
Automatic Generation of Unit Regression Tests

Shay Artzi Adam Kiėzun Carlos Pacheco Jeff Perkins
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139

{artzi,akiezun,cpacheco,jhp}@csail.mit.edu

Abstract

Software developers spend a significant amount of time modify-
ing existing code. Regression testing (comparing previous behav-
ior with current behavior) can be a powerful technique to check
that modifications do not introduce unintended changes. This pa-
per introduces a technique to automatically create class-specific
regression tests from a program run. The technique is implemented
for the Java language in Palulu.

In order to test a class, it may be necessary to place the class
and other classes that it depends upon in specific states. To get to
the desired state, methods may be need to be called in a particular
order and with specific parameters. Palulu uses information from
the program run to accomplish this. It builds a model for each
class and uses the model to explore the possible behaviors of the
class and build corresponding regression tests. It usesobserver
methods (those that do not modify the state) to capture the result.

In our experiments, Palulu succeeded in building tests for non-
trivial programs and performed as well as or better than hand
written tests.

1. Introduction
Tests for a unit of code require two parts:test inputs(a se-

quence of assignment statements and method calls) to exercise the
code and anoracle to determine whether or not the result is cor-
rect. An oracle can be difficult to obtain. Regression testing uses
a previous version of the code as an oracle, which allows a test to
find when the behavior of the code has changed. Since much of
software development is spent modifying code, regression testing
can be quite valuable.

Our goal is to automate the creation of regression tests—both
the creation of test inputs, and the creation of regression oracles.
The introduction consists of three parts. To motivate the prob-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

lem, we first describe the challenges that automated input creation
techniques face. Next, we describe our approach to creating test
inputs automatically. Finally, we describe our approach to creating
regression oracles.

1.1 Creating Test Inputs is Difficult
Creating test inputs often requires placing an object in a par-

ticular state. We define the state of an object as the value of each
of its (transitively reachable) fields. As the program progresses,
mutable objects transition through various states. Eachmutator
method (one that changes the value of fields) may change the state
of the object. The state of the object can thus also be defined by the
sequence of mutator method calls (including their arguments) that
have been made on the object. Consider the example Java classes
in Figure 1. The sequence of calls

Graph g1 = new Graph();
g1.init();
Node n1 = new Node("NYC");
n1.setOwner(g1);
g1.addNode(n1);

defines a state forg1 andn1 .
Not all possible sequences of method calls are valid. For exam-

ple,Graph.addNode is only valid afterGraph.init has been
called. Node.addEdge is only valid afterNode.setOwner
has been called.Graph.addEdge is only valid whenGraph-
.addNode has been called on both of its arguments. A method
call is invalid when it violates the (implicit or explicit) invariants
of the class. In all of the above examples, the invalid call throws
an exception. Consider, however

n1.setOwner(g2)
g1.addNode(n1);

The call tog1.addNode is invalid becausen1 ’s owner isg2 .
This does not throw an exception but is clearly not desirable (be-
causeg1 now contains a node whoseowner is not g1).

Additionally, not all of the possible values for primitive and
string arguments will be valid for a method call. For example,
strings often need to be in a particular format (such as a date,
method signature, or URL). Numeric arguments may need to be
in a range or have a particular mathematical relationship to one
another.

A sequence of valid method calls is required to create a test. To
achieve reasonable coverage, a set of test inputs must be created

that explores the valid states. It is, however, challenging to create
valid test inputs, as we have shown on example before. Specific
calls must occur in a specific order with specific arguments. Spe-
cific relationships must be maintained between arguments. The
search space of possible test inputs grows exponentially with the
number of methods, possible arguments, and the length of the
method sequence required. For example, if we presume 5 possible
graph objects, 5 possible node objects, and a method sequence 10
elements in length, there are23510 different possible sequences.
An exhaustive search may be prohibitively expensive. Random
exploration may not create interesting valid test inputs in a reason-
able amount of time. Specifications may limit the search space,
but specifications are often not available. Of course, non-trivial
programs contain groups of inter-related classes with many more
possible test inputs and more complex constraints than the ones
shown in the example. We discuss a more complex example in
Section 3.2.

1.2 Creating Test Inputs by Example
Our approach builds valid test inputs for classes with complex

rules and inter-relationships by using information collected during
an example program run to guide the construction of test inputs.
A run of a program will use the classes of the program in a nor-
mal fashion. Valid sequences of method calls will be made on the
various instances of each class. Arguments to those calls will be
valid as well. For example, themain method in Figure 1 makes a
sequence of valid method calls onGraph andNode.

Using information from the program run, the technique builds
aninvocation modelfor each class of interest. An invocation model
describes the sequences of mutator method calls and arguments
that occurred for the class. For example, the model forNode
(shown in Figure 4) indicates thatsetOwner must be called be-
foreaddEdge . The technique uses the model to build test inputs.

1.3 Regression Oracles via Observer Methods
Once a valid test input is created, the technique creates an ora-

cle using a set of user-specified observer methods. The technique
executes the test input (using the current version of the program)
and then calls each observer. It creates an assertion using the result
from the observer. Those assertions are combined with the test in-
put to form a complete test. The complete test can be run on later
versions of the program to ensure that the behavior did not change.

Figure 2 shows two sample tests generated by an implementa-
tion of our technique. Each executes a valid test input and checks
the result using thegetDegree observer method. These are not
the same executions as in themain method. The invocation model
guides the construction of test inputs, but does not limit them to
only the ones in the original trace.

1.4 Contributions
In summary, we make the following contributions:

• We presentinvocation models, which describe valid sequences
of method calls and their parameters, and a technique that
dynamically infers them by tracking method calls in a pro-
gram run.

• We use observer methods to create an oracle for regression
testing.

1 public class Main {
2 public static void main(String[] args) {
3 Graph g1 = Graph.generateGraph();
4 Node n1 = new Node("NYC");
5 n1.setOwner(g1);
6 Node n2 = new Node("Boston");
7 n2.setOwner(g1);
8 g1.addNode(n1);
9 g1.addNode(n2);

10 n1.addEdge(n2);
11 n1.getDegree();
12 }
13 }
14

15 public class Graph {
16 private Map<Node, Set<Node>> adjMap;
17

18 public static Graph generateGraph() {
19 Graph g = new Graph();
20 g.init();
21 return g;
22 }
23 public void init() {
24 adjMap = new HashMap<Node, Set<Node>>();
25 }
26

27 public void addNode(Node n) {
28 adjMap.put(n, new HashSet<Node>());
29 }
30

31 public void addEdge(Node n1, Node n2) {
32 addToNode(n1,n2);
33 addToNode(n2,n1);
34 }
35

36 private void addToNode(Node source, Node target) {
37 Set<Node> succ = adjMap.get(source);
38 succ.add(target);
39 }
40

41 public int getDegree(Node n) {
42 return adjMap.get(n).size();
43 }
44 }
45

46 public class Node {
47 private Graph owner;
48 private String name;
49

50 public Node(String name) {
51 this .name = name;
52 }
53 public void setOwner(Graph a) {
54 this .owner = a;
55 }
56 public void addEdge(Node n) {
57 owner.addEdge(this , n);
58 }
59 public int getDegree() {
60 return owner.getDegree(this);
61 }
62 }

Figure 1. Example program. The following implicit rules must be followed
to create a validGraph : Graph.init() must be called before any of
the other methods ofGraph ; Node.setOwner() must be called before
any of the other methods ofNode; Graph.addNode() must be called
for a node beforeGraph.addEdge() is called for that node.

public void test13() {
Node var327 = new Node("NYC");
Graph var328 = new Graph();
var327.setOwner(var328);
var328.init();
var328.addNode(var327);
var327.addEdge(var327);
assertEquals(1, var327.getDegree());

}

public void test22() {
Graph var494 = Graph.generateGraph();
Node var496 = new Node("Boston");
Graph var497 = new Graph();
var496.setOwner(var497);
var497.init();
var494.addNode(var496);
var494.addNode(var496);
var497.addNode(var496);
var494.addEdge(var496, var496);
assertEquals(0, var496.getDegree());

}

Figure 2. Two test cases from the regression suite generated by Palulu for
the classes in Figure 1. Each of these follows the implicit rules forGraph
andNode.

run
model
generator

regression
test

generator

trace
regression

suitemodelprogram

purity information

Figure 3. Technique overview. The inputs to the technique (left) are (1)
a program under test and (2) a concrete execution of the program. The
output (right) is a regression suite.

• We evaluate the effectiveness of our technique by compar-
ing the regression tests it generates with (1) random input
generation that does not use an invocation model, and (2)
manually-written regression tests.

• We perform a case of study of our technique’s ability to gen-
erate complex test inputs.

The remainder of the paper is organized as follows. Section 2
describes our technique. Section 3 contains the description and
result of the experiments we performed to evaluate Palulu. Finally,
Section 5 surveys related work.

2. Technique
Figure 3 shows a high-level view of the technique. Given the

program and an example run, the technique automatically creates
regression unit tests for selected classes in the program. The tech-
nique has four steps.

1. Trace method calls.Execute an instrumented version of the
program that traces the method calls (and parameters/return
values to the calls) that occur during the execution. Tracing
is described in Section 2.1.

2. Infer a model. Use the trace to generate a model that ab-
stracts the proper uses of the program’s components. Model
inference is described in Section 2.2.

1 Graph.generateGraph() -> g1
2 new Graph() -> g1
3 g1.init()
4 edges = new HashMap()
5 new Node("NYC":String) -> n1
6 n1.setOwner(Graph)
7 new Node("Boston":String) -> n2
8 n2.setOwner(Graph)
9 g1.addNode(n1)

10 new HashSet() -> hs1
11 edges.put(n1,hs1) -> null
12 g1.addNode(n2)
13 new HashSet() -> hs1
14 edges.put(n2,hs2) -> null
15 n1.addEdge(n2)
16 g1.addEdge(n1,n2)
17 g1.addToNode(n1,n2)
18 edges.get(n1) -> hs1
19 hs1.add(n2) -> true
20 g1.addToNode(n2,n1)
21 edges.get(n2) -> hs2
22 hs1.add(n1) -> true
23 n1.getDegree() -> 1
24 g1.getDegree(n1) -> 1
25 edges.get(n1) -> hs1
26 hs1.size() -> 1

Figure 5. The simplified trace created by running the example’s main
method (line 2 in Figure 1) using our tracing tool. The right hand side
of the arrow refers to the return value.

3. Generate test inputs. Use the model to generate method
call sequences representing test inputs. This step is described
in Section 2.3.1.

4. Create a regression oracle.Execute the inputs and create a
regression test oracle that captures their behavior. We cap-
ture the behavior of each method invocation by recording
its return value, as well as the state of the receiver and pa-
rameters before and after the method is invoked. To capture
an object’s state, we call its observer methods and record
their return values. Regression oracle creation is described
in Section 2.3.2.

The output of the technique is a test suite, in which each test
case consists of a method sequence (test input) and assertions about
the state of the objects at each point during execution (regression
oracle).

2.1 Tracing
Tracing collects the history of method invocations. Figure 5

shows the trace obtained when running the example program from
Figure 1. Tracing is implemented by dynamically instrumenting
class files as they are loaded. Each method call is instrumented
at the call site, which allows calls to the JDK to be instrumented
without instrumenting the JDK itself. An entry is written imme-
diately before and after the call so that it can be determined how
calls are nested. The receiver, each argument and the return value
for the call are logged. Primitives and strings are logged with their
value. Objects are logged with a unique ID.

2.2 Invocation Model Inference
The trace contains many legal sequences of calls. In fact the

calls involving each object contain legal call sequences on instances

Figure 4. Invocation models for theGraph (left) andNode (right) from Figure 1.

of the object’s class. We use the termobject historyto denote the
sub-trace of calls that involve an object. Object histories follow
the implicit rules of the classes. Our technique used those rules to
create test cases. For objects of a given class, many histories may
exist. However, many of them are likely to share prefixes of calls.
Our technique summaries object histories into invocation models,
to use this sharing.

Each invocation model is a directed graph. One model is cre-
ated for each class for which instances are found in the trace1. The
nodes in each graph are method signatures and an edge between
two nodes indicate that the source method should be called before
the target method on an instance of the class.

Figure 4 shows invocation models for theGraph andNode
classes from the example in Figure 1. The models capture many
of the implicit rules of those classes. For example, we noted in the
introduction thatGraph.init must be called before a node can
be added to the graph byGraph.addNode . This is visible from
the model of classGraph on the left-hand-side in Figure 4: the
node forGraph.init precedes the node forGraph.addNode
in the graph.

The algorithm for inferring invocation models has three steps:

1. Extract object histories from the trace (Section 2.2.1).

2. Filter calls from the histories (Section 2.2.2)

3. Create a model for each class by merging all the histories of
instances of this class (Section 2.2.3).

2.2.1 Extracting Object Histories
The first step in the algorithm for inferring invocation models is

to extract object histories for all the objects observed in the trace.
An object’s history consists of all invocations in the trace that in-
cludes the object as a receiver, parameter, or return value. An
1The user can specify a subset of those classes.

object’s history describes the sequence of observable operations
performed on an object. An object can take part in an operation
without being explicitly passed as a parameter; our technique does
not currently track this information.

Figure 6 shows the histories of theGraph andNode instances
derived from the example trace. The indentation serves to indicate
method call nesting.

2.2.2 Filtering Calls from Object Histories
The second step of the algorithm that infers invocation models

is applying the following three filters on each object’s history:

• Non-Mutators Filter Since non-mutator method calls do
not change the object’s state they are less important in test
cases creation. This filter removes all calls to non-mutator
methods as well as any call nested inside them (which should
also be a non-mutator). The technique uses argument spe-
cific non-mutator information. A method is non-mutator
over an argument/receiver if it does not modify any (tran-
sitively reachable) fields in that argument/receiver. It is a
non-mutator over a return value if the return value is not
created within the method or if it has no nested non-mutator
method calls. Non-mutators can either be supplied by the
user or computed via static analysis [12, 10]. Figure 7 con-
tains the list of non-mutators in the example classes from
Figure 1.

An additional reason for removing calls to non-mutator meth-
ods is optimization. We found out in one of our experi-
ments2 that filtering non-mutators removed 73% of all calls.
This filtering helps creating more manageable models.

• Return Value Filter This filter removes a call from an ob-
ject history if the object is only the return value of the call.

2This observation was made in the experiment described in Sec-
tion 3.1.

History for the Graph instances:

1 Graph.generateGraph() -> g1
2 new Graph() -> g1
3 g1 .init()
4 n1.setOwner(g1)
5 n2.setOwner(g1)
6 g1 .addNode(n1)
7 g1 .addNode(n2)
8 g1 .addEdge(n1,n2)
9 g1 .addToNode(n1,n2)

10 g1 .addToNode(n2,n1)
11 g1 .getDegree(n1) -> 2

History for one of the Node instances:

1 new Node("NYC") -> n1
2 n1 .setOwner(g1)
3 g1.addNode(n1)
4 edges.put(n1 , hs1)
5 n1 .addEdge(n2)
6 g1.addEdge(n1 ,n2)
7 g1.addToNode(n1 ,n2)
8 edges.get(n1) -> hs1
9 g1.addToNode(n2, n1)

10 hs1.add(n1)
11 n1 .getDegree() -> 1
12 g1.getDegree(n1) -> 1
13 edges.get(n1) -> hs1

Figure 6. Simplified object histories for instances ofGraph and Node
obtained from the trace.

Node.getDegree() : receiver
Map.put(Object,Object) : parameters
Map.get(Object) : receiver, parameters
Set.add(Object) : parameters

Figure 7. List of non-mutator methods in the classes in Figure 1. Each
method is followed by a list of arguments that it does not mutate.

The only exception to this filter is if the object is constructed
inside the call. Those calls are either constructors or static
factory method like theGraph.generateGraph() (first
line in Figure 6) that can be used to create instances.

• Non-Public Filter This filter removes calls to non-public
methods. This filter is applied, because non-public methods
cannot be called from a test.

Our technique assumes that methods performing field-writes
do not call other methods. This can be easily achieved by re-
placing all field-writes withset methods.

If a non-publicset- method is nested in a filtered call, then
filtering out non-public method calls can leave the object is
an unknown state. In this case, the technique filters all calls
after the call to theset- method (in the same method).

Figure 8 shows the filtered object histories for the instances of
classNode.

2.2.3 Merging Objects Histories into Models
The last step of the model inference algorithm combines the

histories of all instances of a class to create the class’s model. For
each class, the algorithm starts from an empty model and incre-
mentally incorporates the histories of all instances of that class to
the class’s model.

1 new Node("NYC") -> n1
2 n1 .setOwner(g1)
3 g1.addNode(n1)
4 n1 .addEdge(n2)
5 g1.addEdge(n1 ,n2)

1 new Node("Boston") -> n2
2 n2 .setOwner(g1)
3 g1.addNode(n2)
4 n1.addEdge(n2)
5 g1.addEdge(n1, n2)

Figure 8. Object histories for instances of theNode, after filtering.

Figure 4 contains the models inferred from the trace of Fig-
ure 5. The model for each class is a directed graph where nodes
are method calls and edges define permitted order of method calls.
Nodes also contain the position of the object in the call. The source
nodes (nodes with no incoming edges) are methods that are used
to create new instances (constructors and static factories).

When it adds a history to the model, the algorithm reuses nodes
and edges from an existing prefix of calls (up to variable renam-
ing) and creates new nodes and edges if no shared prefix exists.
When searching for an existing prefix, nodes (method calls) and
object positions are compared. In addition, whenever a primitive
or a String parameter is encountered, its value is stored. Thus,
primitive values are directly embedded on a per-parameter basis.

Assuming all field writes are done through setters (method that
do not call any other methods), the sequence of method calls nested
in each method call is an alternative, legal sequence for the same
object. The algorithm is concerned with legal call sequences. There-
fore, it adds, as alternative paths to each call, all the paths that are
created from considering the calls nested in it (if any exist). For ex-
ample, consider the methodGraph.generateGraph (line 18
in Figure 1). This method calls two other methods:Graph con-
structor and theGraph.init method. The model forGraph
(left in Figure 4 contains two paths from the source nodes to the
Graph.addNode method. One path is through the methodGraph.generateGraph
and the second path is through its nested events.

2.3 Generating Test Cases
The test case generator takes as input:

a. An invocation model for the classes in the tested programP .

b. A list of tested classes: a subset of the classes inP to generate
test cases for.

c. For each tested class, a list of observer methods: pure methods
that return a value [12, 10]. As examples, methodsNode.getDegree
andGraph.getDegree (in lines 41 and 59 of Figure 1, re-
spectively) are observer methods. The list can be a subset of the
purity list provided to the model inferencer. (Our implementa-
tion restricts observer methods to be parameter-less methods
that return a primitive, which avoids the difficulties of provid-
ing parameters to the observer methods and of recording a re-
turn value which is an object. Addressing these difficulties is
future work.)

d. A time limit.

The test case generator iterates through the tested classes. At
each iteration, it tries to create a test case for the currently tested

classC. The process stops when the time limit is exhausted. A test
case consists of a test input and an oracle; Section 2.3.1 describes
test inputs creation, and Section 2.3.2 describes regression oracle
creation.

2.3.1 Generating Test Inputs
In the context of this paper, a test input for classC is a se-

quence of method calls that create, and possibly mutate, an object.
of classC. For each test input, we also keep track of the list of
objects contained in the test input, and the current state (from the
invocation model) of each object. Figure 9 shows a test input and
the state of each of its objects.

The test input generator maintains a database of previously-
created inputs (i.e., method sequences). The database is initially
empty. To create a new test input, the generator retrieves from
the database uniformly at random an existing input that contains at
least one objecto of typeC (the base case is the empty sequence).

Next, the generator extends the test input by appending a method
call allowed by the model for objecto. If there are several possi-
ble method calls, the generator creates several new inputs, one per
call.

As Figure 4 shows, the model specifies what some of the pa-
rameters to the method call are. For the parameters that the model
does not specify, the generator finds parameters to the call using
the following algorithm.

1. If the parameter is a primitive, randomly select a primitive
value from the possible values specified in the model.

2. If the parameter is of typeCh, an instance of that type must
be found. If there is already an instance ofCh in the se-
quence, use that instance. If not, one must be created. IfCh

appears more than once in the parameter list, do not reuse
the same instance.

3. If there is no applicable reference, select one of two actions
(at random):

a. recursively try to create an input for typeCh, or

b. retrieve an existing input from the database that creates
an object of the desired parameter type. Call this ahelper
input.

4. Append the helper input to the end of the sequence of calls;
the sequence now contains an object of typeCh. Go to step
3.

When all parameters are filled, the test input is executed3. If
execution leads to an exception, the input is discarded. Our tech-
nique conservatively assumes that exceptional behavior is indica-
tive of an illegal state, and does not attempt to create regression
tests out of such states (recall that the model is incomplete; this
incompleteness can lead to creating illegal inputs, even when the
model is followed).

If the test input executes normally, a regression oracle is created
for it, as described in the next section. In addition, the input is
added to the database, where it can later be selected to be extended,
or used as a helper input.

3In Palulu, we use Java’s reflection mechanism to execute inputs.

2.3.2 Creating a Regression Oracle
The regression oracle creation takes as input a sequence, and

the run-time objects resulting from its execution. For each object,
it calls all observer methods specified for the class of the object,
and records their return values. Each invocation of an observer
method can be converted into an assertion in a straighforward way.
The sequence together with the assertions comprise a unit regres-
sion test. Figure 2 contains examples of test unit regression tests
for classes in Figure 1.

3. Evaluation
In this Section, we present the empirical evaluation of:

• the effectiveness of using observer methods in creating re-
gression oracles (the experiment is described in Section 3.1),
and

• the effectiveness of our technique in creating complex test
inputs (the experiment is described in Section 3.2).

3.1 Observer Methods Experiment
In this experiment, we evaluated how the usage of test oracles

based on observer methods affects the error-detection effective-
ness of generated test suites. We usedRatPoly, an assignment
given in the MIT’s software engineering class (6.170).RatPoly
has the following salient characteristics:

• It has many different versions, each implementing the same
interface.

• One of the versions of the program is a reference implemen-
tation, to which we can compare all the other versions. We
make the simplifying assumption that the reference imple-
mentation contains no errors. It is justified by our goal of
creating regression errors, which reveal inconsistencies be-
tween versions of the program.

• Some of the other versions contain errors. This is known be-
cause a manually-written test suite that reveals those errors
is available.

The students were given a set of interfaces defining a one-
variable rational-numbered coefficient polynomial library, and a
test suite written using those interfaces. Their task was to submit
an implementation of the interfaces that passed the test suite. (Not
all students turned in assignments that passed the test suite, despite
the fact that they were given the suite as part of the assignment.)
The reference implementation (to which the students did not have
access), and the manually-written test suite were written by the
course staff.

We created the suite that we used in our experiments, which
we call in this paper the Gold suite, by enhancing the staff-written
suite with tests that were generated by our techniques and that we
have manually verified to be fault-revealing. We also present, for
reference, the results of running the original, staff-written test suite
and compare them to tests suites generated automatically by our
techniques.

Recall that our techniques require an example execution to cre-
ate test suites. In this experiment, we used a 3-line program that
performs a sequence of 9 simple operations on polynomials. We
intentionally used a short example program to see if our technique

line sequence objects and states after each line

1 Node var1 = new Node("NYC"); var1 (state ss6)
2 Graph var2 = new Graph(); var1 (state ss6),var2 (state ss4)
3 var1.setOwner(var2); var1 (state ss7),var2 (state ss4)
4 var2.init(); var1 (state ss7),var2 (state ss5)

Figure 9. A test input derived from models in Figure 4. The input has 4 lines and creates two objects, a graph and a node. The graph and node go through
different states of the model. The state names refer to node labels in the graphs in Figure 4.

could create useful tests even with a small amount of run-time
data. The trace collected was over this small example and the ref-
erence (staff-provided) implementation.

We used and compared 6 different test generation techniques.
They were a combination of 3 input generation strategies and 2
oracle creation strategies. The input generation strategies were:

a. Unconstrained: strategy that allows invocation of any method
at any time with any parameter (of a valid type).

b. Primitive constraints: strategy that allows invocation of any
method at any time but the constrains the arguments to those
seen in the example execution.

c. Primitive and method sequencing constraints:strategy based
on a model that uses method sequencing constraints, such as
those discussed in Section 2.3.1.

The oracle creation strategies were:

a. Exceptions: a test suite fails if executing a test case in it leads
to an exception being thrown (recall from Section 2.3.1 that we
do not use tests inputs that lead to exceptions in the original
program).

b. Exceptions+observers:a test suite fails if executing a test case
in it leads to an exception being thrown. Additionally, the suite
fails if a call to an observer method returns a value that is dif-
ferent than in the reference program (when run on the same
input).

We repeated the following experimental process for each of the
test generation techniques:

1. Execute the example program on the reference implementa-
tion to create the trace (as described in Section 2.1). The Un-
constrained input generation strategy does not require trac-
ing.

2. Create the model required for test input generation.

3. Generate the test suite using the model and the reference im-
plementation. We bounded the execution time of this phase
to 7 seconds.

4. Run the test suite on each of the 143 student programs for
RatPoly and record the result. The result is eitherpassor
fail . Thepassresult is given only when each test case in the
test suite succeeds.

5. Compare the result to those of the Gold suite, for each stu-
dent program. There are four possible outcomes (summa-
rized in Figure 10):

a. Both the generated suite and the Gold suite fail. In this
case the generated suite correctly identifies an error in
the program.

Gold passes Gold fails

generated passes OK Pass False Negative
generated fails False Positive OK Fail

Figure 10. Four possible outcomes of running a generated test suite and
Gold test suite on a program.

b. Both the generated the Gold suite pass. In this case, the
generated suite correctly identifies a non-erroneous pro-
gram.

c. The generated suite passes, but the Gold suite fails. In
this case, the generated suite misses an error (i.e., it is a
false negative).

d. The generated suite fails, but the Gold suite passes. In
this case, the reported a false error (i.e., it is a false posi-
tive).

3.1.1 Results
Figures 11 and 12 present the results of theRatPoly experi-

ment. The experiment was performed on a Pentium 4 machine,
running Debian Linux, with 3.6 GHz CPU; the heap space was
limited to 1 GB. Rows in the tables contain results for the 6 differ-
ent generated tests suites. Additionally, we include, for reference,
results for the original, staff-written test suite.

Columns in Figure 11 indicate, in order: the suite’s name, trac-
ing time, modelling time, test generation time, number of created
sequences and test running time (averaged over all students).

The first 4 columns in Figure 12 show the results of execut-
ing the test suites on student programs. LetT denote the test
suite. Then,OKPass(T) is the number of students for which
both T and the Gold test suite pass. Similarly,OKFail(T) is
the number of student programs for which both test suites fail
andFalsePositives(T) is the number of programs for which the
Gold suite passes andT fails. Finally,FalseNegatives(T) is the
number of programs for which the Gold suite fails andT passes.

The last two columns indicate precision and recall and are cal-
culated as follows:

• Error Detection Recall measures how often the generated
test suite was successful in detecting an error.

Recall(T) =
OKFail(T)

FalseNegatives(T) + OKFail(T)

• Error Detection Precision measures how often errors re-
ported by the generated test suite were actual errors.

Precision(T) =
OKFail(T)

FalsePositives(T) + OKFail(T)

Test Suite Tracing time Modelling time Test gen time # sequences Test run time avg
Unconstrained n/a n/a 7 2016 7.00
Unconstrained + observers n/a n/a 7 2016 10.90
Primitive constraints 2.9 2.6 7 1753 5.39
Primitive constraints + observers 2.9 2.6 7 1753 5.95
Method seq constraints 2.9 2.6 7 1465 8.25
Method seq constraints + observers 2.9 2.6 7 1465 9.51
Original Manual n/a n/a n/a 190 0.08

Figure 11. Time characteristics of the RatPoly experiment. Times are in seconds.
Test Suite OKPass OKFail FalsePositives FalseNegatives Precision Recall

Unconstrained 74 21 1 47 0.95 0.31
Unconstrained + observers 74 41 1 27 0.98 0.60
Primitive constraints 66 31 9 37 0.78 0.46
Primitive constraints + observers 47 57 28 11 0.67 0.84
Method seq constraints 75 32 0 36 1.00 0.47
Method seq constraints + observers 74 63 1 5 0.98 0.93
Original Manual 75 14 0 54 1.00 0.21

Figure 12. Results of the RatPoly experiment. The 4 middle columns refer to the possible outcomes of running a test suite, as described in Figure 10.

3.1.2 Discussion of the results
Results presented in Figure 12 show that, in this experiment,

• Using observer methods to create test oracles was effective.
Error detection recall was almost 2 times higher when ob-
server methods were used (0.31 vs. 0.6, 0.46 vs. 0.84 and
0.47 vs. 0.93). At the same time, using observers did not
result in a significant loss of precision (0.95 vs. 0.98, 0.78
vs.0.67 and1.00 vs.0.98).

• Generated tests suites outperformed the manually-written
test suite in error detection recall (i.e., revealed more er-
rors). The best-performing generated test suite had recall
0.93/0.21 = 4.43 times higher than the manual test suite.
By manual inspection, we verified that many of the errors
that the staff-written test suite missed were due to incor-
rect handling of special cases (e.g., the zero polynomial) and
unexpected mutation of objects (The specification required
the classes to be immutable. Some student programs failed
to meet that requirement—our generated test suites found
some of those errors.)

• Using method sequencing constraints was of only limited
effectiveness. This is visible by comparing the results for
‘Primitive constraints + observers’ and ‘Method seq con-
straints + observers’. Method sequencing constraints were
not necessary to create tests for this experiment, because the
objects were intended to be immutable.

• Using primitive values found in the execution increased the
effectiveness of generated test suites, both in recall and pre-
cision. This is visible by comparing the first 2 rows of the ta-
ble (i.e., ‘Unconstrained’ and ‘Unconstrained + observers’)
with the next 2 rows (i.e., ‘Primitive constraints’ and ‘Prim-
itive constraints + observers’). To understand why this was
effective, consider theRatPoly.parse(String) method.
A valid argument for this method must represent a polyno-
mial, e.g.,"1/2*xˆ2-2*x+1" . Random exploration of
strings is unlikely to quickly find many valid inputs for this
method. Using the string values observed in the trace nar-
rows the search space.

Class Description References
VarInfoName Variable Name
VarInfo Variable Description VarInfoName

PptTopLevel
PptSlice2 Two variables from a pro-

gram point
VarInfo
PptTopLevel
Invariant

PptTopLevel Program point PptSlice2
VarInfo

LinearBinary Linear Invariant over two
scalar variables

PptSlice2

BinaryCore Linear helper class LinearBinary

Figure 13. Some of the classes needed to create a valid test input for
Daikon’s BinaryCore class

3.2 Complex Inputs Experiment
To evaluate our technique’s effectiveness in creating legaland

structurally complex inputs, we applied it to theBinaryCore
class within Daikon [5], a tool that infers program invariants. Bi-
naryCore is a helper class that calculates whether or not the points
passed to it form a line. Daikon maintains a complex data struc-
ture involving many classes (see Figure 13) to keep track of the
valid invariants at each program point. Some of the constraints in
creating a valid BinaryCore instance are:

• The constructor to aBinaryCore takes an object of type
Invariant , which has to be of run-time typeLinearBinary
orPairwiseLinearBinary , subclasses ofInvariant .
Daikon contains dozens of classes that extendInvariant ,
so the state space of incorrect but type-compatible possibil-
ities is very large.

• To create a legalLinearBinary , one must first create a
legal PptTopLevel and a legalPptSlice2 . Both of
these classes require an array ofVarInfo objects. In addi-
tion, the constructor forPptTopLevel requires a string in
a specific format; in Daikon, this string is read from a line
in the input file.

• The constructor toVarInfo takes five objects of different
types. Similar toPptTopLevel , these objects come from
constructors that take specially-formatted strings.

• None of the parameters involved in creating aBinaryCore
or any of its helper classes can be null.

4. BinaryCore: Manual vs. Generated
Figure 14 shows a test input that creates aBinaryCore ob-

ject. This test was written by a Daikon developer, who spent about
30 minutes writing the test input.

We used our technique to generate test inputs forBinaryCore .
We gave the input generator a time limit of 10 seconds. Dur-

ing this time, it generated 3 sequences that createBinaryCore
objects, and about 150 helper sequences.

Figure 14 also shows one of the three inputs that Palulu gen-
erated forBinaryCore . For ease of comparison, we renamed
variables (Palulu assigned names likevar4722 to all variables),
reordered method calls when the reordering did not affect the re-
sults, and added some whitespaces. Palulu successfully generated
all the helper classes involved. It generated some objects in a way
slightly different from the manual input; for example, to generate
a Slice , it used the return value of a method inPptTopLevel
instead of the class’s constructor.

Without an invocation model, an input generation technique
would have little chance of generating this sequence; the specific
primitive parameters, the fact that aBinaryCore requires aLinearBinary ,
not just anyInvariant , are all crucial pieces of information
without which a search through the space of possibilities would be
infeasible. Moreover, the path to a legalBinaryCore is highly
constrained: there is not an easier way to obtain aBinaryCore .

5. Related Work
There is a large literature on automatic test generation; the most

relevant to our work centers around what we call themethod se-
quence generation problem: generating sequences of method calls
that create and mutate objects for use as test inputs. Our survey
centers around three topics: (1) modeling legal method sequences,
(2) generating method sequences from the models, and (3) creating
regression oracles for the sequences.

5.1 Modeling Legal Method Sequences
In this section, we survey techniques that automatically extract

finite state machines (FSMs) from a program trace [3, 14, 9]. In
these techniques, as in ours, nodes represent method calls, and a
transition from nodem1 to nodem2 means that a call ofm1 can
be followed by a call ofm2.

Cook and Wolf [3] generate FSMs for software processes. They
consider only linear traces of atomic, parameter-free events (an
event is just a label), which allows them to directly apply and ex-
tend existing grammar-inference methods [1]. Their focus is on
evaluating the effectiveness of different inference methods in lead-
ing to a model that a human deems reasonable (for example, one of
their case studies characterizes differences in the models inferred
for a correct and an incorrect modification to a software artifact).
The grammar-inference techniques that they use are not directly
applicable to object-oriented programs, which produce nested—
not linear—traces, and where an event represents a method call,
which takes multiple parameters and affects more than one object.

Our modeling technique addresses the more complex traces
that arise from modeling object-oriented systems. We deal with
nested calls by creating alternate paths in an FSM and cutting off

events for nested private calls. We deal with multiple-parameter
events by inferring an FSM over a set of single-object histories,
which consist of calls that affected a single objecto, ignoring the
identity of all other objects participating in the calls.

Whaleyet al. [14] and Meghaniet al. [9] also infer method-
sequence FSMs for object-oriented systems; they also ignore im-
portant modeling issues such as parameters (other than the re-
ceiver) and nested calls, which we address. Whaley and Lam [14]
use a dynamic analysis of a program run to records observed legal
method sequences, and a static analysis that infers pairs of meth-
ods that cannot be called consecutively. Meghani and Ernst [9]
improve on Whaley’s technique by using a program trace to dy-
namically infer pre/postconditions on methods, and create a tran-
sition fromm1 to m2 when the preconditions ofm2 are consistent
with the postconditions ofm1. The main motivation (and evalua-
tion) in both works is a better understanding of the system being
modeled; they do not use their models to generate test inputs. Our
main goal in deriving a model is to generate test inputs; this led us
to augment our models with additional information such as primi-
tive parameters.

5.2 Generating Test Inputs
Previous work on generating inputs from a specification of le-

gal method sequences[2, 4, 8, 13] expect the user to write a model
by hand. These techniques have been tested largely on toy exam-
ples, such as linked lists, stacks, etc. that, in addition to testing
small structures, have few or no methods that take other objects as
parameters. This makes input generation easier—there are fewer
decisions to make, such as how to create an object to pass as a
parameter.

Since we use an automatically-generated model and apply our
technique to realistic applications, our test input generator must
account for any lack of information in the generation model and
still be able to generate inputs for complex data structures. Ran-
domization helps here: whenever the generator faces a decision
(typically due to under-specification in the generated model), a
random choice is made. As our evaluation shows, the randomized
approach leads to legal inputs. Of course, this process can also lead
to illegal structures being created. In future work, we would like
to investigate techniques that can help us detect illegal structures
resulting from generating inputs using an under-specified model.

5.3 Capturing Behavior
Several techniques have been proposed to capture a program’s

intended behavior from an execution trace, ranging from deriv-
ing operational abstractions [5, 6], to algebraic specifications [7].
These techniques aim to generalize the trace into properties that
are (with reasonable confidence) invariant across different pro-
gram runs. Daikon [5], for example, infers program invariants
from a program trace.

Our technique differs in that it does not attempt to derive gen-
eralizable properties, but simply records specific observed values
for each input, using a predefined set of observer methods (we do
not address the problem of finding observer methods, but we could
use developed static analyses [12, 10]). The danger in capturing
observations specific to one input is that they may reflect imple-
mentation details that are not important for correctness. Looking
at the observations created for both RatPoly and Daikon, we found
them to be close to what a programmer would have written as an
oracle. Augmenting our input-specific oracles with dynamically-

inferred invariants may lead to better oracles, and is a topic of
future work.

5.4 Creating Unit Tests from System Tests
As mentioned in the last section our technique captures exhib-

ited behavior at the unit level. Our technique can be used to create
a set of unit tests from a large (potentially long-running) system
test. Another way to think of this process is as a refactoring of the
system test into a set of smaller unit tests.

Saff et al. propose tests factoring [11] as a different technique
to create unit tests from a system test. Test factoring captures the
interactions between tested and untested components in the sys-
tem, and creates mock objects for the untested portions of the in-
teraction, yielding a unit test where the environment is simulated
via mocks. Test factoring accurately reproduces the execution of
the entire system test. Our technique, on the other hand, uses the
system test as only as a guide to create new sequences of method
calls. Both techniques share the goal of creating focused, fast unit
tests where there were none.

Test factoring creates tests that exactly mimic the original exe-
cution, so it never creates illegal method sequences; due to the in-
completeness in the model,our technique can create illegal method
sequences. On the other hand, our technique has several advan-
tages over test factoring:

• Tests are self-contained.The end result of our technique
is a compilable JUnit test suite. Test factoring creates mock
objects and requires a special infrastructure to rerun a fac-
tored test.

• The technique creates a regression oracle; test factoring
must be provided one. Test factoring takes a system test
that already has an oracle, and makes a unit test case out of
it, where the oracle is the same as the original. Our tech-
nique creates a regression oracle automatically.

• The technique explores behavior beyond the system test.
Our model loses much of the information contained in the
system test, which leads to generating objects that are likely
to differ from those seen in the system test. Test factoring
exactly mimics the system test, so it will catch no more (or
less) than the errors caught by the original test. Our tech-
nique’s ability to create tests that explore behaviors not ex-
plored in the system test means that our technique can de-
tect errors that the system test missed. On the flip side, our
technique may also miss errors that the original test caught;
an experimental evaluation is necessary to determine how
many errors we miss that the original test catches, and vice-
versa.

6. Conclusion
We have presented a technique that automatically generates re-

gression test suites at the unit level. To generate test inputs, the
technique creates an invocation model from an example run of
the program, and uses the model to generate legal, structurally-
complex inputs that would be difficult to create without knowl-
edge of the program’s operation. For each test input, it creates a
regression oracle by capturing the state of objects using observer
methods. Our experiments suggest that the resulting regression
tests are capable of revealing errors, including errors not caught

by an extensive test suite. Our experiments also demonstrate the
ability of the technique to generates structurally-complex inputs
for real applications.

7. References
[1] D. Angluin and C. H. Smith. Inductive inference: Theory

and methods.ACM Computing Surveys, 15(3):237–269,
Sept. 1983.

[2] H. Y. Chen, T. H. Tse, and T. Y. Chen. Taccle: a
methodology for object-oriented software testing at the class
and cluster levels.ACM Trans. Softw. Eng. Methodol.,
10(1):56–109, 2001.

[3] J. E. Cook and A. L. Wolf. Discovering models of software
processes from event-based data.ACM Transactions on
Software Engineering and Methodology, 7(3):215–249, July
1998.

[4] R.-K. Doong and P. G. Frankl. Case studies on testing
object-oriented programs. InTAV4: Proceedings of the
symposium on Testing, analysis, and verification, pages
165–177, New York, NY, USA, 1991. ACM Press.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution.IEEE Transactions on Software
Engineering, 27(2):99–123, Feb. 2001. A previous version
appeared inICSE ’99, Proceedings of the 21st International
Conference on Software Engineering, pages 213–224, Los
Angeles, CA, USA, May 19–21, 1999.

[6] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. InICSE’02,
Proceedings of the 24th International Conference on
Software Engineering, pages 291–301, Orlando, Florida,
May 22–24, 2002.

[7] J. Henkel and A. Diwan. Discovering algebraic
specifications from java classes. In L. Cardelli, editor,
ECOOP 2003 - Object-Oriented Programming, 17th
European Conference, Darmstadt, July 2003. Springer.

[8] D. Hoffman and P. Strooper. Classbench: A methodology
and framework for automated class testing, 1997.

[9] S. V. Meghani and M. D. Ernst. Determining legal method
call sequences in object interfaces, May 2003.

[10] A. Rountev and B. G. Ryder. Points-to and side-effect
analyses for programs built with precompiled libraries.
Lecture Notes in Computer Science, 2027:20+, 2001.

[11] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic
test factoring for Java. InASE 2005: Proceedings of the 21st
Annual International Conference on Automated Software
Engineering, pages 114–123, Long Beach, CA, USA,
Nov. 9–11, 2005.

[12] A. Sălcianu and M. C. Rinard. Purity and side effect analysis
for java programs. InVMCAI, pages 199–215, 2005.

[13] C. D. Turner and D. J. Robson. The state-based testing of
object-oriented programs. InICSM ’93: Proceedings of the
Conference on Software Maintenance, pages 302–310,
Washington, DC, USA, 1993. IEEE Computer Society.

[14] J. Whaley, M. Martin, and M. Lam. Automatic extraction of
object-oriented component interfaces. InISSTA 2002,
Proceedings of the 2002 International Symposium on
Software Testing and Analysis, pages 218–228, Rome, Italy,
July 22–24, 2002.

Manually-written test input (written by an expert)

1 VarInfoName namex = VarInfoName.parse ("x");
2 VarInfoName namey = VarInfoName.parse ("y");
3 VarInfoName namez = VarInfoName.parse ("z");
4

5 ProglangType inttype = ProglangType.parse ("int");
6 ProglangType filereptype = ProglangType.repparse ("int");
7 ProglangType reptype = filereptype.fileTypeToRepType();
8

9 VarInfoAux aux = VarInfoAux.parse ("");
10

11 VarComparability comp = VarComparability.parse (0, "22", inttype);
12

13 VarInfo v1 = new VarInfo (namex, inttype, reptype, comp, aux);
14 VarInfo v2 = new VarInfo (namey, inttype, reptype, comp, aux);
15 VarInfo v3 = new VarInfo (namez, inttype, reptype, comp, aux);
16

17 VarInfo[] slicevis = new VarInfo[] {v1, v2};
18 VarInfo[] pptvis = new VarInfo[] {v1, v2, v3};
19

20 PptTopLevel ppt = new PptTopLevel
21 ("DataStructures.StackAr.StackAr(int):::EXIT33", pptvis);
22

23 PptSlice2 slice = new PptSlice2 (ppt, slicevis);
24 Invariant proto = LinearBinary.getproto();
25 Invariant inv = proto.instantiate (slice);
26

27 BinaryCore core = new BinaryCore (inv);
28

29 core.addmodified (1, 1, 1);
30 core.addmodified (2, 2, 1);
31 core.addmodified (3, 3, 1);
32 core.addmodified (4, 4, 1);
33 core.addmodified (5, 5, 1);

Palulu-generated test input (formatted for ease of comparison)

1 VarInfoName name1 = VarInfoName.parse("return");
2 VarInfoName name2 = VarInfoName.parse("return");
3

4 ProglangType type1 = ProglangType.parse("int");
5 ProglangType type2 = ProglangType.parse("int");
6

7 VarInfoAux aux1 = VarInfoAux.parse(" declaringClassPackageName=DataStructures, ");
8 VarInfoAux aux2 = VarInfoAux.parse(" declaringClassPackageName=DataStructures, ");
9

10 VarComparability comparability1 = VarComparability.parse(0, "22", type1);
11 VarComparability comparability2 = VarComparability.parse(0, "22", type2);
12

13 VarInfo info1 = new VarInfo(name1, type1, type1, comparability1, aux1);
14 VarInfo info2 = new VarInfo(name2, type2, type2, comparability2, aux2);
15 VarInfo info3 = new VarInfo(info2);
16 VarInfo info4 = VarInfo.origVarInfo(info3);
17 VarInfo info5 = VarInfo.origVarInfo(info2);
18 VarInfo info6 = VarInfo.origVarInfo(info3);
19

20 VarInfo[] infos = new VarInfo[] { info1, info2};
21

22 PptTopLevel ppt1 = new PptTopLevel("DataStructures.StackAr.push(java.lang.Object):::EXIT", infos);
23

24 PptSlice slice1 = ppt1.gettempslice(info1, info2);
25

26 Invariant inv1 = LinearBinary.getproto();
27 Invariant inv2 = inv1.instantiate(slice1);
28

29 BinaryCore lbc1 = new BinaryCore(inv2);

Figure 14. The first code listing is a test input written by a developer of Daikon. It required about 30 minutes to write. The second listing is a test input
generated by our technique. For ease of comparison, we renamed automatically-generated variable names and grouped method calls related to each class
(but we preserved any ordering that affects the results).

