiently recoverable.

Proof. In Lemma 6.48 we show that CP is Fourier concentrated. In Lemma 6.49 we
show that CP is efficiently recoverable.

Lemma 6.48 (CP is concentrated). If P is Fourier concentrated, then the multipli-
cation code CP is Fourier concentrated.

Proof. For all N ∈ N, and all codewords CN,x ∈ CP , recall that CN,x(j) = PN(jx
mod N). Since P is Fourier concentrated, the for all ε > 0, ∃Γ ⊆ ZN of size
poly(logN/ε) s.t. ‖PN − PN |Γ‖22 ≤ ε. By Theorem 2.2 in section 2, this implies
that ‖CN,x − CN,x|Γ′‖

2
2 ≤ ε for

Γ′ = {α/x |α ∈ Γ}

Thus CP is concentrated. �

Lemma 6.49 (CP is efficiently recoverable). If P is a family of efficiently computable
and well concentrated functions, then the multiplication code CP is efficiently recov-
erable.

Proof. In Lemma 6.49 we showed that for every N ∈ N, τ ∈ R+ and 0 6= β ∈ ZN , the
set

L =
⋃

α∈Heavyτ (PN )

{
x | β ≡ αx−1 mod N

}
satisfies that L ⊇ InvHeavyN,τ,α(CP) and |L| ≤ poly(logN/τ). Thus an algorithm that
on input N, τ, β 6= 0 outputs a short list containing L in running time poly(logN/τ)
is an efficient recovery algorithm. We show such an algorithm below.

Algorithm 6.50. Recovery Algorithm for CP .
Input: N ∈ N, τ ∈ R+ and 0 6= β ⊆ ZN

Output: L ⊇ {x | β ∈ Heavyτ (CN,x)}

1. Run SFT Algorithm 3.4 on input N, τ and query access to PN ; denote its output
by H.

2. For each α ∈ H

(a) Run Euclid Algorithm to find d = gcd(α,N)

(b) Run Extended Euclid Algorithm to find x ∈ ZN s.t.

β ≡ αx−1 mod
N

d
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(c) Let Lα =
{
x+ i · N

d
mod N)

}
i=0,...,d−1

3. Output L′ =
⋃

α∈H Lα

We show that the output L′ of the Recovery Algorithm 6.50 satisfies that L′ ⊇ L
and |L′| ≤ poly(logN/τ). We first argue that L′ ⊇ L. Observe that

L′ =
⋃

α∈H

{
x | β ≡ αx−1 mod N

}
⊇ L

where the last containment is true because by Theorem 3.16, the output H of the
SFT algorithm satisfies that H ⊇ Heavyτ (PN) and by definition of L. We next argue
that L′ is of size at most poly(logN, 1/τ). Since P is well concentrated, then the value
d in step 2b is at most poly(logN/τ), implying that ∀α ∈ H, the set Lα satisfies that
|Lα| = d ≤ poly(logN/τ). Since by Theorem 3.16, |H| ≤ O(1/τ), we conclude that

|L′| ≤ poly(logN/τ)

We show that the running time of the above algorithm is poly(logN/τ). Since PN

is efficiently computable then we can provide query access to PN in time poly logN ,
and by Theorem 3.16 the running time of step 1 of the algorithm is thus poly(logN/τ).
Since P is well concentrated, then d ≤ poly(logN/τ), implying, by efficiency of
the Extended Euclid Algorithm, that the running time of step 2 is poly(logN/τ).
Combined together, we conclude that the algorithm runs in time poly(logN/τ). �

Remark 6.51. The requirement that P is a family of efficiently computable func-
tions can sometimes be relaxed. This assumptions is used only for computing H ⊇
Heavyτ (PN). Observe that Heavyτ (PN) does not depend on the corrupted codeword
received by the list decoding algorithm, but rather it is a global information about the
code CP . Therefore, it may be reasonable to assume that Heavyτ (PN) is given as prior
knowledge, in which case we do not need to be able to compute it efficiently. In this
case, there’s no need to require that P is efficiently computable.

6.3.5 List Decoding Chalf:
Proof of Corollary 6.24

We show that the codes Chalf = (ZN , halfN ,ZN) presented in Example 6.2 are is
(1

2
− ε, poly(log |G| , 1/ε))-locally list decodable; thus proving Corollary 6.24.

Corollary 6.24 For any N ∈ N, the codes Chalf = (ZN , halfN ,ZN) presented in
Example 6.2 are is (1

2
− ε, poly(log |G| , 1/ε))-locally list decodable.

Proof. The corollary follows from Theorem 6.22 above saying that CP is list decodable
if P is well concentrated when combined with the lemma below showing that the
family of functions Half = {halfN : ZN → {0, 1}}N∈N is efficiently computable and
well concentrated. �
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Lemma 6.23 The family of functions Half = {halfN : ZN → {0, 1}}N∈N defined by
halfN(x) = 1 iff min {x,N − x} ≤ N/4 is efficiently computable and well concen-
trated.

Proof. The fact that for Half is efficiently computable is immediate from its definition.
We show that Half is well concentrated.

Fix N ∈ N and ε > 0, and drop indexes N . To show that Half is well concentrated,
we show there is a set of characters Γ ⊆ ZN of size |Γ| = poly(logN, 1/ε), of low gcd

∀α ∈ Γ, gcd(α,N) ≤ poly(logN, 1/ε), s.t. ‖
∑

α∈Γ ĥalf(α)χα − half‖22 ≤ ε. Set

Γ = {α | abs(α) ≤ k} for k = O(1/ε)

Clearly, |Γ| = O(1/ε) and ∀α ∈ Γ, gcd(α,N) ≤ k = O(1/ε). To show that

‖
∑

α∈Γ ĥalf(α)χα − half‖22 ≤ ε it suffices to show that
∑

α/∈Γ

∣∣∣ĥalf(α)
∣∣∣2 ≤ ε. For each

0 6= α ∈ ZN , ĥalfN(α) = SN/2(α) (for SN/2(α) as in Definition 3.32). By Proposition

3.33 Item 3,
∣∣SN/2(α)

∣∣2 ≤ 2
3

(
2

abs(α)

)2

. Therefore,

∑
α/∈Γ

∣∣∣ĥalf(α)
∣∣∣2 = O

(∑
α≥k

1

α2

)
= O

(
1

k

)
which is equal to ε by choice of k. �

6.4 Distance Bounding using Fourier Spectrum:

Proof of Theorem 6.27

We analyze the combinatorial properties of codes CPN = (ZN , PN ,ZN). We bound
the distance of CPN in terms of the Fourier spectrum of PN and analyze its rate,
showing it achieves parameters as stated in Theorem 6.27. We then focus on the
codes Chalf = (ZN , halfN ,ZN) presented in Example 6.2, showing they have constant
distance. This proves Corollary 6.28.

To enable giving our distance bound, we slightly restrict the message space of the
considered codes to be the set

MN = Z∗
N ∩ {1, . . . , b(N/2)c}

This restriction incurs only a small reduction in size of the message space.

Theorem 6.27. For any N ∈ N and PN : ZN → {±1}, the MPC code (ZN , PN ,ZN)
is a code of rate (logN −O(1))/N and distance at least(∣∣∣P̂N(α1)

∣∣∣− ∣∣∣P̂N(α2)
∣∣∣)2
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for α1, α2 ∈ ZN defined by α1 = arg maxα∈ZN

∣∣∣P̂N(α)
∣∣∣ and α2 = arg maxα∈ZN ,α 6=±α1

∣∣∣P̂N(α)
∣∣∣

where P̂N(α) = Ex∈ZN

[
PN(x)ei 2π

N
αx
]
.

Proof. We first bound the rate. The rate is (logN−O(1))/N because the information
length is log |MN | = logN − log Θ(1), whereas the encoding length is N .

We next bound the distance. Denote τ1 =
∣∣∣P̂N(α1)

∣∣∣2 and τ2 =
∣∣∣P̂N(α2)

∣∣∣2. We

show that the distance ∆(Cx, Cy) is at least (
√
τ1 −

√
τ2)

2 for any two codewords
Cx, Cy ∈ CPN . Recall that

∆(Cx, Cy) =
1

2
− 1

2
〈Cx, Cy〉

therefore to lower bound the distance between Cx and Cy we may as well upper bound
their inner product. By Parseval Identity (see Theorem 2.2),

〈Cx, Cy〉 =
∑

α∈ZN

Ĉx(α)Ĉy(α)

Observe that Ĉx(α) = ̂PN(α/x) and Ĉy(α) = ̂PN(α/y). (This is because ∀z ∈ Z∗
N ,

Cz(i) = PN(i/z mod N) and by Theorem 2.2.) Therefore,

〈Cx, Cy〉 =
∑

α∈ZN

P̂N(α)P̂N(α
x

y
)

〈Cx, Cy〉 is therefore maximal when largest Fourier coefficients of PN are multiplied

with each other. Since y ∈MN , then x 6= ±y, implying that α1 /∈
{
±α1 · x

y
mod N

}
;

therefore, at the worst case: α1 ∈
{
±α2 · x

y
mod N

}
and α2 ∈

{
±α1 · x

y
mod N

}
.

In this case,

〈Cx, Cy〉 = 4
√
τ1τ2 +

∑
α 6=±α1,±α2

P̂N(α)P̂N(α
x

y
)

Observing that
∑

α 6=±α1,±α2
P̂N(α)P̂N(αx

y
) ≤

∑
α 6=±α1,±α2

∣∣∣P̂N(α)
∣∣∣2 ≤ 1 − 2τ1 − 2τ2

and using the identify (a− b)2 = a2 − 2ab+ b2 we get that

〈Cx, Cy〉 ≤ 1− 2(
√
τ1 −

√
τ2)

2

Therefore
∆(Cx, Cy) ≥ (

√
τ1 −

√
τ2)

2

�

We show the codes Chalf = (ZN , halfN ,ZN) have constant distance. To show this
we analyze the Fourier spectrum of the functions halfN bounding from below their
heaviest Fourier coefficient by 2

π
, and bounding from above their second heaviest

Fourier coefficient by 2
3π

(
1 +O

(
1
N

))
.
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Corollary 6.28. For any N ∈ N, the Multiplication code (ZN , halfN ,ZN) with
message space MN is a binary code of rate (logN − O(1))/N and distance at least(

4
3π

)2 (
1−O

(
1
N

))
≈ 0.18.

Proof. The fact that ChalfN is binary is immediate from Half being a family of
Boolean function. The rate bound follows from N being the encoding length and
log |MN | = logO(N) being the information rate. In the Lemma below we show that

(
√
τ1 −

√
τ2)

2 >
(

4
3π

)2 (
1−O

(
1
N

))
for τ1, τ2 the largest and second largest values of∣∣∣ĥalfN(α)

∣∣∣2 over all α ∈ ZN , N ∈ N. By Theorem 6.27 this implies that ChalfN has

distance of at least
(

4
3π

)2 (
1−O

(
1
N

))
. �

Lemma 6.52. Denote τ1, τ2 the largest and second largest values of
∣∣∣ĥalfN(abs(α))

∣∣∣2
over all α ∈ ZN , N ∈ N, then τ1 ≥

(
2
π

)2
, τ2 ≤

(
2/3
π

)2 (
1 +O( 1

N
)
)

and (
√
τ1−
√
τ2)

2 ≥(
4
3π

)2 −O( 1
N

)

Proof. Fix N . We analyze to Fourier coefficients of halfN , lower bounding the
largest coefficient τ1 by (2/π)2 and upper bounded the second largest coefficient τ2

by
(

2/3
π

)2 (
1 +O( 1

N
)
)
. Combing these bounds we conclude that (

√
τ1 −

√
τ2)

2 >(
4
3π

)2 −O( 1
N

).
We first argue that the largest Fourier coefficient is obtained on abs(α) = 1 and

the second largest on abs(α) = 3. For α = 0, ĥalfN(0) ≤ 1
N

so its negligibly small.
We concentrate of α 6= 0. For each 0 6= α ∈ ZN , the α Fourier coefficients of halfN is
equal to SN/2(α) (for SN/2(α) as presented in Definition 3.32), which by proposition
3.33 Item 1, implies that

|halfN(α)|2 =

(
2

N

)2 1− cos(2π
N
αN

2
)

1− cos(2π
N
α)

Exploring this function reveals that it has local maxima on odd α with decreasing
value as abs(α) increase. Namely, the largest Fourier coefficient is obtained on α s.t.
abs(α) = 1, and the second largest is obtained on α s.t. abs(α) = 3.

We next lower bound the largest Fourier coefficient of halfN by (2/π)2, showing
that |halfN(1)|2 > (2/π)2. To simplify the computations, we restrict attention to even
values of N . For odd N , results differ by negligible factors of O( 1

N
). By the above,

when assigning α = 1,
∣∣∣ĥalfN(1)

∣∣∣2 =
(

2
N

)2 1−cos π
1−cos( 2π

N
)
. The nominator is equal to 2.

The denominator is upper bounded by 1
2

(
2π
N

)2
(according to Taylor approximation).

Combining these two bound we conclude that

τ1 ≥
(

2

π

)2

We next upper bound τ2. By the above,
∣∣∣ĥalfN(3)

∣∣∣2 =
(

2
N

)2 1−cos(3π)

1−cos( 2π
N

3)
The nomina-

140



tor is equal to 2. The denominator is lower bounded by 1
2
(2π

N
3)2− 1

4!
(2π

N
3)4 (according

to Taylor approximation). Reorganizing this expression we get that
∣∣∣ĥalfN(3)

∣∣∣2 ≤(
2/3
π

)2
1

1−3( π
N )

2 . Namely,

τ2 ≤
(

2/3

π

)2(
1 +O(

1

N
)

)
Combining the two bounds, we get that the distance of CHalf is at least

(
√
τ1 −

√
τ2)

2 ≥
(

4

3π

)2

−O(
1

N
)

�

6.5 Self Correcting via Testing:

Proof of Theorem 6.25

We show that the Multiplication codes Chalf from Example 6.2 are locally self cor-
rectable. This proves Theorem 6.25.

Theorem 6.25. Let Chalf = (ZN , halfN ,ZN) be the Multiplication code as in Ex-

ample 6.2, denote τmax = maxα∈ZN

∣∣∣ĥalfN(α)
∣∣∣2. Then τmax = 1

4
+ Ω(1) and for every

ε ∈ [0, τmax− 1
4
) and ρ ∈ (0, 1), C is (ε, q, T, 1−ρ)-locally self correctable with number

of queries bounded by q ≤ poly(1/(τmax − 1
4
− ε), 1/ρ) and running time bounded by

T ≤ poly(log |G| , 1/(τmax − 1
4
− ε), 1/ρ).

Proof. To prove Theorem 6.25, we first present our local self correcting algorithm,
and then analyze its correctness and complexity.

Algorithm 6.53. Local Self Correcting Algorithm.
Input: N ∈ N, entry location y ∈ ZN , noise parameter ε ∈ [0, τmax − 1

4
), success

parameter ρ ∈ (0, 1), and query access to w : ZN → {±1} s.t. ‖w − CN,x‖22 ≤ ε for a
codeword CN,x ∈ Chalf .
Output: CN,x(y)
Steps:

1. Denote ζ = τmax − 1
4
− ε

2
, and ` = Θ(ζ1.5ρN)

2. For c = i` for i = 0, . . . , b(1
`
(1− ρ)N

4
)c

(a) Denote δ = O( ζ1.5ρ
1−ρ

), mA = Θ
(

1
ζ2 ln 1

δ

)
, mB = Θ

(
1
ζ2 (lnmA)(ln 1

δ
)
)

and

t = Θ(N
√

ζ
`

)
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(b) Let A ⊆ ZN be a set of mA elements chosen uniformly at random. Let
B ⊆ {0, . . . , t− 1} be a set of min {t,mB} elements chosen uniformly at
random.

(c) Run the Parametrized Distinguishing Algorithm 6.55 on input N , c, A,B,
1
2

+ ζ and query access to the function f as given by the Simulated Query
Access Algorithm 6.54; denote its output by decisionc

3. Output 1 iff ∃c ∈ 0, . . . , b(1
`
(1 − ρ)N

4
)c for which decisionc = 1; output −1

otherwise.

Algorithm 6.54. Simulated Query Access Algorithm.
Input: j ∈ ZN the entry location y ∈ ZN and query access to w : ZN → {±1}
Output: f(j) for f s.t. ∆(CN,xy, f) = ∆(CN,x, CN,x)
Steps: Output w(yj) for y the input to the Local Self Correcting Algorithm and yj
multiplication modulo N .

Algorithm 6.55. Distinguishing Algorithm.
Input: N ∈ N, c ∈ ZN , A,B ⊆ ZN , τ ∈ [0, 1] and query access to a function
f : ZN → C
Output: 1 or 0
Steps:

1. Compute

est+ ← 1

|A|
∑
x∈A

(
1

|B|
∑
y∈B

χ−c(y)f(x− y)

)2

est− ← 1

|A|
∑
x∈A

(
1

|B|
∑
y∈B

χc(y)f(x− y)

)2

est ← est+ + est−

2. If est ≥ τ , output 1, else output 0

Analysis of Local Self Correcting Algorithm 6.53. Let the input to the Local
Self Correcting Algorithm 6.53 be N ∈ N, y ∈ ZN , ε ∈ [0, τmax − 1

4
), ρ ∈ (0, 1) and

query access to w : ZN → {±1} s.t. ‖w − Cx‖22 ≤ ε for Cx : ZN → {±1} a codeword
of CHalf . We show that the Local Self Correcting Algorithm 6.53 ourputs the value
Cx(y) with probability at least 2/3 for at least 1− ρ fraction of the possible inputs y,

and that its query complexity and running time is q, T = Θ̃
(

1−ρ
ζ5.5ρ

ln2 1
ρ

)
. This shows

that for any ρ ∈ (0, 1) and ε ∈ [0, τmax− 1
4
), CHalf is (q, T, 1−ρ)-locally self correctable

algorithm from noise ε with q, T = Θ̃
(

1−ρ
ζ5.5ρ

ln2 1
ρ

)
.

Denote

αmax = abs(arg max
α∈ZN

∣∣∣ĈN,xy(α)
∣∣∣2)
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Consider first the case that Cx(y) = 1. In this case, by Lemma 6.56, αmax ∈{
−N

4
, . . . , N

4

}
and for f : ZN → {±1} the function defined by the Simulated Query

Access Algorithm 6.54 it holds that
∣∣∣f̂(αmax)

∣∣∣2 +
∣∣∣f̂(−αmax)

∣∣∣2 ≥ 1
2

+ ζ. We consider

two sub-cases: either αmax ∈ [0, (1− ρ)N
4
] or αmax ∈ ((1− ρ)N

4
, N

4
].

In the case when αmax ∈ [0, (1 − ρ)N
4
], the algorithm outputs the correct value

Cx(y), with probability at least 2/3 (where the probability is taken over the random
coins of the algorithm). This is because by Lemma 6.57 decisionc = 1 with probability
at least 1− δ for the c ∈ [0, b((1− ρ)N

4
)c] s.t. abs(αmax− c) < `/2, implying that the

algorithm outputs value 1 with probability at least 1− δ.
In the case when αmax ∈ ((1−ρ)N

4
, N

4
], we have no guarantee on the output of the

algorithm. This case however happens for at most 1−ρ fraction of the entries y. This
is because αmax = abs(xy) (see Lemma 6.56.2), and {xy | y ∈ ZN} is a permutation
of ZN for x ∈ Z∗

N . Thus, the fraction of y’s such that abs(xy) ∈ ((1 − ρ)N
4
, N

4
] is at

most ρ.

Consider next the case that Cx(y) = −1. In this case, by Lemma 6.56,∑
α∈{−N

4
,..., N

4 }
∣∣∣f̂(α)

∣∣∣2 ≤ 1
2
− ζ. By Lemma 6.57, this implies that for every c,

decisionc = 0, with probability at least 1 − δ. By union bound this holds for all

O( 1−ρ
ζ1.5ρ

) values of c with probability at least (1− δ)O( 1−ρ

ζ1.5ρ
)
which is greater than 2/3

by the choice of δ ≤ O( ζ1.5ρ
1−ρ

). Thus, the algorithm outputs value −1 with probability

at least 2/3.

We conclude by analyzing the number q of queries the algorithm makes and its
running time T . The number of repetitions of loop over intervals centers c is at
most 1

`
· (1 − ρ)N

4
= O( 1−ρ

ζ1.5ρ
). Each run of the Distinguishing Algorithm makes

mA · mB = Θ̃(( 1
ζ2 ln 1

δ
)2) queries and takes time O(mAmB). The total number of

queries and the total running time are therefore

q, T = Θ̃

(
1− ρ
ζ5.5ρ

ln2 1

ρ

)
(where we replaced ln 1

δ
with ln 1

ρ
because all arguments other than 1/ρ are subsumed

by the Θ̃() notation for our choice of δ = O( ζρ
1−ρ

)). �

Lemma 6.56. For f : ZN → {±1} the function defined by the Simulated Query
Access Algorithm 6.54 the following holds:

• If CN,x(y) = 1, then αmax ∈
{
−N

4
, . . . , N

4

}
and

∣∣∣f̂(αmax)
∣∣∣2+∣∣∣f̂(−αmax)

∣∣∣2 ≥ 1
2
+ζ.

• If CN,x(y) = −1, then
∑

α∈{−N
4

,..., N
4 }
∣∣∣f̂(α)

∣∣∣2 ≤ 1
2
− ζ.

Proof. Consider first the case CN,x(y) = 1. In this case, by Lemma 6.56.3, αmax ∈{
−N

4
, . . . , N

4

}
and

∣∣∣ĈN,xy(αmax)
∣∣∣2 +

∣∣∣ĈN,xy(−αmax)
∣∣∣2 ≥ 2τmax. By Lemma 6.56.1, this
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implies that
∣∣∣f̂(α)

∣∣∣2 +
∣∣∣f̂(−α)

∣∣∣2 ≥ 2τmax − ε. From the definition of ζ it follows that

∣∣∣f̂(α)
∣∣∣2 +

∣∣∣f̂(−α)
∣∣∣2 ≥ 1

2
+ ζ

Consider next the case CN,x(y) = −1. In this case, by Lemma 6.56.3,∑
α∈{−N

4
,..., N

4 }
∣∣∣ĈN,xy(α)

∣∣∣2 < 1− 2τmax. Lemma 6.56.1, this implies that∑
α∈{−N

4
,..., N

4 }
∣∣∣f̂(α)

∣∣∣2 < 1− 2τmax + ε. From the definition of ζ it follows that

∑
α∈{−N

4
,..., N

4 }

∣∣∣f̂(α)
∣∣∣2 < 1

2
−O(1)

Lemma 6.56.1 (Analysis of Simulated Query Access Algorithm 6.54). Let f : ZN →
{±1} be the function defined by the output of Simulated Query Access Algorithm 6.54,
then for all x ∈ Z∗

N ,
‖f − CN,xy‖22 ≤ ε

Proof. Let η, η′ be s.t. w = CN,x + η and f = CN,xy + η′. By definition, f(j) =
CN,x(yj)+η(yj). Observe that CN,x(yj) = halfN(x ·yj) = CN,xy(j), and ‖η′‖22 = ‖η‖22
(where we rely on the fact that the map j 7→ yj is a permutation of Z∗

N). Finally,
since ‖η‖22 ≤ ε we conclude that ‖f − CN,xy‖22 ≤ ε.

Lemma 6.56.2. αmax = abs(xy) and CN,x(y) = 1 iff αmax ∈ {α | abs(α) ≤ N/4}.

Proof. We first argue that αmax = abs(xy). Recall that by Theorem 2.2,

ĈN,xy(α) = ĥalfN(α(xy)−1)

In particular for α ∈ ±xy,
ĈN,xy(xy) ∈ ĥalfN(±1)

Since the heaviest Fourier coefficient of halfN is on ±1, then the heaviest Fourier
coefficient of CN,xy is on ±xy. Namely,

αmax = abs(xy)

We next argue that CN,x(y) = 1 iff xy ∈ {α | abs(α) ≤ N/4}. By definition of C,
CN,x(y) = halfN(xy). By definition of Half, halfN(xy) = 1 iff abs(xy) ≤ N/4. Thus,

CN,x(y) = 1 iff xy ∈ {α | abs(α) ≤ N/4}

Combining the above, we conclude that,

CN,x(y) = 1 iff αmax ∈ {α | abs(α) ≤ N/4}
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Lemma 6.56.3. • If CN,x(y) = 1, then αmax ∈
{
−N

4
, . . . , N

4

}
and

∣∣∣ĈN,xy(αmax)
∣∣∣2+∣∣∣ĈN,xy(−αmax)

∣∣∣2 ≥ 2τmax,

• If CN,x(y) = −1, then
∑

α∈{−N
4

,..., N
4 }
∣∣∣ĈN,xy(α)

∣∣∣2 ≤ 1− 2τmax.

Proof. Consider first the case that CN,x(y) = 1. By Lemma 6.56.2, this implies
that αmax ∈

{
−N

4
, . . . , N

4

}
, and due to symmetry of

{
−N

4
, . . . , N

4

}
also −αmax ∈{

−N
4
, . . . , N

4

}
. Since CN,xy is a symmetric function,29 then ĈN,xy(αmax) = ĈN,xy(−αmax),

implying that ∣∣∣ĈN,xy(αmax)
∣∣∣2 +

∣∣∣ĈN,xy(−αmax)
∣∣∣2 = 2τmax

Consider next the case that CN,x(y) = −1. By Lemma 6.56.2, this implies
that αmax /∈

{
−N

4
, . . . , N

4

}
, and due to symmetry of

{
−N

4
, . . . , N

4

}
also −αmax /∈{

−N
4
, . . . , N

4

}
. Thus,

∑
α/∈{−N

4
,..., N

4 }
∣∣∣ĈN,xy(α)

∣∣∣2 ≥ 2τmax. This implies that

∑
α∈{−N

4
,..., N

4 }

∣∣∣ĈN,xy(α)
∣∣∣2 ≤ 1− 2τmax

where the latter is true since by Parseval Identity
∑

α∈ZN

∣∣∣ĈN,xy(α)
∣∣∣ = ‖CN,Cy‖22 and

‖CN,Cy‖22 = 1 since CN,Cy accepts {±1} values.

�

Lemma 6.57. For any ρ ∈ (0, 1), ` = Θ(ζ1.5ρN) sufficiently small, and c ∈ [0, b((1−
ρ)N

4
)c], the value decisionc computed in step 2c of the Self Correcting Algorithm

satisfies the following with probability at least 1− δ:

1. If ∃α ∈ {α | abs(abs(α)− c) ≤ `/2} s.t.
∣∣∣f̂(α)

∣∣∣2 +
∣∣∣f̂(−α)

∣∣∣2 ≥ 2τmax − ε, then

decisionc = 1

2. If
∑

α∈{−N
4

,..., N
4 }
∣∣∣f̂(α)

∣∣∣2 ≤ 1
2
, then decisionc = 0.

Proof. We first prove the first part of the lemma. Assume there is α ∈ {α |
abs(abs(α)− c) ≤ `/2} s.t.

∣∣∣f̂(α)
∣∣∣2 +

∣∣∣f̂(−α)
∣∣∣2 ≥ 2τmax − ε. In this case,∑

α : abs(abs(α)−c)≤`/2

∣∣∣f̂(α)
∣∣∣2 ≥ 2τmax − ε. By Lemma 6.57.1, this implies that est ≥

2τmax − ε − ζ = 1
2

+ ζ with probability at least 1 − δ (where the last equality is by
assigning the value of ζ). Thus, decisionc = 1.

We next prove the second part of the lemma. We show the contra positive, that

is, we show that decisionc = 1 implies that
∑

α∈{−N
4

,..., N
4 }
∣∣∣f̂(α)

∣∣∣2 > 1
2
. Assume

29A function g : ZN → C is symmetric if g(x) = g(−x) for all x ∈ ZN .
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decisionc = 1. In this case, est > 1
2

+ ζ, which by Lemma 6.57.1 with probability

at least 1 − δ implies that
∑

α : abs(abs(α)−c)≤¯̀/2

∣∣∣f̂(α)
∣∣∣2 > 1

2
for ¯̀ =

√
128
3ζ

(1 + 20
3ζ

)`.

Observing that
{
α : abs(abs(α)− c) ≤ ¯̀/2

}
⊆
{
−N

4
, . . . , N

4

}
for any c ≤ (1−ρ)N

4
, we

conclude that
∑

α∈{−N
4

,..., N
4 }
∣∣∣f̂(α)

∣∣∣2 > 1
2
.

Lemma 6.57.1. If ζ > 0, then with probability at least 1− δ the following holds for
est = est+ + est−:

1. est ≥
∑

α : abs(abs(α)−c)≤`/2

∣∣∣f̂(α)
∣∣∣2 − ζ

2.
∑

α : abs(abs(α)−c)≤¯̀/2

∣∣∣f̂(α)
∣∣∣2 > est− ζ for any ¯̀≥

√
128
3ζ

(1 + 20
3ζ

)`

Proof. Denote γ = ζ/4, γ′ =
√

3
5
γ and `′ = (1 + 1

γ′
)`.

We prove the first part of the lemma. By Proposition 6.58, since ` = γ′`′ and
mA,mB set in Algorithm 6.53 are of sizes mA = Θ( 1

ζ2 ln 1
δ
) and mB = Θ( 1

ζ2 ln 1
δ
lnmA),

then, with probability at least 1− δ:

est+ ≥
∑

α : abs(α−c)≤`/2

∣∣∣f̂(α)
∣∣∣2 (1− 5

6
(γ′)2)− γ

Observing that
∑

α : abs(α−c)≤`/2

∣∣∣f̂(α)
∣∣∣2 ≤ 1 and 5

6
(γ′)2, γ ≤ ζ/4 we conclude that

est+ ≥
∑

α : abs(α−c)≤`/2

∣∣∣f̂(α)
∣∣∣2 − ζ/2. Similarly, est− ≥

∑
α : abs(α+c)≤`/2

∣∣∣f̂(α)
∣∣∣2 − ζ/2.

Combining these two bounds concludes the proof of the first part, as it shows that
est = est+ + est− satisfies that

est ≥
∑

α : abs(abs(α)−c)≤`/2

∣∣∣f̂(α)
∣∣∣2 − ζ

We prove the second part of the lemma. By Proposition 6.58, since ¯̀≥
√

32
3γ
` and

mA,mB set in Algorithm 6.53 are of sizes mA = Θ( 1
ζ2 ln 1

δ
) and mB = Θ( 1

ζ2 ln 1
δ
lnmA),

then, with probability at least 1− δ:∑
α : abs(α−c)≤¯̀/2

∣∣∣f̂(α)
∣∣∣2 > est+ − 2γ

Similarly,
∑

α : abs(α+c)≤¯̀/2

∣∣∣f̂(α)
∣∣∣2 > est− − 2γ. Combining these two bounds and

assigning the value γ = ζ/4, we get that∑
α : abs(abs(α)−c)≤¯̀/2

∣∣∣f̂(α)
∣∣∣2 > est− 4γ = est− ζ
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Proposition 6.58. For any N ∈ N, γ, δ ∈ (0, 1), c ∈ ZN , `′ ≤ N/2 and f : ZN →
{±1}, properties 1-2 below are satisfied with probability at least 1− δ by the value

estimator =
1

|A|
∑
x∈A

(
1

|B|
∑
y∈B

χ−c(y)f(x− y)

)2

for A ⊆ ZN and B ⊆
{
0, . . . , N

2`′
− 1
}

subsets of sizes mA = Θ( 1
γ2 ln 1

δ
) and mB =

Θ( 1
γ2 ln 1

δ
lnmA) chosen uniformly at random.

1. For any γ′ ∈ (0, 1], estimator ≥
∑

α : abs(α−c)≤γ′ `′
2

∣∣∣f̂(α)
∣∣∣2 (1− 5

6
(γ′)2)− γ

2.
∑

α : abs(α−c)≤
q

32
3γ

`′
2

∣∣∣f̂(α)
∣∣∣2 > estimator − 2γ

Proof. This proposition follows from combining Lemma 3.20 with Lemma 3.19 (when
using its strong form as stated in the remark following it). �

6.6 Linear Encoding Length via Restrictions:

Proof of Theorem 6.34

We prove Theorem 6.34 showing there exists codes for finite abelian groups of linear
encoding length, constant distance and constant list decoding bound.

The codes of linear encoding length are constructed by taking random restrictions
C(S ′) of codes C for G achieving exponential encoding length, constant distance and
constant list decoding bound. That is, codewords of C(S ′) are restrictions of the
codewords of C to a subset S ′ of their entries. The code C(S ′) has the same alphabet
size as the code C, and has linear encoding length. In Lemma 6.36 we show that the
code C(S ′) maintains roughly the same distance as the code C with high probability.
We thus obtain codes of linear encoding length and constant distance and list decoding
bound from the codes of exponential encoding length, and constant distance and list
decoding bound.

Definition 6.35. [Restrictions] For any code C ⊆ ΣS with entries indexed by ele-
ments in S and a subset S ′ ⊆ S, we defined the restriction of C to S ′ to be the code
C(S ′) =

{
C|S
}

C∈C for C|S ∈ ΣS the restriction of C to entries whose index s is in S ′.
We say that C(S ′) is an n-random restriction of C if the set S ′ is a a subset of S of
size n chosen uniformly at random.

Example 6.59. Let Cconst = Cconst(γ,N) = (ZN , halfN , S
′) be the restriction of

the code (ZN , halfN ,ZN) from Example 6.2 to a random subset S ′ ⊆ ZN of size
O(logN/γ2). Then Cconst is a binary code of constant rate, and with high probability
it has constant distance (where the probability is taken over the choice of S ′).
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Theorem 6.34. For any γ < 0.17 and any finite abelian group G, there exists
Multiplication codes C for G of alphabet Σ, rate O(1/γ2 log |Σ|), constant distance,
and satisfying the following list decoding bound: ∀C ∈ C,

∣∣BallC(C, 1
2
− 2γ)

∣∣ ≤
poly(log |G| , 1/γ).30. The alphabet size |Σ| depends on the underlying group: |Σ| =
2 for cyclic groups, |Σ| = O(1) for groups with constant size generating set, and
|Σ| = |G| for arbitrary finite abelian groups. Algebraic operations in these decoding
algorithms are computed in the group G.

Proof. Let C be a code for G achieving exponential encoding length, constant distance
and constant list decoding bound. Let C(S ′) be a random restrictions of C to a set of
size O(log |G| /γ2). The code C(S ′) has linear encoding length and the same alphabet
size as the code C. In Lemma 6.36 we show that the distance of the code C(S ′) is at
least δ − γ for δ the distance of the code C. We thus obtain codes of linear encoding
length and constant distance and list decoding bound from the codes of exponential
encoding length, and constant distance and list decoding bound. �

Lemma 6.36. Let C ⊆ ΣS be a code of non-linear encoding length |S| = ω(log |C|)
and with relative Hamming distance at least δ. For any γ > 0 and any n =
Θ(logN/γ2) sufficiently large, the n-random restriction of C has linear encoding length
of O(1/γ2) and its relative Hamming distance is at least δ−γ with probability at least
1 − O( 1

|C|) (where the probability is taken over the choice of the random restriction

S ′ ⊆ S).

Proof. We show that for any two codewords C,C ′ of C and the corresponding two
codewords C|S′ , C

′
|S′ of C(S ′), the distance ‖C|S′−C ′

S′‖22 of C|S′ , C
′
|S′ is at least ‖C−C ′‖22

with high probability.

Recall that ∆(C|S′ , C
′
|S′) = Prs∈S′ [C(s) 6= C ′(s)]. By Chernoff bound

Pr
S′

[∣∣∆(C|S′ , C
′
|S′)−∆(C,C ′)

∣∣ > γ
]
< 2 exp(−2 |S ′| γ2)

By union bound, this holds for every C,C ′ ∈ C with probability at least
1 − 2 |C|2 exp(−2 |S ′| γ2) = 1 − O( 1

|C|) where the last equality is by choice of |S ′| =
Θ( log|C|

γ2 ) large enough. �

6.7 Codes for Groups of Small Generating Sets:

Proof of Theorem 6.32

We sketch the decoding and self correcting algorithms for the codes for G = ZN1 ×
. . .× ZNk

in Definition 6.31 and their analysis, proving the derivation rules stated in
Theorem 6.32.

30BallC(C, r) denotes the set of codewords of C within relative Hamming distance at most r from
C.
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Theorem 6.32. For i = 1, . . . , k, let CZNi
be codes for the groups ZNi

of alpha-
bet Σ, rate r, relative Hamming distance ∆, which are (O(1), `, q, T )-decodable
and (O(1), q, T, 1 − ρ)-locally self correctable. Let CG be the code for the group
G = ZN1 × . . . × ZNk

built from the code CZN
as in Definition 6.31. Then the code

CG is a code for the group Zk
N of alphabet Σk, rate r, relative Hamming distance

1−O(1), which is (1
2
−O(1), 1, q, kT )-decodable and (1

2
−O(1), q, kT, (1−ρ)k)-locally

self correctable.

Proof. We sketch the decoding and self correcting algorithms for the codes for G =
ZN1 × . . .× ZNk

in Definition 6.31 and their analysis.
At a high level both these algorithms operates by first decomposing the given

corrupted codewords C ′
m into k corrupted codewords C ′

m1
, . . . , C ′

mk
, such that if C ′

m

is close to the codeword encoding message m = (m1, . . . ,mk) in the code for G =
ZN1 × . . . × ZNk

. then each C ′
mi

is close to the codeword Cmi
encoding the message

mi in the code for ZNi
. Then they apply the decoding/self correcting algorithms for

codes for ZN on the corrupted codewords C ′
mi

. finally they combine the values to the
output.

Elaborating on the decomposition step, query access for the corrupted codeword
C ′

mi
is gained as follows. Given i ∈ [k] and entry location `, output the value computed

as follows. Randomly sample Oε(1) of the neighbors of left node ` in the graph Hi.
Parse the corresponding entries in the corrupted codeword C ′

m to find the values
corresponding to the encoding of mi. Let the `-th entry of C ′

mi
be the majority vote

over all these values.31 It is known [44] that the majority over all neighbors yields the
correct value with probability 1− Od(1). By Chernoff bound, with high probability,
the value is correct with probability 1 − Od(1), even when the majority vote is only
over a random subset of the neighbors as done here. Thus, C ′

mi
is at relative Hamming

distance Od(1) from the codeword Cmi
encoding mi with high probability.

Next we elaborate on the decoding/self correcting step for C ′
mi

and the combining
step. The decoding algorithm uses as building-block decoding algorithms A1, . . . , Ak

for the codes CN1 , . . . , CNk
. For each i ∈ [k], it applies the decoding algorithm Ai on

the corrupted codeword C ′
mi

to find messages m′
i, and outputs m′ = (m′

1, . . . ,m
′
k).

By properties of the decoding algorithms Ai, for each i, m′
i = mi with probability at

least 2/3. Thus the output m′ is the encoded message m with probability at least
(2/3)k. The running time of this algorithm is O(d

∑k
i=1 Ti) for Ti the running time of

Ai, and the number of queries it makes is O(d
∑k

i=1 qi) for qi the number of queries
made by Ai.

Similarly, the self correcting algorithm uses as building-block self correcting algo-
rithms A′

1, . . . , A
′
k for the codes CN1 , . . . , CNk

. For each i ∈ [k], and each j ∈ [d], it
applies the self correcting algorithm Ai on entry location corresponding to the j-th

31This algorithm is an adaptation of the Guruswami-Indyk [45] majority decoding algorithm for
ABNNR codes: In the Guruswami-Indyk [45] algorithm, the value of entry ` is determined by the
majority vote over all neighbors. In our settings, the number of neighbors may be huge. For example,
consider the group Z2 × ZN and the case n = N . In this case, the number of neighbors in each left
node in the graph H1 = ([2], [n], E1) is Nd/2. So the actual majority vote cannot be decided in
time poly(log N). Nevertheless, the majority vote over a sample of a random subset of the neighbors
gives the value of the true majority with high probability, and can be computed efficiently.
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neighbor of right node s in the graph H i and query access to the corrupted codeword
C ′

mi
to find values of Cmi

on entries corresponding to the d neighbors of right node s,
denote these symbols by bi1, . . . , bid. The output is ((b11, . . . , bk1), . . . , ((b1d, . . . , bkd).
By properties of the self correcting algorithm A′

i, each symbol bij is the values of Cmi

on entries corresponding to the j-th neighbor of right node s in the graph H i, with
probability at least 1−ρ. Thus by definition of the code for G, the output is the value
of the s entry in Cm, with probability at least (1 − ρ)kd. The running time of this
algorithm is O(d

∑k
i=1 Ti) for Ti the running time of Ai, and the number of queries it

makes is O(d
∑k

i=1 qi) for qi the number of queries made by Ai. �

6.8 Soft Error Reduction for Concatenated ABNNR

Codes:

Proof of Theorem 6.43

In this section we present our soft error reduction algorithm for concatenated ABNNR
codes –with possibly unbalanced expander graphs– and analyze its correctness and
running time complexity.

Definition 6.60 (unbalanced expander). For unbalanced bipartite graphs H = ([k], [b], E),
we say that H is a λ-expander if for every A ⊆ [k] and B ⊆ [b],∣∣∣∣|E(A,B)| − dL |A| |B|

b

∣∣∣∣ < λdL

√
|A| |B|

Remark 6.61. A balanced d-regular λ-expander graph H = ([n], [n], E) satisfies

the above property, namely, for every A ⊆ [k] and B ⊆ [b],
∣∣∣|E(A,B)| − d|A||B|

b

∣∣∣ <
λd
√
|A| |B|. This is bound is known as the Expander Mixing Lemma.

Theorem 6.62 (Soft Error Reduction). Let C(H, C0) be a binary ABNNR code with
H a family of (dL, dR)-regular λ-expander graphs H = ([k], [b], E), and C0 a family of
binary error correcting codes of rate r and relative Hamming distance ∆(C0).

There is a soft error reduction algorithm that for each k ∈ N, a message x ∈
{0, 1}k, a noise parameter ε ∈ [0, 1−2∆(C0)) and a recovery parameter γ ∈ (O(λ1/3), O(ε)),32

given w ∈ {0, 1}k/r s.t. ∆(w,C(x)) ≤ 1
4
− ε for C(x) ∈ C(H, C0) the encoding of x in

the binary ABNNR code, outputs z ∈ {0, 1}k s.t.

∆(x, z) ≤ γ

The running time of the algorithm in O
(
k · 2dLdR

)
.

Proof. Fix an input corrupted codeword w and let x be the encoded message s.t.
∆(C(x), w) < 1

4
− ε. Recall that for each left node `, we denote by dist`(y) =

32Specifically, we require γ ∈ ((
√

2λ)1/3, 3
8ε)
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1
d

∑
i∈Γ(`) ∆(C0(y)

i, wi) the average distance of codewords encoding (messages agree-

ing with) y from w on the block corresponding to right neighbors i of left node `.

Algorithm 6.63. Soft Error Reduction Algorithm.
Input: A description of the code C(H, C0), a noise parameter ε and a corrupted

codeword w ∈ {0, 1}b/r s.t. ∆(C(x), w) ≤ 1
4
− ε

4
.

Output: z ∈ {0, 1}n s.t. ∆(z, x) ≤ γ.
Steps:

1. For each ` = 1, . . . , k

(a) By exhaustive search, find assignment y ∈ {0, 1}dRdL to all message bits
i ∈ ΓL(ΓR(`)) such that y minimizes

dist`(y) =
1

dL

∑
i∈Γ(`)

∆(C0(y)
i, wi)

(b) If dist`(y) <
1
4
− ε

4
, set z` = y`

(c) Else set z` = ⊥

2. Output z1 . . . zk

By Lemma 6.64 below when assigning γ ≤ ε/8, for at least (1 − γ)n of the bits
` ∈ [k] of the encoded message x,

dist`(x) <
1

4
− ε

4

Conversely, by Lemma 6.65 below, for each left node ` ∈ [k] and any y ∈ {0, 1}k such
that y` 6= x`,

dist`(y) >
1

4
− ε

4

Combinning both lemmata together, we conclude that for at least (1−γ)k of the bits
` ∈ [k], z` = x` (for z` from Algorithm 6.42 above).

The running time of this algorithm is k · 2d2
. �

We now prove the lemmata used in the proof of Theorem 6.62 above. We use the
following notation: For each right node i ∈ [b] and any assignment y ∈ {0, 1}dR to
the left neighbors of i, we denote the distance of the i-th block of w from C0(y) (i.e.,
the i-th block of the encoding of any message agreeing with y) by

∆i(y)
def
= ∆(C0(y)

i, wi)

We keep the same notation as in Theorem 6.62.
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Lemma 6.64 (Main Lemma). For any γ ∈ (0, 1/3), if λ < γ3/
√

2, then for any
x ∈ {0, 1}k, for at least (1− γ)k of the bits ` ∈ 1, . . . , k,∣∣∣∣ E

i∈Γ(`)
[∆i(x)]− E

i∈1,...,b
[∆i(x)]

∣∣∣∣ ≤ 2γ

Proof. We first fix some notation. Denote δ = γ2dL. Fix some x ∈ {0, 1}k. For
j = 1, . . . , 1/γ, denote

Tj = {i ∈ 1, . . . , b |∆i(x) ∈ [(j − 1)γ, jγ)}

Claim 6.64.1. For any ` ∈ 1, . . . , k, if ∀j ∈ 1, . . . , 1/γ,
∣∣∣E({`}, Tj)− dL

|Tj |
b

∣∣∣ ≤ δ,

then ∣∣∣∣ E
i∈Γ(`)

[∆i(x)]− E
i∈1,...,b

[∆i(x)]

∣∣∣∣ ≤ 2γ

Proof. First we bound Ei∈Γ(`)[∆i(x)]. Rewriting Ei∈Γ(`)[∆i(x)] in terms of the Tj’s we
get

E
i∈Γ(`)

[∆i(x)] =
1

|Γ(`)|
∑

i∈Γ(`)

∆i =
1

dL

1/γ∑
j=1

∑
i∈Tj∩Γ(`)

∆i

(where in the last step we use the fact that |Γ(`)| = dL, because H is (dL, dR)-regular).
By the definition of Tj, for all i ∈ Tj, ∆i ∈ [(j − 1)γ, j) for all i ∈ Tj. Therefore,

1

dL

1/γ∑
j=1

|Tj ∩ Γ(`)| (j − 1)γ ≤ E
i∈Γ(`)

[∆i(x)] <
1

dL

1/γ∑
j=1

|Tj ∩ Γ(`)| jγ

Now, |Tj ∩ Γ(`)| = |E({`}, Tj)| ∈ dL
|Tj |
b
± δ, therefore,

1

dL

1/γ∑
j=1

(
dL
|Tj|
b

+ δ

)
(j − 1)γ ≤ E

i∈Γ(`)
[∆i(x)] <

1

dL

1/γ∑
j=1

(
dL
|Tj|
b
− δ
)
jγ

Canceling the dL in the denominator and the nominator we get

1/γ∑
j=1

(
|Tj|
b
− δ

dL

)
(j − 1)γ ≤ E

i∈Γ(`)
[∆i(x)] <

1/γ∑
j=1

(
|Tj|
b

+
δ

dL

)
jγ (6.1)

Second, we bound Ei=1,...,b[∆i(x)]. Rewriting Ei=1,...,b[∆i(x)] in terms of the Tj’s
we get

E
i=1,...,b

[∆i(x)] =
1

b

b∑
i=1

∆i =
1

b

1/γ∑
j=1

∑
i∈Tj

∆i
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By the definition of Tj, for all i ∈ Tj, ∆i ∈ [(j − 1)γ, j) for all i ∈ Tj. Therefore,

1/γ∑
j=1

|Tj|
b

(j − 1)γ ≤ E
i=1,...,b

[∆i(x)] <

1/γ∑
j=1

|Tj|
b
jγ (6.2)

Combining the bounds from Equations 6.1 and 6.2 we conclude that∣∣∣∣ E
i∈Γ(`)

[∆i(x)]− E
i=1,...,b

[∆i(x)]

∣∣∣∣ ≤ 1/γ∑
j=1

|Tj|
b
γ +

1/γ∑
j=1

δ

dL

jγ ≤ 2γ

(where the last inequality is true since
∑1/γ

j=1
|Tj |
b
γ = γ, and

∑1/γ
j=1

δ
dL
jγ = δ

dL
γ

1
γ
( 1

γ
+1)

2
<

δ
γdL

= γ for any γ < 1/3 and δ = γ2dL).

Claim 6.64.2. Denote Bad =
{
` | ∃j ∈ 1, . . . , 1/γ s.t.

∣∣∣E({`}, Tj)− dL
|Tj |
b

∣∣∣ > δ
}
.

If λ < γ3/
√

2, then |Bad| < γb

Proof. For each j ∈ 1, . . . , γ, denote

Bad+
j =

{
` | |E({`}, Tj)| > dL

|Tj|
b

+ δ

}
Bad−j =

{
` | |E({`}, Tj)| < dL

|Tj|
b
− δ
}

By a counting argument, there exists j ∈ 1, . . . , 1/γ such that either
∣∣Bad+

j

∣∣ ≥ γ
2
|Bad|

or
∣∣Bad−j ∣∣ ≥ γ

2
|Bad|. Without loss of generality assume∣∣Bad+

j

∣∣ ≥ γ

2
|Bad| (6.3)

By definition of Bad+
j , for each ` ∈ Bad+

j , |E({`}, Tj)| > dL
|Tj |
b

+ δ. Therefore,

∣∣E(Bad+
j , Tj)

∣∣ >
∣∣Bad+

j

∣∣ (dL
|Tj|
b

+ δ

)
(6.4)

On the other hand, by Expander Mixing Lemma ,∣∣E(Bad+
j , Tj)

∣∣ ≤ dL

∣∣Bad+
j

∣∣ |Tj|
b

+ λdL

√∣∣Bad+
j

∣∣ |Tj| (6.5)

Combining Equations 6.4 and 6.5, we get that

∣∣Bad+
j

∣∣ (dL
|Tj|
b

+ δ

)
< dL

∣∣Bad+
j

∣∣ |Tj|
b

+ λdL

√∣∣Bad+
j

∣∣ |Tj|
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Reorganizing the above expression and assigning δ = γ2dL and |Tj| ≤ b, we get√∣∣Bad+
j

∣∣ <
λdL

δ

√
|Tj| ≤

λ

γ2

√
b

Combining the above with Equation 6.3, we conclude that

|Bad| <
2

γ

(
λ

γ2

)2

b < γb

(where the last inequality is true by the condition of λ).

�

Lemma 6.65. For any x, y ∈ {0, 1}k s.t. x` 6= y`, if Ei∈Γ(`)[∆i(x)] <
1
4
− ε

4
then

E
i∈Γ(`)

[∆i(y)] >
1

4
− ε

4

Proof. Recall that xi, yi denote the restrictions of x and x, y, respectively, to the bits
i1, . . . , idR

∈ 1, . . . , k neighboring the i-th right node of H. For all i ∈ Γ(`), xi 6= yi,
because ` is a neighbor of each i ∈ Γ(`), i.e., ` ∈ i1, . . . , idR

. Therefore,

∀i ∈ Γ(`), ∆(xi, yi) ≥ dist(C0) ≥
1

2
− ε

2
(6.6)

By the triangle inequality,

∆(xi, yi) ≤ ∆(xi, wi) + ∆(wi, yi) (6.7)

Combining Equations 6.6 and 6.7 above, we get that

∆(wi, yi) ≥ ∆(xi, yi)−∆(xi, wi) ≥ 1

2
− ε

2
−∆(xi, wi)

Taking the expectation over all i ∈ Γ(`), we conclude that

E
i∈Γ(`)

[
∆(wi, yi)

]
≥ 1

2
− ε

2
− E

i∈Γ(`)

[
∆(xi, wi)

]
≥ 1

2
− ε

2
−
(

1

4
− ε

4

)
=

1

4
− ε

4

�
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Chapter 7

Cryptographic Hardcore
Predicates via List Decoding

We introduce a unifying framework for proving that predicate P is hardcore for a
one-way function f , and apply it to a broad family of functions and predicates,
showing new hardcore predicates for well known one-way function candidates as well
as reproving old results in an entirely different way.

Our framework extends the list-decoding method of Goldreich and Levin for show-
ing hardcore predicates. Namely, a predicate will correspond to some error correcting
code, predicting a predicate will correspond to access to a corrupted codeword, and
the task of inverting one-way functions will correspond to the task of list decoding a
corrupted codeword.

A characteristic of the error correcting codes which emerge and are addressed by
our framework, is that codewords can be approximated by a small number of heavy
coefficients in their Fourier representation. Moreover, as long as corrupted words are
close enough to legal codewords, they will share a heavy Fourier coefficient. We list
decode such codes, by devising a learning algorithm applied to corrupted codewords
for learning heavy Fourier coefficients. Details on this learning algorithm are given in
chapter 3.

Our algorithm for learning heavy Fourier coefficients is applicable when query
access to the corrupted codeword is given. We obtain such query access whenever
the considered one-way function f satisfies that given f(x) and y one can efficiently
compute f(xy). This is the case, for example, for the well known one-way function
candidates of RSA, Rabin, Discrete Logarithm modulo primes, and Discrete Loga-
rithm in elliptic curves.

For the Diffie-Hellman (DH) candidate one-way function we reduce the problem
of proving hardcore predicates for DH to the problem of learning heavy Fourier co-
efficients (LCN) in various weak access models such as the random samples access
model. No learning algorithm in these access models is known. This reduction can
be interpreted either as a direction for proving hardcore predicates for DH, or as
evidence toward the intractability of LCN under those access models.
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7.1 Introduction

Let f be a one-way function, namely a function which is easy to compute, but hard to
invert on all but a negligible fraction of its inputs. We say that a Boolean predicate
P is a hardcore predicate for f if P (x) is easy to compute given x, but hard to guess
with non-negligible advantage beyond 50% given only f(x). The notion of hardcore
predicates was introduced and investigated in [18,41] and has since proven central to
cryptography and pseudo-randomness.

The standard proof methodology for showing P is hardcore for f is by a reduction
from inverting f to predicting P . That is, demonstrate an efficient inversion algorithm
for f , given access to a probabilistic polynomial time magic-algorithm B that on
input f(x) guesses P (x) with non-negligible advantage over a random guess. Since f
is assumed to be a one-way function, it follows that no such algorithm B exists and
P is a hardcore predicate.

Blum and Micali [18] were the first to show a hardcore predicates for a function
widely conjectured to be one-way. Let p be a prime and g a generator for Z∗

p . The
function EXPp,g : Zp−1 → Z∗

p , EXPp,g(x) = gx mod p is easy to compute and as
hard to invert as solving discrete logarithm modulo a prime p. Blum and Micali [18]
define the predicate BMp,g(x) = 0 if 0 ≤ x < p−1

2
and 1 otherwise, and prove it is

a hardcore predicate for EXPp,g if the discrete logarithm problem is intractable. In
subsequent years, it was shown for other conjectured one-way functions f and other
predicates P , that P is a hardcore predicates for f [5, 16, 32, 41, 42, 51, 59, 86, 90].
Most notably, for the RSA [75] function RSA : Z∗

n → Z∗
n, RSA(x) = xe mod n, the

predicates Pi(x) = ith bit of x were shown hardcore, first for i = 1, |n| [5] and recently
for any 1 ≤ i ≤ |n| [51].

Goldreich and Levin [38] address the general question of whether every one-
way function (OWF) has some hardcore predicate. They show that for any OWF
f : {0, 1}n → {0, 1}∗ one can define another OWF f ′ : {0, 1}n × {0, 1}n → {0, 1}∗ ×
{0, 1}n by f ′(x, r) = (f(x), r), so that the predicate GL(x, r) =

∑n
i=1 xiri is a hard-

core predicates for f ′.
The work of Goldreich-Levin, which explicitly addressed hardcore predicates for

arbitrary one-way functions, by way of solution gave a polynomial time list-decoding
algorithm for a well known error correcting code – the Hadamard code. It introduced
an interesting connection between hardcore predicatess and list decoding which, as
pointed out by Impagliazzo and Sudan [56,82,87], could potentially lead to a general
list decoding methodology for proving hardcore predicates for one-way functions.

We formalize such a methodology. Given a function f and predicate P , one would
have to:

1. Define a Code. Identify an error-correcting code CP encoding distinct
x’s, such that given only f(x) and the capability to compute P (z) on input
z, one can query-access the codeword for x, CP

x . In the case of [38] the
code defined was the Hadamard code which is a natural choice as GL(x, r)
is precisely the r-th entry of the Hadamard encoding of string x.

2. List Decode. Show a polynomial-time list-decoding algorithm for
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the code CP , which works with query access to a corrupted codeword and
tolerates a < 1

2
− ε fraction of error. In the case of Hadamard code, [38]

indeed provides such a list decoding algorithm.

3. Show that predicting P implies access to a corrupted code-
word. Show that if there exists a magic algorithm B that on input f(x)
predicts P (x) with non-negligible advantage, then there exists an access
algorithm which for a non-negligible fraction of x’s, on input f(x), can
query access a corrupted codeword of x with < 1

2
− ε fraction of errors.

Putting all these together, implies that if B exists then f can be inverted for a
non-negligible fraction of x’s (using the list decoding algorithm). Thus, under the
assumption that f is a one-way function, no such B can exist and predicate P is a
hardcore predicate.

This is no doubt an elegant methodology but is it a useful methodology for
proving hardcore predicate results for natural f ’s and P ’s? At the very least, can we
define appropriate codes and corresponding list decoding algorithms so as to employ
this methodology for proving existing hardcore predicate results of [18] for the EXP
function, and the results of of [5, 51] for the RSA function?

These questions are the starting point for our investigation.

Our Work

We introduce a unifying framework for proving that predicate P is hardcore for a
one-way function f , and apply it to a broad family of functions and predicates,
showing new hardcore predicates for well known one-way function candidates as well
as reproving old results in an entirely different way.

Our framework follows a list decoding methodology. Thus, the technical essence
of the new proofs is to define appropriate codes and to list decode them. These two
tasks are independent of the one-way function in question and depend only on the
predicate. The only consideration given to the one-way function is in devising a way
to access the corrupted codeword.

The error correcting codes which emerge and are addressed by our framework
are our Multiplication codes studied in Chapter 6. In these codes, codewords can
be approximated by considering only a small number of heavy coefficients in their
Fourier representation. Moreover, as long as corrupted codewords are close enough to
legal codewords, they will share a heavy Fourier coefficient. To list decode, we use our
SFT Algorithm 3.4 (see chapter 3) applied to corrupted codewords for finding their
heavy Fourier coefficients, and then find all codewords for which these coefficients are
heavy.

Let us now elaborate on the hardcore predicates and one-way functions for which
we apply our framework.
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Segment Predicates: A Class of New Hardcore Predicates

We apply our framework to prove that a wide class of predicates called segment
predicates are hardcore predicates for various well known candidate one-way functions.

A segment predicate is any arbitrary assignment of Boolean values to an arbi-
trary partition of ZN into poly(logN) segments, or a multiplicative shift of such an
assignment. A segment predicate can be balanced (with the same number of 0’s and
1’s) or unbalanced as long as it is far from a constant function. In the latter case
of unbalanced predicates, we naturally adapt the definition of hardcore unbalanced
predicates to be that it is impossible to compute the predicate better than guessing
it at random from f(x).

We prove that any segment predicate is hardcore for any one-way function f
defined over ZN for which, for a non-negligible fraction of the x’s, given f(x) and y,
one can efficiently compute f(xy) (where xy is multiplication in ZN). This includes
the functions EXPp,g, RSA(x), Rabin(x) = x2 mod n, and ECLa,b,p,Q = xQ where
Q is a point of high order on an elliptic curve Ea,b,p,Q(Zp) (naturally the appropriate
N in each case differs).

In particular, this implies that for every i the i-partition-bit is a hardcore predicate
for the RSA function where we define the i-th partition bit of x as 0 if 0 ≤ 2ix ≤
N
2

mod N and 1 otherwise.

In contrast with the notion of segment predicates, we remark that in the past most
all predicates investigated correspond in a fairly direct way with bits in the inverse of
f(x). An exception is the work of [69] showing that Pi(x) = ith bit of ax + b mod p
for randomly chosen a, b, p are hardcore predicates for one-way functions f .

New Proofs of Old Results

It is easy to see that the hardcore predicates of [5, 18, 59] for candidate one-way
functions EXP , RSA, Rabin and ECL, are special cases of the segment predicate
defined above. Thus, we re-prove in an entirely different and uniform manner, all the
results of [5, 18,59]

In contrast to previous proofs, the technical essence of the new proofs is to define
appropriate codes and to list decode them. These two tasks are independent of the
one-way function in question and depend only on the predicate. The only consid-
eration given to the one-way function is for devising a way to access the corrupted
codeword (step 3 in the methodology). A task which turns out to be very simple in all
the cases considered. We stress that the proofs obtained here are completely different
than the previous ones. In particular, the proofs do not require to use the binary gcd
algorithm used in previous proofs of the hardcore predicates for RSA [5, 14, 51], nor
the square root extraction over finite fields as in [18].

We present a new proof method for simultaneous security of many bits. For this
purpose we generalize the notion of balanced hardcore predicates to unbalanced ones.
To prove simultaneous bit security, we will show that any violation of simultaneous
bit security implies a predictor for some unbalanced hardcore predicate. Using this
method we show that a class of functions called segment functions – an extension of
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segment predicates, are simultaneously secure for RSA,Rabin, EXP , and ECL. In
particular, this implies simultaneous security of the O(log logN) most significant bits
for those candidate OWFs [64,86] .

Finally, the new framework applies to proving Goldreich-Levin hardcore predicate
in a natural manner where indeed the appropriate code is the Hadamard code.

For a partial summary of these results, see table 1.

Predicate (or function) P Function f Code CP = {Cx}x
GL(x, r) f(x) : {0, 1}|r| → {0, 1}∗ {Cx(i) = GL(x, i)}x∈{0,1}n

msbN (x) RSAN,e(x) = xe mod N {Cx(i) = msbN (x · i mod N)}x∈Z∗N
msbp−1(x) EXPp,g(x) = gx mod p {Cx(i) = msbp−1(x · i mod p− 1)}x∈Z∗

p−1

msbq(x) ECLp,Q(x) = xQ {Cx(i) = msbq(x · i mod q)}x∈Z∗
q

TriLsbp−1 EXPp,g(x) = gx mod p {Cx(i) = TriLsbp−1(x · i mod p− 1)}x∈Z∗
p−1

Table 7.1: Example of predicates (or a function) and codes. Notations details: GL(z, r) =
(−1)〈z,r〉; msbd(z) = 1 if 0 ≤ z < d

2 , −1 o/w; q denotes the order of Q; Assuming p − 1 is
co-prime to 3, TriLsbp−1(x) = msb(x/3) (where the division is modulo p− 1)

On Diffie-Hellman Hardcore Predicates

The fundamental difference between modern cryptography and the classical one is the
use of public key cryptosystems, namely, cryptosystems in which the communicating
parties exchange only public keys and need not know each others private keys. The
first public key exchange protocol was suggested by Diffie and Hellman in their sem-
inal paper “New Directions in Cryptography” [25]. In the Diffie-Hellman protocol,
the communicating parties, Alice and Bob, each choose private keys ga mod p and
gb mod p, respectively (for p a prime, and g a generator of Z∗

p), and exchange the
public key gab mod p.

The Diffie-Hellman key exchange protocol is based on the Diffie-Hellman (DH)
function

DHg,p(g
a, gb) = gab mod p

for p a prime, and g a generator of the group Z∗
p ; and its security is based on the

Decisional Diffie-Hellman assumption (DDH), which says that no PPT algorithm can
distinguish with non-negligible advantage between the two distributions of 〈ga, gb, gab〉
and 〈ga, gb, gr〉, where a, b, r are chosen uniformly at random from Z∗

p (and all the ex-
ponentiation are modulo p). A –possibly weaker– assumption is the Computational
Diffie-Hellman assumption (CDH), which says that there is no probabilistic polyno-
mial time (PPT) algorithm that, given p, g, ga, gb returns gab (where, again, all the
exponentiation are modulo p).

The Diffie-Hellman function and assumptions have been widely used as funda-
mental primitives in many cryptographic applications. Nonetheless, some of the most
central and essential relevant questions have remained open (for a survey see [20]).
One such fundamental problems is finding a deterministic hardcore predicate for the
Diffie-Hellman function.
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Goldreich and Levin [38] showed that for any one-way function f , given f(x) and

a random string r ∈ {0, 1}|x|, it is hard to predict
∑
xiri mod 2. Thus, any one-

way function, including the Diffie-Hellman function, has a “randomized” hardcore
predicate.

What about deterministic hardcore predicates? For example, is it hard to decide
the msbp predicate, namely, whether the secret gab is greater or smaller than p

2
?

For conjectured one-way functions, such as EXP (x) = gx mod p or RSA(x) =
xe mod n, the first deterministic hardcore predicates were discovered roughly twenty
years ago [5, 18], and many other deterministic hardcore predicates were discovered
since [16,32,41,42,51,59,86,90]. However, not even one single deterministic hardcore
predicates was found for the Diffie-Hellman secret gab. A partial result in this direction
is the work of Boneh and Venkatesan [19] showing that it is hard to compute the
k = O(

√
log p) most significant bits of gab, given ga, gb.

A fundamental question is whether it is possible to improve the result of [19]
in: (1) reducing k to one, and (2) showing that even just predicting the most sig-
nificant bit of gab, given ga and gb, with a non-negligible advantage over a random
guess cannot be done by a probabilistic polynomial time algorithm, under the CDH
assumption. Namely, can we exhibit a deterministic predicate P : Zp → {±1} such
that the existence of a PPT algorithm B that on inputs ga and gb returns P (gab) with
non-negligible advantage over a random guess contradicts the CDH assumption.

We relate the above question to the complexity of the problem of learning char-
acters with noise (LCN), showing that if LCN with random samples access (rLCN)
is in BPP, then every segment predicate is hardcore for the Diffie-Hellman function.
Furthermore, we show that the latter is true even if easier versions of LCN (such as:
LCN with GP-access, that is, with access to samples {(xi, f(xi))}ti=1 with xi’s a ran-
dom geometric progression, or LCN with DH-access, that is, with access to samples
f(gx/gab) for any x = a′b′ s.t. ga′ , gb′ can be efficiently computed given ga, gb) are in
BPP.

These results can be interpreted in two ways. One could either try to find an
efficient algorithm for LCN in one of the above access models, with the goal of proving
segment predicates are hardcore for the Diffie-Hellman function. Alternatively, one
could interpret these results as evidence to the intractability of LCN under those
access models.

Other Related Works

Hastad and Naslund [51] showed that the ith bit of x (in its binary representation)
is a hardcore predicate for the RSA function. We note that this is different than our
result showing that the ith partition bit is a hardcore predicate for the RSA function.
It is interesting to study further whether the same techniques can be applied to obtain
both sets of results.

Fourier analysis of functions over the Boolean cube {0, 1}n has been looked at
previously in the context of hardcore predicates in the work of Goldmann et al [37].

The literature of hardcore predicates is quite vast and many techniques have been
employed throughout the years, which we cannot elaborate on here. The technique
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of Kaliski [59] for proving hardcore predicates for the discrete logarithm problem in
general groups might be another interesting avenue to explore in the context of list
decoding for discrete log based functions; it also does not use square root extraction
of [18] as well.

Organization of this Chapter

In section 7.2, we formally describe the conditions for proving hardcore predicates via
list decoding approach. In section 7.3, we focus on showing hardcore predicates for
number theoretic functions. In section 7.4 we use our techniques to prove simultane-
ous bit security. In section 7.5 we discuss our observations regarding Diffie-Hellman
hardcore predicates.

7.2 Hardcore Predicates via List Decoding

In our list decoding approach, to prove that a predicate P is hardcore for a one-way
function f , we show that there is a list decodable code such that predicting P with
respect to f provides query access to a corrupted codeword encoding x given f(x). In
this section we prove that the list decoding approach works, namely, we show that the
existence of such a code indeed implies that P is hardcore for f . More precisely, we
define “accessible codes”, and show that P is hardcore for f , if there is a list decodable
code which is accessible with respect to P and f . This is shown in Theorem 7.3.

Throughout this section F = {fi : Di → Ri}i∈I denotes a collection of OWFs, P =
{Pi : Di → {±1}}i∈I denotes a collection of predicates, and CP =

{
CPi
}

i∈I
denotes

a collection of codes, where CPi =
{
CPi

x : Di → {±1}
}

is a code with codewords CPi
x

corresponding to a non-negligible fraction of the x ∈ Di.
We define accessible codes. The central property of accessible codes w.r. to P

and F is that, given f(x) and an algorithm that predicts P with respect to f , query
access to a corrupted codeword encoding x can be gained. This is proved in Lemma
7.3.1.

Definition 7.1 (Accessible). Let P be a collection of predicates. We say that CP is
accessible w.r. to F , if there exists a PPT access algorithm A, s.t. ∀i ∈ I ∩ {0, 1}k,
CPi is accessible w.r. to fi, namely,

1. Code access: ∀x, j ∈ Di, A(i, fi(x), j) returns fi(x
′) s.t. CPi

x (j) = Pi(x
′).

2. Well spread: For uniformly distributed CPi
x ∈ CPi and j ∈ Di, the distribu-

tion of x′ satisfying fi(x
′) = A(i, fi(x), j) is statistically close1 to the uniform

distribution on Di.

3. Bias preserving: For every codeword CPi
x ∈ CPi,

∣∣Prj[C
Pi
x (j) = 1]− Prz[Pi(z) = 1]

∣∣ ≤
ν(k), where ν is a negligible function.

An example of an accessible code is the Hadamard code.

1Namely, 1
2

∑
c∈Di

|Prx′ [x′ = c]− Prz[z = c]| < ν(k) for a negligible function ν.
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Example 7.2 (Binary Hadamard code is accessible). Let F ′ = {f ′n : {0, 1}n×{0, 1}n →
Rn} denote a collection of OWFs, where f ′n(x, y) = fn(x).y is the concatenation of
fn(x) and y. Let GL = {GLn : {0, 1}n × {0, 1}n → {±1}} be the collection of predi-
cates: GLn(x, r) = (−1)〈x,r〉. Let CGL =

{
CGLn

}
be the collection of binary Hadamard

codes:
CGLn = {Cx,y : {0, 1}n → {±1}, Cx,y(j) = (−1)〈x,j〉}

Then the algorithm A(n, f ′n(x, y), (j′, j)) = fn(x).j is an access algorithm for CGLn

w.r to f ′n, and GLn is well spread, and bias preserving.

Theorem 7.3 (List Decoding Approach). Assume a collection of codes CP =
{
CPi
}

i∈I
,

s.t. CP is list decodable and accessible w.r. to F , then P is hardcore of F .

Proof. It suffices to show for a non-negligible fraction of the indexes i ∈ I a reduction
of inverting fi with non-negligible probability to predicting Pi from fi. For ease of
notation, in the rest of the proof we fix some i ∈ I ∩ {0, 1}k, and drop the indexes.

Assume an algorithm B that predicts P from f . By lemma 7.3.1, there exists a
non-negligible function ρ and a non-negligible fraction of the codewords CP

x ∈ CP s.t.
we have query access to a corrupted codeword wx satisfying ∆(wx, C

P
x ) ≤ minorCP

x
−

ρ(k).
We list-decode wx to obtain a short list L containing x. Evaluating f on every

candidate x′ in L we output x′ such that f(x′) = f(x) thus inverting f(x).
For ease of notations, we fix some i ∈ I ∩ {0, 1}k and drop the indexes.

Lemma 7.3.1. Let P : D → {±1} be a predicate. Assume CP is accessible w.r. to
f . Assume we are given a PPT algorithm B that predicts P from f . Then, for a
non-negligible fraction of the codewords CP

x ∈ CP , given f(x), we have query access
to a corrupted codeword wx satisfying

∆(wx, C
P
x ) ≤ minorCP

x
− ρ(k)

for ρ a non-negligible function. In particular, for balanced P, ∆(wx, C
P
x ) ≤ 1

2
− ρ(k).

Proof. As CP is accessible w.r. to f , there exists an access algorithm A as in definition
7.1.

Given f(x), define2 wx by

wx(j) = B(A(f(x), j))

Let ax,j ∈ D satisfy f(ax,j) = A(f(x), j). Since the code is well spread, and B
predicts P with some non-negligible advantage ρ′,

Pr[B(f(ax,j)) = P (ax,j)] ≥ majP + ρ′(k)− ν(k)
2Although A,B are probabilistic algorithms, w.l.o.g we assume wx is well-defined: Since our list

decoding algorithm accesses wx only polynomially many times, by taking wx(j) to be the major-
ity value in polynomially many applications of A,B, we have only a negligible probability to of
encountering different values for the same entry wx(j).
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where ν is a negligible function, and the probability is taken over random coin tosses
of B and over random choices of CP

x ∈ CP and j ∈ D.
Let 2ρ(k) = ρ′(k) − ν(k). Thinking of ax,j as first choosing Cx ∈ CP , and then

j ∈ D, by a counting argument, ∃S ′ ⊆ CP of at least ρ(k) fraction of the codewords
s.t.

∀CP
x ∈ S ′, Pr[B(f(ax,j)) = P (ax,j)] ≥ majP + ρ(k)

where the probability is taken over random coin tosses of B and over random choices
of j ∈ D.

Now, as the code is bias preserving
∣∣majCx

−majP
∣∣ ≤ ν ′(k), where ν ′ is a negligible

function. Therefore, there exists a non-negligible function ρ′ = ρ− ν ′ s.t.

∀CP
x ∈ S ′, Pr[B(f(ax,j)) = P (ax,j)] ≥ majCx

+ ρ′(k)

Namely, ∀CP
x ∈ S ′, ∆(wx, C

P
x ) ≤ minorCx − ρ′(k). � �

Remark 7.4. The above theorem hold even if only for non-negligible fraction of the
indexes I, CPi list decodable and accessible w.r. to fi

Remark 7.5. Since our list decoding algorithm accesses the corrupted codeword wx

only polynomially many time, it cannot distinguish between two codewords which are
within negligible distance from each other. Consequently, our proof of P being hardcore
for F implies that P ′ = {P ′

i}i∈I is also hardcore for F , as long as each codeword

Cx ∈ CP ′i is within negligible distance from the codeword Cx ∈ CPi.

Extension to Weak Predictors

Theorem 7.3 exclude the existence of a predictor algorithm to P w.r. to F . Theorem
7.3 can be generalized to exclude also a weaker “predictor” B that guarantees only
for x s.t. P (x) = 1 to predict P better than a random guess. Such weak predictors
come up in our analysis of simultaneous bits security.

In the following we formally define such weak predictors, rephrase Theorem 7.3
accordingly and adapt its proof.

Definition 7.6. We say that B is a weak predictor of P w.r. to F , if for a non-
negligible fraction of the i ∈ I,

Pr[B(fi(x)) = Pi(x)|Pi(x) = 1] > Pr[B(fi(x)) = 1] + ρ(k)

for ρ a non-negligible function and where the probability is taken over the random
coins of the algorithm B and over the random choice of x ∈ Di ∩ {0, 1}k.

Theorem 7.7 (Weak predictor variant of Theorem 7.3). Let CP =
{
CPi
}

i∈I
be a

collection of codes that are accessible w.r. to F and list decodable. Then there exists
no weak predictor of P w.r. to F .

Proof. Fix i ∈ I s.t. CPi is accessible w.r. to fi and list decodable. We show an
algorithm that for a non negligible fraction of the x ∈ Di, given f(x) and query
access to B, returns x.
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In the Lemma below we show that given f(x) and query access to B, we can gain
query access to a corrupted codeword wx s.t. 〈wx, Cx〉 ≥ ŵx(0) + ρ(k).

This implies that 〈wx, Cx〉 ≥ ŵx(0)Ĉx(0) + ρ, because Ĉx(0) ≤ 1 for binary codes.
Now since CP is list decodable, then given such wx, there is an efficient algorithm
that finds a short list L containing x.

Evaluating f on every candidate x′ ∈ L we then output x′ s.t. f(x′) = f(x).

Lemma 7.7.1 (Weak predictor variant of Lemma 7.3.1). Let P : D → {0, 1} be a
predicate. Assume CP is accessible w.r. to F . Assume we are given a PPT algorithm
B s.t. B is a weak predictor for P w.r. to F Then, for a non-negligible fraction of the
codewords Cx ∈ CPN , given fN(x), we can gain query access to a corrupted codeword
wx satisfying

〈wx, Cx〉 ≥ ŵx(0) + ρ(k)

for ρ a non-negligible function and k = logN .

Proof. Recall that for a weak predictor B, Pr[B(fi(x)) = Pi(x)|Pi(x) = 1] >
Pr[B(fi(x)) = 1] + ρ(k). We change notation so that Pi, B accept values in 0, 1
(where 1 stays 1, and each value different than 1 is changed to 0). In these notations,
a weak predictor B satisfies that for a non negligible fraction of the i ∈ I,

E[B(fi(x)) · Pi(x)] > B̂(0) + ρ(k) (7.1)

for ρ a non negligible function and where the probability is over the random coins of
B and over the choice of x ∈ Di ∩ {0, 1}k. In the following we fix some i and drop
indexes.

The proof now follows similarly to the proof of Lemma 7.3.1 above. Let us elab-
orate. Define

wx(j) = B(A(f(x), j))

Let ax,j satisfy f(ax,j) = A(f(x), j). Because the code is well spread then

|Ex,j∈D[B(A(f(x), j)) · P (ax,j)]− Ex∈D[B(f(x)) · P (x)]| < ν and
∣∣∣B̂(0)− Ex∈D[ŵx(0)]

∣∣∣ <
ν for a negligible function ν. By Equation 7.1, this implies that

E
x,j∈D

[B(A(f(x), j)) · PN(ax,j)] > E
x∈D

[ŵx(0)] + ρ′(k)

for ρ′ a non-negligible function. Namely,

E
x∈D
〈wx, Cx〉 ≥ E

x∈D
ŵx(0) + ρ′

(where we rewrote Ex,j∈D[B(A(f(x), j))·P (ax,j)] as Ex∈D Ej∈D[B(A(f(x), j))·P (ax,j)] =

Ex∈D〈wx, Cx〉).
Finally, by a counting argument for a non negligible fraction of the x ∈ D,

〈wx, Cx〉 ≥ ŵx(0) + ρ′(k)/2

� �

164



7.3 Number Theoretic Hardcore Predicates

Let ZN be the ring of integers with addition and multiplication modulo N . In this sec-
tion we prove that a broad family of predicates over ZN , named: segment predicates,
are hardcore for the candidate one-way functions EXP , RSA, Rabin and ECL. The
definition of segment predicates includes as a special case predicates previously shown
hardcore [5, 18] as well as other predicates not previously known to be hardcore.

7.3.1 Segment Predicates

A segment predicate is any arbitrary assignment of Boolean values to an arbitrary
partition of ZN into poly(logN) segments, or a multiplicative shift of such an assign-
ment. A segment predicate can be balanced (with the same number of 0’s and 1’s)
or unbalanced as long as it is far from a constant function.

Definition 7.8 (Segment Predicate). Let P = {PN : ZN → {±1}} be a collection of
predicates that are non-negligibly far from constant, namely, ∃ non-negligible function
ρ s.t. majPN

≤ 1− ρ(k) where k = logN .

• We say that PN is a basic t-segment predicate if PN(x+1) 6= PN(x) for at most
t x’s in ZN .

• We say that PN is a t-segment predicate if there exist a basic t-segment predicate
P ′ and a ∈ ZN which is co-prime to N s.t. ∀x ∈ ZN , PN(x) = P ′(x/a).

• If ∀N , PN is a t(N)-segment predicate, where t(N) is polynomial in logN , we
say that P is a collection of segment predicates.

Remark 7.9. Requiring that P is non-negligibly far from constant is not essential. If
it is close to constant then, trivially, Pi(x) cannot be predicted with a non-negligible
advantage over guessing its majority value, as the majority guess is already extremely
good.

The definition of segment predicates is quite general. It captures many of the
previous predicates considered for RSA, Rabin, EXP and ECL as well as new pred-
icates. In the following we illustrate the generality and ease of working with the
segment predicate definition.

Examples of Segment Predicates

Most-significant bit is a segment predicate. Let msb : ZN → {±1} be defined
by msb(x) = 1 if x < N/2, and −1 otherwise. This is a basic 2-segment predicate,
since it changes value only twice.

Least-significant of RSA is a segment predicate. Let lsb : {0, ..., N − 1} →
{±1} be defined by lsb(x) = 1 iff x is even. When N is odd, ∀x, lsb(x) = msb(x/2),
thus as msb is a basic 2-segment predicate, lsb is a 2-segment predicate with a = 2.
Consequently, lsb is a segment predicate for RSA, as well as for any other function
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over ZN , where N is odd; but it is not a segment predicate for functions over an even
domain such as EXP (where the domain Zp−1 is even, since p is prime).

Partition bits of RSA are segment predicates. We define the i-th partition
bit, bi : ZN → {±1}, to give alternating values on a partition of ZN to 2i intervals,
namely, bi(x) = msb(x2i). This is a natural generalization of the most-significant bit
(corresponding to i = 0), in which ZN is partitioned into two halves. Again as msb(x)
is a basic 2-segment predicate, bi is a 2-segment predicate with a = 2−i for RSA, as
well as for any other function over ZN , where N is odd.

Simultaneous bits. Consider an algorithm distinguishing a specific assignment
for the O(log logN) most significant bits from a random assignment. This is a seg-
ment predicate, since each assignment for those bits defines an interval I in ZN , and
a distinguisher for those bits can be thought of as a basic 2-segment predicate P
such that P (x) = −1 iff x ∈ I. Similarly, other simultaneous bits correspond to
general segment predicates. Let us note that when the number of bits is greater than
O(log logN), then P is within negligible distance from a constant function, and thus
it is not a segment predicate.

Example of a new basic segment predicate. In general, we can define a
new basic segment predicate by choosing any partition of ZN to polynomially many
intervals, and giving arbitrary answer (in ±1) for each interval. For example, a
segment predicate might give 1 on the first 10% of the inputs and between the middle
50− 90%, and −1 otherwise.

Example of a new segment predicate. From any basic segment predicate,
and any a co-prime to N one may define a (general) segment predicate. For example,
in the EXP case, though the lsb is not a segment predicate, many others are. For

instance, consider a trinary partition of the msb defined by TriLsb(x)
def
= msb(x/3).

Under the standard assumption that p− 1 = 2q, where q is prime, this is a segment
predicate.

7.3.2 Proving Segment Predicates Hardcore

We prove that any segment predicate is hardcore for any one-way function f defined
over ZN for which, for a non-negligible fraction of the x’s, given f(x) and y, one
can efficiently compute f(xy) (where xy is multiplication in ZN). This includes the
functions EXPp,g, RSA(x), Rabin(x), and ECLa,b,p,Q (naturally the appropriate N
in each case differs).

To prove this theorem, we apply our framework presented in Theorem 7.3. Namely,
let F be a collection of OWFs, we prove P hardcore of F as follows:

1. We exhibit a collection of codes CP =
{
CPN

}
, each code CPN consisting of

codewords Cx : ZN → {±1} for a non-negligible fraction of x ∈ ZN ,

2. We show that CP is list decodable, and

3. We show that CP is accessible with respect to F

166



Interestingly, all the above tasks —except showing CP is accessible— are independent
of the functions F . Looking ahead, we note that showing CP is accessible w.r. to the
(conjectured) OWFs RSA, Rabin, EXP and ECL, is very simple.

Theorem 7.10. Let P = {PN : ZN → {±1}} be a collection of segment predicates.
Then, P is hardcore for RSA, Rabin, EXP , ECL, under the assumption that these
are OWFs.

Proof. To prove the theorem we first define the code we use in Definition 7.11, then
show it is list decodable in Lemma 7.12, and prove it is accessible with respect to
RSA, Rabin, EXP and ECL in lemmata 7.14-7.22. Combined with Theorem 7.3
this concludes the proof of the theorem. �

Defining a Code

The code we use is the Multiplication code studied in Chapter 6. We repeat here its
definition in the context of number theoretic hardcore predicates.

Definition 7.11 (Multiplication code CP). For each predicate PN : ZN → {±1}, we
define the multiplication code CPN = {Cx : ZN → {±1}}x∈Z∗N

by

Cx(j) = PN(j · x mod N)

For a collection of predicates P = {PN : ZN → {±1}}, denote CP =
{
CPN

}
.

Note that CPN consists of codewords Cx for a non-negligible fraction of the x ∈ ZN

(since Z∗
N is a non-negligible fraction of ZN).

List Decoding

We show that the Multiplication code CP is list decodable.

Lemma 7.12 (List decoding). Let P be a segment predicate and CP the Multiplication
Code for P, then CP is list decodable.

Proof. In Chapter 6, we showed that the Multiplication codes CP are list decodable
if P is well concentrated. In Claim 7.12.1 show that segment predicates P are well
concentrated. Thus we conclude that CP is list decodable for every segment predicate
P .

Recall that P is well concentrated if ∀N ∈ N, ε > 0, ∃Γ ⊆ ZN s.t. (i) |Γ| ≤
poly (logN/ε), (ii) ‖fN−fN |Γ‖22 ≤ ε, and (iii) for all α ∈ Γ, gcd(α,N) ≤ poly (logN/ε)
(where gcd(α,N) is the greatest common divisor of α and N).

Claim 7.12.1. Let ε > 0. For a t-segment predicate P : ZN → {±1}, P is concen-
trated within ε on Γ = {χα|abs(α) ≤ O(t2/ε)}, i.e

‖P|{χα |abs(α)>O(t2/ε)}‖22 ≤ ε
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Proof. Let us first examine the Fourier coefficients of a basic 2-segment predicate P ,
which gives 1 on a segment I and −1 otherwise:∣∣∣P̂ (α)

∣∣∣ = E
x
[P (x)χα(x)] =

1

N
[
∑
x∈I

χα(x)−
∑
x/∈I

χα(x)]

By Proposition 3.33,
∣∣∣ 1
N

∑l−1
y=0 χα(y)

∣∣∣ < 1
abs(α)

. Consequently, since P̂ (α) is the

difference of two sums
∑
χα(x), and each can be expressed as a difference of two such

sums initiated at 0, then
∣∣∣P̂ (α)

∣∣∣ < O(1/abs(α)).

Now, let us examine a basic t-segment predicate P . A basic t-segment predicate
defines a partition of ZN into t segment Ij, so that P is constant on each segment Ij.
Thus we can express P as a sum, P = t− 1 +

∑t
j=1 Pj, of functions Pj : ZN → {±1}

such that Pj(x) is the constant P (x) for x ∈ Ij and −1 otherwise.

Note that each Pj is a basic 2-segment predicate, thus
∣∣∣P̂j(α)

∣∣∣ < O(1/abs(α)).

Therefore, ∣∣∣P̂ (α)
∣∣∣ =

∣∣∣∣∣
t∑

j=1

P̂j(α)

∣∣∣∣∣ ≤ O(t/abs(α))

Now, consider the sum of weights over all large characters χα:∑
abs(α)>k

∣∣∣P̂ (α)
∣∣∣2 ≤ O(t2)

∑
abs(α)>k

1

abs(α)2
< O(t2/k)

which implies that for ε > 0

‖P|{χα |abs(α)>O(t2/ε)}‖22 ≤ ε

Finally, for a general segment predicate PN(x) = PN
′(x/a) for PN

′ a basic t-

segment predicate and a co-prime toN . By Theorem 2.2, this implies that ∀α, P̂N(α) =

P̂ ′
N(αb). So the above implies that PN is concentrated to within ε on

Γ =
{
χβ | β = α(x/a) mod N, abs(α) ≤ O(t2/ε)

}
Since a is co-prime to N then maxβ∈Γ′ gcd(β,N) = maxabs(α)≤O(t2/ε) gcd(α,N) ≤
O(t2/ε). Put together, PN is well concentrated.

�

Accessibility

We now show that that the multiplication code CPN = {Cx}x∈Z∗N
is accessible w.r. to

the candidate one-way functions of RSA, Rabin, EXP and ECL. As it turns out
this task is simple for all these functions.
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Accessibility w.r. to RSA

We formally define the RSA collection of functions, and show that the code CP is
accessible w.r. to RSA.

Definition 7.13 (RSA). Assuming hardness of inverting the RSA function yields the
following collection of OWFs. Define RSA = {RSAn,e(x) = xe mod n, RSAn,e : Z∗

n →
Z∗

n}〈n,e〉∈I for I = {〈n, e〉, n = pq, |p| = |q|, p and q are primes and (e, φ(n)) = 1}

One technical issue we need to address, when considering segment predicates in
the context of RSA or Rabin, is that segment predicates were defined over the domain
ZN whereas RSA,Rabin are defined over Z∗

N . To overcome this difficulty we extend
the definition of segment predicates, by saying that P ′ = {P ′

N} : Z∗
N → {±1} is a

collection of segment predicates, if there exists a collection P = {PN : ZN → {±1}}
of segment predicate, such that P ′

N is the restriction of PN to inputs from the domain
Z∗

N . W.l.o.g assume PN(x) = 0 for every x ∈ ZN \ Z∗
N .

Lemma 7.14 (Accessibility w.r. to RSA). Let P =
{
PN |Z∗N

∣∣∣PN : ZN → {±1}
}

be

a collection of segment predicates, then CP is accessible w.r. to RSA.

Proof. Let the access algorithm A be

input: 〈N, e〉, RSAN,e(x), j
output: If j ∈ Z∗

N , return RSAN,e(jx) = RSAN,e(j) ·RSAN,e(x) mod N ;
else return 0.

For any fixed x ∈ Z∗
N , and uniformly distributed j ∈ ZN , consider the distribution of

x′ satisfying RSAN,e(x
′) = A(i, RSAN,e(x), j). This distribution is close to uniform,

because its restriction of this distribution to Z∗
N is uniform, and w.l.o.g there is only

a negligible fraction of inputs j /∈ Z∗
N (otherwise, RSA can be broken). Therefore,

the code is well spread, and bias preserving. �

Accessibility w.r. to Rabin

We formally define the Rabin collection of functions, and show that the code CP is
accessible w.r. to Rabin.

Definition 7.15 (Rabin). Assuming hardness of factoring yields the following col-
lection of OWFs. Define Rabin = {Rabinn(x) = x2 mod n, Rabinn : Z∗

n → Z∗
n}n∈I

for I = {n, n = pq, |p| = |q|, p and q are primes and }

Lemma 7.16 (Accessibility w.r. to Rabin). Let P =
{
PN |Z∗N

∣∣∣PN : ZN → {±1}
}

be

a collection of segment predicates, then CP is accessible w.r. to Rabin.

Proof. Same proof as for RSA. �
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Accessibility w.r. to EXP

We formally define the exponentiation functions, denoted EXP , (that is, the inverse
of the Discrete Logarithm function), and show that the code CP is accessible w.r. to
EXP .

Definition 7.17 (EXP ). Assuming hardness of solving the Discrete Log Problem
yields the following collection of OWFs. Define EXP = {EXPp,g(x) = gx mod p,
EXPp, g :
Zp−1 → Z∗

p}〈p,g〉∈I for I = {〈p, g〉, p prime, g generator for Z∗
p}.

Lemma 7.18 (Accessibility w.r. to EXP ). Let P = {Pp,g : Zp−1 → {±1}} be a
collection of segment predicates, then CP is accessible w.r. to EXP .

Proof. Let the access algorithm A be

input: 〈p, g〉, EXPp,g(x), j
output: Return EXPp,g(xj) = EXPp,g(x)

j mod N .

For any fixed x ∈ Z∗
p−1, and uniformly distributed j ∈ Zp−1, the distribution of x′

satisfying EXPp,g(x
′) = A(i, EXPp,g(x), j) is uniform. Therefore, the code is well

spread, and bias preserving. �

Remark 7.19. So far, we invert EXPp,g(x) only for x’s which are co-prime to p− 1
(as CP = {Cx}x∈Z∗p−1

). Nonetheless, by random self reducibility of EXP we can invert

for any x: For r ∈R Zp−1, EXPp,g(x+ r) = gx · gr is a generator of Z∗
p w.h.p. In this

case, we can invert EXPp,g(x+ r) to find x′ = x+ r, and return x = x′ − r.

Remark 7.20. Interestingly, lsb is a segment predicate over odd domains, and thus
hardcore for RSA, while it is easy for EXP (where the domain is even). To see
where the proof fails, consider the code Clsb consisting of codewords Cx(j) = lsb(jx)
over an even domain.

This code has no recovery algorithm with a succinct output, as its codewords cor-
respond only to one out of two functions: Cx(j) = lsb(jx) = 1 for even x’s, and
Cx(j) = lsb(jx) = lsb(j) for odd x’s. Moreover, no alternative list decoding algorithm
exists, since each codeword is at distance 0 from half the codewords.

Accessibility w.r. to ECL

We formally define the elliptic curve discrete logarithm functions, denoted ECL, and
show that the code CP is accessible w.r. to ECL.

Definition 7.21 (ECL). Let Ea,b(Zp) denote the additive group of n = 2q points on
an elliptic curve y2 = x3 + ax + b over Zp, where a, b ∈ Zp, 4a3 + 27b2 6= 0 and p is
prime.

Define ECL = {ECLp,a,b,Q(x) = xQ, ECLp,a,b,Q : Zq → Ea,b(Zp)}〈p,a,b,Q〉∈I for
I = {〈p, a, b, Q〉, where Q ∈ Ea,b(Zp) is a point of order q, and p, a, b satisfy the above
conditions}.
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Lemma 7.22 (Accessibility w.r. to ECL). Let P = {Pp,a,b,Q : Zq → {±1}} (where q
is the order of the point Q on the elliptic curve Ea,b(Zp)) be a collection of segment
predicates, then CP is accessible w.r. to ECL.

Proof. Let the access algorithm A be

input: ECLp,a,b,Q(x), j
output: Return ECLp,a,b,Q(jx) = jECLp,Q(x).

For any fixed x ∈ Zq, and uniformly distributed j ∈ Zq, the distribution of x′

satisfying ECLp,a,b,Q(x′) = A(i, ECLp,a,b,Q(x), j) is uniform. Therefore, the code is
well spread, and bias preserving. �

7.4 Simultaneous Bits Security

We present a new method for proving simultaneous security of many bits: We general-
ize the notion of balanced hardcore predicates to unbalanced ones, and show that any
violation of simultaneous bit security leads to a contradiction by implying a predictor
for some unbalanced hardcore predicate. Using this method we show that a class of
functions called segment functions are simultaneously secure for RSA,Rabin, EXP ,
and ECL. In particular, this implies simultaneous security of the O(log logN) most
significant bits for those candidate OWFs [64,86] .

In the following we first formally define simultaneous security of bits using the
notion of hardcore functions. We then extend the definition of segment predicates to
the notion of segment functions, and present examples of segment functions. Finally,
we show that segments functions are hardcore for RSA,Rabin, EXP , and ECL.

Simultaneous security of bits can be captured by the notion of hardcore functions.
We say that h is a hardcore function for f if h(x) is hard to predict from f(x). This
extends the notion of hardcore predicates from Boolean predicates P to functions h
with larger range.

Definition 7.23 (Hardcore function). Let F = {fi : Di → Ri}i∈I be collections of

OWFs. Let H =
{
hi : Di → {0, 1}l(i)

}
i∈I

be collections of functions s.t. for each i ∈

I∩{0, 1}k, l(i) is polynomial in k. We say that a PPT algorithm D is a distinguisher
for H w.r. to F , if ∃ a non-negligible function ρ s.t.

|Pr[D(fi(x), hi(x)) = 1]− Pr[D(fi(x), h(r)) = 1]| > ρ(k)

where the probability is taken over the random coin tosses of D and choices of i ∈
I ∩ {0, 1}k, x, r ∈ Di.

We say that H is hardcore for F , if there exists no distinguisher for H w.r. to F .

We extend the definition of segment predicates to segment functions.

Definition 7.24 (Segment function). Let H =
{
hN : ZN → {0, 1}l(N)

}
N∈I

be a col-

lection of functions. For each s ∈ {0, 1}l(N), define a predicate PH,s
N : ZN → {0, 1},
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PH,s
N (x) = 1 if hN(x) = s and 0 otherwise. We say that H is a collection of segment

functions, if P =
{
PH,s

N

}
N∈I,s∈{0,1}l(N)

is a collection of segment predicates.

We give two examples of segment functions.

Example 7.25 (Most significant bits). Let PrefN(x) be the l(N) most significant

bits in a binary representation of x. ∀s ∈ {0, 1}l(N), define the unbalanced predi-
cate P s

N(x) = 1 if PrefN(x) = s, and 0 otherwise. When l(N) ≤ O(log logN),
P s

N is is a segment predicate (as it is non-negligibly far from constant), thus, H ={
PrefN : ZN → {0, 1}l(N)

}
N

is a collection of segment functions.

Example 7.26 (Dissection bits). Let a ∈ Z∗
N , and let Dissecta,N(x) = PrefN(x/a).

Then when l(N) ≤ O(log logN), H =
{
Dissecta,N : ZN → {0, 1}l(N)

}
N

is a collec-

tion of segment functions.

We show that segment functions are hardcore for for RSA, Rabin, EXP and
ECL.

Theorem 7.27. Let H =
{
hN : ZN → {0, 1}l(N)

}
N

be a collection of segment func-

tions. Then H is hardcore for RSA, Rabin, EXP and ECL, under the assumption
that these are OWFs.

Proof. Let F = {fN}N∈I denote one of the candidate OWFs: RSA, Rabin, EXP or

ECL. Let P =
{
PH,s

N

}
denote the collection of segment predicates that corresponds

to H.
Assume for contradiction there exists a distinguisher algorithm for H with respect

to F . In Lemma 7.27.1 we show this implies that there exists a weak predictor B for
P w.r. to F .

But, by Theorem 7.7 there exists no weak predictor for P w.r. to F (under the
assumption that F is a collection of OWFs), because the code CP is list decodable
and accessible w.r. to F (as we proved in the analysis of number theoretic hardcore
predicates).

Thus, for F a OWF there is no distinguishing algorithm for H with respect to F .
Namely, H is hardcore for F .

Lemma 7.27.1. If there is a distinguisher D for H with respect to F , then there is
a weak predictor algorithm B for PH,s w.r. to F .

Proof. By definition of a distinguisher for H w.r. to F ,

|Pr[D(fN(x), hN(x)) = 1]− Pr[D(fN(x), hN(r)) = 1]|

is non-negligible (where the probability is taken over the random coin tosses of D and
choices of N ∈ I ∩ {0, 1}k, x, r ∈ DN). This implies that for a non-negligible fraction
of the indexes N ,

|Pr[D(fN(x), hN(x)) = 1]− Pr[D(fN(x), r) = 1]| ≥ ρ(k)
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for ρ an non-negligible function and where the probability is taken over random choices
of x ∈ ZN and r ∈ {0, 1}l(N). In the following we fix such an index N , and drop the
indexes.

Choose a random s ∈ {0, 1}l(N), and define an algorithm B by

∀x, B(f(x)) = D(f(x), s)

By a counting argument, for at least ρ/2-fraction of the s ∈ {0, 1}l(N),

ρ/2 <
∣∣∣Pr

x
[D(f(x), s) = 1|h(x) = s]− Pr

z
[D(f(z), s) = 1]

∣∣∣
In particular, this holds for the random s chosen above with probability at least ρ/2.
(See details of the counting argument in the claim below). Without loss of generality
assume we can take out the absolute value sign, namely, ρ/2 < Prx[D(f(x), s) =
1|h(x) = s]− Prz[D(f(z), s) = 1] (otherwise we can inverse the roles of 0 and 1).

Now, observing that

Pr
x

[D(f(x), h(x)) = 1|h(x) = s] = Pr
x

[B(f(x))|P s(x) = 1]

and that
Pr
z

[D(f(z), s) = 1] = Pr
z

[B(f(z)) = 1]

We conclude that with probability at lest ρ/2 over the choice of s ∈ {0, 1}l(N),

Pr
x

[B(f(x))|P s(x) = 1] > Pr
z

[B(f(z)) = 1] + ρ/2

Claim. (Details of the counting argument.) For at least ρ/2-fraction of the s ∈
{0, 1}l(N), ρ/2 < |Prx[D(f(x), s) = 1|h(x) = s]− Prz[D(f(z), s) = 1]|.
Proof. We rewrite Pr[D(f(x), h(x)) = 1] − Pr[D(f(x), h(r)) = 1] as a sum of condi-

tional probabilities: 1

|2l(N)|
∑

s∈{0,1}l(N) Pr[D(f(x), h(x)) = 1|h(x) = s]−Pr[D(fN(x), s) =

1], concluding that

ρ <
1

|2l(N)|
∑

s∈{0,1}l(N)

|Pr[D(f(x), h(x)) = 1|h(x) = s]− Pr[D(fN(x), s) = 1]|

(where we moved the absolute value to inside the summation since by triangle in-
equality for every reals ai ∈ R, |

∑
ai| ≤

∑
|ai|).

The claim now follows from a standard counting argument: Denote by S ⊆ 2l(N)

the set good s’s s.t. ∀s ∈ S, ρ/2 < |Prx[D(f(x), s) = 1|h(x) = s]− Prz[D(f(z), s) = 1]|.
Then, ρ < 1

|2l(N)|
∑

s∈{0,1}l(N) |Pr[D(f(x), h(x)) = 1|h(x) = s]− Pr[D(fN(x), s) = 1]| ≤
|S|

2l(N) + (1− |S|
2l(N) )

ρ
2

which in turn implies that |S| ≥ ρ
2
· 2l(N). � � �
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7.5 On Diffie-Hellman Hardcore Predicates

The above framework for proving hardcore predicates via list decoding applies to
many conjectured one-way functions. Still, one cryptographic function of a very wide
appeal and usage alludes this treatment. This is the Diffie-Hellman (DH) function.

In this section we relate on the question of whether there exist deterministic
hardcore predicates for DH to the complexity of the problem of learning characters
with noise (LCN), showing that if LCN with random samples access (rLCN) is in
BPP, then every segment predicate is hardcore for DH. Furthermore, we show that
the latter is true even if easier versions of LCN (such as: LCN with GP-access, that
is, with access to samples {(xi, f(xi))}ti=1 with xi’s a random geometric progression,
or LCN with DH-access, that is, with access to samples f(gx/gab) for any x = a′b′

s.t. ga′ , gb′ can be efficiently computed given ga, gb) are in BPP.
To prove this result we follow our list decoding methodology using the same Mul-

tiplication codes CP as used in Section 7.3. We have, however, a different access
algorithm, because our code access algorithms are function dependent. This access
algorithm has a fundamental difference from algorithms devised for the previously
considered candidate OWFs. Specifically, this algorithm only provides random ac-
cess (or, more generally, GP-access or DH-access) to corrupted codewords. This is in
contrast to the query access provided by our access algorithms w.r. to the previously
considered candidate OWFs. This difference calls for a new list decoding algorithm
for CP : an algorithm that can decode even when given only random access (or GP-
access or DH-access) to the corrupted codeword. We show that if LCN in these access
models is in BPP, then such a list decoding algorithm exists.

The Computational Diffie-Hellman (CDH) assumption asserts that computing for
random prime p and generator g of Z∗

p, computing DHp,g(g
a, gb) = gab is intractable.

This gives rise to the following collection of candidate one-way function invDHp,g

whose forward direction is the easy to compute function invDHp,g(g
a, gb, gab) =

(ga, gb) whereas their reverse direction requires computing the DH function, because
invDH−1

p,g (ga, gb) = (ga, gb, gab)

Definition 7.28 (invDH). Assuming the hardness of computing the Diffie-Hellman
function yields the following collection of OWFs. Define

invDH = {invDHp,g(g
a, gb, gab) = (ga, gb), invDHp,g : Z3

p → Z2
p}〈p,g〉∈I

for I =
{
〈p, g〉, p prime, g a generator of Z∗

p

}
.

The access models that arise in our study of DH functions are defined as follows.

Definition 7.29. 1. Random samples access. We say that an algorithm Arand

provides random samples access to a function w : Zp → {±1} if, given p, g, ga, gb,
Arand outputs a pair (s, w(s)) of entry location s and the value of w on this entry,
for s distributed uniformly at random in Zp.

2. GP-access. We say that an algorithm AGP provides Geometric Progression
access (GP-access) to a function w : Zp → {±1} if, given p, g, ga, gb and t inte-
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gers k1, . . . , kt, AGP outputs t pairs {(sj, w(sj)}tj=1 of entry locations sj and the

values of w(sj) on those entries, where s1 = sk1 , . . . , st = skt for s distributed
uniformly at random in Zp.

3. DH-access. We say that an algorithm ADH provides Diffie-Hellman access
(DH-access) to a function w : Zp → {±1} if, given p, g, ga, gb and ga′ , gb′, ADH

outputs w(s) for s = ga′b′−ab.

We relate the complexity of LCN in the above access models to the problem of
proving hardcore predicates for invDH.

Theorem 7.30. If LCN with random samples access or GP-access or DH-access is
in BPP, then every segment predicate is hardcore for invDH.

Proof. To prove the theorem consider codes CP as defined in Definition 7.11. In
lemma 7.31 we show that, for any access model M, if LCN in access model M is in
BPP, then the code CP is list decodable when given a corrupted codeword in access
model M. In lemma 7.32 we show that given p, g, ga, gb and an algorithm B that
predicts P from invDH, we can gain access in access model M being either random
samples access, or GP-access, or DH-access to a corrupted codeword w close to the
codeword Cgab encoding gab in CP .

Combined together this implies that if LCN in access model M is in BPP, then
P is hardcore predicate for invDH. This is because, if there is an algorithm that
predicts P from invDH, then the following is an algorithm for inverting invDH:
Given p, g, ga, gb, gain query access to a corrupted codeword w close to the codeword
encoding gab, list decode to find the message gab, and output (ga, gb, gab). �

List Decoding

We explain how to list decode the code CP in random samples access or GP-access or
DH-access. models, assuming we are given an algorithm solving LCN in these access
models.

In chapter 6 we present our list decoding via learning algorithm for the Multi-
plication Codes. This algorithm had two steps: (1) it applied the SFT Algorithm
3.4 given query access to w to find its significant Fourier coefficients, and (2) it ap-
plied Recovery Algorithm 6.50 on the list of significant Fourier coefficients to find all
codewords close to w.

In our current settings we do not have query access to w so we cannot apply
the SFT algorithm. Nevertheless, we do have random samples access, GP-access or
DH-access. So, if there is an efficient algorithm solving LCN in those access models,
we can substitute the SFT Algorithm of step (1) with this algorithm to get a list
decoding algorithm for CP in those access model.

Lemma 7.31 (List decoding). Let P be a segment predicate and CP the Multiplication
code for P. For any access model M, if LCN in access model M is in BPP, then CP
is list decodable in access model M.
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Proof. In Chapter 6, we showed that any concentrated an recoverable codes over a
learnable domain is list decodable. We showed that CP is concentrated and recoverable
in Lemma 7.12. The assumption that LCN in access model M is in BPP says that the
domain of the code is learnable with respect to access model M. Under this assumption
we conclude therefore that CP is list decodable in access model M. �

Code Access

In the following we show how given ga, gb and an algorithm B predicting P , we can
gain access to a corrupted codewords w close to the codeword Cgab encoding gab in
the code CP , where access can be random samples access or GP-access or DH-access.

Lemma 7.32. Let p be a prime, g a generator of Z∗
p, and P : Zp → {±1} a predicate.

Assume we are given a PPT algorithm B that predicts P from invDHp,g. Then, for
a non-negligible fraction of the codewords Cgab ∈ CP , given ga, gb, there is a corrupted
codeword w : Zp → {±1} and access algorithms Arand, AGP and ADH s.t. (i) w is
close to the encoding of gab, that is,

∆(w,Cgab) ≤ minorC
gab
− ρ

for ρ a non-negligible function,3 and (ii) the algorithms Arand, AGP and ADH provide
random access, GP-access and DH-access, respectively to w; and their running time
is polynomial in log p, 1/ρ.

Proof. Fix ga, gb, and define a corrupted codeword w : Zp → {±1} close to Cgab by

w(j) = B(ga · gi/b, gb), for gi = j mod p

We show that for random ga, gb, w is indeed close to Cgab . This is because Cgab(j) =
P (j · gab), and for a predictor algorithm B it holds that B(ga · gi/b, gb) = P (jgab) with
non negligible advantage over a random guess.

We define three algorithms Arand, AGP and ADH and show that they provide
random samples access, GP-access and DH-access respectively to w:

• Arand(p, g, g
a, gb) =

(
(gb)r, B

(
ga · gr, gb

))
for r ∈ Zp chosen uniformly at ran-

dom.

• AGP (p, g, ga, gb, k1, . . . , kt) = (gbrk1 , B(ga ·grk1 , gb)), . . . , (gbrkt , B(ga ·grkt , gb)) for
r ∈ Zp chosen uniformly at random.

• ADH(p, g, ga, gb, ga′ , gb′) = B(ga′ , gb′).

For a non-negligible fraction of the inputs, Arand provides random samples access
to w. This is because B(ga · gr, gb) is the value of w on entry (gb)r, and (gb)r is
distributed uniformly at random whenever gb is a generator of Zp (an event which
happens with a non negligible probability over the choice of gb ∈ Zp).

3In particular, for balanced predicates P , ∆(w,Cgab) ≤ 1
2 − ρ(k).
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For a non-negligible fraction of the inputs, AGP provides GP-access to w. This
is because for any k ∈ k1, . . . , kt, B(ga · grk, gb) is the value of w on entry Xk for
X = gbr, and gbr is distributed uniformly at random whenever gb is a generator of Zp

(an event which happens with a non negligible probability over the choice of gb ∈ Zp).
ADH provides DH-access to w. This follows immediately from the definition of

the codeword Cgab , because B(ga′ , gb′) is the value of w on entry ga′b′−ab. �

Remark 7.33. In contrast to the above considered access models, it is not clear how
to obtain query access to a corrupted codeword close to Cgab: Given ga, gb, a predictor
algorithm B and an entry location j, one would like to produce gi/b for j = gi and
access w(j) by computing B(ga ·gi/b, gb). It’s not however clear how to do this, because
producing gi/b seems to require computing gi = j mod p, i.e., solving the (believe-to-be
hard) Discrete-Log problem.
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