
Refactoring in the Eclipse JDT: Past, Present, and Future

Robert M. Fuhrer1, Adam Kiėzun2, Markus Keller3
1 IBM T.J. Watson Research Center, rfuhrer@watson.ibm.com

2 MIT Computer Science and AI Lab, akiezun@mit.edu
3 Eclipse Refactoring Engine, IBM, markuskeller@ch.ibm.com

Abstract

In this position paper, we present the history, the present
and our view of the future of refactoring support in
Eclipse.

Past and Present

Eclipse was among the first IDEs to help bring refac-
toring to the mainstream developer. Eclipse version 1.0
included several highly useful Java refactorings, which
are nowadays staple tools in most Java developers’ tool-
box. These included Extract Method, Rename and Move.
Eclipse 2.0 added statement-level refactorings such as Ex-
tract and Inline Local Variable and also higher-level ones,
e.g., Change Method Signature, and Encapsulate Field.
Some refactorings, such as Rename, offer great leverage
because of the potential scale of the changes they perform
automatically. Others, like Extract Method, are more lo-
cal in scope, but relieve the developer from performing the
analysis required to ensure that program behavior is unaf-
fected. In both cases, the developer benefits from reduc-
tion of a complex and numerous changes to a single oper-
ation. This helps to maintain his focus on the big picture.
Moreover, the ability to quickly roll back the changes en-
ables exploration of design possibilities more easily, and
without fear of irreparable damage to the code base.

Eclipse 2.1 included several type-oriented refactorings
such as Extract Interface and Generalize Type, that ad-
dress the problems of both scale and analytic complex-
ity. These used a common analysis framework [8] based
on theoretical work from Palsberget al. [6] for expressing
the system of constraints that ensure the type-correctness
of the resulting program. Such frameworks are important
because they speed the development of entire families of
refactorings, e.g., [7]. Our belief is that the incorpora-
tion of reusable and extensible frameworks for the vari-
ous classical static analyses (type, pointer, data flow) into
Eclipse will be critical to the expansion of the suite of

refactorings.
Eclipse 3.0 introduced refactoring over multiple artifact

types, which in part dealt with a problem faced by Eclipse
plug-in developers: the Rename refactoring had been pre-
viously oblivious to references located in plug-in meta-
data, so that renaming an extension implementation class
would break the reference, leaving the extension class un-
reachable by the extension point framework. Since exten-
sion points are the sole mechanism for providing function-
ality in Eclipse, this was a serious problem. As a solution,
the Eclipse Language ToolKit (LTK) provided a “partici-
pant” mechanism, allowing additional entities to register
interest in a given type of refactoring, and participate in
both checking pre-conditions and contributing to the set
of changes required to effect the refactoring. Using this
mechanism, breakpoints, launch configurations, and other
artifacts outside the source itself can be kept in sync with
source changes. As applications are increasingly built us-
ing multiple languages, this ability becomes critical to the
applicability of automated refactoring to the mainstream
developer.

Eclipse 3.1 included Infer Type Arguments [3], a mi-
gration refactoring that helps Java 5 developers migrate
client code of libraries to which type parameters have
been added. The migration is important because it in-
creases static type safety. The necessary analysis, how-
ever, is subtle and pervasive enough that many developers
might hesitate to perform the migration manually. Of par-
ticular interest was the Java 5 Collections library, which
had been retrofitted with type parameters. In particular,
the Infer Type Arguments refactoring infers the types of
objects that actually flow into and out of the instances of
these parametric types, and inserts the appropriate type
arguments into the corresponding variable declarations as
needed. In some sense, the underlying analysis recon-
structs an enhanced model of the original application, re-
covering lost or implicit information that may be critical
to maintenance or further development. As such, this kind
of refactoring offers benefits in maintaining or even “revi-
talizing” legacy code. Before Infer Type Arguments can

1



be applied, however, the library itself must be parameter-
ized. Java 5 Collections were parameterized manually, but
many other existing libraries would benefit from added
type-safety and expressiveness, if they were converted to
use generics. A recently described refactoring, Introduce
Type Parameter [5], addresses this complex issue. With
the addition of such a refactoring, the Eclipse JDT would
support developers in a wide spectrum of generics-related
maintenance tasks.

Eclipse 3.2 introduced a team-oriented innovation:
storing API refactorings with the library itself, along with
a “playback” mechanism to automatically perform the
necessary transformations on API client code when the
new library is imported [4, 1]. Such tools help smooth the
interactions amongst team members and between teams,
by automatically propagating changes from one compo-
nent to another, or by automatically making the necessary
changes implied by another. As software development
becomes increasingly distributed, we believe this sort of
tooling will become vital.

Eclipse 3.3 offers an Introduce Parameter Object refac-
toring. Additionally, a great number of CleanUps that can
also be applied to source files on save, for example Or-
ganize Imports, Format, or adding missing J2SE-5-style
annotations.

Future

With all of the functionality now in Eclipse, we are still a
long way from achieving the benchmark of complete cov-
erage of Martin Fowler’s refactoring catalog [2]. More-
over, this is only a start; many more transformations are
possible. The future promises more emphasis on paral-
lelism in the form of multi-core platforms, clusters and
massive machines consisting of thousands or even mil-
lions of processors. Concurrency-aware and concurrency-
targeted refactorings will be important tools to speed the
development of such software. Additionally, most cur-
rent refactorings effect changes on relatively fine-grained
structures such as methods, fields, expressions, state-
ments, and individual types; refactorings that manipulate
coarser-grained structures (e.g., packages, entire type hi-
erarchies, components etc.) could enable refining soft-
ware at nearly the architectural level.

What do we need to deliver on the promise of such
a rich suite of transformations? In Eclipse, a refactor-
ing consists of several phases: precondition checking, de-
tailed analysis, and source rewriting. We make three rec-
ommendations that, in our opinion, would ease the devel-
opment of refactorings. First, we need a simpler source
rewriting mechanism to avoid writing painful imperative

code that creates AST nodes one-by-one. Such a mecha-
nism would be especially helpful if it provided assurances
of correctness of the generated constructs, or at least per-
formed run-time checks to help check correctness. The
AST and import rewriters already shield refactoring im-
plementors from low-level formatting issues, but higher
level APIs would foster more reuse of “refactoring com-
ponents”. Second, we need a better means of specifying
the underlying analyses, which maps onto efficient and
scalable implementations that permit the application of
refactorings to large code bases. Third, much research
is needed in understanding the semantics of and manipu-
lating the increasingly prevalent mixtures of languages.

Additional avenues to pursue that would greatly expand
the reach of our tooling include that of the Holy Grail
of developer-specified refactorings, and that of more gen-
eral (non-behavior-preserving) developer-specified trans-
formations. The latter tooling could replace the danger-
ous but prevalent language-oblivious macro processors,
giving developers static safety and the power to greatly
reduce the difficulty of creating regular code structures.
With the combination of these meta-tools at our disposal,
both Fowler’s catalog and an even richer space of trans-
formations could be within reach; without them, they are
likely to take years to attain.

References
[1] D. Dig. Using refactorings to automatically update

component-based applications. InOOPSLA Compan-
ion, pages 228–230, 2005.

[2] M. Fowler. Refactoring: Improving the Design of Ex-
isting Code. Addison-Wesley, 2000.

[3] R. Fuhrer, F. Tip, A. Kiėzun, J. Dolby, and
M. Keller. Efficiently refactoring Java applications to
use generic libraries. InECOOP, pages 71–96, July
2005.

[4] J. Henkel and A. Diwan. Catchup! capturing and
replaying refactorings to support API evolution. In
ICSE, pages 274–283, May 2005.

[5] A. Kieżun, M. D. Ernst, F. Tip, and R. M. Fuhrer.
Refactoring for parameterizing Java classes. InICSE,
May 2007.

[6] J. Palsberg and M. I. Schwartzbach.Object-Oriented
Type Systems. John Wiley and Sons, 1994.

[7] F. Steimann, P. Mayer, and A. Meißner. Decoupling
classes with inferred interfaces. InSAC, pages 1404–
1408, 2006.

[8] F. Tip, A. Kieżun, and D. B̈aumer. Refactoring for
generalization using type constraints. InOOPSLA,
pages 13–26, Nov. 2003.

2


