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Software Testing Aims To Find Errors 
Before Users (Or Hackers) Do

Goals of software testing
• improve quality
• protect from adversaries

Reported Severe 
Vulnerabilities
source: US-CERT          



Software Testing Aims To Find Errors 
Before Users (Or Hackers) Do

Goal: help find errors by improving testing tools  

Goals of software testing
• improve quality
• protect from adversaries

Reported Severe 
Vulnerabilities
source: US-CERT          
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Concolic Testing Is An E ective Software 
Testing Methodology

Implementation-based: exploit knowledge of 
program code

Dynamic: observe running program using

  combined concrete and symbolic execution

Constraint solver systematically enumerate 
execution paths

Key idea: improve e ectiveness, applicability of 
concolic testing with a string-constraint solver

Tools: DART, CUTE, CREST, SAGE, EXE, Klee, Apollo, jFuzz



E ective Software Testing With A String-
Constraint Solver

Hampi: String-Constraint 
Solver                    [ISSTA’09]

Concolic Security Testing              
[ICSE’09]

Grammar-based Concolic 
Testing                   [PLDI’08]

Concolic Testing



Results Summary: String-Constraint Solver  

 Novel solver for string constraints

 Supports context-free grammars, 
regular constraints

 E ective in concolic testing, 
program analysis

 E cient: ~7x faster than a 
comparable solver

Hampi: String-Constraint 
Solver                    [ISSTA’09]



Results Summary: Concolic Security Testing  

 Novel technique for creating SQL 
injection and XSS attacks on Web 
applications

 Uses Hampi for grammar constraints 
to construct attack inputs

 First to create damaging second-
order cross-site scripting (XSS) attacks 

 60 attacks (23 SQL injection, 37 XSS) 
on 5 PHP applications, 0 false positives

Concolic Security 
Testing              [ICSE’09]



Results Summary: Grammar-based 
Concolic Testing 

Grammar-based Concolic 
Testing                   [PLDI’08]

 Novel technique for testing 
programs with structured inputs

 Uses Hampi for input-format 
grammar constraints

 Improves coverage by 30-100%

 3 new infinite-loop errors



E ective Software Testing With A String-
Constraint Solver

Hampi: String-Constraint 
Solver                    [ISSTA’09]

Concolic Security Testing              
[ICSE’09]

Concolic Testing

Grammar-based Concolic 
Testing                   [PLDI’08]



void main(char[] in){ 

  int count=0; 

  if (in[0] == ’b’) 

    count++; 

  if (in[1] == ’a’)  

    count++; 

  if (in[2] == ’d’)  

    count++; 

  if (count == 3)    

    ERROR; 

} 

xyz 

Concolic Testing Combines Dynamic 
Symbolic Execution, Path Enumeration
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void main(char[] in){ 
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void main(char[] in){ 

  int count=0; 

  if (in[0] == ’b’) 

    count++; 

  if (in[1] == ’a’)  

    count++; 

  if (in[2] == ’d’)  

    count++; 

  if (count == 3)    

    ERROR; 

} 

Path constraint: (in[0]=’b’) byz 

Concolic Testing Combines Dynamic 
Symbolic Execution, Path Enumeration



void main(char[] in){ 

  int count=0; 

  if (in[0] == ’b’) 

    count++; 

  if (in[1] == ’a’)  

    count++; 

  if (in[2] == ’d’)  

    count++; 

  if (count == 3)    

    ERROR; 

} 

xyz 

Seed input

Concolic Testing Systematically 
Enumerates All Paths In The Program



void main(char[] in){ 

  int count=0; 

  if (in[0] == ’b’) 

    count++; 

  if (in[1] == ’a’)  

    count++; 

  if (in[2] == ’d’)  

    count++; 

  if (count == 3)    

    ERROR; 

} 

xyz xyd xaz byz 

Generated inputs
(each covers a new path)

Concolic Testing Systematically 
Enumerates All Paths In The Program



void main(char[] in){ 

  int count=0; 

  if (in[0] == ’b’) 

    count++; 

  if (in[1] == ’a’)  

    count++; 

  if (in[2] == ’d’)  

    count++; 

  if (count == 3)    

    ERROR; 

} 
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Concolic Testing Systematically 
Enumerates All Paths In The Program



void main(char[] in){ 

  int count=0; 

  if (in[0] == ’b’) 

    count++; 

  if (in[1] == ’a’)  

    count++; 

  if (in[2] == ’d’)  

    count++; 

  if (count == 3)    

    ERROR; 

} 

xyz xyd xaz byz xad byd baz bad 

Concolic testing creates inputs for all program paths.

Concolic Testing Systematically 
Enumerates All Paths In The Program



E ective Software Testing With A String-
Constraint Solver

Hampi: String-Constraint 
Solver                    [ISSTA’09]

Concolic Security Testing              
[ICSE’09]

Concolic Testing

Grammar-based Concolic 
Testing                   [PLDI’08]



Many Program Analyses Reduce To 
Constraint Generation And Solving

Benefits
+ declarative formulation
+ better modularity 
+ e ciency improvements

Downsides
- limited by solver’s theory

Hampi: constraint solver for a theory of strings



String-Constraint Solver Finds 
Assignments For String Variables 

Finite alphabet  (e.g., ASCII characters)

String variables over *

  var v 

String constraints – language membership:

  assert v  L 

String operations

 concat(“foo”, v, “bar”)



Hampi Uses Length Bounding To 
Support Context-Free Constraints
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Hampi Uses Length Bounding To 
Support Context-Free Constraints

Key Hampi idea: bound length of strings for high 
expressiveness, e ciency

bounded regularbound(any language) 



Hampi Can Solve Context-Free and 
Regular Constraints  

“Find a 4-character string v, such that:
• (v) has balanced parentheses, and 
•  (v) contains substring ()()”



Hampi Can Solve Context-Free and 
Regular Constraints 

var v:4; 

cfg E := "()" | E E | "(" E ")"; 

reg Ebounded := bound(E, 6); 

val q := concat( ”(" , v , “)" ); 

assert q in Ebounded;  

assert q contains “()()";  

“Find a 4-character string v, such that:
• (v) has balanced parentheses, and 
•  (v) contains substring ()()”
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Hampi Can Solve Context-Free and 
Regular Constraints 

var v:4; 

cfg E := "()" | E E | "(" E ")"; 

reg Ebounded := bound(E, 6); 

val q := concat( ”(" , v , “)" ); 

assert q in Ebounded;  

assert q contains “()()";  

“Find a 4-character string v, such that:
• (v) has balanced parentheses, and 
•  (v) contains substring ()()”

Hampi finds satisfying assignment v = )()(



Hampi Supports Rich String 
Constraints
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context-free grammars

regular expressions

string concatenation

stand-alone tool

unbounded length



Hampi Encodes String Constraints 
In Bit-Vector Logic

string constraints

core string 
constraints

Normalizer

Encoder

Decoder
bit-vector solution

HAMPI

bit-vector constraints

string solution

Bit-vector Solver



Hampi Normalizer Converts String 
Constraints To Core Form

string constraints

core string 
constraints

Normalizer

Encoder

Decoder
bit-vector 
solution

HAMPI

bit-vector 
constraints

string solution

Bit-vector 
Solver

Core string constraint have 
only regular expressions  

Expand grammars to regexps
•   expand nonterminals
•   eliminate inconsistencies
•   enumerate choices exhaustively

bound(E, 6)

cfg E := "(" E ")” | E E | "()”;



Hampi Normalizer Converts String 
Constraints To Core Form

string constraints

core string 
constraints

Normalizer

Encoder

Decoder
bit-vector 
solution

HAMPI

bit-vector 
constraints

string solution

Bit-vector 
Solver

Core string constraint have 
only regular expressions  

Expand grammars to regexps
 expand nonterminals

•   eliminate inconsistencies
•   enumerate choices exhaustively

 E 

cfg E := "(" E ")” | E E | "()”;
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Hampi Normalizer Converts String 
Constraints To Core Form

string constraints
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Normalizer
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Hampi Normalizer Converts String 
Constraints To Core Form

string constraints

core string 
constraints

Normalizer

Encoder

Decoder
bit-vector 
solution

HAMPI

bit-vector 
constraints

string solution

Bit-vector 
Solver

Core string constraint have 
only regular expressions  

Expand grammars to regexps
•   expand nonterminals
•   eliminate inconsistencies
•   enumerate choices exhaustively

 ([()() + (())]) +  

()[()() + (())]  +  

  [()() + (())]()  
bound(E, 6) 

cfg E := "(" E ")” | E E | "()”;



Hampi Normalizer Uses Compact 
Representations Of Expressions

    ()[()() + (())] +  

      [()() + (())]() +  

     ([()() + (())]) 

( ) 

( ) 

() shared graph nodes for
common subexpressions 

E4 E2 

E6 



Bit vector B (length 6 bits)

(B[0:4] = B[2:4]) (B[1:3] = 101) 

o set:length

Bit Vectors Are Ordered, Fixed-
Size, Sets Of Bits



0 1 0 1 0 1 

Bit vector B (length 6 bits)

Bit-vector solver finds the solution B = 010101 

(B[0:4] = B[2:4]) (B[1:3] = 101) 

o set:length

Bit Vectors Are Ordered, Fixed-
Size, Sets Of Bits



Hampi Encodes Core Constraints 
As Bit-Vector Constraints

string constraints

core string 
constraints

Normalizer

Encoder

Decoder
bit-vector 
solution

HAMPI

bit-vector 
constraints

string 
solution

Bit-vector 
Solver

Map alphabet  to bit-vector constants: 
(  

)  

Compute size of bit-vector B:
 (1+4+1) * 1 bit = 6 bits

 ( v )  ()[()() + (())] + [()() + (())]() + ([()() + (())]) 



Hampi Encodes Regular 
Expressions Recursively

string constraints

core string 
constraints

Normalizer

Encoder

Decoder
bit-vector 
solution

HAMPI

bit-vector 
constraints

string 
solution

Bit-vector 
Solver

 ( v )  ()[()() + (())] + [()() + (())]() + ([()() + (())]) 

Formula 1     Formula 2     Formula 3 

Encode regular expressions recursively
•  union +            disjunction 
•  concatenation  conjunction 
•  Kleene star *   conjunction 
•  constant          bit-vector constant



Hampi Encoder Exploits Shift-
Symmetry In Constraints

string constraints

core string 
constraints

Normalizer

Encoder

Decoder
bit-vector 
solution

HAMPI

bit-vector 
constraints

string 
solution

Bit-vector 
Solver

 ( v )  ()[()() + (())] + [()() + (())]() + ([()() + (())]) 

B[0:2] = 01 B[5:2] = 01 

Shift-symmetric constraints 

Shift-symmetric constraints = 
  identical modulo o set in bit vector

Hampi reuses encoding templates for 
symmetric constraints 



Hampi Encoder Exploits Shift-
Symmetry In Constraints

string constraints

core string 
constraints

Normalizer

Encoder

Decoder
bit-vector 
solution

HAMPI

bit-vector 
constraints

string 
solution

Bit-vector 
Solver

 ( v )  ()[()() + (())] + [()() + (())]() + ([()() + (())]) 

Shift-symmetric constraints

Shift-symmetric constraints = 
  identical modulo o set in bit vector

Hampi reuses encoding templates for 
symmetric constraints 



Hampi Uses Bit-Vector Solver And 
Decodes Solution

string constraints

core string 
constraints

Normalizer

Encoder

Decoder
bit-vector 
solution

HAMPI

bit-vector 
constraints

string 
solution

Bit-vector 
Solver

bit-vector constraints

B = 010101 

B = ()()() 

v =  )()(    



Result 1: Hampi Is E ective In 
Static SQL Injection Analysis

1367 string constraints from [Wassermann PLDI’07]

Hampi solved 99.7% of constraints in < 1 sec per constraint

All solvable constraints had short solutions N 4

Hampi scales to large grammars



Result 2: Hampi Is Faster Than The 
CFGAnalyzer Solver

CFGAnalyzer encodes bounded grammar problems in SAT 
[Axelsson et al ICALP’08] 
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Hampi

CFGAnalyzer

string size (characters)

For size 50, Hampi is 6.8x faster on average (up to 3000x faster)



E ective Software Testing With A String-
Constraint Solver

Hampi: String-Constraint 
Solver                    [ISSTA’09]

Concolic Security Testing              
[ICSE’09]

Concolic Testing

Grammar-based Concolic 
Testing                   [PLDI’08]



Ardilla Mutates Generated Inputs To 
Construct Attacks



SQL Injection Attacks Modify 
Structure Of Database Queries

SELECT msg FROM messages WHERE topicid=‘ ’ 

Innocuous input: 
v  1 



concat(SELECT msg FROM messages WHERE topicid=‘ v ’) 

SQL Injection Attacks Modify 
Structure Of Database Queries

SELECT msg FROM messages WHERE topicid=‘ ’ 

Innocuous input: 
v  1 

Symbolic expression for SQL query



concat(SELECT msg FROM messages WHERE topicid=‘ v ’) 

SQL Injection Attacks Modify 
Structure Of Database Queries

SELECT msg FROM messages WHERE topicid=‘ ’ 

Innocuous input: 
v  1 

SELECT msg FROM messages WHERE topicid=‘ ’

Attack input: 
v   

Attacker gets access to all messages

Symbolic expression for SQL query



var v : 12; 

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond; 

cfg Cond := Val "=" Val | Cond " OR " Cond; 

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+; 

reg SqlSmallBounded := bound(SqlSmall, 53); 

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'"); 

assert q in SqlSmallBounded;     

assert q contains "OR ‘0'=‘0'";  

Example: Hampi Constraints That 
Create SQL Injection Attacks  



var v : 12; 

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond; 

cfg Cond := Val "=" Val | Cond " OR " Cond; 

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+; 

reg SqlSmallBounded := bound(SqlSmall, 53); 

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'"); 

assert q in SqlSmallBounded;     

assert q contains "OR ‘0'=‘0'";  

Hampi finds an attack input:   v  1’ OR ‘0’=‘0

Example: Hampi Constraints That 
Create SQL Injection Attacks  



Result: Ardilla Finds New Attacks 

60 attacks on 5 PHP applications

    23 SQL injection

    29 XSS first order

      8 XSS second order

0 false positives

216 Hampi constraints solved

• 46%   of constraints in < 1 second per constraint

• 100% of constraints in < 10 seconds per constraint



E ective Software Testing With A String-
Constraint Solver

Hampi: String-Constraint 
Solver                    [ISSTA’09]

Concolic Security Testing              
[ICSE’09]

Grammar-based Concolic 
Testing                   [PLDI’08]

Concolic Testing



Sometimes Concolic Testing Is Not 
Much Better Than Random Fuzzing

Random Fuzz Testing Concolic Testing

Program under test: JavaScript interpreter
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Sometimes Concolic Testing Is Not 
Much Better Than Random Fuzzing

Concolic TestingRandom Fuzz Testing



Sometimes Concolic Testing Is Not 
Much Better Than Random Fuzzing

17.6%
inputs 
reach

16.5%
inputs 
reach

Concolic TestingRandom Fuzz Testing



Most Generated Inputs Get Rejected 
Quickly
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Most Generated Inputs Get Rejected 
Quickly

Key idea: generate only valid inputs



Input-Format Grammar Guides 
Creation Of E ective Inputs

solve(PC’)  new input



Input-Format Grammar Guides 
Creation Of E ective Inputs

solve(PC’  Grammar)  new valid input

Hampi string solver



String-Constraint Solver Helps 
Create Valid Inputs

Seed input (for JavaScript interpreter):
   function f(){ var v = 3; } 

Constraints on tokens 

(created during execution)
  token0 = function 

  token1 = id 

  token2 = ( 

  token3 = ) 

  token4 = { 

  token5 = var  

  …  
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String-Constraint Solver Helps 
Create Valid Inputs

Seed input (for JavaScript interpreter):
   function f(){ var v = 3; } 

Constraints on tokens 

(created during execution)
  token0 = function 

  token1 = id 

  token2 = ( 

  token3 = ) 

  token4 = { 

  token5  var  
  ffunction f(){ try v = 3; }

function f(){ try { } catch ( id ) { } finally { }; } 



String-Constraint Solver Helps 
Avoid Dead-End Inputs

Seed input (for JavaScript interpreter):
   function f(){ var v = 3; } 

Constraints on tokens 

(created during execution)
  token0 = function 

  token1 = id 

  token2 = ( 

  token3 = ) 

  token4  { 

  function f() var var v = 3; }



String-Constraint Solver Helps 
Avoid Dead-End Inputs

Seed input (for JavaScript interpreter):
   function f(){ var v = 3; } 

Constraints on tokens 

(created during execution)
  token0 = function 

  token1 = id 

  token2 = ( 

  token3 = ) 

  token4  { 

  function f() var var v = 3; }

 



Results: Grammar-Based Concolic 
Testing Improves Deep Reachability

Up to 20x deep reachability improvement: more 
generated inputs reach beyond the parser



Results: Grammar-Based Concolic 
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Up to 2x coverage improvement       



Results: Grammar-Based Concolic 
Testing Improves Coverage

Up to 2x coverage improvement       

3 infinite-

loop bugs

and finds 

new bugs



Summary: E ective Software Testing With A 
String-Constraint Solver

Hampi String-Constraint Solver

 expressive: supports context-free grammars

 e cient: solver real-world constraint quickly

Concolic Security Testing

 creates attacks on Web applications by input generation 

and mutation with Hampi string-constraint solver

Grammar-Based Concolic Testing

 e ectively tests programs with structured inputs by using 
Hampi string-constraint solver and input grammars


