
Finding Bugs in Dynamic Web Applications

Shay Artzi
†

Adam Kie
.
zun

†
Julian Dolby

‡

Frank Tip
‡

Danny Dig
†

Amit Paradkar
‡

Michael D. Ernst
†

†MIT Computer Science and Artificial Intelligence Lab, {artzi,akiezun,dannydig,mernst}@csail.mit.edu
‡IBM T.J. Watson Research Center, {dolby,ftip,paradkar}@us.ibm.com

Abstract

Web script crashes and malformed dynamically-generated Web
pages are common errors, and they seriously impact usability of
Web applications. Current tools for Web-page validation cannot
handle the dynamically-generated pages that are ubiquitous on to-
day’s Internet. In this work, we apply a dynamic test generation
technique, based on combined concrete and symbolic execution, to
the domain of dynamic Web applications. The technique generates
tests automatically, uses the tests to detect failures, and minimizes
the conditions on the inputs exposing each failure, so that the re-
sulting bug reports are small and useful in finding and fixing the
underlying faults. Our tool Apollo implements the technique for
PHP. Apollo generates test inputs for the Web application, moni-
tors the application for crashes, and validates that the output con-
forms to the HTML specification. This paper presents Apollo’s al-
gorithms and implementation, and an experimental evaluation that
revealed 214 faults in 4 PHP Web applications.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging;
General Terms Reliability, Verification
Keywords Software Testing, Web Applications, Dynamic Analysis,
PHP

1. Introduction
Dynamic test-generation tools, such as DART [15], Cute [28],

and EXE [5], find failures by executing an application on concrete
input values, and then creating additional input values by solving
symbolic constraints derived from exercised control flow paths. To
date, such approaches have not been practical in the domain of Web
applications. This paper extends dynamic test generation to script-
ing languages, uses an oracle to determine whether the output of
the Web application is syntactically correct, and automatically sorts
and minimizes the inputs that expose failures. Our Apollo system
applies these techniques in the context of PHP, one of the most
popular languages for Web programming. According to Netcraft,
PHP powered 21 million domains as of April 2007, including large,
well-known websites such as Wikipedia and WordPress.
The output of a Web application is typically an HTML page that

can be displayed in a browser. Our goal is to find faults that are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’08, July 20–24, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-59593-904-3/08/07 ...$5.00.

manifested as Web application crashes or as malformed HTML.
Some faults may terminate the application, such as when a Web
application calls an undefined function or reads a nonexistent file.
In such cases, the HTML output presents an error message and the
application execution is halted.
More commonly in deployed applications, a Web application

creates output that is not syntactically well-formed HTML, for ex-
ample by generating an opening tag without a matching closing tag.
Web browsers are designed to tolerate some degree of malformed-
ness in HTML, but this merely masks underlying failures. Mal-
formed HTML is less portable across browsers and is vulnerable
to breaking on new browser releases. An application that creates
invalid (but displayable) HTML during testing may create undis-
playable HTML on different executions. More seriously, browsers’
attempts to compensate for malformed Web pages may lead to
crashes and security vulnerabilities1. A browser might also succeed
in displaying only part of a malformed webpage, silently discarding
important information. Search engines may have trouble indexing
incorrect pages. Standard HTML renders on more browsers, and
valid pages are more likely to look as expected, including on future
versions of Web-browsers. Standard HTML renders faster2. For
example, in Mozilla, “improper tag nesting [. . .] triggers residual
style handling to try to produce the expected visual result, which
can be very expensive” [25].
Web developers widely recognize the importance of creating le-

gal HTML. Many websites are validated using HTML validators3

(even the ISSTA’08 website displays the W3C HTML compliance
logo). However, HTML validators are used only for static pages.
Validating dynamic Web applications (i.e., application that gen-

erate pages during the execution) is hard. Even professionally-
developed applications often contain multiple faults (see Section 5).
To prevent faults, programmers must make sure that the application
creates a valid HTML page on every possible execution path. There
are two general approaches to this problem: static and dynamic
checking (testing).
Static checking of dynamic Web applications cannot fully cap-

ture their behavior. Such application are often written in languages
such as PHP that enable on-the-fly creation of code and overriding
of methods. In many Web applications, part (further pages) of the
application is referenced from the generated HTML text (e.g., but-
tons and menus that require user interaction to execute), rather than
from the analyzed code. Specialized analysis may be possible for a
custom language, such as <bigwig> [3].
Testing of dynamic Web applications is also hard, because the in-

put space is large, and application usually require multiple user in-

1See bug reports 269095, 320459, and 328937 at https://bugzilla.
mozilla.org/show_bug.cgi?
2
http://weblogs.mozillazine.org/hyatt/archives/2003_03.html#

002904
3
http://validator.w3.org, http://www.htmlhelp.com/tools/validator

teractions. The state-of-the-practice in validation for Web-standard
compliance of real Web-applications is using programs such as
HTML Kit4 that validate each generated page, but require man-
ual generation of inputs that lead to displaying different pages. We
know of no automated validator for scripting languages that dy-
namically generate HTML pages.
This paper presents an automated technique for finding failures

in HTML-generating Web applications. Our technique adapts the
technique of dynamic test generation, based on combined concrete
and symbolic execution and constraint solving [5, 15, 28], to the
domain of Web applications. In our technique, the Web application
under test is first executed with an empty input. During each execu-
tion, the program is monitored to record path constraints that cap-
ture the outcome of control-flow predicates. Additionally, for each
execution an oracle determines whether fatal failures or HTML
well-formedness failures occur, the latter via use of an HTML val-
idator. The system automatically and iteratively creates new inputs
by negating one of the observed constraints and solving the modi-
fied constraint system. Each newly-created input explores at least
one additional control flow path.
Our work differs from previous approaches for testing Web ap-

plications by using an oracle to detect specification violations in
the application’s output, in addition to crashes or assertion fail-
ures. Another novelty in our work is inference of input parameters,
which are not manifested in the source code. Our technique simu-
lates user interaction by transforming the Web application to create
additional input parameters that the execution engine interprets as
user input.
Techniques based on combined concrete and symbolic execu-

tions [5, 15, 28] may create multiple inputs that expose the same
failure. In contrast to previous techniques, to avoid overwhelming
the developer, our technique automatically identifies the minimal
part of the input that is responsible for triggering the failure. This
step is similar in spirit to Delta Debugging [6]. However, since
Delta Debugging is a general, black-box, input minimization tech-
nique, it is oblivious to the properties of inputs. In contrast, our
technique is white-box: it uses the information that certain inputs
induce partially overlapping control flow paths. By intersecting
these paths, our technique minimizes the constraints on the inputs
within fewer program runs. There are also significant differences
in the domain and language under consideration (Web PHP appli-
cations, versus desktop C applications), as we discuss in Section 6.
We created a tool, Apollo, that implements our method in the

context of the publicly available PHP interpreter. We evaluated
Apollo on publicly available Web applications. In a time budget
of 10 minutes per program, Apollo found 214 different faults.
In summary, the contributions of this paper are:

• We adapt the established technique of dynamic test genera-
tion, based on combined concrete and symbolic execution [5,
15,28], to the domain of Web applications. The challenges in-
clude inferring the input parameters, which are not indicated
by the source code; using an HTML verifier as an oracle; deal-
ing with language-specific datatypes and operations; and sim-
ulating user input for interactive applications.

• We created a tool, Apollo, that implements the technique for
PHP.

• We evaluated our tool by applying it to real Web applications
and comparing the results with random testing. We show that
dynamic test generation is highly effective when adapted to the
domain of Web applications written in PHP: Apollo achieved
line coverage of 58.0% and identified 214 faults.

4
http://www.htmlkit.com

The remainder of this paper is organized as follows. Section 2
presents an overview of PHP, introduces our running example, and
discusses classes of failures in PHP Web applications. Section 3
presents the algorithm and illustrates it on an example program.
Section 4 discusses our Apollo implementation. Section 5 presents
our experimental evaluation of Apollo on open-source Web appli-
cations. Section 6 gives an overview of related work, and Section 7
presents conclusions.

2. Context: PHPWeb Applications

2.1 The PHP Scripting Language
This section briefly reviews the PHP scripting language, focus-

ing on those aspects of PHP that differ from mainstream languages.
Readers familiar with PHP may skip to the discussion of the run-
ning example in Section 2.2.
PHP is widely used for implementing Web applications, in part

due to its rich library support for network interaction, HTTP pro-
cessing, and database access. The input to a PHP program is a map
from strings to strings. Each key is a parameter that the program
can read, write, or check if it is set. The string value corresponding
to a key may be interpreted as a numerical value if appropriate. The
output of a PHP Web application is an HTML document that can
be presented in a Web browser.
PHP is object-oriented, in the sense that it has classes, interfaces,

and dynamically dispatched methods with syntax and semantics
similar to that of Java. PHP also has features of scripting languages,
such as dynamic typing, and an eval construct that interprets and
executes a string value that was computed at run-time as a code
fragment. For example, the following code fragment:

$code = "$x = 3;"; $x = 7; eval($code); echo $x;

prints the value 3 (names of PHP variables start with the $ charac-
ter). Other examples of the dynamic nature of PHP are a predicate
that checks whether a variable has been defined, and class and func-
tion definitions that are statements that may occur anywhere.
The code in Figure 1 illustrates the flavor of PHP. The require

statement that used on line 11 of Figure 1 resembles the C #include
directive in the sense that it includes the code from another source
file. However, the C version is a pre-processor directive with a con-
stant argument, whereas the PHP version is an ordinary statement
in which the file name is computed at runtime. There are many
similar cases where run-time values are used, e.g., switch labels
need not be constant. This degree of flexibility is prized by PHP
developers for enabling rapid application prototyping and develop-
ment. However, the flexibility can make the overall structure of
program hard to discern and it can make programs prone to code
quality problems.

2.2 PHP Example
The PHP program of Figure 1 is a simplified version of School-

Mate5, which allows school administrators to manage classes and
users, teachers to manage assignments and grades, and students to
access their information.
Lines 6–7 read the global parameter page that is supplied to the

program in the URL, e.g., http://www.mywebsite.com/index.php?
page=1. Line 10 examines the value of the global parameter page2
to determine whether to evaluate file printReportCards.php.
Function validateLogin (lines 27–39) sets the global parameter

page to the correct value based on the identity of the user. This
value is read in the switch statement on line 18, which presents the
login screen or one of the teacher/student screens.

5
http://sourceforge.net/projects/schoolmate

1 <?php

2

3 make_header(); // print HTML header

4

5 // Make the $page variable easy to use //

6 if(!isset($_GET[’page’])) $page = 0;

7 else $page = $_GET[’page’];

8

9 // Bring up the report cards and stop processing //

10 if($_GET[’page2’]==1337) {

11 require(’printReportCards.php’);

12 die(); // terminate the PHP program

13 }

14

15 // Validate and log the user into the system //

16 if($_GET["login"] == 1) validateLogin();

17

18 switch ($page)

19 {

20 case 0: require(’login.php’); break;

21 case 1: require(’TeacherMain.php’); break;

22 case 2: require(’StudentMain.php’); break;

23 default: die("Incorrect page number. Please verify.");

24 }

25

26 make_footer(); // print HTML footer

27 ...

27 function validateLogin() {

28 if(!isset($_GET[’username’])) {

29 echo "<j2> username must be supplied.</h2>\n";

30 return;

31 }

32 $username = $_GET[’username’];

33 $password = $_GET[’password’];

34 if($username=="john" && $password=="theTeacher")

35 $page=1;

36 else if($username=="john" && $password=="theStudent")

37 $page=2;

38 else echo "<h2>Login error. Please try again</h2>\n";

39 }

40

41 function make_header() { // print HTML header

42 print("

43 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

44 "http://www.w3.org/TR/html4/strict.dtd">

45 <HTML>

46 <HEAD> <TITLE> Class Management </TITLE> </HEAD>

47 <BODY>");

48 }

49

50 function make_footer() { // close HTML elements opened by header()

51 print("

52 </BODY>

53 </HTML>");

54 }

55 ?>

Figure 1: A simplified PHP program excerpt from SchoolMate. This excerpt contains three faults (2 real, 1 seeded), explained in Section 2.3.

2.3 Failures in PHP Programs
Our technique targets two types of failures that can be automati-

cally identified as violations of the partial specification of executing
PHPWeb applications. (I) execution failures are caused by missing
an included file, wrong MySQL query, and uncaught exceptions.
Such failures are easily identified as the PHP interpreter generates
an error message and halts execution. Less serious execution fail-
ures, such as using deprecated language constructs, produce obtru-
sive error messages but do not halt execution. (II) HTML failures
involve situations in which the generated HTML page is not syntac-
tically correct according to an HTML validator. Section 1 discussed
the negative consequences of malformed HTML.
The program of Figure 1 contains three faults resulting in the

following failures:

1. The program contains an execution failure: the file
printReportCards.php referenced on line 11 is missing.

2. The program produces malformed HTML because the
make_footer method is not executed in certain situations, re-
sulting in an unclosed HTML tag in the output. The default
case of the switch statement on line 23 terminates program
execution when the global parameter page is not 0, 1, or 2 and
when page is not written by function ValidateLogin.

3. The program produces malformed HTML when line 29 gener-
ates an illegal HTML tag j2.

The first failure is similar to a failure that our tool found. The
second failure is the result of a fault that exists in the original code
of the SchoolMate program. The third failure is the result of a fault
that was artificially inserted into the example for illustration.

3. Finding Failures in PHPWeb Applications
Our technique for finding failures in PHP applications is a vari-

ation on an established dynamic test generation technique [5, 15,
16, 28] sometimes referred to as concolic testing. The basic idea is
to execute an application on an initial input (e.g., an arbitrarily or
randomly-chosen input), and then on additional inputs obtained by

solving constraints derived from exercised control flow paths. We
adapted this technique to PHP Web applications as follows:
•We extend the technique to validate the correctness of the pro-

gram output. We use an oracle, in the form of an HTML validator,
to determine whether the output is a well-formed HTML page.
• The PHP language contains constructs such as isset (check-

ing whether a variable is defined), isempty (checking whether a
variable contains a value from a specific set), require (dynamic
loading of additional code to be executed), and several others that
require the generation of constraints that are absent in languages
such as C or Java.
• PHP applications typically interact with a database and need

appropriate values for user authentication (i.e., user name and pass-
word). It is not possible to infer these values by either static or dy-
namic analysis, or by randomly guessing. Therefore, our technique
uses a pre-specified set of values for database authentication.
• The HTML pages generated by a PHP applications may con-

tain buttons that—when pressed by the user—result in the loading
and execution of additional PHP source files. We simulate such
user input by transforming the source code. Specifically, for each
page h that contains N buttons, we add an additional input parame-
ter p to the PHP program, whose values may range from 1 through
N. Then, at the place where page p is generated, a switch statement
is inserted that includes the appropriate PHP source file, depending
on the value supplied for p. The steps of the user input simulator
are fully mechanical, and the required modifications are minimal,
but for expediency we performed the program transformation by
hand.

3.1 Algorithm
Figure 2 shows the pseudo-code of our algorithm. The inputs

to the algorithm are: a program P and an output oracle O. The
output of the algorithm is a set of bug reports B for the program P,
according to O. Each bug report contains: identifying information
about the failure, the set of all inputs under which the failure was
exposed, and the set of all path constraints that lead to the inputs
exposing the failure.

parameters: Program P, oracle O
result : Bug reports B;
B : setOf (〈failure, setOf (pathConstraint), setOf (input)〉)
P′ ≔ simulateUserInput(P);1

B ≔ ∅;2

pcQueue ≔ emptyQueue();3

enqueue(pcQueue, emptyPathConstraint());4

while not empty(pcQueue) and not timeExpired() do5

pathConstraint ≔ dequeue(pcQueue);6

input ≔ solve(pathConstraint);7

if input , ⊥ then8

output ≔ executeConcrete(P′, input);9

failures ≔ getFailures(O, output);10

foreach f in failures do11

merge 〈f , pathConstraint, input〉 into B;12

c1 ∧ . . . ∧ cn ≔ executeSymbolic(P
′
, input);13

foreach i = 1,. . . ,n do14

newPC ≔ c1 ∧ . . . ∧ ci−1 ∧ ¬ci;15

enqueue(pcQueue, newPC);16

return B;17

Figure 2: The failure detection algorithm. The solve auxiliary
function uses the constraint solver to find an input satisfying the
path constraint, or returns ⊥ if no satisfying input exists. The
output of the algorithm is a set of bug reports. Each bug report
contains a failure, a set of path constraints exposing the failure,
and a set of input exposing the failure.

The algorithm uses a queue of path constraints. A path con-
straint is a conjunction of conditions on the program’s input pa-
rameters. The queue is initialized with the empty path constraint
(line 4). The algorithm uses a constraint solver to find a concrete in-
put that satisfies a path constraint taken from the queue (lines 6– 7).
The program is executed concretely on the input and tested for fail-
ures (lines 9–10). The path constraint and input for each detected
failure are merged into the corresponding bug report (lines 11–
12). Next, the program is executed symbolically on the same in-
put (line 13). The result of symbolic execution is a path constraint,
∧n
i=1 ci, that is fulfilled if the given path is executed (here, the path
constraint reflects the path that was just executed). The algorithm
then creates new test inputs by solving modified versions of the
path constraint (lines 14–16), as follows. For each prefix of the
path constraint, the algorithm negates the last conjunct (line 15).
A solution, if it exists, to such an alternative path constraint corre-
sponds to an input that will execute the program along a prefix of
the original execution path, and then take the opposite branch.

3.2 Example
Let us now consider how the algorithm of Figure 2 exposes the

third fault in the example program of Figure 1.
Execution 1. The first input to the program is the empty input,

which is the result of solving the empty path constraint. During ex-
ecution, the condition on line 6 evaluates to true (which sets page
to 0) and the condition on line 10 evaluates to false. The condition
on line 16 evaluates evaluates to false because parameter login is
not defined. The switch statement on line 18 selects the case on
line 20 because page has the value of 0. Execution terminates on
line 26. The HTML verifier determines that the output is legal, and
executeSymbolic produces the following path constraint:

NotSet(page) ∧ page2 , 1337 ∧ login , 1 (I)

The algorithm now enters the foreach loop on line 14 of Figure 2,
and starts generating new path conditions by systematically travers-

parameters: Program P, oracle O, bug report b
result : Short path constraint that exposes b.failure
c1 ∧ . . . ∧ cn ≔ intersect(b.pathConstraints);1

pc ≔ true;2

foreach i = 1, . . . , n do3

pci ≔ c1 ∧ . . . ci−1 ∧ ci+1 ∧ . . . cn;4

input ≔ solve(pci);5

if input , ⊥ then6

output ≔ executeConcrete(P, input);7

failures ≔ getFailures(O, output);8

if b.failure < failures then9

pc ≔ pc ∧ ci;10

inputpc ≔ solve(pc);11

if inputpc , ⊥ then12

outputpc ≔ executeConcrete(P, inputpc);13

failurespc ≔ getFailures(O, outputpc);14

if b.failure ∈ failurespc then15

return pc;16

return shortest(b.pathConstraints);17

Figure 3: The path constraint minimization algorithm. The
method intersect returns a conjunction containing the conditions
that are present in all given path constraints, and the method
shortest returns the path constraint with fewest conjuncts. The
other auxiliary functions are the same as in Figure 2.

ing subsequences of the above path constraint, and negating the last
conjunct. Hence, from (I), the algorithm derives the following three
path constraints:

NotSet(page) ∧ page2 , 1337 ∧ login = 1 (II)

NotSet(page) ∧ page2 = 1337 (III)

Set(page) (IV)

Execution 2. For path constraint (II), the constraint solver may
find the following input (the solver is free to select any value for
page2, other than 1337): page2← 0, login← 1.
When the program is executed with this input, the condition of

the if-statement on line 16 evaluates to true, resulting in a call to
the validateLoginmethod. Then, the condition of the if-statement
on line 28 evaluates to true because the username parameter is not
set, resulting in the generation of output containing an incorrect
HTML tag j2 on line 29. When the HTML validator checks the
page, the failure is discovered and a bug report is created and added
to the output set of bug reports.

3.3 Path Constraint Minimization
The failure detection algorithm (Figure 2) returns bug reports for

different failures. Each bug report contains a set of path constraints
leading to inputs exposing the failure. Previous dynamic test gener-
ation tools [5, 15, 28] presented the whole input to the user without
an indication of the subset of the input responsible for the failure.
As a postmortem phase, our minimizing algorithm attempts to find
a shorter path constraint for a given bug report (Figure 3). This
eliminates irrelevant constraints, and a solution for a shorter path
constraint is often a smaller input.
For a given bug report b, the algorithm first intersects all the path

constraints exposing b.failure (line 1). The minimizer systemati-
cally removes one condition at a time (lines 3-10). If one of these
shorter path constraints does not expose b.failure, then the removed
condition is required for exposing b.failure. The final path con-
straint is the conjunction of all such required conditions. From the
minimized path constraint, the algorithm produces a concrete input
that exposes the failure.

The algorithm in Figure 3 does not guarantee that the returned
path constraint is the shortest possible that exposes the failure. How-
ever, the algorithm is simple, fast, and effective in practice (see
Section 5.3.2).
Our minimizer differs from input minimization techniques, such

as delta debugging [6,34], in that our algorithm operates on the path
constraint that exposes the failure, and not the input. A constraint
concisely describes a class of inputs (e.g., the constraint page2 ,
1337 describes all inputs different than 1337). Since a concrete
input is an instantiation of a constraint, it is more effective to reason
about input properties in terms of their constraints.
Each failure might be encountered along several execution paths

that might partially overlap. Without any information about the
properties of the inputs, delta debugging minimizes only a single
input at a time, while our algorithm handles multiple path con-
straints that lead to a failure.

3.4 Minimization Example
The malformed HTML failure described in Section 3.2 can be

triggered along different execution paths. For example, both of the
following path constraints lead to inputs that expose the failure.
Path constraint (a) is the same as (II) in Section 3.2.

NotSet(page) ∧ page2 , 1337 ∧ login = 1 (a)

Set(page) ∧ page = 0 ∧ page2 , 1337 ∧ login = 1 (b)

First, the minimizer computes the intersection of the path con-
straints (line 1). The intersection is

page2 , 1337 ∧ login = 1 (a ∩ b)

The minimizer creates two shorter path constraints (by remov-
ing each of the two conjuncts in turn). First, the minimizer creates
path constraint login = 1. This path constraint corresponds to an
input that reproduces the failure, namely login ← 1. The mini-
mizer knows this by executing the program on the input (line 8 in
Figure 3). Second, the minimizer creates path constraint page2 ,
1337. This path constraint does not correspond to an input that
exposes the failure. Thus, the minimizer concludes that the condi-
tion login = 1, that was removed from (a ∩ b) to form the second
path constraint, is required. In this example, the minimizer returns
login = 1. The result is the minimal path constraint that describes
this failure-inducing input.

4. Implementation
We created a tool called Apollo that implements our technique

for PHP. Apollo consists of three major components, Executor,
Input Generator, and Bug Finder, illustrated in Figure 4. This
section first provides a high-level overview of the components and
then discusses the pragmatics of the implementation.
The User Input Simulator component performs a transforma-

tion of the program that models interactive user input.
The Executor is responsible for executing a given PHP file with

a given input. Before each execution, the executor creates the ap-
propriate database for the application. The executor contains two
sub-components:

• The Shadow Interpreter is a PHP interpreter that we have
modified to record path constraints and positional information
associated with output.

• TheDatabaseManager initializes the database used by a PHP
application, and restores it before each execution.

Figure 4: The architecture of Apollo.

The Bug Finder uses an oracle to find HTML failures, stores
the all bug reports, and finds the minimal conditions on the input
parameters for each bug report.
The Bug Finder has the following sub-components:

• The Oracle finds HTML failures in the output of the program.
• The Bug Report Repository stores all bug reports containing
execution failures and HTML failures found during all execu-
tions.

• The Input Minimizer finds, for a given bug report, the small-
est path constraint on the input parameters that results in inputs
inducing the same failure as in the report.

The Input Generator contains the implementation of the algo-
rithm described in Section 3. The Input Generator contains the
following sub-components:

• The Symbolic Driver generates new path constraints, and se-
lects the next path constraint to solve for each execution.

• The Constraint Solver computes an assignment of values to
input parameters that satisfies a given path constraint.

• The Value Generator generates values for parameters that
are not otherwise constrained, using a combination of random
value generation, and constant values mined from the program
source code.

4.1 User Input Simulator
Many PHPWeb applications create interactive HTML pages that

contain user interface elements such as buttons and menus that re-
quire user interaction to execute further parts of the application. In
such cases, pressing the button may result in the execution of addi-
tional PHP source files. For example, Figure 5 contains a simpli-
fied main entry file (index.php)6 of Webchess, one of the programs
evaluated in Section 5, which contains user interface elements that
refer to two additional scripts, mainmenu.php and newuser.php.
There are two challenges involved in dealing with such interactive
applications. First, our basic approach does not automatically ana-
lyze the referenced files, because these are referenced from within
HTML output (as opposed to being referenced from within PHP
source code). Second, global information is shared between the
different scripts using the SESSION global table.

6A PHP file is a combination of text (usually HTML) and PHP
snippets. When this file is processed the PHP interpreter output the
HTML parts as is, and executed the PHP parts when appropriate.

Our current approach to the above challenges is to simulate user
interaction by transforming the script in the following way: (i)
adding an integer-valued parameter _btn to the main PHP script,
whose value denotes the button that has been selected, and (ii)
adding a switch statement to the main PHP file that uses the value
of _btn is used to select an additional PHP file to be included (us-
ing a require_once statement). For example, for the program of
Figure 5, we add:

switch($_GET["_btn"]) {

case 1:

require_once("mainmenu.php");

break;

case 2:

require_once("newuser.php");

break;

}

This approach has the advantages that SESSION state is automati-
cally shared between the different files, since the session is now an
ordinary array used in the normal way by both the included and
the original code. Our algorithm is then able to find the values
that correspond to each of the user interface elements. Since code
might be executed when a button is pressed, this approach might
induce false positive bug reports. In our experiments, this limita-
tion produced no false positive bug reports. A slight disadvantage
of this approach is that the transformed PHP application will out-
put a sequence of HTML pages rather than a single page, so that
some post processing is needed before the HTML validator can be
invoked. However, the transformation is mechanical and the re-
quired source code changes are minimal. We currently perform the
transformation manually and are investigating a solution where the
transformation is performed automatically.

4.2 Executor
We modified the Zend PHP interpreter 5.2.27 to produce sym-

bolic path constraints for the executed program, using the “shadow
interpreter” approach [7]. The shadow interpreter performs the reg-
ular (concrete) program execution using the concrete values, and
simultaneously performs symbolic execution. Creating the shadow
interpreter required three alterations to the PHP runtime:
(1) A symbolic variable may be associated with each value. Val-

ues derived from the input—that is, either read directly as input
or computed from input values—have symbolic variables associ-
ated with them. Values not derived from the input do not. These
associations arise when a value is read from one of the special ar-
rays _POST, _GET, and _REQUEST, which store parameters supplied
to the PHP program. For example, executing the statement $x
= $_GET["param1"] results in associating the value read from the
global parameter param1 and bound to parameter x with the sym-
bolic variable param1. Values maintain their associations through
assignments and function calls (thus, the interpreter performs sym-
bolic execution at the inter-procedural level). Importantly, during
program execution, the concrete values remain, and the shadow in-
terpreter does not influence execution.
Unlike other projects that perform concrete and symbolic execu-

tion [5,15,16,28], our interpreter does not associate complex sym-
bolic expressions with any runtime values, but only symbolic vari-
ables and those only for input-derived values. This design keeps
the constraint solver very simple and reduces the performance over-
head. As our results (Section 5) indicate, this lightweight approach
is sufficient for the analyzed PHP programs.
(2)At branching points (i.e., value comparisons) that involve val-

ues associated with symbolic variables, the interpreter extends the

7
http://www.php.net/

initially empty path constraint with a conjunct that corresponds to
the branch actually taken in the execution. For example, if the pro-
gram executes a statement if ($name == "John") and this condi-
tion succeeds, where $name is associated with the symbolic variable
"username", then the algorithm appends the conjunct username =
"John" to the path constraint.
(3) Our modified interpreter records conditions for PHP-specific

comparison operations, such as isset and empty, which can be ap-
plied to any variable. Operation isset returns a boolean value that
indicates whether or not a value different from NULL was supplied
for a variable. The empty operator returns true when applied to: the
empty string, 0, "0", NULL, false, or an empty array. The interpreter
records the use of isset on values with an associated symbolic vari-
able, and on uninitialized parameters.
The isset comparison creates either the NotSet or the Set condi-

tion. The constraint solver chooses an arbitrary value for a parame-
ter p if the only condition for p is Set (p). Otherwise, it will also take
into account other conditions. The NotSet condition is used only in
checking the feasibility of a path constraint. A path constraint with
the NotSet (p) condition is feasible only if it does not contain any
other conditions on p. The empty comparison creates equality or
inequality conditions between the parameter and the values that are
considered empty by PHP.

Themodified interpreter performs symbolic execution along with
concrete execution, i.e., every variable during the program execu-
tion has a concrete value and may have additionally a symbolic
value. Only the concrete values influence the control flow during
the program execution, while the symbolic execution is only a “wit-
ness” that records, but does not influence, control flow decisions at
branching points. This design deals with exceptions naturally be-
cause exceptions do not disrupt the symbolic-value mapping for
variables.
Our approach to symbolic execution allows us to handle many

PHP constructs that are problematic in a purely static approach.
For instance, for computed variable names (e.g., $x = ${$foo}),
any symbolic information associated with the value that is held by
the variable named by foo will be passed to x by the assignment8.
In order to heuristically group HTML failures that may be manifes-
tations of the same fault, Apollo records the output statement (i.e.
echo or print) that generated each fragment of HTML output.
Database Manager. Most PHP applications use a database and

to execute such programs some initial values need to be supplied.
Apollo’s Database Manager is responsible for: (i) (re)initializing
the database prior to each execution (i.e., filling it with some ini-
tial values), and (ii) supplying additional information about user-
name/password pairs. Attempting to retrieve information from the
database using randomly chosen values for username/password is
unlikely to be successful. Symbolic execution is equally helpless
without the database manager because reversing cryptographic func-
tions is beyond the state-of-the-art for constraint solvers.

4.3 Bug Finder
Bug Report Repository The repository stores the bug reports

found in all executions. Each time a failure is detected, the cor-
responding bug report (for all failures with the same characteris-
tics) is updated with the path constraint and the input inducing
the failure. A failure is defined by its characteristics, which in-
clude: the type of the failure (execution failure or HTML failure),
the corresponding message (PHP error/warning message for exe-

8On the other hand, any data flow that passes outside PHP, such as
via JavaScript code in the generated HTML, will not be tracked by
this approach.

cution failures, and validator message for HTML failures), and the
PHP statement generating the problematic HTML part pointed by
the validator (for HTML failures), or the PHP statement involved
in the PHP interpreter error report (for execution failures). When
the exploration is complete, each bug report contains one failure
characteristics, and the sets of path constraints and inputs exposing
failures with the same characteristics.
Oracle. PHP Web applications output HTML/XTHML. There-

fore, in Apollo, we use as oracle an HTML validator that returns
syntactic (malformed) HTML failures found in a given document.
We experimented with both the offline WDG validator9 and the on-
line W3C markup validation service10. Both oracles identified the
same HTML failures. Our experiments use the laster WDG valida-
tor.
Input Minimizer. Apollo implements the algorithm described

in Figure 3 to perform postmortem minimization of the path con-
straints. For each bug report, the minimizer executes the program
multiple times, with multiple inputs that satisfy different path con-
straints, and attempts to find the shortest path constraint that results
(executing the program with an input satisfying the path constraint)
in the same failure characteristics.

4.4 Input Generator
The Symbolic Driver implements the combined concrete and

symbolic algorithm of Figure 2. The driver has two main tasks:
select which input to consider next (line 6), and create additional
inputs from each executed input (by negating conjuncts in the path
constraint). To select which input to consider next, the driver uses a
coverage heuristic, similar to those used in EXE [5] and SAGE [16].
Each conjunct in the path constraint knows the branch that created
the conjunct, and the driver keeps track of all branches previously
executed and favors inputs created from path constraints that con-
tain un-executed branches.
Constraint Solver. The interpreter implements a lightweight

symbolic execution, in which the only constraints are equality and
inequality with constants. Apollo transforms path constraints into
integer constraints in a straightforward way, and uses choco11 to
solve them.
This approach still allows us to handle values of the standard

types (integer, string), and is straightforward because the only con-
straints are equality and inequality12.
In cases where parameters are unconstrained, Apollo uses a com-

bination of values that are randomly generated and values that are
obtained by mining the program text for constants (in particular,
constants used in comparison expressions).

5. Evaluation
We experimentally measured the effectiveness of Apollo in find-

ing faults in PHP Web applications. We designed the experiments
to answer the following research questions:

Q1. How many faults can Apollo find, and of what varieties?
Q2. How effective is the fault localization technique of Apollo
compared to alternative approaches such as randomized test-
ing, in terms of the number and severity of discovered faults
and the line coverage achieved?

Q3. How effective is our minimization in reducing the size of in-
puts parameter constraints and failure-inducing inputs?

9
http://htmlhelp.com/tools/validator/offline

10
http://validator.w3.org

11
http://choco-solver.net/index.php?title=Main_Page

12Floating-point values can be handled in the same way, though
none of the examined programs required it.

<?php

echo "<h2>WebChess ".$Version." Login"</h2>;

?>

<form method="post" action="mainmenu.php">

<p>

Nick: <input name="txtNick" type="text" size="15"/>

Password: <input name="pwdPassword" type="password" size="15"/>

</p>

<p>

<input name="login" value="login" type="submit"/>

<input name="newAccount" value="New Account"

type="button" onClick="window.open(’newuser.php’, ’_self’)"/>

</p>

</form>

Figure 5: A simplified version of the main entry point (index.php)
to a PHP program. The HTML output of this program contains
a form with two buttons. Pressing the login button executes
mainmenu.php and pressing the newAccount button will execute the
newuser.php script.

program #files total LOC PHP LOC #downloads

faqforge 19 1712 734 14164
webchess 24 4718 2226 32352
schoolmate 63 8181 4263 4466
phpsysinfo 73 16634 7745 492217

total 179 31245 14968 543199

Figure 6: Characteristics of subject programs. The #files column
lists the number of .php and .inc files in the program. The total
LOC column lists the total number of lines in the program files.
The PHP LOC column lists the number of lines that contain ex-
ecutable PHP code. The #downloads column lists the number of
downloads from http://sourceforge.net.

For the evaluation, we selected the following four open-source
PHP programs (from http://sourceforge.net):

faqforge(1.3.2) : tool for creating and managing documents.
webchess(0.9.0) : online chess game.
schoolmate(1.5.4) : PHP/MySQL solution for administering ele-
mentary, middle, and high schools.

phpsysinfo(2.5.3) : displays system information, e.g., uptime,
CPU, memory, etc.

Figure 6 presents the characteristics of the subject programs.

5.1 Generation Strategies
We compared our technique to two other approaches. First, we

implemented an approach similar to that proposed by Halfond and
Orso [17] for JavaScript (described as Randomized below). Sec-
ond, we compared our results to those reported by Minamide’s
static analysis [23] on the same subject programs (Section 5.3.1
presents the results).
We use the following test input generation strategies in the re-

mainder of this section:

• Apollo generates test inputs using the technique described in
Section 3.

• Randomized generates test inputs by giving random values
to parameters. The values are chosen from constant values
that appear textually in the program source and from default
values. A difficulty is that the parameters’ names and types are
not immediately clear from the source code. The randomized
strategy infers the parameters’ names and types from dynamic
traces—any variable for which the user can supply a value, is
classified as a parameter.

5.2 Methodology
We ran each test input generation strategy for 10 minutes on each

subject program. The time limit was chosen arbitrarily, but it allows
each strategy to generate hundreds of inputs and we have no reason
to think the results would be much affected by a different time limit.
This time budget includes all experimental tasks, i.e., program ex-
ecution, harvesting of constant values from program source, test
generation, constraint solving (where applicable), output validation
via oracle, and line coverage measurement. To avoid bias, we ran
both strategies inside the same experimental harness. This includes
the Database Manager (Section 4), that supplies user names and
passwords for database access. For our experiments, we use the
WDG offline HTML validator, version 1.2.2.
We measured line coverage, i.e., the ratio of the number of exe-

cuted lines to the total number of lines with executable PHP code
in the application. We statically computed the total number of exe-
cutable PHP lines in the subject programs by counting, in the inter-
preter, the number of lines with PHP opcodes. Figure 6 gives the
size of the subject programs.
We classify the discovered faults into five groups based on their

different failure characteristics. These are a refinement of the clas-
sification in Section 2.3.

execution crash: PHP interpreter terminates with an exception.
execution error: PHP interpreter emits a warning visible in the
generated HTML.

execution warning: PHP interpreter emits a warning invisible in
the generated HTML.

HTML error: program generates HTML for which the validator
produces an error report.

HTML warning: program generates HTML for which the valida-
tor produces a warning report.

5.3 Results
Figure 7 tabulates the faults (each fault is counted only once) and

line coverage results of running the two test input generation strate-
gies on the subject programs. From these results, it is clear that the
Apollo test generation strategy outperforms the randomized testing
by achieving an average line coverage of 58.0%, versus 15.2% for
Randomized. The Apollo strategy significantly outperforms the
Randomized strategy by finding a total of 214 faults in the subject
applications, versus a total of 59 fault for Randomized.
We examined the detailed results for schoolmate:
The 2 execution crashes happen when the program tries to load

two files that are missing from the distribution of schoolmate. Since
schoolmate contains 63 PHP source files and compilation is done
on-the-fly when the interpreter loads a new file, such faults can be
hard to detect. The developer needs to execute all possible paths to
make sure the program loads all relevant files.
The 30 execution errors are all database-related, where the ap-

plication had difficulties accessing the database, resulting in error
messages such as (1) “supplied argument is not a valid MySQL re-
sult resource” and (2) “Unable to jump to row 0 on MySQL result”.
These error messages have the same cause: user-supplied input

parameters are concatenated directly into SQL query strings; leav-
ing these parameters blank results in malformed SQL causing the
mysql_query functions to not return a valid result. The subject pro-
grams failed to check the return value of mysql_query, and simply
assume that a valid result was returned. These are potentially seri-
ous faults, since they are symptoms of a worse problem: the con-
catenation of user-supplied strings into SQL queries makes these
programs vulnerable to SQL injection attacks [8]. Thus our testing
approach indicates these serious vulnerabilities despite not being
specifically designed to look for security issues.

All 14 execution warnings were about an unset time zone (which
results in the interpreter using an arbitrary timezone).
The 58 faults in schoolmate that manifested resulted in genera-

tion of malformed HTML can be classified as follows:

• 7 cases where an invalid attribute is used, e.g., “there is no
attribute BORDERCOLOR”,

• 7 cases where a required attribute is missing, e.g., “required
attribute TYPE not specified”,

• 2 cases where an undefined element is used, e.g., “element
EMPTY undefined”,

• 1 case where an incorrect value for an attribute is supplied:
“value of attribute ALIGN cannot be CENTER; must be one
of TOP, MIDDLE, BOTTOM, LEFT, RIGHT”,

• 28 cases where a tag is not properly closed, e.g., “found end
tag for element FONT which is not open”,

• 10 cases where an element is used in a place where it is not
allowed, e.g., “document type does not allow element BODY
here”,

• 3 cases where a duplicate attribute is supplied, e.g., “duplicate
specification of attribute CELLPADDING”.

The breakdown of the faults for the other PHP applications that
we analyzed is similar. Indeed, we noticed that the two SQL-related
error messages quoted above for schoolmate recurred in faqforge (9
cases of error 1) and webchess (19 cases of error 1 and 1 of error
2). The other severe faults Apollo discovers in webchess happen
when the interpreter tries to call an undefined function. The call to
include the PHP files that defines the function is not executed due
to a value supplied as one of the parameters.

5.3.1 Comparison with Static Analysis

Minamide [23] presents a static analysis for discovering HTML
malformedness faults in PHP applications. His analysis tool ap-
proximates the string output of a program with a context-free gram-
mar. His tool was able to discover unclosed tags in the subject pro-
grams by intersecting this grammar with the regular expression of
matched pairs of delimiters (open/closed tags). Our analysis uses
an HTML validator and covers the whole language standard. We
performed our evaluation on a set of applications overlapping with
Minamide’s (webchess, faqforge, schoolmate).
However, Apollo cannot be applied to two of Minamide’s subject

programs (phpwims and timeclock) because the programs need to
be executed in a Web-browser and the current implementation of
Apollo does not support this mode of execution (see section 5.5).
For the three overlapping subject programs, Apollo is both

more effective and more efficient than Minamide’s tool. Apollo
found 2.7 times as many HTML validation faults found by Mi-
namide’s tool(120 vs. 45). Faults found by Minamide’s tool are
not publicly available so we do not know whether Apollo discov-
ered all faults that Minamide’s tool discovered. However, Apollo
found 83 execution faults, which are out of reach for Minamide’s
tool. Apollo is also more scalable—on schoolmate, the largest of
the programs, Apollo found 104 faults in 10 minutes, while Mi-
namide’s tool found only 14 faults in 126 minutes. The time spent
in Minamide’s tool is due to constructing large automata and to
the expensive algorithm for checking disjointness between regular
expressions and context-free languages.

5.3.2 Path Constraint Minimization

We measure the effectiveness of the minimization algorithm of
Section 3.3 via the reduction ratio between the size of the short-
est original (un-minimized) path constraint and the minimized path
constraint.

line execution HTML validation
program strategy #inputs coverage % crash error warning error warning Total faults

faqforge
Randomized 1461 19.2 0 0 0 10 1 11
Apollo 429 86.8 0 9 0 38 17 64

webchess
Randomized 1805 5.9 1 13 2 3 0 19
Apollo 557 42.0 1 25 2 7 0 35

schoolmate
Randomized 1396 8.3 1 0 0 18 0 19
Apollo 724 64.9 2 30 14 58 0 104

phpsysinfo
Randomized 406 21.3 0 5 3 2 0 10
Apollo 143 56.2 0 5 4 2 0 11

Total
Randomized 5211 15.2 2 18 5 33 1 59
Apollo 1853 58.0 3 69 20 105 17 214

Figure 7: Experimental results for 10-minute test generation runs. The table presents results for each subject program, and each strategy,
separately. The #inputs column presents the number of inputs that each strategy created in the given time budget. The coverage column lists
the line coverage achieved by the generated inputs. The execution crashes, errors, warnings and HTML errors, warnings columns list
the number of faults in the respective categories. The Total faults columns sums up the number of discovered faults.

success path constraints inputs
program rate% orig. size reduction orig. size reduction

faqforge 64 22.3 0.22 9.3 0.31
webchess 91 23.4 0.19 10.9 0.40
schoolmate 51 22.9 0.38 11.5 0.58
phpsysinfo 82 24.3 0.18 17.5 0.26

Figure 8: Results of minimization. The success rate indicates the
percentage of faults whose exposing input was successfully min-
imized (i.e., the minimizer found a shorter exposing input). The
path constraint columns list the statistics for path constraints,
while the inputs list the statistics for inputs that correspond to those
path constraints. The orig. size columns list the average size of
original (un-minimized) path constraints and inputs. The size of a
path constraint is the number of conjuncts. The size of an input is
the number of key-value pairs in the input. The reduction columns
list the ratio of minimized to unminimized size. The lower the ratio,
the more successful the minimization.

Figure 8 tabulates the results. The results show that our input
minimization technique effectively reduces the size of inputs by up
to a factor of 0.18, for more than 50% of the faults.

5.4 Threats to Validity
Construct Validity. Why do we count malformed HTML as

a defect in dynamically generated webpages? Does a webpage
with malformed HTML pose a real problem or this is an artifi-
cial problem generated by the overly conservative specification of
the HTML language? Although web browsers are resilient to mal-
formed HTML, we encountered cases (in a different project) when
malformed HTML crashed a widely popular Web browser. More
importantly, even though a particular browser might tolerate mal-
formed HTML, different browsers or different versions of the same
browser may not display all information in the presence of mal-
formed HTML. This becomes crucial for some websites, for exam-
ple banking. Many informational and functional websites provide a
button for verifying the validity of statically generated HTML. The
challenges of dynamically generated webpages prevent the same
institutions from validating the content.
Why do we use line coverage as a quality metric? We use line

coverage only as a secondary metric, our primary metric being the
number of faults found. The experimental results show that Apollo
achieves significantly better results, in both metrics, than random-
ized testing and static analysis.
Why do, in addition to inputs exposing the failure, we present

the user with minimizes path constraints? Although an input that

corresponds to a longer path constraint still exposes the same fail-
ure, by removing superfluous information, Apollo may be able to
better assist the programmer in pinpointing the location of the fault.
Internal Validity. Did Apollo discover real, unseeded, and un-

known faults? Since we used subject projects developed by others,
we could not influence the quality of the subject programs. Apollo
does not search for known or seeded faults, but it finds real faults in
real programs. For those subject programs that connect to a data-
base, we populated the database with random records. The only
thing that is “seeded” into the experiment is a username/password
combination, so that Apollo can access the records stored in the
database.
External Validity. Will our results generalize beyond the sub-

ject programs? We only used Apollo to find faults in four PHP
projects. These may have serious quality problems, or be unrep-
resentative in other ways. Three of the subject programs are also
used as subject programs by Minamide [23]. We chose the same
programs to compare our results. We chose an additional subject
program, phpsysinfo, since it is almost double the size of the largest
subject that Minamide used. Additionally, phpsysinfo is a mature
and active project in sourceforge. It is widely used, as witnessed by
almost half a million downloads (Figure 6), and it is ranked in the
top 0.5% projects on sourceforge (rank 997 of 176,575 projects as
of 7 May 2008). Nevertheless, Apollo found faults in phpsysinfo.
Reliability. Are the results reproducible? The subject programs

that we used are publicly available from sourceforge. The faults
that we found are available for examination at http://pag.csail.
mit.edu/apollo.

5.5 Limitations
Simulating user inputs based only on static information.

In the current strategy for simulating user input, Apollo instru-
ments the PHP script statically, i.e., without executing the script.
In general, the HTML output of a PHP script might contain but-
tons and arbitrary snippets of JavaScript code that are executed
when the user presses the corresponding button. The actions that
the JavaScript might perform are currently not analyzed by Apollo.
For instance, the JavaScript code might pass specific arguments to
the PHP script. As a result, Apollo might report false positives.
Apollo might report a false positive if Apollo decides to execute a
PHP script as a result of simulating a user pressing a button but the
button is not visible. Apollo might also report false positive if it
attempts to set an input parameter that would have been set by the
JavaScript code. In our experiments Apollo did not report any false
positives. However, we are currently exploring a way to handle
simulated user input dynamically.

Limited tracking in native methods. Apollo has limited track-
ing of input parameters through PHP native methods. PHP native
methods are implemented in C, which make it difficult to automat-
ically track how input parameters are transformed into output pa-
rameters. We have modified the PHP interpreter to track parameters
across a very small subset of the PHP native methods. Similarly
to [32], we plan to create an external language to model the depen-
dences between inputs and outputs for native methods to increase
Apollo line coverage when native methods are executed.
Limited sources of input parameters. Apollo currently con-

siders as parameters only inputs coming from the global arrays
_POST, _GET and _REQUEST. Supporting other global param-
eters such as _ENV and _COOKIE is straightforward.
Running as a stand-alone application. For implementation

convenience, Apollo currently invokes the PHP runtime as a stand-
alone child process which means that certain functionality provided
by Web server integration is limited. Running via a Web server is
ongoing work.

6. Related Work
Godefroid et al. [15] present DART, a tool for finding combi-

nations of input values and environment settings for C programs
that trigger assertion failures and crashes when these programs are
executed. DART combines random test generation with the use of
symbolic reasoning to track of constraints for executed control flow
paths. A constraint solver directs subsequent executions towards
uncovered branches. Experimental results indicate that DART is
highly effective at finding large numbers of faults in several C ap-
plications and frameworks, including important and previously un-
known security vulnerabilities.
Subsequent work extends the original approach of combining

concrete and symbolic executions to accomplish two primary goals:
1) improving scalability [1, 13, 14, 16, 22], and 2) improving exe-
cution coverage and fault detection capability through better sup-
port for pointers and arrays [5, 28], better search heuristics [16, 18,
21], or by encompassing wider domains such as database applica-
tions [11].
Godefroid [13] proposes a compositional approach to improve

the scalability of DART. In this approach, summaries of lower
level functions are computed dynamically when these functions are
first encountered. The summaries are expressed as pre- and post-
conditions of the function in terms of its inputs. Subsequent invo-
cations of these lower level functions reuse the summary. Anand et
al. [1] extend this compositional approach to be demand-driven to
reduce the summary computation effort.
Majumdar and Xu [22] exploit the structure of the program input

to improve scalability. In this approach, context-free grammars that
represent the program inputs are abstracted to produce a symbolic
grammar. This symbolic grammar reduces the number of input
strings that need to be enumerated during the combined concrete
and symbolic test generation phase. The approach is shown have
better scalability than the concolic version [28] of the combined
concrete and symbolic execution approach.
Majumdar and Sen [21] describe a hybrid concolic testing ap-

proach that exploits the capability of random testing to explore
deeper and longer inputs to achieve better coverage. Hybrid
concolic testing interleaves random testing until saturation with
bounded exhaustive symbolic exploration. This approach dou-
bles the coverage achieved by concolic testing alone. Inkumsah
and Xie [18] combine evolutionary testing using genetic mutations
with concolic testing to produce longer sequences of test inputs.
SAGE [16] also uses improved heuristics, called white-box fuzzing,
to achieve higher branch coverage faster.

Emmi et al. [11] extend concolic testing to encompass database
applications. This approach enables insertion of database records to
enable execution of program code that depends on embedded SQL
queries. Their system uses a string constraint solver that can decide
string equality, inequality, and membership in a regular language is
used to facilitate the task.
Our work benefits from these extensions to the combined con-

crete and symbolic execution approach. However, our work differs
from the prior work in several respects. Most importantly, our work
goes beyond simple assertion failures and crashes by relying on an
oracle (in the form of an HTML validator) to determine correctness,
which means that our tool can handle situations where the program
has functionally incorrect behavior without relying on programmer
assertions. Cadar and Engler [4] also recognize the issue of func-
tional correctness, but address it by using a separate implementa-
tion of the function being tested to compare outputs. This limits the
approach to situations where a second implementation exists.
Our work also minimizes the constraints on the input parame-

ters, which in turn results in shorter inputs inducing each failure,
to help the developer pinpoint the cause of faults. Godefroid et
al. [16] faced this challenge since their technique produces several
distinct inputs which may expose the same fault at a particular code
location. They addressed the issue by hashing all such inputs and
returning one exemplar of failure inducing input to the developer.
Our work addresses this issue as well as a different one: identifying
the minimal set of program variables in an input that are essential
to induce the failure. In this regard, our work is similar in spirit
to delta debugging [6, 34] and its extension hierarchical delta de-
bugging [24]. These approaches modify the failure inducing input
directly, thus leading to a singular, minimal exemplar of such input.
Our technique, on the other hand, modifies the set of constraints on
failure inducing input. This enables us to provide minimal patterns
of failure inducing inputs, further aiding the fault fixing activities.
Moreover, since our technique is aware of the (partial) overlapping
of different inputs, it is more efficient.
The language under consideration, PHP, is also quite different

from what previous testing research focused on. PHP poses several
new challenges such as the dynamic inclusion of files and func-
tion definitions that are statements. Existing techniques for fault
detection in PHP applications use static analysis and target secu-
rity vulnerabilities such as SQL injection or cross-site scripting at-
tacks [20,23,31,33]. In particular, Minamide [23] uses static string
analysis and language transducers to model PHP string operations
to generate potential HTML output—represented by a context-free
grammar—from the Web application. This method can be used to
generate HTML document instances of the resulting grammar and
to validate them using an existing HTML validator. As a more
complete alternative, Minamide proposes a matching validation
which checks for containment of the generated context free gram-
mar against a regular subset of the HTML specification. Unfortu-
nately, this approach can only check for matching start and end tags
in the HTML output, while our technique covers the entire HTML
specification. Also, flow and context insensitive approximations
in the static analysis techniques used in this method result in false
positives, whereas our method reports only real faults.
Benedikt et al. [2] present a tool, VeriWeb, for automatically

testing dynamic Webpages. They use a model checker to system-
atically explore all paths (up to a certain bound) that a user could
navigate in a Web site. When the exploration encounters forms,
VeriWeb uses SmartProfiles to collect values that should be pro-
vided as inputs to forms. Although VeriWeb can automatically fill
in the forms, the tester needs to pre-populate the user profiles with
values that a user would provide. In contrast, Apollo automatically

discovers input values by looking at the branch conditions along an
execution path. Also, Benedikt et al. do not report any faults found,
while we report 214.
Dynamic analysis of string values generated by PHP Web appli-

cations has been considered in a reactive mode to prevent the ex-
ecution of insidious commands (intrusion prevention) and to raise
an alert (intrusion detection) [19,26,30]. To the best of our knowl-
edge, our work is the first attempt at proactive fault detection in
PHP Web applications using dynamic analysis.
Finally, our work is related to the growing body of work in im-

plementation based (as opposed to specification based e.g., [27])
testing of Web applications. These works abstract the application
behavior using a) client-side information such as user requests and
corresponding application responses [9,12], or b) server-side mon-
itoring information such as user session data [10, 29], or c) static
analysis of server-side implementation logic [17]. The approaches
that use client-side information or server-side monitoring informa-
tion are inherently incomplete, and the quality of generated abstrac-
tions depends on the quality of the tests run.
Halfond and Orso [17] use static analysis of the server-side im-

plementation logic to extract Web application interface—a set of
input parameters and their potential values. They implemented
their technique for JavaScript. They obtained better code coverage
with test cases based on the interface extracted using their tech-
nique as compared to the test cases based on the interface extracted
using a conventional Web crawler. However, the resulting cover-
age may depend on the choices made by the test generator to com-
bine parameter values—an exhaustive combination of values may
be needed to maximize the code coverage. In contrast, our work
uses dynamic analysis of server side implementation logic for fault
detection and minimizes the number of inputs needed to maximize
the coverage. Furthermore, we include results on fault detection
capabilities of our technique. We implemented and evaluated (Sec-
tion 5) a version of Halfond and Orso’s technique for PHP. Com-
pared to that re-implementation, Apollo achieved higher line cov-
erage (58.0% vs. 15.2%) and found more faults (214 vs. 59).

7. Conclusions
We have presented a technique for finding faults in PHP Web

applications that is based on combined concrete and symbolic exe-
cution. The work is novel in several respects. First, the technique
not only detects run-time errors but also uses an HTML validator as
an oracle to determine situations where malformed HTML is cre-
ated. Second, we address a number of PHP-specific issues, such
as the simulation of interactive user input that occurs when user in-
terface elements on generated HTML pages are activated, resulting
in the execution of additional PHP scripts. Third, we perform an
automated analysis to minimize the size of failure-inducing inputs.
We created a tool, Apollo, that implements the analysis. We eval-

uated Apollo on four open-source PHP Web applications. Apollo’s
test generation strategy achieves over 50% line coverage. Apollo
found a total of 214 faults in these applications: 92 execution prob-
lems and 122 cases of malformed HTML. Finally, Apollo also min-
imizes the size of failure-inducing inputs: the minimized inputs are
up to 5.3× smaller than the unminimized ones.

8. References
[1] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven
compositional symbolic execution. In TACAS, 2008.

[2] M. Benedikt, J. Freire, and P. Godefroid. VeriWeb: Automatically
testing dynamic Web sites. In WWW, 2002.

[3] C. Braband, A. Moller, and M. Schwartzbach. Static validation of
dynamically generated HTML. In PASTE, 2001.

[4] C. Cadar and D. R. Engler. Execution generated test cases: How to
make systems code crash itself. In SPIN, 2005.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: automatically generating inputs of death. In CCS, 2006.

[6] H. Cleve and A. Zeller. Locating causes of program failures. In ICSE,
2005.

[7] C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy: Dynamic
symbolic execution for invariant inference. In ICSE, 2008.

[8] D. Dean and D. Wagner. Intrusion detection via static analysis. In
Symposium on Research in Security and Privacy, May 2001.

[9] S. Elbaum, K.-R. Chilakamarri, M. Fisher, and G. Rothermel. Web
application characterization through directed requests. In WODA,
2006.

[10] S. Elbaum, S. Karre, G. Rothermel, and M. Fisher. Leveraging
user-session data to support Web application testing. IEEE Trans.
Softw. Eng., 31(3), 2005.

[11] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation
for database applications. In ISSTA, 2007.

[12] M. Fisher, S. G. Elbaum, and G. Rothermel. Dynamic
characterization of Web application interfaces. In FASE, 2007.

[13] P. Godefroid. Compositional dynamic test generation. In POPL,
2007.

[14] P. Godefroid, A. Kieżun, and M. Y. Levin. Grammar-based whitebox
fuzzing. In PLDI, 2008.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In PLDI, 2005.

[16] P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz
testing. In NDSS, 2008.

[17] W. G. J. Halfond and A. Orso. Improving test case generation for
Web applications using automated interface discovery. In
ESEC-FSE, 2007.

[18] K. Inkumsah and T. Xie. Evacon: a framework for integrating
evolutionary and concolic testing for object-oriented programs. In
ASE, 2007.

[19] M. Johns and C. Beyerlein. SMask: preventing injection attacks in
Web applications by approximating automatic data/code separation.
In SAC, 2007.

[20] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool
for detecting Web application vulnerabilities (short paper). In
Security and Privacy, 2006.

[21] R. Majumdar and K. Sen. Hybrid concolic testing. In ICSE, 2007.

[22] R. Majumdar and R.-G. Xu. Directed test generation using symbolic
grammars. In ASE, 2007.

[23] Y. Minamide. Static approximation of dynamically generated Web
pages. InWWW, 2005.

[24] G. Misherghi and Z. Su. HDD: hierarchical delta debugging. In
ICSE, 2006.

[25] R. O’Callahan. Personal communication, 2008.

[26] T. Pietraszek and C. V. Berghe. Defending against injection attacks
through context-sensitive string evaluation. In RAID, 2005.

[27] F. Ricca and P. Tonella. Analysis and testing of Web applications. In
ICSE, 2001.

[28] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing
engine for C. In FSE, 2005.

[29] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Automated
replay and failure detection for Web applications. In ASE, 2005.

[30] Z. Su and G. Wassermann. The essence of command injection attacks
in Web applications. In POPL, 2006.

[31] G. Wassermann and Z. Su. Sound and precise analysis of Web
applications for injection vulnerabilities. In PLDI, 2007.

[32] G. Wassermann and Z. Su. Static detection of cross-site scripting
vulnerabilities. In ICSE, 2008.

[33] Y. Xie and A. Aiken. Static detection of security vulnerabilities in
scripting languages. In USENIX-SS, 2006.

[34] A. Zeller. Yesterday, my program worked. Today, it does not. Why?
In FSE, 1999.

