
Encrypted Keyword Search in a Distributed Storage System

Shay Artzi Adam Kieżun Calvin Newport David Schultz

{artzi, akiezun, cnewport, das}@csail.mit.edu

Abstract

Encrypted keyword search allows a server to perform
a search over a set of encrypted documents on be-
half of a client without learning the contents of the
documents or the words being searched for. Design-
ing a practical system is challenging because the pri-
vacy constraint thwarts standard indexing and rank-
ing techniques. We present Mafdet, an encrypted
keyword search system we have implemented. Our
system makes the search practical even for large data
sets. We evaluated Mafdet’s performance on a set of
queries and a large collection of documents. In these
queries, Mafdet’s accuracy is within 6% of Google
Desktop, and the search time is on the order of sec-
onds for document sets as large as 2.6 GB.

1 Introduction

As people and organizations increasingly rely on dis-
tributed services to store large volumes of data reli-
ably and make it globally available, the problem of
searching these data becomes more important. For
instance, consider a laptop user who encrypts his
files and stores them on such a service to avoid data
theft or loss, or a small organization that uses dis-
tributed storage for archival. Both of these clients
may need to perform searches over the documents
they have stored; however, this is a challenging prob-
lem because the storage service does not and should
not know the encryption key, and the clients cannot
reasonably download all of the potentially relevant
documents over the WAN.

Several prior schemes (e.g., [5, 10, 18]) address
the encrypted search problem on a small scale, usu-
ally involving a PDA as the client and a personal
computer as the storage service. We propose a
widely-distributed storage service that uses encryp-

tion to keep the servers oblivious to the content of
the database, while allowing clients who have the de-
cryption key to generate trapdoors, which the service
can use to perform keyword searches of the database
on the clients’ behalf. Our system provides strong
privacy guarantees. Short of breaking the encryp-
tion, the service has no way to learn anything about
the content of keyword queries or of the documents
being stored, except possibly the lengths of the doc-
uments, the list of documents in each search result,
and the limited statistics used to rank results.

The traditional technique for performing searches
efficiently is to maintain an index that maps key-
words to document identifiers. However, as we dis-
cuss in Section 2.3, direct application of this ap-
proach is insecure. Our solution instead relies upon
per-document metadata that servers use, in conjunc-
tion with trapdoors, to determine which documents
match the keyword that generated the trapdoor.

This technique introduces two main difficulties.
First, the cost of performing a search is linear in
the total number of documents, whereas inverted in-
dices have performance that is linear in the number
of search results. Second, the need for privacy com-
plicates the implementation of search result ranking
mechanisms. Without access to the contents of the
documents, it is unclear how to decide which results
best match a given query.

Our main contribution in this work is a system
that addresses these two problems. Our architecture
makes searches fast by taking advantage of multiple
servers and caching. We also introduce several novel
relevance schemes that rely on carefully selected ex-
tra values stored in our encrypted metadata to allow
for accurate relevance decisions to be made by the
untrusted server. We show that the system is usable
at a scale of 100,000 documents, both in terms of ef-
ficiency and accuracy.

1

2 Encrypted Keyword Search

In this section, we describe the properties required
of a secure search service, and the threat model that
we use. We then exhibit a proposal that is simpler
than our design and show why it fails to achieve these
properties. In Section 3 and following, we describe
our architecture and show how it achieves our goals.
Section 4 describes the prototype of the system that
we have implemented.

2.1 Properties

Since seemingly small information leaks can often
be exploited by a malicious adversary to reveal sig-
nificant information, we view privacy as a constraint
and build on established definitions of security. Sub-
ject to these requirements, we have built a system
that can scale well to large data sets and provide ac-
curate search results. Below, we give an informal de-
scription of the desired properties, deferring a prin-
cipled discussion of security to [10, 18].

2.1.1 Privacy Constraints

• Controlled searching. The server cannot learn
anything about the contents of documents, ex-
cept when the client performs a search.

• Hidden queries. The client can search for a
set of documents containing a keyword without
revealing the keyword to the server.

• Query isolation. From the query result, the
server learns nothing about the plain text other
than the set of documents that match the query
(and possibly the limited statistical information
used to perform ranking).

• Update isolation. The server learns nothing
more from updates than it would if we main-
tained no additional metadata for the purpose of
performing searches.

2.1.2 Performance Goals

• Low query latency. Although searching
encrypted data is fundamentally harder than
searching public data, queries against large data

sets should take on the order of seconds, not
minutes or hours.

• High server throughput. The system should
be capable of processing many queries concur-
rently without significantly increasing the num-
ber of search servers.

• Support for boolean queries. The query lan-
guage must be expressive enough to allow users
to issue precise queries. As with most search
engines, we dismiss regular expression searches
and focus on simpler boolean queries. In prac-
tice, we focus on the and operator; or and not
are relatively trivial.

• Competitive search accuracy. Information re-
trieval systems employ a wide variety of heuris-
tics based on query keyword proximity and fre-
quency within documents, and overall keyword
frequency, and other metrics to identify the
most relevant matches. For a large data set, it is
crucial that our system be capable of supporting
enough of these heuristics to produce accurate
search results.

2.2 Threat Model

We model the adversary as an eavesdropper who
knows everything that the storage service knows.
However, the adversary is passive; she cannot com-
promise the integrity of the results produced by the
service. This assumption may seem limiting, but it
fits well with real-world systems such as BFT [4],
which preserves integrity but not secrecy in the face
of active attacks involving less than a threshold num-
ber of replicas.

We assume that the adversary has no knowledge
of the contents of the documents stored by the client.
Ideally, one would like to protect against a stronger
adversary who knows keywords in some of the doc-
uments and would like to learn information about
other documents. The trouble with this stronger
model is that queries that match documents the ad-
versary knows fundamentally leak information about
documents she doesn’t know.

This limitation is a legitimate concern in designing
a robust system, and we attempt to mitigate it in our
design. Our system decouples the file servers, which

2

store and retrieve documents, and search servers,
which store search metadata and execute searches on
behalf of clients. An attacker who compromises only
the search servers will be unable to use document ac-
cess patterns to deduce which of the encrypted doc-
uments corresponds to the plaintexts she knows.

2.3 A Straw Man Proposal

One possible way to design a system for encrypted
search involves a simple variant on an inverted in-
dex, in which the keys in the index are encrypted
keywords rather than plaintext keywords. Inverted
indices seem to be a natural solution because they
are efficient and well-studied.

Unfortunately, inverted indices are insecure in the
presence of updates. This is because adding or re-
moving a document requires that the index be mod-
ified in the locations corresponding to the keywords
in that document, so the server is able to correlate the
document with other documents that share keywords
with it. Hence, inverted indices violate the update
isolation property of Section 2.1.1. Since every doc-
ument has to be uploaded at some point, the amount
of information inverted indices leak is comparable to
what the server would learn if the user searched for
every keyword in every document.

Without update isolation, a malicious server can
employ statistical attacks against the entire document
set to infer partial information about contents of doc-
uments. Update isolation limits statistical attacks to
the specific keywords the user searches for, which
is presumably a small fraction of the total dictio-
nary size. (According to [1], at least 75% of words
in web pages indexed by Web search engines are
never searched for.) Furthermore, update isolation
allows users to heuristically improve security by re-
encrypting the database or parts thereof periodically
(e.g. after a particular number of searches) to con-
found the would-be snoop.

Indices may be appropriate for certain applications
where statistical attacks are deemed inconsequential.
However, our goal in this work is to construct a ro-
bust, general-purpose system, so we eschew indices.

Front End

Search Server

File Server

Client

Search Server

Search Server

Search Server

File Server

Client

Client

Figure 1: Mafdet physical architecture. One front
end allowing several clients to securely search and
retrieve documents.

3 Mafdet Architecture

In this section, we describe Mafdet, a secure key-
word search service we designed. Logically, Mafdet
consists of two separate services: a search service
and a document storage service. The mechanisms
used to implement these two services are different, so
we logically view each service as being implemented
by separate search servers and file servers, as shown
on the right side of Figure 1. In practice, the servers
could be mapped to physical machines in a way that
makes most effective use of hardware resources.

3.1 System Components

Front End The front end acts as a proxy for all
requests. It performs load balancing and
failover and manages the mapping of docu-
ments to the file and search servers responsi-
ble for them. The upload(file,filter1), down-
load(docId), delete(docId) operations store, re-
trieve, and delete documents, respectively, and
search(query) performs a search.

File Servers Our system is compatible with virtu-
ally any file server architecture, and we do not
consider in detail how file servers might inter-
act with our search service. Unlike the scheme
of [18], the mechanisms we use to perform
searches do not require or benefit from knowl-
edge of the encrypted file contents, so this as-
pect of the system is orthogonal to our main
contributions.

1Filters are per-document metadata generated by the client,
as discussed in section 3.2.

3

Search Servers Search servers store per-document
metadata, they use this metadata to locate the
documents that contain search terms, and they
cache the results of previous searches. Search
servers do not perform any ranking computa-
tion. They only collect the number of times
each query word appears and in which parts of
the document it appears. This information is
later used by the front end to compute relevance
ranking.

3.2 Search Metadata

Several schemes for performing private searches
have been proposed. We adopt a scheme proposed
in [10] because it supports our security goals, and
because unlike other systems (e.g., [5, 11]), it does
not require that the full set of potential keywords are
known in advance, before uploading any documents.

Our system associates a Bloom filter with ev-
ery document. A Bloom filter [2] is an efficient
data structure for probabilistically determining
set membership. It supports two operations,
insert(set, element) and search(set, element).
Naı̈vely, one might imagine simply inserting all
the keywords that appear in a document into the
filter. However, this violates the controlled searching
property of Section 2.1.1 by allowing servers to
search for arbitrary keywords without authorization
of the client.

Instead of inserting the actual keywords into the
Bloom filters, we insert keyed hashes of the key-
words. The key is private to the client, so servers are
unable to compute these hashes on their own. We call
the hash values that make up the sets represented by
the Bloom filters trapdoors because clients can give
them to the servers to allow the servers to locate doc-
uments containing the corresponding words. Thus,
given a keyed hash Hk, the trapdoor for word w is
simply tw = Hk(w).

Bloom filters also use hashing internally to deter-
mine determine which bits in the filter might cor-
respond to a particular member of the set. Our
construction is standard, with two exceptions: (1)
we require a cryptographic hash and (2) the docu-
ment identifier is also included in the hash so that
Bloom filters for different documents cannot be cor-
related. Given a trapdoor tw from the client, the

server computes H(d, tw, i) for each document d and
each Bloom filter row i, then tests the bit in the cor-
responding bitmap.

Bloom filters for larger documents are larger than
filters for smaller documents in order to achieve
a roughly uniform density and false positive rate.
This reveals the size of each document to the search
server, but we believe that this leak is accept-
able, since file servers already have this information.
However, the density of bits set in all the filters must
be identical to prevent servers from learning the den-
sity of keywords in each document. This is achieved
by setting random bits in filters that have few bits set.

3.3 Optimizations

An important goal of this study is to explore the prac-
tical performance constraints of a secure search sys-
tem. To maximize the performance of our search op-
eration we propose several optimizations:

• Previous search caching Mafdet caches the
results for keywords previously searched for.
Cache entries are of the format

〈trapdoor, docIds and ranking info, timestamp〉

The timestamp is the arrival time of the query at
the front end. If the same keyword is searched
for later, only documents that were uploaded
later are searched in full. We place no limit on
the size of the cache, since loading a cache en-
try from disk is still cheaper than scanning the
Bloom filters for every document. The effec-
tiveness of this cache is discussed in section 5.5.

• Fresh Bloom filter caching Our previous
search caching scheme generates scenarios
where only a small number of Bloom filters
might need to be searched. Accordingly, the la-
tency of queries on recently cached keywords
can be significantly increased if we keep the
small number of Bloom filters that need to be
searched resident in memory. We explore tech-
niques to keep a reasonable number of the most
recent Bloom filters resident in memory even
though the search server may be concurrently
conducting multiple searches that read through
a large number of disk resident filters (and thus
cycle a lot of data through main memory).

4

• Dynamic load balancing Two types of deci-
sions are involved in load balancing: a long-
term replica set selection policy determines
which servers store newly-added documents,
while a dynamic replica selection policy deter-
mines which of the replicas for a given docu-
ment process an incoming query for that docu-
ment.2 The mapping of documents to replicas is
soft state, as it can be reconstructed quickly by
the replicas themselves and stored on a newly-
elected front end should the original front end
fail; however, the mapping may also be repli-
cated for high availability.

4 Implementation

The core of our prototype consists of about 3100
lines of Java, plus several hundred lines of sup-
porting scripts and 1500 lines of Java for our test-
ing and evaluation infrastructure. Our protocols are
layered on top of Java’s Remote Method Invoca-
tion (RMI) infrastructure. The prototype implements
search servers, a front end with ranking (see Sec-
tion 4.1) and static load balancing, client infrastruc-
ture for creating filters and trapdoors, and command
line and CGI user interfaces. The search servers store
Bloom filters on the local file system, and they also
cache ranking information for each term previously
searched for. Clients are multithreaded and can con-
struct and upload multiple Bloom filters in parallel.
Servers process each operation in a separate thread,
but do not use more than one thread for an individual
search or upload operation.

4.1 Ranking Search Results

For a given query, the front end server assigns each
search result a relevance score based on informa-
tion stored in the Bloom filters. The documents
are returned to the client in descending order of
these scores. Specifically, relevance is calculated on
four main criteria: query word proximity, occurrence
count, similarity, and distinct query word count. Be-
low, we briefly explain each of these metrics and how

2Although this is an important practical consideration, our
test environment uses a homogenous set of unreplicated servers,
so our prototype uses a static policy.

we store the relevant information in the Bloom fil-
ters.

Query word proximity favors documents that con-
tain multiple query keywords in close proximity. In-
spired by a technique often used in Internet search
engines, we divide each document into 64 chunks,
and then store occurrence information for each chunk
and each keyword separately. For example, if the
keyword foo occurs in document d in chunks 5 and
20, we store in d’s Bloom filter the bits correspond-
ing to (foo, 5) and (foo, 20). In Mafdet, each pair of
query keywords that appears in the same chunk adds
a premium P1 = 7 to the total relevance score.

Keyword occurrence counting favors documents
that contain query keywords many times. We found
that occurrence counts are more important in single-
word queries, when proximity information cannot be
used. Therefore, Mafdet assigns a premium P2 = 1
to each occurrence of a query word for single-word
queries, and a reduced premium P3 = 0.1 for each
keyword occurrence in multi-word queries. To avoid
increasing the size of the Bloom filter needlessly, we
only count occurrences up to a threshold of 7.

Similarity favors the occurrence of uncommon
words over common words (very common words are
filtered out altogether, see Section 4.2). Following
a well-known approach [9], we score similarity for
given query and document with the following for-
mula:

∑Q
i=1

(P4 + log N−ni

ni
), where Q is the num-

ber of query keywords in the document, P4 = 5 is a
bonus constant, ni is the number of documents with
keyword i, and N is the number of documents re-
turned by the query.

Distinct query word count favors the appearance
of multiple distinct query keywords over one key-
word appearing multiple times. To implement this
metric, Mafdet rewards the presence of each distinct
query keyword in a document with a premium of
P5 = 8.

In addition to these four criteria, the system also
awards a large bonus P6 = 100 to any document that
contains all keywords in the query. The values of
our constants P1 to P6 were determined empirically
through experimentation with our training queries.

5

4.2 Common Keyword Removal

Since the set of Bloom filters may be to big to fit in
the memory of the search server, they are stored on
the local disk. To limit to effect of I/O on search per-
formance, Mafdet allows the client to send a com-
pressed Bloom filter and it also ignores common
words while creating the filter. To that end, it uses a
list of words that appeared in more than 50% of doc-
uments in a randomly selected sample of 200 from
our experimental corpus. Commercial search ser-
vices use similar algorithms to achieve this goal, but
unlike our system, they also allow users to search
for phrases such as “The Who”. Ignoring common
words has also a positive impact on relevance rank-
ing. Intuitively, if a word appears in very many doc-
uments in the corpus, its presence in a document
should have no or very little effect on the document’s
relevance. This is related to the similarity score de-
scribed in Section 4.1.

5 Evaluation

We evaluate our search system in terms of its effi-
ciency and its accuracy. The former concerns the
search latency, while the latter concerns search qual-
ity. A well-designed interactive search service must
offer good performance for both of these attributes,
even though, in practice, optimizing one is often at
the expense of the other.

5.1 Accuracy Metrics

Following the lead of earlier search service evalua-
tion studies (e.g., [8, 13, 14, 15]), we measure accu-
racy using the following three metrics: Recall, Pre-
cision, and Average Precision. Recall measures the
percent of relevant documents returned by a search,
precision measures the percent of returned docu-
ments that are relevant, and average precision mea-
sures how effectively the system clustered the rele-
vant results at the top of the total list of returned re-
sults. Arguably, average precision is the most inter-
esting of the three as users might not mind a large re-
sult set as long as the most relevant hits are clustered
at the top. See [15] for a more detailed explanation
on how these metrics are calculated.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Cutoff Point

Mafdet
Grep

Google Desktop

Figure 2: Mean Average Precision over test queries,
calculated for Mafdet, Google Desktop, and Grep at
fixed cutoff points.

5.2 Accuracy Experiments

We compare our accuracy scores against conjunctive
Grep (return documents with all keywords in query)3

and Google Desktop 20050325 [12]. Google Desk-
top uses many state-of-the-art information retrieval
techniques, and therefore provides an appropriate op-
timized ceiling for our accuracy evaluation. Simi-
larly, Grep’s simple strategy provides a baseline for
our results. Our goal was to achieve accuracy com-
parable to Google and significantly better than Grep.

For the accuracy experiments, our test corpus con-
sisted of 2000 text excerpts drawn at random from
Project Gutenberg [16]. The size of the files were
altered to fit a normal distribution with a mean of
500 lines (∼20 kB), and a standard deviation of 100
lines. The number and size of the files was chosen
to roughly approximate the text contents of a typi-
cal user’s personal computer. Following known IR
evaluation methods, we constructed two sets of ten
queries each, using the first set to train the system,
and the second set to obtain the actual evaluation re-
sults presented in this section.

5.3 Accuracy Results

To evaluate the effectiveness of our ranking algo-
rithm, we measured the mean average precision of
Mafdet, Grep and Google Desktop at various cutoff
points (at cutoff point n, we consider only the first

3For the accuracy experiments, we used an implementation
of Grep’s functionality within Mafdet.

6

Avg. Prec. Recall Prec.
Mafdet 0.702 0.876 0.280
Google 0.746 0.438 0.528
Grep 0.401 0.662 0.485

Figure 3: Mean Accuracy Results at cutoff 50.

n results returned by each system). The results are
shown in Figure 2. Google Desktop’s web legacy is
clear. Its ranking algorithms places strong empha-
sis on presenting only the best quality results near
the top (“I’m Feeling Lucky”). In our experiments,
Google gets the first result right in 80% of queries,
compared to 14% for Mafdet and only 9% for Grep.
While Mafdet might not always get the first result
right, overall it still does a good job of clustering rel-
evant results toward the top. By a cutoff point of 20,
Mafdet’s mean average precision is already a factor
of 1.70 higher than Grep’s and only a factor of 1.17
worse than Google. By a cutoff of 50, at which point
the results stabilize for all three systems,Mafdet is
only a factor of 1.06 worse than Google and a full
factor of 1.75 better than Grep.

Google’s aggressive emphasis on returning only
very high quality results is obtained at the expense of
recall. As shown in Figure 3, Mafdet returns, on av-
erage, twice as many relevant documents as Google.
Our belief is that for a desktop search scenario, a
typical user will be happy to exchange a few more
irrelevant documents showing up at the top of the re-
sults for a much better recall over all relevant docu-
ments. We also notice in Figure 3 that Google boasts
a stronger precision value than Mafdet. This too is an
expected effect of Google’s aggressive filtering. As
mentioned, however, Mafdet has a comparable aver-
age precision value. This indicates that our system is
able to effectively move most of the irrelevant results
to the bottom of the ranking, thus mitigating much of
the potential negative effect of our lower precision.

Figure 4 presents the average precision results for
the three systems for each of the ten test queries,
running at cutoff 50. Notice that Mafdet performs
close to Google Desktop. Our system matches or
beats Google on 50% of the test queries. By con-
trast, Grep performs worse than Mafdet on 80% of
the queries. Queries Q4 and Q5 are of particular in-
terest as Google returns an average precision score

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
0

0.5

1

Query

A
ve

ra
ge

 P
re

ci
si

on

Google Desktop
Grep (all keywords)
Mafdet

Figure 4: Average Precision results over 10 test
queries, calculated for Mafdet, Google Desktop, and
Grep at cutoff 50.

of 0 for both. A closer examination shows this result
is another casualty of Google’s aggressive filtering.

5.4 Tuning Bloom Filters

As described in Section 3.2, the sizes of Bloom fil-
ters in Mafdet are proportional to the sizes of the cor-
responding documents. The factor that relates the
two is an important system parameter.4 If the filters
are too dense, users will see an unacceptable num-
ber of false positives, and if they are too sparse, then
searches will take longer. Furthermore, we want to
optimize the number of hash functions used by the
filter. It is well known that for a filter with n ele-
ments represented with m bits, the minimum false
positive rate is achieved with m

n
ln 2 hashes. How-

ever, hash computations are a performance bottle-
neck in Mafdet, so we would like to use as few as
possible without significantly impacting accuracy.

We evaluated the affect of filter size on aver-
age precision using the same test queries as in Sec-
tion 5.3. The results are presented in Figure 5. Since
our ranking metadata occupies a variable number of
bits per word depending on word distribution, the ab-
solute value of the parameter on the x-axis has no
meaningful interpretation. In our final system we set
the density parameter to 16 and use 4 hash functions

4Ideally, the filter size would correspond to the actual number
of elements to be stored, but we use document length instead to
prevent the server from inferring anything about average word
length or proximity data from the filter size.

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Relative Filter Size

Number of hash functions
2
3
4
5
6

Figure 5: Affect of Bloom filter parameters on mean
average precision at cutoff 50 with 6,802 documents.

based on this graph; this results in filter bitmaps that
are 8–12% full, for an aggregate false positive rate
on the order of 10−4 and virtually no degradation in
relative accuracy.

A theoretical analysis in [10] suggests that much
smaller filters are possible, but we disagree based on
our empirical results. In particular, even seemingly
modest false positive rates such as 1% are problem-
atic for queries with high selectivity. For instance, if
5 documents out of a set of 20,000 contain a partic-
ular keyword, then a false positive rate of 1% gives
200 false positives; the user gets 205 results, most
of them bogus. We also note that the exact impact
of false positives on our system can only be mea-
sured empirically, since interactions between false
positives in the Bloom filters and our ranking algo-
rithm are complex.

5.5 Scalability

To determine the environments in which our system
is practical, we examined the query latency of our
prototype with respect to the size of the document
set. Figure 6 shows the search latency of 4 search
servers running on identical machines with dual-
2.8 GHz Pentium 4 Xeon processors, 2 GB of RAM,
and two 15k RPM SCSI disks in a RAID 0 config-
uration. We ran the experiments using the HotSpot
Java virtual machine build 1.5.0 02-b09 under Linux
kernel version 2.4.20-30.9. The VM was restricted to
64 MB of heap space, but we did not limit the size of
the kernel’s buffer cache. For comparison, we also
partitioned the data set into four equal-size chunks

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
im

e
(s

)

Number of Documents (in thousands)

Operation
GNU grep (2 words)
GNU grep (1 word)
Mafdet search (3 words)
Mafdet search (2 words)
Mafdet search (1 word)
Mafdet search (non-matching word)

Figure 6: Operation Latencies with respect to num-
ber of documents.

and ran 1- and 2-word searches using GNU grep
2.5.1 and Google Desktop.

The documents were English text files from
Project Gutenberg, truncated to lengths ranging from
8 kB to 56 kB, and with an average length of
27 kB (fitting the same size distribution used in Sec-
tion 5.3). We formulated 1-, 2-, and 3-word queries
from 6 words, each word matching about 1/5th of the
document set. The words occurred approximately
independently, so nearly twice as many documents
matched the two keyword query as compared to the
one keyword query. We also tried a single-word
query that matched no documents, which captures
the search overhead independent of ranking and ag-
gregation.

Figure 6 shows that even for 100,000 documents,
searches are processed in well under a minute, and
search time scales linearly in the number of doc-
uments. Moreover, even as the size of the result
set scales with the number of documents in the 1-,
2-, and 3-word tests, the ranking and aggregation
overhead at the front end is low. The figure also
shows that we significantly outpace grep; grep
must scan the entirety of each document, but Mafdet
only needs to look at 4 bits in each Bloom filter. All
searches using Google Desktop took well under a
second and are not shown. Jitter in the Mafdet results
is due to garbage collection on the search servers;
the spikes are regularly spaced because data points
for the graph were collected in a single left-to-right
pass.

Since we envision the storage service being a
shared resource, query throughput is also an impor-

8

tant metric. At 100,000 documents, the null query
time is about 32.81 seconds, so our throughput is
0.03 queries per second. However, our search servers
execute each query in a separate thread, so by run-
ning 16 queries in parallel we achieved a through-
put of 0.06 qps using two CPUs. Profiling data in-
dicates that the main sources of search server over-
head in our prototype are unmarshalling Bloom fil-
ters read from disk (using Java’s serialization frame-
work) and computing cryptographic hashes. There-
fore, heavier optimization and cryptographic accel-
eration hardware are likely to yield significant scala-
bility improvements.

Our evaluation above is actually relatively pes-
simistic in that they do not take our caching scheme
described in section 3.3 into account. Caching is not
particularly important for search latency, since the
system needs to be acceptably fast in the uncached
case to be usable anyway; however, caching has a
significant impact on scalability. If the throughput
without caching is quc, the cache hit rate is h, and a
cache hit is s times faster than a cache miss, then the
throughput with caching, qc, is given by

qc = quc

s

h + s − hs

For a single-word search on sets of 3130 and 6260
documents, a cached Mafdet search was a full 6.3
times as fast as the uncached search, so suppose
s = 6.3. An analysis of a 43-day AltaVista query
log [17] concludes that each search occurs in the log
an average of 3.97 times. This gives a conservative
lower bound of 2.97/3.97 = 0.748 on the hit rate
h, since [17] considers entire searches whereas we
cache results for individual search terms. The result
is an improvement in throughput by a factor of 2.7.
Given the results for our set of 100,000 documents as
presented above, caching should allow us to achieve
0.16 queries per second with 4 search servers.

We also measured search and upload time relative
to the number of search servers. Our results in Fig-
ure 7 show that search time is proportional to the
number of search servers. When search time lev-
els off at about 6 servers, the non-matching search
line corresponds to fixed sources of overhead such
as wire time and starting a Java VM on the client.
The difference between this line and the single word
search line is the time spent by the front end perform-

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8

T
im

e
(s

)

Number of Servers

Operation
upload (per 100 documents)
search (3 words)
search (2 words)
search (1 word)
search (non-matching word)

Figure 7: Operation Latencies for a set of 13,924
documents, with respect to number of search servers.

ing ranking and aggregation. Upload time is con-
stant, since most of the time is spent hashing each
keyword in each document at the client.

6 Related Work

With the increasing popularity of data-storage out-
sourcing, there has been, in recent years, a grow-
ing interest in techniques related to searching on en-
crypted data. Most of the related work has been theo-
retical and, to our knowledge, no practical system is
available, in which the techniques are implemented
and tested under realistic conditions.

The problem of searching on encrypted data was
first addressed by Song et al. [18]. They present
a symmetric-key scheme that allows users create a
trapdoor for a keyword and test whether a given
document contains that keyword. The algorithm
works by sequentially scanning the document and
has O(n) performance for a document of size n.
Boneh et al. [3] propose a public-key equivalent of
this scheme. Neither paper provides experimental
data to verify the usefulness of their schemes in a
practical system.

Two schemes for searching on remote encrypted
data, developed by Chang and Mitzenmacher [5], re-
quire no scan of the documents. They rely, however,
on the assumption that an index of all keywords that
can appear in the document set is known a priori.
Uploading new documents in their scheme is possi-
ble only under this assumption. Song et al. [18] also
suggest a similar system.

9

The scheme proposed by Goh [10] is the most
closely related to our work. It employs Bloom fil-
ters as an implementation of a secure index that can
perform the membership testing in O(1) time. His
scheme does not require pre-building the list of all
keywords and can be modified to support occurrence
search. Goh reports no experience with performance
of this scheme in a real system.

Private Information Retrieval protocols (e.g., [6,
7]) allow users to access a database without revealing
the retrieved data to the administrator. The theoretic
security bounds are very strong but the algorithms re-
quire substantial computational and communication
overhead.

References

[1] R. Baeza-Yates. Web Mining: Applications and
Techniques, chapter 14. Idea Publishing Group,
2005.

[2] B. Bloom. Space/time trade-offs in hash cod-
ing with allowable errors. Commun. ACM,
13(7):422–426, 1970.

[3] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and
G. Persiano. Public key encryption with key-
word search. In Proc. EuroCRYPT 2004, pages
506–522, 2004.

[4] M. Castro and B. Liskov. Practical byzantine
fault tolerance and proactive recovery. ACM
Transactions on Computer Systems (TOCS),
20(4):398–461, November 2002.

[5] Y. Chang and M. Mitzenmacher. Privacy
preserving keyword searches on remote en-
crypted data. Cryptology ePrint Archive, Re-
port 2004/051, 2004. http://eprint.
iacr.org/.

[6] B. Chor, N. Gilboa, and M. Naor. Private
information retrieval by keywords. Cryptol-
ogy ePrint Archive, Report 1998/003, 1998.
http://eprint.iacr.org/.

[7] B. Chor, E. Kushilevitz, O. Goldreich, and
M. Sudan. Private information retrieval. J.
ACM, 45(6):965–981, 1998.

[8] H. Chu and M. Rosenthal. Search engines for
the world wide web: A comparative study and
evaluation methodology. In Proc. ASIS ’96,
1996.

[9] W. B. Frakes and R. A. Baeza-Yates, editors.
Information Retrieval: Data Structures & Al-
gorithms. Prentice-Hall, 1992.

[10] E. Goh. Secure indexes. Internet, May
2004. http://crypto.stanford.edu/
˜eujin/papers/secureindex/.

[11] P. Golle, J. Staddon, and B. Waters. Secure con-
junctive keyword search over encrypted data.
In M. Jakobsson, M. Yung, and J. Zhou, edi-
tors, Proc. of the 2004 Applied Cryptography
and Network Security Conference, pages 31–
45. LNCS 3089, 2004.

[12] Google Desktop. http://desktop.
google.com.

[13] D. Hawking, N. Craswell, P. Bailey, and
K. Griffihs. Measuring search engine quality.
Inf. Retr., 4(1):33–59, 2001.

[14] H. V. Leighton and J. Srivastava. First 20
precision among world wide web search ser-
vices (search engines). J. Am. Soc. Inf. Sci.,
50(10):870–881, 1999.

[15] K. Mahesh. Text retrieval quality: A
primer. http://www.oracle.com/
technology/prodcuts/text/
htdocs/imt_quality.htm.

[16] Project Gutenberg. http://www.
gutenberg.org.

[17] C. Silverstein, M. Henzinger, H. Marias, and
M. Moricz. Analysis of a very large al-
tavista query log. Technical Report 014, Dig-
ital Equipment Corporation Systems Research
Center, 1998.

[18] D. Song, D. Wagner, and A. Perrig. Practi-
cal techniques for searches on encrypted data.
In IEEE Symposium on Security and Privacy,
pages 44–55, 2000.

10

