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Abstract. In the Hidden Number Problem (HNP), the goal is to find a
hidden number s, when given p, g and access to an oracle that on query
a returns the k most significant bits of s - g* mod p.

We present an algorithm solving HNP, when given an advice depend-
ing only on p and g; the running time and advice length are polynomial in
log p. This algorithm improves over prior HNP algorithms in achieving:
(1) optimal number of bits k > 1 (compared with k£ > 2(loglogp)); (2)
robustness to random noise; and (3) handling a wide family of predicates
on top of the most significant bit.

As a central tool we present an algorithm that, given oracle access to
a function f over Zn, outputs all the significant Fourier coefficients of
f (i-e., those occupying, say, at least 1% of the energy). This algorithm
improves over prior works in being:

~ ~

— Local. Its running time is polynomial in log N and Li(f) (for Li(f)
the sum of f’s Fourier coefficients, in absolute value).
— Universal. For any N,t, the same oracle queries are asked for all

~

functions f over Zy s.t. Li(f) < t.
— Robust. The algorithm succeeds with high probability even if the
oracle to f is corrupted by random noise.

1 Introduction

The Hidden Number Problem (HNP) was introduced by Boneh and Venkatesan
[4] in the context of proving bit security for the Diffie-Hellman function. In HNP,
for p a prime, and g a generator of Z, the goal is to find a hidden number s € Z;,
when given p, g and oracle access to the function

de
Py s.i(a) = MSB, k(s - g* mod p)

mapping each a € 1,...,p to the k most significant bits in the binary represen-
tation of s- g% mod p.

Boneh-Venkatesan [4] gave an algorithm solving HNP for any & > +/logp +
loglog p in running time polynomial in log p (aka, efficient). Subsequently, Boneh-
Venkatesan [0] gave an efficient algorithm solving HNP for k& > §2(loglog p) pro-
vided the algorithm is given a short advice depending only on p and ¢ (and not
on s). Extensions to the case g is not a generator are given in [SIT4JT5].
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1.1 New Result: Solving HNP with One Bit Oracle and Advice

We present an efficient algorithm solving HNP for any & > 1, provided the
algorithm is given a short advice depending only on p and g (and not on s).
Furthermore, our algorithm handles:

— Random noise. With high probability, our algorithm finds s even if the oracle
answers are flipped independently at random with sufficiently small proba-
bility & > 0. (Success probability is taken over the noise.)

— Concentrated predicates. Our algorithm finds s even when oracle access is to
the function

P, s(a) def P,(s - g* mod p)

where P = {P,} is any family of “concentrated” predicates. We say that P
is concentrated if

dc, 6 s.t. VP, € ’P7L1(}/3;) < (logp)¢ and maj(P,) <1—-19

for Ll(ﬁ;) = >a ‘E(a)‘ the sum of Fourier coefficients, and maj(P,) e

maxy—o,1 Precz,[Pp(a) = b] the frequency of the most common value.

Noise is tolerated up to e = ¢/7(P) for any ¢’ < 1 and for any 7(P) a lower bound
on the maximum squared magnitude of the (non-trivial) Fourier coefficients of
predicates P, € P. In particular, for P the most significant bit, ¢ = O(l)

As a corollary of our algorithm for HNP, we obtain bit security results for
Diffie-Hellman related functions.

Our result improves on prior HNP algorithms (and the corresponding bit
security results) in achieving:

1. Optimal number of bits & > 1 (rather than k > £2(loglogp));

2. Robustness to e-random noise for substantial € (e.g., € is O(1) rather than
O(1/logp) for P = MSBj, the k most significant bits); and

3. Handling the wide family of concentrated predicates (rather than only

MSBy).

1.2 New Tool: Universally Finding Significant Fourier Coefficients

As a central tool we present an algorithm that finds the significant Fourier
coefficients of a complex valued functions f over Z,, when given oracle access to
f (aka, SFT algorithm).

Indexing Fourier coeflicients by elements « in Z,,, we say that « is 7-significant
if its Fourier coefficient occupies at least 7-fraction of the energy

Ff =73 |70
BEZy

! For P the k > 02(loglog p) most significant bits, prior works [5] tolerate adversarial
noise corrupting up to € = O(1/logp) fraction of the oracle values.
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Our SFT algorithm, given p, 7, ¢, and oracle access to a function f over Z,

s.t. L1(f) < t, outputs all the 7-significant Fourier coefficients of f. Our SFT
algorithm is:

— Local. Its running time is polynomial in logp, 1/7 and ¢.

— Universal. For any p, 7 and t, the same oracle queries are asked for all
functions f over Z, s.t. L1(f) <'t.

— Robust. With high probability, the algorithm succeeds even if the oracle to f
is corrupted by random noise (probability is taken over the noise). Tolerated
noise parameters are up to € = c¢r for any constant ¢ < 1.

This improves over prior works in giving: (i) The first universal algorithm
handling all functions f over Z, (complexity scales with Ll(f)) (ii) The first
analysis proving robustness to noise in the context of universal SF'T algorithms.
We remark that these improvements are of independent interest in the context
of sparse Fourier approximation, compressed sensing and sketching (cf. [3]).

Comparison to other SE'T algorithms. For functions over the boolean hyper-cube

7, Kushilevitz-Mansour (KM) gave a local universal SF'T algorithm almost two
decades ago [12]. Our algorithm matches the KM benchmark for the case of
functions over Z,, for any positive integer p.

For functions over Z,, prior SFT algorithms [6I2/7] are not universal. In con-
current works [I0/TI] gave a universal SFT algorithm for a restricted class of
functions over Z,: compressible or Fourier sparse functions

Noise is out of scope in the analysis of the universal algorithms [T2JTOJTT].

These SFT algorithms [T2/6207[T0/TT] are insufficient for our result solving
HNP. Both universality as well as handling functions that are neither compress-
ible nor Fourier sparse are crucial for our algorithm solving HNP. Robustness to
noise leads to robustness when solving HNP.

1.3 Techniques Overview

In HNP the goal is to find a hidden number s when given p, g and oracle access
to a function P, s. We reduce the HNP problem to the problem of the finding
significant Fourier coefficients of a function fs defined by

£o0) “ Py (DL, 4(y))

for DL, 4(y), the discrete log of y, i.e., the a € Z,_1 s.t. y = g* mod p. We then
find the significant Fourier coeflicients of fs using our universal SF'T algorithm.

Universality is crucial. Finding the Fourier coefficients of f; requires access
to fs. To read the values fs(y) on entries y it suffices to query P, on the
discrete-logs DLy, 4(y). With universal algorithms, access to all entries y read

2 For g a function over Z, and ¢, ¢’ > 0 absolute constants (indep. of p), g is compress-
ible if for all 7, the i-th largest Fourier coefficient of g has magnitude at most O(1/c");
and g is Fourier sparse if it has at most (log p)cl non-zero Fourier coefficients.
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by the algorithm can be granted using an advice depending only on p. This is
because universal algorithms read a fized set of entries y for all the considered
functions over Z,; implying that the discrete-logs DL, ,(y) for all read entries
y can be provided via an advice depending only on p. In contrast, with non-
universal algorithms, providing access to fs is intractable (assuming computing
discrete logs is intractable).

Achieving universality. We say that a set of queries S C Z, is good if we can
find the significant Fourier coefficients of all considered function over Z, when
reading only entries in S. We present a combinatorial condition on sets S, and
prove that any set S satisfying this condition is good. Furthermore, we show
that sets S satisfying the condition exists, and can be efficiently construction
by a randomized algorithm. We remark that explicit constructions of such good
sets are given in subsequent works [3].

The combinatorial condition is that S = U 8P(A — By) for A a small biased
set and By’s that are “small biased on [0..2°]”; where we say that B has small
bias on I if Fourier coefficients of (the characteristic function of) B approximate
the Fourier coefficients of (the characteristic function) of 1.

We prove that such sets S are good in two parts. First, for functions with
bounded L;(f), we prove S is good using Fourier analysis. Second, for noise
corrupted functions f' = f + n, we prove S is good by showing the algorithm
behaves similarly on the noisy and non-noisy functions. The latter is needed, as

~

the Fourier approach fails for noisy f’ due to their typically huge L1 (f’) = \/p.

Comparison to prior works. Prior algorithms solving HNP follow a lattice based
approach dating back to [], in which HNP is reduced to the problem of finding
closest lattice vectors (CVP), and the latter is solved using LLL algorithm [I3].
In comparison, we take a Fourier approach inspired by [2].

We compare the set of queries used in the different SFT algorithms.

In the universal SF'T algorithm for functions over the boolean hypercube Z3
[12], the set of queries is constructed using small biased sets in Z3, and the proof
is Fourier analysis based.

In the (non-universal) SFT algorithms for functions over Z, [6I2]7], the set
of queries must be freshly chosen for each given input function f. Their anal-
ysis proves success with high probability over the sampled set of queries using
deviation from expectation bounds.

In the universal SFT algorithm for (restricted class of) functions over Z,
[IOUTT], the set of queries is constructed using “K-majority k-strongly selective
sets”.

1.4 Paper Organization

The rest of this paper is organized as follows. In section 2] we summarize pre-
liminary terminology, notations and facts. In section [3] we present our algorithm
solving HNP with advice. In section 4] we present our universal SFT algorithm.
In section [fl we discuss bit security implications.
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2 Preliminaries

In this section we summarize preliminary terminology, notations and facts.

Let N, Z, R and C denote the natural, integer, real and complex numbers
respectively. Let P denote the set of all primes. Let Zy and Z}; denote the
additive and the multiplicative groups of integers modulo N. We identify the
elements of Zy with integersin 0,..., N—1, and denote abs(«) = min {ar, N — a}

for all & € Zy. Let B, "< {z € C||z] < r} denote the complex ball of radius 7.

2.1 Fourier Transform

We give definitions and properties for normed spaces and Fourier transform.

Inner product, norms, convolution. The inner product of complex val-

ued functions f,g over a domain G is (f,g) = Ifl?l > wec f(@)g(x). Denote

the normalized ¢5 norm of f by ||f]2 = VA{f f), its €e norm by || f]leo =

max {|f(x)| |« € G}, and its un-normalized Lq-norm by L1 (f) e Yowec [f(2)].

The convolution of f and g is the function f x g: G — C defined by f * g(x) =

|clz| >yec fWgl —y).

Characters and Fourier transform. The characters of Zy are the functions
Xa:Zny — C, a € Zn, defined by xa(x) 4] e2miaz/N - The Fourier transform
of a complex valued function f over Zy is the function ]?:ZN — C defined
by f(a) def (fiXa). For any a € Zy and 7 € [0,1], we say that « is a 7-

2
significant Fourier coefficient iff ’f(a)’ > 7||f||3. Denote by Heavy_ (f) the set

of all 7-significant Fourier coefficients of f.
A few useful properties of the Fourier transform follow.

Proposition 1. For any f,g9:Zn — C,
2
1. Parseval Identity: \ > ,c7 1f(2)]? = Y oa f(a)‘
2. Convolution Theorem: (m)(a) = f(a) ().
3. Phase Shift: For any cg € ZN, if g = [+ X—ap, then gla) = f(oz—ozo) (where
subtraction is modulo N ).

~

4. Scaling: For any s € LY, if g(z) = f(sz) Yz, then g(a) = fla-s71) Va
(where multiplication and inverse are modulo N ).
Proof. Proof is standard, see [10]. |

Proposition 2. Let Si(«) =4 h ZZ;IO Xa(y) for some t € [0..N — 1]. Then:
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2 1 l—cos(?7 at)
1L ‘St(a)‘ 12 1—005(12;]\’]'(1)

2. Pass Band: Vo € Zy and vy € [0,1], if abs(o) < v27, then 1Si(a)|® > 1— 22
2
3. Fast decreasing: Vo € Zy, |Si(a)|* < ; (aé\sf(/(i»

4. Fourier bounded: Yo € Zy, |Si(a)* < 1

Proof. Recall that xo(z) = w® for w = €'¥ a primitive root of unity of or-

der N. By the formula for geometric sum S;(a) = 1‘:}:?:%. Assigning w® =

cos(2w3/N)+isin(2n3/N) for B = at in the numerator and § = « in the denom-

inator and using standard trigonometric identities, we conclude that |S;(a)|* =
1 1—cos( 3T at)

£ 1—cos(2r a) - The upper and lower bounds on Sy are obtained using the Taylor
N

approximation for the cosine function: 1 — 92? < cos(d) <1- 9; + i?. Details
appear in [2/1]. O

2.2 Chernoff/Hoeffding Tail Inequality

The Chernoft/Hoeffding bound on the deviation from expectation of sums of
independent random variables follows.

Proposition 3 (Chernoff/Hoeffding Bound [9]). Let Xi,...,X: be inde-
pendent random variables of expectations pu1,. .., fty and bounded values | X;| <

M. Then, ¥n > 0, Pr[ 1Z§:1X¢ — 1 22:1 wil >mn < 2-exp (—2]\722).

2.3 Noise Models

We say that n is an e-random noise if its values n(a), a € Z,, are chosen in-
dependently at random from distributions of expected absolute values at most

Elln(a)l] < e.
We focus on additive noise 1 corrupting functions f to a function f' = f+n.
Without loss of generality, f and n accept values in the balls By, By respectively.

3 Solving Hidden Number Problem with Advice

In this section we present our algorithm solving with advice HNP.
Fix a family of functions P = {Pp: Loy — Bl}pep and a noise parameter €.

Definition 1 (Hidden Number Problem). In the (extended) Hidden Num-
ber Problem HNP?¢ the goal is to find a hidden number s € Z,,, when given a
prime p, a generator g of Z;, and oracle access to the function

def a
P, [(a) = Py(s- g mod p) +n(a)

for m an e-random noise.
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Let £,q,t be functions over P. We say that an algorithm (¢, ¢, t)-solves HNPP>¢
if there is an advice Adv, , depending only on p,g of length |Adv, 4| < £(p),
such that the following holds. Given p, g, Adv, 4, and oracle access to Pz’,vs, the
algorithm outputs s with probability at least ¢(p); and its running time is at

most t(p). We say that the algorithms solves with advice HNPP¢ if 1/q(p), £(p)
and ¢(p) are polynomial in log p.

3.1 Solving with Advice HNP%:¢: Concentrated P

We present an efficient algorithm solving with advice HNP?¢ for concentrated
P. We remark that concentration defined here differ than concentration in [2].

Let M, 7 and a be functions mapping indices p € P into non-negative reals
M (p), 7(p) and a non-zero element c(p) € Zy.

Definition 2 (Concentration). P is (M, 7, a)-concentrated if for all P, € P,

—

Li(P,) < M(p) and ’Pp(a(p))

P is concentrated if 3¢ > 0 s.t. Vp € P, M(p) and 1/7(p) are at most (logp)©.

— 2

Let 7(P) denote a lower bound on the maximum weight ‘Pp(a)‘ of non-trivial
Fourier coefficients a # 0, for all P, € P.

Theorem 1 (HNP7). For any concentrated P and ¢ < ¢ - 7(P) for ¢ < 1,
there exists an algorithm that solves with advice HNPF<.

Proof. Let m, 7, be s.t. P is (M, 7, a)-concentrated. We present an algorithm
that (¢, q,t)-solves HNP?¢ for q(p) > £2(7(p)) and for £(p),t(p) polynomial in
logp, M(p) and 1/7(p). The advice we use is:

def
Advp,g = {(z, Dprg(x))}mgs

for S C Z, a set of good queries for our universal SFT algorithm on input
parameters p, 7(p) and M (p) (cf. Definition ). The function fs = f;, 4, over Z,,
is defined by

def
fs(x) = P;;,S(DLp,g(x))
for all z € Z3 and fs(0) = 0. Note that we can access fs(x) for all z € S by

querying P} , on a = DLy, 4(z) provided in the advice. Our algorithm for HNP”-¢
follows.

Algorithm 1 Solving HNP”<.

1. Run the SFT Algorithm 2 on input p,7(p),M(p), and oracle
access to the restriction of fs; to §; denote its output by L.
2. Output ((a(p))~t-B)~! for a uniformly random (€ L.
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We show that Algorithm [I outputs the hidden number s with probability
2
q(p) > 2(7(p)). Fix p and denote o = a(p), 7 = 7(p). Recall that Pp(a)’ >T

(since P is (M, T, a)-concentrated), and that }5;5(5) = /P?p(ﬁsfl) V@3 (by Propo-
sition [l Item @ and the definition of P, ;(z) = P,(s - x)). Therefore, the as™!-
Fourier coefficient of P, , is T-significant, i.e.,

— 2

Py s(a-s7H >
Thus L > as™! with probability at least 1 — 1/p(!) (by Theorem ). Implying
that
B=as?!
with probability at least (1 —1/p?™M))/|L| > 2(r) (since 3 is a random element
in L, and employing the bound |L| < O(1/7) from Theorem ). When 3 = as™1!,
the output is
(@ 'p) ! =(aH(as7")) T =

We conclude that the output is s with probability ¢(p) > £2(7).

Finally, the advice length £(p) and the running time ¢(p) are dominated by the
query complexity and running time of the SFT Algorithm which is polynomial
in logp, 1/7(p) and M(p) (cf. Theorem H). O

Remark 1. Tighter bounds on the success probability ¢(p) are possible at times.
E.g., for the most significant bits P = MSBy, for any k > 1, q(p) > 1/2.

3.2 Solving with Advice HNP%¢: Segment Predicates P

We solve with advice HNP?-¢ for segment predicates P.

Let P = {PP:Z;‘7 — {:tl}}pep. Let o, a be functions mapping primes p to
positive integers o(p) and to elements a(p) € Zj,. Denote by o(P) an upper
bound on o(p) for all p.

Definition 3 (Segment Predicates [2]). P is a (o,a)-segment predicate if
Vp, 3P Ly — {1} s.t.

— Py(z) = Py(z - a(p)) for all x, and
— Pi(z+1) # Py(x) for at most a(p) x’s in Z,.

P is a segment predicate if 3¢ > 0 s.t. o(p) < (logp)¢ for all p.

We say that P is far from constant if 36 > 0 s.t. ¥p, maj(P,) < 1—¢ for maj(P,)
the frequency of P,’s most common value.

Theorem 2. Let P be a far from constant segment predicate and € < ¢/a(P)
for ¢ < 1. Then there exists an algorithm that solves with advice HNPF¢.
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Proof. By Lemma [Il if P is a segment predicate, then P is concentrated; and
furthermore, 7(P) > 1/0(P). By Theorem [Il this implies that there exists an
algorithm that solves with advice HNPP 2. ]

Lemma 1. If P is a (0,a)-segment predicate, then P is (M, T, «)-concentrated

for M(p) = O(o(p) Inp), 7(p) = £2(1/a(p)), and a(p) = a(p).

Proof. For each P, € P, extend P, to a function over Z, by setting P,(0) =
P,(1). Fix p and drop its indices.

Consider first the case a(p) = 1. To show that L1(ﬁ) < M(p) and ﬁ(l) > 7(p),
we first show that ﬁ(a) = ZUH(E i/D)Se; () for all v € Zy,. A segment predicate
with ¢ = 1 defines a partltlon of Z, into o + 1 segments I;, so that P is a
constant b; € {£1} on each segment I;. Thus, we can express P as a sum,
P = ZUH P;, of functions P;:Z, — {—1,0,1} such that P;(x) is the constant

P(z) for T € I and 0 otherwise. By the linearity of the Fourier transform, for all

a € Zyp, ﬁ(a) = Zj;rll P;(a). By definition of the Fourier transform, P;(a) =
;erfj bjXa(x). Thus for ¢; the starting point of I; and ¢; = |I;] its length,
IP(@)] = Ixalen)l |3 Sio xal@)| = (€/p)S1;(@) for S(a) = & T2 Xal@)
as defined in Proposition 2l We conclude that ‘]3(04) = Z”H(ﬁ /p)Sg ().

We show that L1(13) < O(olnp). By Proposition 21 |Sg]. o | <0 (af)s/(ea))
for all ¢;, implying that ’ﬁ(a)’ < Z;’ill @) ((@-ég((%@)) = O (0/abs(a)) . Thus,
Li(P) = ¥, [P@)| <0 (7 £ ikey) = Ololnp).

We show that ‘ﬁ(l)‘ > (2(1/0). Let £« be the length of the second longest

segment in Iy, ..., I,41. Clearly £;+ < p/2. Moreover, {;- > {2(p/o) because for
far from constant P, the longest segment is of length at most (1 — ¢)p for ¢ > 0,
implying that the second longest is of length at least the average length cp/o
over the remaining o segments. By Proposition[, |S¢(1)|* > (1) for all £ < p/2.

~ 2
Thus, j*(a)‘ > (¢ /p)- 2(1) = 2(1/). We conclude that for a(p) = 1 there

~ 2
is a function 7(p) > £2(1/0(p)) such that ‘P(a(p))‘ > 7(p) for all p € P.

Consider next the case of a(p) # 1. By definition of segment predicates, there
exists P’ s.t. P(z) = P'(wa) for all x € Z;. Extend P’ to Z,. By Proposition [}

for all o € Z, P/(E) = P'(a-a™1). Implying that Ly (P) = L, (P’) < O(clnp)
(because {aail}aez = Z, for any a co-prime to p), and P( ) = P’(a a”l) =
Pl(1) > 0(1/0).

We conclude that any family P of (o,a)-segment predicates is (M, T, «)-
concentrated for M(p) < O(o(p)lnp), 7(p) > £2(1/0(p)) and a(p) = a(p). O

3.3 Solving with Advice HNP%:¢: The Single Most Significant Bit
We solve with advice HNP¢ for P = MGSB the single most significant bit.



346 A. Akavia

Let MSB = {MSB,: 7} — {ﬁ:l}}pep the family of predicates giving the
single most significant bit M SB,(x) of z (in a £1 binary representation).

Theorem 3. For any € = O(1) sufficiently small, there exists an algorithm that
solves with advice HNPMSB:=,

Proof. For the most significant bit MSB,, MSB,(x + 1) # MSBy(z) only for
one x € Zy. Namely, MSB is a family of (o, a)-segment predicates with o(p) = 1,
a(p) =1 for all p. By Theorem [2] this implies that for any e = O(1) sufficiently
small, there exists an algorithm that solves with advice HNP% =, a

4 Universally Finding Significant Fourier Coefficients

In this section we present our universal SFT algorithm.

In the following We present the combinatorial condition on good queries sets
S'; show such sets exists; and prove that our SFT algorithm succeeds even when
given oracle access only to the restriction of the input function f to the entries
in S.

We define good queries. Recall that A C Zy is y-biased if [Egea[x(2)]| < 7 for
all non-trivial characters x of Zy. For B, I C Zy, we say that B is (v, I)-biased
if |[Ezen[x(z)] — Ezer[x(z)]| < v for all characters x is Zy. Denote by A — B
the set of differences {a — b}, 4 e p-

Definition 4 (Good Queries). Let S = {Sn i}y, , be a family of sets
SNt CZn. We say that S is good if for all N, 7, t and for v = O(7/(t* log N))
sufficiently small, Sy -+ = U%g‘ig M) (A= By) s.t.

— A is y-biased in Ly, of size |A| = @(712 log N).
— V¢, By is (7,[0..2)-biased in Zy, of size polynomial in log N and 1/~,

We remark that the meaning of “sufficiently small 4” depends on the considered
noise parameter ¢, specifically, on the ratio € : 7. To simplify parameters, we fix
this ratio to be, say, € < 0.97.

We show that good queries S exist. Moreover, there is a randomized algorithm
that constructs good sets Sy ¢ with high probability.

Proposition 4 (Good Queries Exist). There is a randomized algorithm that
given N, 7 and t, outputs S = Sy .+ such that S is good with probability at least
1—1/N°WM; and its running time is O(|S]).

Proof. The algorithm outputs S = U }Q‘ig N (A — By) for independent uniformly
random sets A C Zy and By C [0..2%], of sizes |A| = O(,yl2 log N) and |By| =
O(,Yl2 -log N -loglogN), £ =1,...,[(logN)|.

Using Chernoff and Union bounds it is straightforward to show that S is good
with probability at least 1 — 1/NQ(1); details omitted. a



Solving Hidden Number Problem 347

We show that our SFT algorithm succeeds when given oracle access to the re-
striction of the input function f (or its corruption by noise f' = f +n) to good

queries S = Sy . Denote this restriction by flls def {(z, f'(2)}es
Let 8 = {Sn .} be any family of good queries. For any integer N > 0, reals

7,t > 0, a function f:Zy — B; s.t. Ll(f) < t, and an e-random noise 7 for
€ < 0.97 the following holds.

Theorem 4 (SFT). Our SFT algorithm, when given N, 7, t and f|/SN _, Jor
= f+mn, outputs a list L O Heavy_(f) of size |L| < O(1/7), with probability
at least 1 — 1/NM); and its running time is polynomial in log N, 1/7 and t.

The probability is taken over the random noise 7. In particular, when there is
no noise, the success probability is 1.

Remark 2. Our SFT algorithm also handles: (i) Small amount of adversarial
noise, that is, noise corrupting e-fraction of the values of f|s, ., for sufficiently
small e = O(7/log N). (ii) Input functions f accepting arbitrary complex values
(and their corruption by noise f').

To prove Theorem H we first present the details of our SFT algorithm
(Sect. [E)), and then present its analysis (Sect. E.2)).

4.1 The SFT Algorithm

We give the details of our SFT algorithm. At a high level, the SFT algorithm is
a binary search algorithm that repeatedly:

1. Partitions the set of potentially significant Fourier coefficients into two
halves.

2. Tests each half to decide if it (potentially) contains a significant Fourier
coeflicient. This is done by estimating whether the sum of squared Fourier
coefficients in each half exceeds the significance threshold 7.

3. Continues recursively on any half found to (potentially) contain signifi-
cant Fourier coefficients.

At each step of this search, the set of potentially significant Fourier coef-
ficients is maintained as a collection J of intervals: At the first step of the
search, all Fourier coefficients are potentially significant, so J contains the sin-
gle interval J = [1..N]. At each following search step, every interval J € J
is partitioned into two sub-intervals J; and J; containing the lower and upper
halves of J respectively, and the set J is updated to hold only the sub-intervals
that pass the test, i.e., those that (potentially) contain a significant Fourier co-
efficient. After log N steps this search terminates with a collection J of length
one intervals revealing the frequencies of the significant Fourier coefficients. For
all frequencies a of the significant Fourier coefficients, we then compute as an
O(7)-approximation for f(«) the value val, = |jx| > vea—y f(@)xa(z) for some

arbitrary y € Ul;gg M) By.
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The heart of the algorithm is the test deciding which intervals potentially
contain a significant Fourier coefficient (aka, distinguishing procedure). The dis-
tinguishing procedure we present, given an interval .JJ, answers YES if its Fourier
weight weight(J) = > ‘f(a)
swers NO if the Fourier weight of a slightly larger interval J' D J is less than
7/2. This is achieved by estimating the ¢ norm (i.e., sum of squared Fourier
coefficients) of a filtered version of the input function f, when using a filter h
that passes Fourier coefficients in J and decays fast outside of J.

The filters h that we use for depth £ of the search are the (normalized) periodic
square function of support size 2¢ or Fourier domain translations of this function:

def o X—c(y) y € 0..2°]

hee(y) = (1)

0 otherwise

exceed the significance threshold 7, and an-

The filter h = hy . passes all frequencies that lie within the length N/ 2¢ interval
J centered around ¢, and decays fast outside of J. The filtered version of f is
f * h, and we estimate its ¢2 norm || f * h||3 by the estimator:

def 1 1
steelf) = g 2 |y y%x_c@)f(x ~) (2)

for A, By,...,By C Zy as specified in the definition of good queries [l

A pseudo-code of the algorithm follows. We denote intervals by the pair {a, b}
of their endpoints. To simplify notations, we assume: (a’ + b')/2 is an integer
(otherwise, appropriate flooring/ceiling is taken); || f|]2 = 1 (otherwise we nor-
malize f it by dividing each read value by an energy estimator |}1| Yowentf (7)?);
0 € U, Be (otherwise we change variable in }__ , Xa(2)f(7) to z =z —y for a
random y € (J, By).

Algorithm 2 SFT.
Input: NeN, 7€(0,1], {(z,4, f(x —y)}rcayen, ¥=1,....[(logN)]

1. Initialize: J « {{0,N}}
2. While Ha,b} €J s.t. b—a >0 do:
(a) Delete {a,b} from J
(b) For each pair {d,b'} in Low=/{a, “;b}, High:{agb +1,b} do:

2
i. Compute esty. < Ijll YA (Iézl > yen, X—cW) f(z — y)) for (=
log(N/(b' —a')), ¢=[((a’ +0)/2)]
ii. If esty.>7/2, imsert {da’,b'} to J
3. Sieving: For each {o,a} € J,

2
(a) Compute val(a) « ‘Iil Y owea Xa(m)f(a:)‘
(1) If val(a) < 7/2, delete {a,a} from J

4. Output L={o|{na}e T}



Solving Hidden Number Problem 349

4.2 Proof of Theorem [

In this section we bring the proof of Theorem [l

Proof of Theorem[f] Let h¢ . and est;.(f) be as defined in ([I))-([@). Fix a suffi-
ciently small absolute constant ¢ > 0. Consider condition (*) on f' = f +n:

(%) |este,e(f) = I f *hecl3| <crforallé=1,....[(logN)],c € Zy

By Lemma 2] when (*) holds, the SFT algorithm outputs L D Heavy_(f) in
running time polynomial in log N, 1/7 and ¢. By Lemma [3 when S is a good,
(*) holds with probability at least 1 — 1/N**(1) over the noise 5. Thus, the SFT
algorithm outputs L O Heavy_(f) in time polynomial in log N, 1/7 and ¢.
Proving |L| < O(1/7) is similar. Consider condition (') saying that Vo € Zy,
iy Ceea F/@)xalz) - f(a)] < er. We show that first, if (*) holds, then the

2
sieving step leaves in J only {«,a} s.t. ‘f(a)‘ > Q2(7); implying |L| < O(1/7)
by Parseval Identity. Second, when S is good, (*’) holds with high probability
over the noise . We conclude that |L| < O(1/7) with high probability over the
noise 7. Details omitted from this extended abstract. O
We show that the SFT algorithm succeed on functions f’ satisfying (*).

Lemma 2. Let f' = f 4+ n and all other parameters be as in Theorem [J| If
conditions (*) holds for f', then the SFT algorithm returns a list L 2 Heavy_(f)
in running time polynomial in log N, 1/7 and t.

Proof. Denote J = [a/,], £ =log(N/(b' —a')) and ¢ = (a' +V')/2.

Correctness. Consider a significant Fourier coefficient o € Zy. To show that
a € L, it suffices to show that esty .(f') > 7/2 whenever J > «. The latter is true
because when J contains a 7-significant Fourier coefficient, then by Proposition

2
T Item (1), || % heel2 > 25, ’f(a)‘ ) > ©(r), which by (*) implies that
esty.c(f') > £2(7) > 7/2 (the latter holds by setting appropriate constants).

Efficiency. Fix ¢, to bound the running time it suffices to show that
“esty (f') > 7/2” does not happen for too many disjoint intervals J of length
N/28 If est o(f') > 7/2, then by condition (*), ||he.c* f]|3 > £2(7). By Claim 1]
Item 2, the latter implies that for a slightly larger interval J' D J, |J'|/|J| <
O(1/7), its Fourier weight (that is, sum of squared Fourier coefficients with fre-
quencies in J') is greater than 2(7). This implies that esty . cannot be greater

than 7/2 too often, because there are at most O(1/7) disjoint intervals whose
Fourier weight exceeds £2(7) (by Parseval Identity), and thus at most O(! - ‘|i||)

(possibly, overlapping) intervals J' whose Fourier weight exceeds (7). O

Claim 21. For integers £,c > 0 and real v > 0, let J; . = {a |abs(a — ¢) < gﬁ

an interval, and Jy . . = {a |abs(a — ¢) < \/ 2. N} its extension. Then: (1)

3y 2¢
~ 2 o~ 2
lhee FI3> 2 Sacs,, [ s and (2 Whees 118 < Sey | F0)] 47
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Proof. Denote h = hy .. By Parseval Identity and the convolution theorem,
2 2 ~
|Ih f||§ =>. a)‘ ‘f(a)‘ . By definition of h, h(a) = Soce(av—¢) for Si(a) =

L Zy _o Xa(y) as defined in Proposition 2l The proof follows from the properties
guaranteed in Proposition 2} details omitted from this extended abstract. a

We show that when using a good set of queries S condition (*) holds (with high
probability over the random noise 7).

Lemma 3. Let f' = f +n and all other parameters be as in Theorem [f] Con-
dition (*) holds for f' with probability at least 1 — 1/ N over the noise 1.

Proof. Let S = 1OgN(A By) for S = Sy, from the good queries S of
Theorem [ Recall that A is a v-biased set and the By’s are (v, [0..2])-biased.

Fix £ € [[(logN)|] and ¢ € Zy. Denote B = By, h = hy. Observe that
leste,o(f) — lh FII3] < (i) + (i4) + (did) for:

= (i) := [este.c(f) = [h* fI3]
— ()= [2 4 Zoea (13 Spen -/ @ =) (13 Zyen x—cwntz—v))|
— (14d) := |esty,c(n)]
We bound each of these terms. By Claim B2, (i) < O(yLi(f)%log N). B
Claims 23}24] with probability at least 1 — 3exp (—2(|A| %)), (ii) + (i) §

(v

T )
(2 + O(yL1(f)?log N))(2¢% + € + O(7)). Thus, for v = O(7/(t*log N)) and
e = O(7), with probability at least 1 — 3exp (—Q2(|A| 72)),

~

lest,o(f) — | = fl|3] < O(7) for all fs.t. Li(f) <

By union bound, this holds for all £ =1,...,|(log N)| with probability at least
1-3exp (—2(|A| 7)) log N = 1—1/N“?M since |A| > 2((In N)/72) by definition
of good sets. O

Claim 22. (i) < O(vL1(f)?log N).

Proof. Denote I = [0..2¢]. Define g,.(y) = x—c(y)f(z — y) fory € I and g.(y) = 0
otherwise. Then by the definition of esty .(f) and || * f]|3,

0-|2 (00) - &, (gew) |sr o
- ('L/) = ]EzeA (]EyEB gz(y))2 - EzeA (Eyel gz(y))Q‘

= EweA (]EyEI gw(y))z - ]E:vEZN (EyEI gz(y))2’

~ ~

We show below that (i') < ~-Lq(f)?- O(log N) and (i1") < - La( )2. Combining
these bounds we get that (i) < O(yL1(f ) log N).
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Bounding term (i’). We first get rid of the expectation over z € A by up-
per bounding it with its value on a maximizing o € A. We then switch to
the Fourier representation of g,, and rely on B being (v, I)-biased to bound the
difference between the expectations over y € B and y € I. Finally, we bound the
emerging quantity Li(g.,) (using Proposition 2] and algebraic manipulations).
Details omitted from this extended abstract.

Bounding term (ii’). We first observe that the inner expectations are over the
same range I and variable. That is, (ii') = |Ezea §(x) — Ezezy g(z)| for g(z) =
(Eyer gm(y))Q. We then switch to the Fourier representation of g and rely on A
being «-biased to bound the difference between the expectations over x € A and
T E€Ly.

<) i E Xa(@) = E Xa(2) <~L1(3)

Z
a€LN vELN

Finally we bound the emerging quantity L;(g). Observe that g = (h* f)? (since
b f = Eyeny 3 X-c®)f (@~ 1) = Byer x—e(u)f (@ — y)). Therefore, L (5) <
Li(h* f)? where we use the fact that for any function s, Li(s2) < L1(3)%.

Observe further that L1(h/>-k\f)2 < L1(f) because ’h * ’ = ’h ’ . ’f(a)’ <
‘f(a) , where the last inequality follows since h( )| <1 for all @. Combining

the above bounds we conclude that (ii") < 'yLl(f)Q. O

Claim 23. (i7) < (1 + O(le(A)2log N))(2e? + € + O(7)) with probability at
least 1 — exp (—2(|A| 2)).

Proof. By Cauchy-Schwartz inequality, (i4)% < 4 - (a) - (b) for

(@)= by Saen (1 Syem x—cW)fx— )
— 0=k een (1B Spen venz —v))

To bound (b), observe that (b) = esty(n) < (iii). Therefore, by Claim 24]
(b) < 2e% + ¢ + O(7) with probability at least 1 — 2 exp(—£2(|A| 72)).
To bound (a), observe that (a) = esty.(f), implying by Claim that

|(a) = [|h = fl3] < O(yL1(f)?log N). Next observe that ||k = f||2 < 1 (since
~ ~ 2 ~ ~

b= flI3 =", h(a)f(a)‘ where ‘h(a) , (a)‘ < 1 for all oz)E‘ We conclude

therefore that |(a)] <1+ O(’yLl(f)2 log N).

3 Here,

A(a)‘ < 1 because f accepts values in B;. The bound holds also for unbounded

-2
f, provided f is normalized to have ) ‘f(a) <1
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Combining both bounds we conclude that with probability at least

o~

1 —exp (—2(]A] 72)), (i) < (1 + O(yL1(f)?log N))(2% + ¢ + O(7)). O

Claim 24. (iii) < 2% +¢e+ O(7) with probability at least 1 —2exp(—2(|A| 72)).

Proof. To bound (iii) = |estec(n)] we rely on the randomness of
n. By definition of est;.(n) and the triangle inequality, [est;.(n)] <

2
|}1| YA (Iél > yepIn(x— y)|> . Opening the parenthesis, |esty .(n)| < (a)+(b)
for:

= (a) = |il| ZmeA |Bl|2 ZylgéyzEB n(z —y1)| [n(z — y2)|
- (b):= |i1| ZzeA |1;|2 ZyEB In(z — y)|2

Expressions (a) and (b) are averages over the indep. random variables: vy 4, y, =
[n(z —y1)| |In(x — y2)|- |1¥|97|1 and vy, = |n(z — y)|2- Iél respectively (the factors
involving | B| are for proper normalization). We use Chernoff/Hoeffding bound
to upper bound expressions (a) and (b) separately, and then apply union bound
to upper bound their sum. Details omitted from this extended abstract. a

5 Bit Security Implications

We obtain bit security results as a corollary of our algorithm solving HNP7<.
We set some terminology. Let G = {g,} be a family of generators g, of Zj.
Let F = {f,} be a family of functions f, outputting secrets s when given public
data PD,, 4 . depending on the modulus p, a generator g and the secret s. Think
of F as the underlying hard to compute function. Let P = {P,} be a family of
predicates over Z,. Denote by M B a “magic box” that, given p,g and PDy, 4 s,

outputs M B(p, g, PDy g.s) et P,(s). We say that:

— P is as hard as F if there is an algorithm A that, given PD, , ., oracle
access to M B, and an advice depending only on p and g, outputs the secret
s with probability at least 1/poly(logp), while the running time and advice
length are polynomial in logp.

— Fis G-accessible if there is an access algorithm that, given public data PD,, 4
for a secret s, and an element a € Z,_,, outputs public data PD,, 4 5.4« for
the secret s - g* mod p.

Theorem 5. For any G-accessible F and concentrated P, P is as hard as F.

Proof. Fix p and denote g = g,. Let Adv, 4 be an advice depending only on p

and g as used in Theorem [ for solving HNP?¢ in Algorithm [l Let P, s(a) def

P,(s-g"). Observe that given PD),, , ; and oracle access to M B we can simulate
oracle access to P, s: For each query a, we compute PD,, 4.4« using the access
algorithm of F, and output val = MB(p, PDp g.s.g2). By definition of M B,
val = Py(s - g%).
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The algorithm A runs Algorithm [I] while simulating oracle access to P, s. By
Theorem [Il the output is s with probability at least 1/poly(logp). We conclude
that P is as hard as F. O

Let OK and £L' denote the underlying hard families of functions in the Okamoto
conference key sharing scheme and in the (modified) ElGamal public key en-
cryption scheme as defined in [5]. The analysis of [5] shows that OK (£L£) is
G-accessible. We conclude therefore that for any concentrated predicate P, P is
as hard as computing OK (££'). In particular, this holds for P = M SB;.
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