
E ective Software Testing with a
String-Constraint Solver

Adam Kiezun
MIT

Software Testing Aims To Find Errors
Before Users (Or Hackers) Do

Goals of software testing
• improve quality
• protect from adversaries

Reported Severe
Vulnerabilities
source: US-CERT

Software Testing Aims To Find Errors
Before Users (Or Hackers) Do

Goal: help find errors by improving testing tools

Goals of software testing
• improve quality
• protect from adversaries

Reported Severe
Vulnerabilities
source: US-CERT

Research Hackers
Tech transfer

Concolic Testing Is An E ective Software
Testing Methodology

Implementation-based: exploit knowledge of
program code

Dynamic: observe running program using

 combined concrete and symbolic execution

Constraint solver systematically enumerate
execution paths

Key idea: improve e ectiveness, applicability of
concolic testing with a string-constraint solver

Tools: DART, CUTE, CREST, SAGE, EXE, Klee, Apollo, jFuzz

E ective Software Testing With A String-
Constraint Solver

Hampi: String-Constraint
Solver [ISSTA’09]

Concolic Security Testing
[ICSE’09]

Grammar-based Concolic
Testing [PLDI’08]

Concolic Testing

Results Summary: String-Constraint Solver

 Novel solver for string constraints

 Supports context-free grammars,
regular constraints

 E ective in concolic testing,
program analysis

 E cient: ~7x faster than a
comparable solver

Hampi: String-Constraint
Solver [ISSTA’09]

Results Summary: Concolic Security Testing

 Novel technique for creating SQL
injection and XSS attacks on Web
applications

 Uses Hampi for grammar constraints
to construct attack inputs

 First to create damaging second-
order cross-site scripting (XSS) attacks

 60 attacks (23 SQL injection, 37 XSS)
on 5 PHP applications, 0 false positives

Concolic Security
Testing [ICSE’09]

Results Summary: Grammar-based
Concolic Testing

Grammar-based Concolic
Testing [PLDI’08]

 Novel technique for testing
programs with structured inputs

 Uses Hampi for input-format
grammar constraints

 Improves coverage by 30-100%

 3 new infinite-loop errors

E ective Software Testing With A String-
Constraint Solver

Hampi: String-Constraint
Solver [ISSTA’09]

Concolic Security Testing
[ICSE’09]

Concolic Testing

Grammar-based Concolic
Testing [PLDI’08]

void main(char[] in){

 int count=0;

 if (in[0] == ’b’)

 count++;

 if (in[1] == ’a’)

 count++;

 if (in[2] == ’d’)

 count++;

 if (count == 3)

 ERROR;

}

xyz

Concolic Testing Combines Dynamic
Symbolic Execution, Path Enumeration

void main(char[] in){

 int count=0;

 if (in[0] == ’b’)

 count++;

 if (in[1] == ’a’)

 count++;

 if (in[2] == ’d’)

 count++;

 if (count == 3)

 ERROR;

}

(in[0] ’b’) Path constraint:

xyz

Concolic Testing Combines Dynamic
Symbolic Execution, Path Enumeration

void main(char[] in){

 int count=0;

 if (in[0] == ’b’)

 count++;

 if (in[1] == ’a’)

 count++;

 if (in[2] == ’d’)

 count++;

 if (count == 3)

 ERROR;

}

xyz

Path constraint: (in[0] ’b’) (in[1] ’a’)

Concolic Testing Combines Dynamic
Symbolic Execution, Path Enumeration

void main(char[] in){

 int count=0;

 if (in[0] == ’b’)

 count++;

 if (in[1] == ’a’)

 count++;

 if (in[2] == ’d’)

 count++;

 if (count == 3)

 ERROR;

}

xyz

Path constraint: (in[0] ’b’) (in[1] ’a’) (in[2] ’d’)

Concolic Testing Combines Dynamic
Symbolic Execution, Path Enumeration

void main(char[] in){

 int count=0;

 if (in[0] == ’b’)

 count++;

 if (in[1] == ’a’)

 count++;

 if (in[2] == ’d’)

 count++;

 if (count == 3)

 ERROR;

}

Path constraint: (in[0] ’b’) (in[1] ’a’) (in[2]=’d’) xyd

Concolic Testing Combines Dynamic
Symbolic Execution, Path Enumeration

void main(char[] in){

 int count=0;

 if (in[0] == ’b’)

 count++;

 if (in[1] == ’a’)

 count++;

 if (in[2] == ’d’)

 count++;

 if (count == 3)

 ERROR;

}

Path constraint: (in[0] ’b’) (in[1]=’a’) xaz

Concolic Testing Combines Dynamic
Symbolic Execution, Path Enumeration

void main(char[] in){

 int count=0;

 if (in[0] == ’b’)

 count++;

 if (in[1] == ’a’)

 count++;

 if (in[2] == ’d’)

 count++;

 if (count == 3)

 ERROR;

}

Path constraint: (in[0]=’b’) byz

Concolic Testing Combines Dynamic
Symbolic Execution, Path Enumeration

void main(char[] in){

 int count=0;

 if (in[0] == ’b’)

 count++;

 if (in[1] == ’a’)

 count++;

 if (in[2] == ’d’)

 count++;

 if (count == 3)

 ERROR;

}

xyz

Seed input

Concolic Testing Systematically
Enumerates All Paths In The Program

void main(char[] in){

 int count=0;

 if (in[0] == ’b’)

 count++;

 if (in[1] == ’a’)

 count++;

 if (in[2] == ’d’)

 count++;

 if (count == 3)

 ERROR;

}

xyz xyd xaz byz

Generated inputs
(each covers a new path)

Concolic Testing Systematically
Enumerates All Paths In The Program

void main(char[] in){

 int count=0;

 if (in[0] == ’b’)

 count++;

 if (in[1] == ’a’)

 count++;

 if (in[2] == ’d’)

 count++;

 if (count == 3)

 ERROR;

}

xyz xyd xaz byz xad byd baz

Concolic Testing Systematically
Enumerates All Paths In The Program

void main(char[] in){

 int count=0;

 if (in[0] == ’b’)

 count++;

 if (in[1] == ’a’)

 count++;

 if (in[2] == ’d’)

 count++;

 if (count == 3)

 ERROR;

}

xyz xyd xaz byz xad byd baz bad

Concolic testing creates inputs for all program paths.

Concolic Testing Systematically
Enumerates All Paths In The Program

E ective Software Testing With A String-
Constraint Solver

Hampi: String-Constraint
Solver [ISSTA’09]

Concolic Security Testing
[ICSE’09]

Concolic Testing

Grammar-based Concolic
Testing [PLDI’08]

Many Program Analyses Reduce To
Constraint Generation And Solving

Benefits
+ declarative formulation
+ better modularity
+ e ciency improvements

Downsides
- limited by solver’s theory

Hampi: constraint solver for a theory of strings

String-Constraint Solver Finds
Assignments For String Variables

Finite alphabet (e.g., ASCII characters)

String variables over *

 var v

String constraints – language membership:

 assert v L

String operations

 concat(“foo”, v, “bar”)

Hampi Uses Length Bounding To
Support Context-Free Constraints

Hampi Uses Length Bounding To
Support Context-Free Constraints

Hampi Uses Length Bounding To
Support Context-Free Constraints

Hampi Uses Length Bounding To
Support Context-Free Constraints

bounded regularbound(any language)

Hampi Uses Length Bounding To
Support Context-Free Constraints

Key Hampi idea: bound length of strings for high
expressiveness, e ciency

bounded regularbound(any language)

Hampi Can Solve Context-Free and
Regular Constraints

“Find a 4-character string v, such that:
• (v) has balanced parentheses, and
• (v) contains substring ()()”

Hampi Can Solve Context-Free and
Regular Constraints

var v:4;

cfg E := "()" | E E | "(" E ")";

reg Ebounded := bound(E, 6);

val q := concat(”(" , v , “)");

assert q in Ebounded;

assert q contains “()()";

“Find a 4-character string v, such that:
• (v) has balanced parentheses, and
• (v) contains substring ()()”

Hampi Can Solve Context-Free and
Regular Constraints

var v:4;

cfg E := "()" | E E | "(" E ")";

reg Ebounded := bound(E, 6);

val q := concat(”(" , v , “)");

assert q in Ebounded;

assert q contains “()()";

“Find a 4-character string v, such that:
• (v) has balanced parentheses, and
• (v) contains substring ()()”

Hampi Can Solve Context-Free and
Regular Constraints

var v:4;

cfg E := "()" | E E | "(" E ")";

reg Ebounded := bound(E, 6);

val q := concat(”(" , v , “)");

assert q in Ebounded;

assert q contains “()()";

“Find a 4-character string v, such that:
• (v) has balanced parentheses, and
• (v) contains substring ()()”

Hampi Can Solve Context-Free and
Regular Constraints

var v:4;

cfg E := "()" | E E | "(" E ")";

reg Ebounded := bound(E, 6);

val q := concat(”(" , v , “)");

assert q in Ebounded;

assert q contains “()()";

“Find a 4-character string v, such that:
• (v) has balanced parentheses, and
• (v) contains substring ()()”

Hampi Can Solve Context-Free and
Regular Constraints

var v:4;

cfg E := "()" | E E | "(" E ")";

reg Ebounded := bound(E, 6);

val q := concat(”(" , v , “)");

assert q in Ebounded;

assert q contains “()()";

“Find a 4-character string v, such that:
• (v) has balanced parentheses, and
• (v) contains substring ()()”

Hampi finds satisfying assignment v =)()(

Hampi Supports Rich String
Constraints

H
a
m

p
i

C
F
G

A
n
a
ly

z
e
r

W
a
s
s
e
rm

a
n
n

B
jo

rn
e
r

H
o
o
ij
m

e
ie

r

E
m

m
i

M
O

N
A

C
a
b

a
ll
e
ro

context-free grammars

regular expressions

string concatenation

stand-alone tool

unbounded length

Hampi Encodes String Constraints
In Bit-Vector Logic

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector solution

HAMPI

bit-vector constraints

string solution

Bit-vector Solver

Hampi Normalizer Converts String
Constraints To Core Form

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector
solution

HAMPI

bit-vector
constraints

string solution

Bit-vector
Solver

Core string constraint have
only regular expressions

Expand grammars to regexps
• expand nonterminals
• eliminate inconsistencies
• enumerate choices exhaustively

bound(E, 6)

cfg E := "(" E ")” | E E | "()”;

Hampi Normalizer Converts String
Constraints To Core Form

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector
solution

HAMPI

bit-vector
constraints

string solution

Bit-vector
Solver

Core string constraint have
only regular expressions

Expand grammars to regexps
 expand nonterminals

• eliminate inconsistencies
• enumerate choices exhaustively

 E

cfg E := "(" E ")” | E E | "()”;

Hampi Normalizer Converts String
Constraints To Core Form

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector
solution

HAMPI

bit-vector
constraints

string solution

Bit-vector
Solver

Core string constraint have
only regular expressions

Expand grammars to regexps
• expand nonterminals

 eliminate inconsistencies
• enumerate choices exhaustively

(E) + E E + ()

cfg E := "(" E ")” | E E | "()”;

Hampi Normalizer Converts String
Constraints To Core Form

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector
solution

HAMPI

bit-vector
constraints

string solution

Bit-vector
Solver

Core string constraint have
only regular expressions

Expand grammars to regexps
• expand nonterminals

 eliminate inconsistencies
• enumerate choices exhaustively

(E) + E E +

cfg E := "(" E ")” | E E | "()”;

Hampi Normalizer Converts String
Constraints To Core Form

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector
solution

HAMPI

bit-vector
constraints

string solution

Bit-vector
Solver

Core string constraint have
only regular expressions

Expand grammars to regexps
• expand nonterminals
• eliminate inconsistencies

 enumerate choices exhaustively

cfg E := "(" E ")” | E E | "()”;

(E) + E E

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector
solution

HAMPI

bit-vector
constraints

string solution

Bit-vector
Solver

Core string constraint have
only regular expressions

Expand grammars to regexps
• expand nonterminals

 eliminate inconsistencies
• enumerate choices exhaustively

cfg E := "(" E ")” | E E | "()”;

(E) + E E + E E + E E + E E + E E + E E + E E

Hampi Normalizer Converts String
Constraints To Core Form

Hampi Normalizer Converts String
Constraints To Core Form

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector
solution

HAMPI

bit-vector
constraints

string solution

Bit-vector
Solver

Core string constraint have
only regular expressions

Expand grammars to regexps
• expand nonterminals

 eliminate inconsistencies
• enumerate choices exhaustively

cfg E := "(" E ")” | E E | "()”;

(E) + E E + E E + E E + E E + E E + E E + E E

Hampi Normalizer Converts String
Constraints To Core Form

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector
solution

HAMPI

bit-vector
constraints

string solution

Bit-vector
Solver

Core string constraint have
only regular expressions

Expand grammars to regexps
• expand nonterminals
• eliminate inconsistencies
• enumerate choices exhaustively

cfg E := "(" E ")” | E E | "()”;

(E) + E E + E E

Hampi Normalizer Converts String
Constraints To Core Form

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector
solution

HAMPI

bit-vector
constraints

string solution

Bit-vector
Solver

Core string constraint have
only regular expressions

Expand grammars to regexps
• expand nonterminals
• eliminate inconsistencies
• enumerate choices exhaustively

 ([()() + (())]) +

()[()() + (())] +

 [()() + (())]()
bound(E, 6)

cfg E := "(" E ")” | E E | "()”;

Hampi Normalizer Uses Compact
Representations Of Expressions

 ()[()() + (())] +

 [()() + (())]() +

 ([()() + (())])

()

()

() shared graph nodes for
common subexpressions

E4 E2

E6

Bit vector B (length 6 bits)

(B[0:4] = B[2:4]) (B[1:3] = 101)

o set:length

Bit Vectors Are Ordered, Fixed-
Size, Sets Of Bits

0 1 0 1 0 1

Bit vector B (length 6 bits)

Bit-vector solver finds the solution B = 010101

(B[0:4] = B[2:4]) (B[1:3] = 101)

o set:length

Bit Vectors Are Ordered, Fixed-
Size, Sets Of Bits

Hampi Encodes Core Constraints
As Bit-Vector Constraints

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector
solution

HAMPI

bit-vector
constraints

string
solution

Bit-vector
Solver

Map alphabet to bit-vector constants:
(

)

Compute size of bit-vector B:
 (1+4+1) * 1 bit = 6 bits

 (v) ()[()() + (())] + [()() + (())]() + ([()() + (())])

Hampi Encodes Regular
Expressions Recursively

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector
solution

HAMPI

bit-vector
constraints

string
solution

Bit-vector
Solver

 (v) ()[()() + (())] + [()() + (())]() + ([()() + (())])

Formula 1 Formula 2 Formula 3

Encode regular expressions recursively
• union + disjunction
• concatenation conjunction
• Kleene star * conjunction
• constant bit-vector constant

Hampi Encoder Exploits Shift-
Symmetry In Constraints

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector
solution

HAMPI

bit-vector
constraints

string
solution

Bit-vector
Solver

 (v) ()[()() + (())] + [()() + (())]() + ([()() + (())])

B[0:2] = 01 B[5:2] = 01

Shift-symmetric constraints

Shift-symmetric constraints =
 identical modulo o set in bit vector

Hampi reuses encoding templates for
symmetric constraints

Hampi Encoder Exploits Shift-
Symmetry In Constraints

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector
solution

HAMPI

bit-vector
constraints

string
solution

Bit-vector
Solver

 (v) ()[()() + (())] + [()() + (())]() + ([()() + (())])

Shift-symmetric constraints

Shift-symmetric constraints =
 identical modulo o set in bit vector

Hampi reuses encoding templates for
symmetric constraints

Hampi Uses Bit-Vector Solver And
Decodes Solution

string constraints

core string
constraints

Normalizer

Encoder

Decoder
bit-vector
solution

HAMPI

bit-vector
constraints

string
solution

Bit-vector
Solver

bit-vector constraints

B = 010101

B = ()()()

v =)()(

Result 1: Hampi Is E ective In
Static SQL Injection Analysis

1367 string constraints from [Wassermann PLDI’07]

Hampi solved 99.7% of constraints in < 1 sec per constraint

All solvable constraints had short solutions N 4

Hampi scales to large grammars

Result 2: Hampi Is Faster Than The
CFGAnalyzer Solver

CFGAnalyzer encodes bounded grammar problems in SAT
[Axelsson et al ICALP’08]

a
v
e
ra

g
e
 t

im
e
 (

s
e
c
.)

 0 10 20 30 40 50
 0

 5

 10

 15

 20

 25

Hampi

CFGAnalyzer

string size (characters)

For size 50, Hampi is 6.8x faster on average (up to 3000x faster)

E ective Software Testing With A String-
Constraint Solver

Hampi: String-Constraint
Solver [ISSTA’09]

Concolic Security Testing
[ICSE’09]

Concolic Testing

Grammar-based Concolic
Testing [PLDI’08]

Ardilla Mutates Generated Inputs To
Construct Attacks

SQL Injection Attacks Modify
Structure Of Database Queries

SELECT msg FROM messages WHERE topicid=‘ ’

Innocuous input:
v 1

concat(SELECT msg FROM messages WHERE topicid=‘ v ’)

SQL Injection Attacks Modify
Structure Of Database Queries

SELECT msg FROM messages WHERE topicid=‘ ’

Innocuous input:
v 1

Symbolic expression for SQL query

concat(SELECT msg FROM messages WHERE topicid=‘ v ’)

SQL Injection Attacks Modify
Structure Of Database Queries

SELECT msg FROM messages WHERE topicid=‘ ’

Innocuous input:
v 1

SELECT msg FROM messages WHERE topicid=‘ ’

Attack input:
v

Attacker gets access to all messages

Symbolic expression for SQL query

var v : 12;

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond;

cfg Cond := Val "=" Val | Cond " OR " Cond;

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+;

reg SqlSmallBounded := bound(SqlSmall, 53);

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'");

assert q in SqlSmallBounded;

assert q contains "OR ‘0'=‘0'";

Example: Hampi Constraints That
Create SQL Injection Attacks

var v : 12;

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond;

cfg Cond := Val "=" Val | Cond " OR " Cond;

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+;

reg SqlSmallBounded := bound(SqlSmall, 53);

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'");

assert q in SqlSmallBounded;

assert q contains "OR ‘0'=‘0'";

Hampi finds an attack input: v 1’ OR ‘0’=‘0

Example: Hampi Constraints That
Create SQL Injection Attacks

Result: Ardilla Finds New Attacks

60 attacks on 5 PHP applications

 23 SQL injection

 29 XSS first order

 8 XSS second order

0 false positives

216 Hampi constraints solved

• 46% of constraints in < 1 second per constraint

• 100% of constraints in < 10 seconds per constraint

E ective Software Testing With A String-
Constraint Solver

Hampi: String-Constraint
Solver [ISSTA’09]

Concolic Security Testing
[ICSE’09]

Grammar-based Concolic
Testing [PLDI’08]

Concolic Testing

Sometimes Concolic Testing Is Not
Much Better Than Random Fuzzing

Random Fuzz Testing Concolic Testing

Program under test: JavaScript interpreter

Sometimes Concolic Testing Is Not
Much Better Than Random Fuzzing

Random Fuzz Testing Concolic Testing

Sometimes Concolic Testing Is Not
Much Better Than Random Fuzzing

Concolic TestingRandom Fuzz Testing

Sometimes Concolic Testing Is Not
Much Better Than Random Fuzzing

17.6%
inputs
reach

16.5%
inputs
reach

Concolic TestingRandom Fuzz Testing

Most Generated Inputs Get Rejected
Quickly

Most Generated Inputs Get Rejected
Quickly

Most Generated Inputs Get Rejected
Quickly

Most Generated Inputs Get Rejected
Quickly

Most Generated Inputs Get Rejected
Quickly

Key idea: generate only valid inputs

Input-Format Grammar Guides
Creation Of E ective Inputs

solve(PC’) new input

Input-Format Grammar Guides
Creation Of E ective Inputs

solve(PC’ Grammar) new valid input

Hampi string solver

String-Constraint Solver Helps
Create Valid Inputs

Seed input (for JavaScript interpreter):
 function f(){ var v = 3; }

Constraints on tokens

(created during execution)
 token0 = function

 token1 = id

 token2 = (

 token3 =)

 token4 = {

 token5 = var

 …

String-Constraint Solver Helps
Create Valid Inputs

Seed input (for JavaScript interpreter):
 function f(){ var v = 3; }

Constraints on tokens

(created during execution)
 token0 = function

 token1 = id

 token2 = (

 token3 =)

 token4 = {

 token5 var
 ffunction f(){ try v = 3; }

String-Constraint Solver Helps
Create Valid Inputs

Seed input (for JavaScript interpreter):
 function f(){ var v = 3; }

Constraints on tokens

(created during execution)
 token0 = function

 token1 = id

 token2 = (

 token3 =)

 token4 = {

 token5 var
 ffunction f(){ try v = 3; }

function f(){ try { } catch (id) { } finally { }; }

String-Constraint Solver Helps
Avoid Dead-End Inputs

Seed input (for JavaScript interpreter):
 function f(){ var v = 3; }

Constraints on tokens

(created during execution)
 token0 = function

 token1 = id

 token2 = (

 token3 =)

 token4 {

 function f() var var v = 3; }

String-Constraint Solver Helps
Avoid Dead-End Inputs

Seed input (for JavaScript interpreter):
 function f(){ var v = 3; }

Constraints on tokens

(created during execution)
 token0 = function

 token1 = id

 token2 = (

 token3 =)

 token4 {

 function f() var var v = 3; }

Results: Grammar-Based Concolic
Testing Improves Deep Reachability

Up to 20x deep reachability improvement: more
generated inputs reach beyond the parser

Results: Grammar-Based Concolic
Testing Improves Coverage

Up to 2x coverage improvement

Results: Grammar-Based Concolic
Testing Improves Coverage

Up to 2x coverage improvement

3 infinite-

loop bugs

and finds

new bugs

Summary: E ective Software Testing With A
String-Constraint Solver

Hampi String-Constraint Solver

 expressive: supports context-free grammars

 e cient: solver real-world constraint quickly

Concolic Security Testing

 creates attacks on Web applications by input generation

and mutation with Hampi string-constraint solver

Grammar-Based Concolic Testing

 e ectively tests programs with structured inputs by using
Hampi string-constraint solver and input grammars

