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Abstract This paper describes a system for detecting and
estimating the properties of multiple travel lanes in an ur-
ban road network from calibrated video imagery and laser
range data acquired by a moving vehicle. The system op-
erates in real-time in several stages on multiple processors,
fusing detected road markings, obstacles, and curbs into a
stable non-parametric estimate of nearby travel lanes. The
system incorporates elements of a provided piecewise-linear
road network as a weak prior.

Our method is notable in several respects: it detects and
estimates multiple travel lanes; it fuses asynchronous, het-
erogeneous sensor streams; it handles high-curvature roads;
and it makes no assumption about the position or orientation
of the vehicle with respect to the road.

We analyze the system’s performance in the context of
the 2007 DARPA Urban Challenge. With five cameras and
thirteen lidars, our method was incorporated into a closed-
loop controller to successfully guide an autonomous vehicle
through a 90 km urban course at speeds up to 40 km/h amidst
moving traffic.

Keywords Lane Estimation · Vision · Lidar · Lane-Finding

1 Introduction

The road systems of developed countries include millions of
kilometers of paved roads, of which a large fraction include
painted lane boundaries separating travel lanes from each
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Fig. 1 Our system uses many asynchronous heterogeneous sensor
streams to detect road paint and road edges (yellow) and estimate the
centerlines of multiple travel lanes (cyan).

other or from the road shoulder. For human drivers, these
markings form important perceptual cues, making driving
both safer and more time-efficient [22]. In mist, heavy fog
or when a driver is blinded by the headlights of an oncoming
car, lane markings may be the principal or only cue enabling
the driver to advance safely. Moreover, roadway designers
use the number, color and type of lane markings to encode
spatially-varying traffic rules, for example no-passing re-
gions, opportunities for left turns across oncoming traffic,
regions in which one may (or may not) change lanes, and
preferred paths through complex intersections.

Even the most optimistic scenarios for autonomous vehi-
cle deployment assume the presence of large numbers of hu-
man drivers for the next several decades. Given the central-
ity of lane markings to public safety, it is clear that they will
continue to be maintained indefinitely. Thus autonomous ve-
hicle researchers, as they design self-driving cars, may as-
sume that lane markings will be commonly encountered.

We define the lane-finding problem as divining, from
live sensor data and (when available) prior information, the
presence of one or more travel lanes in the vehicle’s vicinity,
and the semantic, topological, and geometric properties of
each lane. By semantic properties, we mean the lane’s travel
sense and the color (white, yellow) and type (single, double,
solid, dashed) of each of its painted boundaries if present.
By topological properties, we mean the connectivity of mul-
tiple lanes in regions where lanes start, split, merge, or ter-
minate. We use the term geometric properties to mean the
centerline location and lateral extent of the lane. This paper
focuses on detecting lanes where they exist, and determin-
ing geometric information for each detected lane (Figure 1).
We infer semantic and topological information in a limited
sense, by matching detected lanes to edges in an annotated
input digraph representing the road network.
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1.1 Related Work

Aspects of the lane-finding problem have been studied for
decades in the context of autonomous land vehicle devel-
opment [9,31] and driver-assistance technologies [5,6,2,12,
16]. McCall and Trivedi provide an excellent survey [21].
Lane-finding systems intended to support autonomous op-
eration have typically focused on highway driving [9,31],
where roads have low curvature and prominent lane mark-
ings, rather than on urban environments. Previous autonomous
driving systems have exhibited limited autonomy in the sense
that they required a human driver to “stage” the vehicle into
a valid lane before enabling autonomous operation, and to
take control whenever the system could not handle the re-
quired task, for example during highway entrance or exit
maneuvers [31].

Driver-assistance technologies, by contrast, are intended
as continuous adjuncts to human driving. Commonly de-
ployed Lane Departure Warning (LDW) systems are designed
to alert the human driver to an imminent (unsignaled) lane
departure [23,14,27]. These systems typically assume that
a vehicle is in a highway driving situation and that a human
driver is controlling the vehicle correctly, or nearly so. High-
ways exhibit lower curvature than lower-speed roads, and
do not contain intersections. In vehicles with LDW systems,
the human driver is responsible for selecting an appropriate
travel lane, is assumed to spend the majority of driving time
within such a lane, is responsible for identifying possible
alternative travel lanes, and only occasionally changes into
such a lane. Because LDW systems are essentially limited
to providing cues that assist the driver in staying within the
current lane, achieving fully automatic lane detection and
tracking is not simply a matter of porting an LDW system
into the front end of an autonomous vehicle.

Clearly, in order to exhibit safe, human-like driving, an
autonomous vehicle must have good awareness of all nearby
travel lanes. In contrast to prior lane-keeping and LDW sys-
tems, the lane finding system presented here aims to guide
a fully autonomous land vehicle through an urban road net-
work. In particular, our system is distinct from previous ef-
forts in several respects: it attempts to detect and classify all
observable lanes, rather than just the single lane occupied by
the vehicle; it operates in the presence of complex road ge-
ometry, static hazards and obstacles, and moving vehicles;
and it uses prior information (in the form of a topologi-
cal road network with sparse geometric information) when
available.

The apparent difficulty of matching human performance
on sensing and perception tasks has led some researchers to
investigate the use of augmenting roadways with a physi-
cal infrastructure amenable to autonomous driving, such as
magnetic markers embedded under the road surface [32].
While this approach has been demonstrated in limited set-

tings, it has yet to achieve widespread adoption and faces a
number of drawbacks. First, the cost of updating and main-
taining millions of kilometers of roadway is prohibitive. Sec-
ond, the danger of autonomous vehicles perceiving and act-
ing upon a different infrastructure than human drivers do
(magnets vs. visible markings) becomes very real when one
is modified and the other is not, whether through accident,
delay, or malicious behavior.

Advances in computer networking and data storage tech-
nology in recent years have brought the possibility of a data
infrastructure within reach. In addition to semantic and topo-
logical information, such an infrastructure might also con-
tain fine-grained road maps registered in a global reference
frame; advocates of these maps argue that they could be used
to guide autonomous vehicles. We propose that a data in-
frastructure is useful for topological information and sparse
geometry, but reject relying upon it for dense geometric in-
formation.

While easier to maintain than a physical infrastructure,
a data infrastructure with fine-grained road maps might still
become “stale” with respect to actual visual road markings.
Even for human drivers, mapping staleness, errors, and in-
completeness have already been implicated in accidents in
which drivers trusted too closely their satellite navigation
systems, literally favoring them over information from their
own senses [7,29]. Static fine-grained maps are clearly not
sufficient for safe driving; to operate safely, in our view, an
autonomous vehicle must be able to use local sensors to per-
ceive and understand the environment.

The primary contributions of this paper are:

– A method for estimating multiple travel lanes within a
typical urban road network using only information from
local sensors;

– A method for fusing these estimates with a weak prior,
such as a topological road map with sparse metrical in-
formation;

– Methods for using monocular cameras to detect road
markings; and

– Multi-sensor fusion algorithms combining information
from video and lidar sensors.

We also provide a quantitative analysis of our method’s op-
eration, describe its failure modes, and discuss several pos-
sible directions for future work.

2 Approach

Our approach to lane-finding involves three stages. In the
first stage, the system detects and localizes painted road mark-
ings in each video frame, using lidar data to reduce the false
positive detection rate. A second stage processes road paint
detections along with lidar-detected curbs to estimate center-
lines of nearby travel lanes. Finally, any detected centerlines
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are filtered, tracked, and fused with a weak prior to produce
one or more non-parametric lane outputs.
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Fig. 2 Raw images acquired by a set of cameras are processed inde-
pendently and asynchronously to produce lane boundary detections,
assisted by real-time vehicle pose estimates and (optionally) obstacles
detected from lidar data. Next, spatial/temporal data fusion combines
all visual detections, along with curb boundaries (optionally) obtained
from lidar data, and outputs high-confidence lane candidates. Finally,
lanes are estimated and tracked over time, influenced by curvature con-
straints and priors generated from map data if available.

Separation of the three stages provides simplicity, mod-
ularity, and scalability, allowing us to experiment with each
stage independently of the others and to easily substitute dif-
ferent algorithms at each stage. For example, we evaluated
and ultimately utilized two separate algorithms in parallel
for detecting road paint, both of which are described below.
By introducing sensor-independent abstractions of environ-
mental features, our system is able to scale to many hetero-
geneous sensors.

2.1 Road Boundary Detection

This section describes two vision algorithms used for de-
tecting painted lines on the road based on matched filters
(Section 2.1.2) and spatial gradients (Section 2.1.3), respec-
tively, as well as a technique for detecting curbs using 3D
laser scan data (Section 2.1.5). As input, the vision algo-
rithms receive grayscale images from a single camera, pose
information from the vehicle’s IMU (Section 2.1.1), and 3D
obstacles detected from lidar if available (Section 2.1.4). As
output, all detection algorithms produce a list of curves, rep-
resented as polylines in a local coordinate frame [24], that
correspond to painted line markings or physical road bound-
aries estimated from the sensor data.

The road paint detection algorithms operate independently
on each camera and on each temporal image frame. Although
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Fig. 3 Use of absolute camera calibration to project real-world quan-
tities, such as sun position and horizon line, into a video image.

state information could be tracked over time and transferred
between frames to assist extraction and curve fitting, we kept
the approach stateless since the higher-level lane fusion and
tracking stages perform both spatial and temporal filtering
in local coordinates. We also eliminate substantial computa-
tional expense by operating directly on raw camera images
rather than on inverse-perspective corrected images [21,16],
while still reaping the benefits of calibrated cameras and
real-world measurements.

We will describe each detection algorithm in greater de-
tail below. First we discuss the importance of accurately in-
strumented sensor data.

2.1.1 Absolute Sensor Calibration

Our detection algorithms assume that GPS and IMU nav-
igation data are available, and of sufficient quality to cor-
rect for short-term variations in vehicle heading, pitch, and
roll during image and laser processing. In addition, we as-
sume that the intrinsic lens parameters (focal length, optical
center, and distortion) for each camera and the extrinsic pa-
rameters (vehicle-relative pose) for each sensor have been
determined in advance. This “absolute calibration” allows
sensor data preprocessing in several ways, some of which
are illustrated in Figure 3:

– The horizon line is projected into each image frame.
Only pixel rows below the projected horizon are consid-
ered for further processing, thus both enhancing runtime
efficiency and suppressing potential false positives aris-
ing from sky texture.

– Our lidar-based obstacle detector supplies real-time in-
formation about the locations of large objects near the
vehicle. The detector makes use of relative sensor and
vehicle poses to aggregate 3D point data into a common
coordinate system, and to produce final measurements in
the local reference frame.

– Detected obstacles are projected into the image, and their
extents masked, as part of the paint detection algorithms,
an important step in reducing false positives.
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Fig. 4 The shape of the one-dimensional kernel used for matching road
paint. By applying this kernel horizontally we detect vertical lines and
vice versa. The kernel is scaled to the expected width of a line marking
at a given image row and sampled according to the pixel grid.

– Inertial data allows us to project the expected location of
the ground plane into the image, providing useful priors
and real-world (rather than image-relative) parameters
for the vision-based paint detection algorithms.

– Precise knowledge of the date, time, and Earth-relative
vehicle pose allow computation of the solar ephemeris;
line estimates that point toward the sun in image coor-
dinates are then removed. Others have used a similar
approach for shadow prediction [28]; we have found it
successful for preventing spurious paint detections aris-
ing from lens flare.

– All detections can be transformed into in a common lo-
cal reference frame for meaningful fusion by the higher-
level lane centerline estimation stage.

2.1.2 Road Paint from Matched Filters

Our first image processing pipeline begins by constructing
a one-dimensional matched filter for each row of the input
image, such that the width of the filter is the expected width
of a painted line marking (e.g. 10cm) when projected into
image coordinates. Each row must have its own filter width
because line widths appear smaller as they come closer to
the horizon. In addition, horizontal and vertical lines in the
image are detected by constructing separate kernels, one of
which convolves across the vertical dimension of the image
and one across the horizontal dimension. The shape of each
kernel is shown in Figure 4. The width of the kernel’s sup-
port (the portion of the kernel with non-zero weight) is a
trade-off between noise tolerance and the ability to detect
closely spaced lines. We chose the support so that double-
yellow lines in the center of the road are detected success-
fully.

Our matched filter approach is similar to that of McCall
and Trivedi, who used steerable filters [21]. Our fixed verti-
cal and horizontal kernels are approximations that have the
advantage of executing faster and the disadvantage of being
less sensitive to certain line orientations.

For each video frame, the kernel is sampled along the
pixel grid at each row according to the projection of the
ground plane inferred from live IMU data. The kernels are
then convolved with the image data from each row to pro-
duce the output of the matched filter. Convolution compu-
tation is suppressed where the kernel width is less than one

pixel. As shown in Figure 5, this operation successfully dis-
cards most of the clutter in the scene and produces a strong
response along line-like features. This is done separately for
the vertical and horizontal kernels, giving two output images
(Figures 5b, 5c).

Next, we iterate over each row of the horizontal filter
output and each column of the vertical filter output to build
a list of one-dimensional local maxima which will serve as
features. Ideally, these maxima occur at the center of any
painted lines, although they also occur due to noise and other
spurious detections. We reject maxima with a magnitude
less than 4% of the maximum possible magnitude, a thresh-
old that was tuned manually to reject maxima occurring in
low-contrast image regions.

For each feature, we compute the orientation of the un-
derlying line by finding the direction of principal curvature.
At the center of a road paint line, the second derivative of
filter response will be large and positive in the direction per-
pendicular to the line. Parallel to the line, the second deriva-
tive will be near zero. Thus, we first compute the Hessian,
the 2× 2 matrix of second derivatives

H =
[
Fxx Fxy
Fxy Fyy

]
(1)

where F is the image of filter responses. The second deriva-
tives are computed with 3 × 3 Sobel kernels. The largest
eigenvalue of H is the principal curvature, and its corre-
sponding eigenvector is the direction of that curvature. We
attach that direction to the feature as the perpendicular of the
underlying line (Figure 5d).

Once the list of features is generated, we compute a dis-
tance transform of the image, such that the intensity at each
pixel of the distance transform is proportional to the Eu-
clidean distance from that pixel to the nearest feature (Fig-
ure 5e).

We use cubic Hermite splines to connect the features
into continuous curves that represent the underlying lane
markings. The goal is to construct splines with approximately
50 pixels between control points. This spacing allows the
splines to have relatively few parameters yet still follow the
sometimes erratic curves present in urban driving situations.
A cubic Hermite spline is parameterized as

p(t) = (2t3 − 3t2 + 1)p0 + (t3 − 2t2 + t)hm0

+ (−2t3 + 3t2)p1 + (t3 − t2)hm1 (2)

where t ∈ [0, 1] and p0 and p1 are a pair of neighboring con-
trol points [4]. This parameterization ensures that the tan-
gents m0 and m1 are continuous between pairs of control
points. The scale factor h is used to scale the tangent vectors
to the appropriate magnitude. We use h = ‖p0−p1‖. When
generating splines, we use features extracted above directly
as control points and the extracted perpendicular vectors as
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(a) Original image (b) Horizontally filtered image

(c) Vertically filtered image (d) Horizontal local maxima w/orientations

(e) Distance transform (f) Spline fit

Fig. 5 Our first road paint detector: (a) The original image is (b) convolved with a horizontal matched filter at each row and (c) a vertical filter. (d)
Local maxima in the horizontal filter response are enumerated and their dominant orientations computed, depicted by the perpendicular to each
maximum. (e) A distance transform describing the shortest distance from each pixel to the local maxima is used to guide a spline search that (f)
connects nearby maxima into cubic Hermite splines.

the tangents (after rotating them 90 degrees to orient them
in the “forward” spline direction).

We now describe our algorithm for fitting splines to the
features. First, the algorithm selects 100 “seed” features near
the bottom of the image, since features near the bottom are
closer to the camera and more well-defined. We then con-
sider every feature further than 50 pixels but closer than 60
pixels away from the starting feature. Any features in this
annular region are candidates for the second control point of
a spline that starts at the seed feature. For each candidate,
we sample a spline from the seed point to the candidate
point using Equation 2 and sum the squared values of the
distance transform along the sampled spline. The candidate
with the smallest sum is selected as the next control point.
This candidate is now the new seed and the search contin-
ues with a new annulus centered at that point. This “greedy”
search for an extension of the spline terminates when the av-
erage value of the distance transform along the new portion

of the spline is larger than 3 pixels. Additional splines are
found in the same way until either a pre-defined number of
splines is reached (we use 20) or no additional splines can
be found. After each spline is found, its constituent features
are removed from the global feature list and the distance
transform recomputed so that the same spline is not matched
twice.

The sensitivity of the spline finder is tuned using a thresh-
old on spline score. A spline’s score is computed as the av-
erage squared distance of the spline from features along its
path, with smaller scores indicating better matches. A bonus
is also assigned to longer splines with more control points.
This bonus encourages splines that extend toward the hori-
zon, where line features are weaker and splines might oth-
erwise be rejected. In our system, we tuned this threshold
toward extra false positives so that higher layers would have
more true positives with which to work. If this road paint
detector were to be used directly by a navigation system, it
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could be tuned to instead reduce false positives at the cost of
reduced sensitivity.

2.1.3 Road Paint from Symmetric Contours

The second road paint detection mechanism employed in
our system relies on more traditional low-level image pro-
cessing. In order to maximize frame throughput, and thus
reduce the time between successive inputs to the lane fusion
and tracking components, we designed the module to utilize
fairly simple and easily-vectorized image operations.

The central observation behind this detector is that im-
age features of interest – namely lines corresponding to road
paint – typically consist of well-defined, elongated, contin-
uous regions that are brighter than their surround. While
this characterization excludes circular reflectors and dark-
on-light road markings, it does encompass solid and dashed
lane boundaries, stop lines, crosswalks, white and yellow
paint on road pavements of various types, and markings seen
through cast shadows across the road surface. Thus, our strat-
egy is to first detect the potential boundaries of road paint us-
ing spatial gradient operators, then estimate the desired line
centers by searching for boundaries that enclose a brighter
region; that is, boundary pairs which are proximal and roughly
parallel in world space and whose local gradients point to-
ward each other (Figure 6).

Our approach is quite flexible and robust to many condi-
tions, including several potential shortcomings identified in
other road paint extraction algorithms [21]. Most extraneous
image lines are rejected by the symmetric dark-light-dark
assumption, metric width and length thresholds, and curva-
ture constraints; straight and curved segments observed from
any perspective are handled uniformly, unlike template-based
[30,27] or frequency-based [17] techniques; and features are
reliably extracted even under variations in road texture and
scene illumination, unlike intensity analysis techniques [26,
3].

The contour-based road line detector consists of three
steps: low-level image processing to detect raw features; con-
tour extraction to produce initial line candidates; and con-
tour post-processing for smoothing and false positive reduc-
tion. The first step applies local lowpass and derivative oper-
ators to produce the noise-suppressed direction and magni-
tude of the raw grayscale image’s spatial gradients. A loose
threshold is applied to the gradient magnitude to reject ex-
tremely weak, unreliable edge responses arising from low-
contrast regions while preserving all potential edges of in-
terest. The resulting image undergoes non-maximal suppres-
sion in the gradient direction to dramatically reduce extrane-
ous pixels without explicit thresholds; the result is a sparse
feature mask image, with a gradient direction and magnitude
associated with every valid pixel. As with other edge-based
methods [?,15,18], the use of spatial gradients and data-
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Fig. 6 Progression from (a) original image through (b) smoothed gra-
dients (red), border contours (green), and symmetric contour pairs (yel-
low) to form (c) a paint line candidate. Final line detections are shown
in (d) the bottom image.

relative local acceptance thresholds provides a degree of ro-
bustness to commonly observed conditions such as shadow-
ing, low contrast road paint, and variable road pavement tex-
ture.

In the second step, a connected components algorithm
iteratively walks the feature mask to generate smooth con-
tours of ordered points, broken at discontinuities in location
and gradient direction. This results in a new image whose
pixel values indicate the identities and positions of the de-
tected contours, which in turn represent candidate road paint
boundaries. While the downstream fusion algorithm could
make direct use of these raw boundaries, two problems im-
mediately become apparent: true road paint markings will
exhibit separate “double” contours, one on either side of a
given painted line, representing the dark-to-light and light-
to-dark transitions; and many detected contours may corre-
spond to undesirable intensity edges observed, for example,
due to hard shadow lines or changes in road material. There-
fore, at this stage we enforce the constraint that lines of inter-
est are thin, elongated, light-on-dark regions whose bound-
aries are parallel in metric coordinates. This constraint pre-
cludes detection of dark-on-light road markings and small
features such as circular reflectors, and substantially reduces
false detections and confusion conditions arising from com-
monly occurring visual phenomena [21].

In order to localize the desired centerlines between de-
tected double-boundaries, we apply a second iterative walk
to the contour image described above. At each boundary
pixel pi, traversed in contour order, the algorithm extends
a virtual line in the direction of the local gradient di until it
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meets a distinct contour at pj (Figure 6c). If the gradient of
the second contour dj points in a direction opposite di, and if
the metric distance between pi and pj is within pre-defined
limits corresponding to the expected width of painted lines,
then the midpoint of pi and pj is added to a growing cen-
terline curve. Many non-paint contours (e.g. those with only
one edge or wrong width) are thus removed from consider-
ation.

At this stage our detection algorithm has constructed a
set of road paint line candidates, each of which is brighter
than its surround; however, this candidate set may be cor-
rupted by undesirable line fragments and outliers. The third
and final step of the algorithm therefore applies a series of
higher level post-processing operations to produce smooth,
high-confidence line estimates for consumption by subse-
quent data fusion and lane estimation stages. We first merge
any contour fragments whose union produces a smooth curve
(i.e. does not introduce discontinuities or high curvature);
unlike other methods [19,20,15], we do not enforce straight
line constraints. Next, we fit parabolic arcs to the merged
curves and recursively break them at points of high devia-
tion. Finally, all curves shorter than a given threshold length
(in pixels and in metric units) are removed before the fi-
nal image-relative road paint lines are produced. As with
the first road paint detection algorithm, these are inverse-
perspective mapped and projected onto the ground plane be-
fore further processing.

In practice, the primary differences between the two road
paint detection algorithms we employ lie in sensitivity and
speed. The contour-based detector tends to estimate smoother
curves due to its parabolic curve model; the gradient-based
detector is able to more accurately capture the geometry of
non-parabolic curves. The variable width filter kernels of the
gradient-based detector give it a range advantage, allowing
it to more reliably detect road paint in image regions where
the road paint spans only a few image pixels. Lastly, fitting
parabolic arcs was faster than the spline search, which al-
lowed the contour-based detector to operate at a higher fram-
erate.

2.1.4 Reducing False Positives with Obstacle Masking

Many world objects exhibit striped appearances that mimic
the painted lane boundaries of interest, leading to incorrect
detection candidates at early stages of processing. Many such
candidates are eliminated via subsequent curvature constraints,
spline fitting, and projected length filters, but even with these
measures in place, some problematic false positives can still
occur due to objects such as fences, guard rails, side trim,
vehicle fenders, and buildings with horizontal patterns.

For our vehicle, we developed a lidar-based obstacle de-
tection system whose primary purpose was to ensure that
our vehicle avoided collisions with other cars and obstacles.

(a) Lidar-identified obstacles

(b) Obstacles projected into image

(c) Exclusion mask

Fig. 7 (a) Lidar identified obstacles (b) Obstacles projected into an
image (c) Mask (grey) created from horizon line and obstacles. Road
paint detections within this mask are discarded.

Many objects that can generate false lane detections (such as
guard rails) are easily detected by this lidar-based obstacle
detector. Since true road paint markings occur only on flat
(obstacle-free) ground, the detection of an obstacle implies
that any lane detections directly under or near that obstacle
are incorrect. Further, since the body-relative 6-DOF poses
of all our sensors are known, we can project all 3D obsta-
cle detections into the 2D pixel coordinates of each cam-
era (Figure 7b). These projections are used to mask corre-
sponding regions in the camera images, explicitly suppress-
ing road lines detected in those regions (Figure 7c).

The lidar-based obstacle detector is described in detail
in a separate paper [10]. Briefly, the obstacle detection sys-
tem relied on a heterogeneous collection of lidars affording
a 360-degree field of view. A Velodyne lidar, containing 64
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Fig. 8 Road boundaries from lidar. From lidar data, our algorithms are
able to detect berms and curbs that typically indicate road boundaries.
These boundaries are found by casting rays from the vehicle position:
the first transition from smooth surface to rough surface serves as a
point detection of the road boundary. Splines are then fit through the
detected points in order to yield the road-boundary estimate.

independent lasers, served as the primary obstacle detection
sensor. The Velodyne produces a million point samples per
second, providing nearly full 3D coverage. Obstacles were
detected by grouping lidar returns over a polar grid aligned
with the ground plane. If the heights of lidar returns within a
single grid cell exhibited significant variation (allowing for
outliers), a vertical obstacle was reported within that cell.
Additionally, seven SICK lidars formed a horizontal “skirt”
around the vehicle, augmenting the obstacles detected by the
Velodyne. The SICK sensors served two roles: they filled in
the Velodyne’s blind spots and served as redundant sensors
in the event that the Velodyne failed.

2.1.5 Road Boundaries from Lidar

In addition to detecting large obstacles like guard rails and
other cars, the lidar subsystem can detect smaller hazards
such as the berms and curbs that often delineate the bound-
aries of a road. These detections provide evidence that can
be fused into the lane centerline estimator to better localize
lanes, and in fact represent complementary features that can
be used to identify the shape of the road even in the absence
of painted lines. We briefly summarize the road boundary
detection system here; more detail can be found in a sepa-
rate publication [10].

Both the Velodyne lidar and the SICK lidars are used
to detect road boundaries. The “roughness” of a particu-
lar patch of terrain can be estimated by looking for large
changes in elevation over small translational changes. These
slopes are collected into a 2D array, such that the value of
each cell in the array corresponds to the observed roughness
of some patch of ground. This resulting roughness map is il-

lustrated by the red areas in Fig. 8. A complication arises due
to moving obstacles: the presence of a large vertical discon-
tinuity, perhaps arising from the car ahead, does not indicate
a road boundary. We reject these false positives using short-
term memory: if a given cell is ever observed to be “smooth”
(i.e., part of the road), then any detections of a vertical dis-
continuity in that cell are ignored. The entire ground surface
will thus eventually be observed as transient objects move
to uncover it.

From the “roughness map”, we detect road boundaries
by casting rays from a point near the vehicle, which we
assume is on the road. The first transition from smooth to
rough is recorded along each ray, forming a set of road-
boundary point detections (see Fig. 8). Much like maximal
filter responses in the camera road paint detectors, these point
detections are prone to false positives. However, by fitting
splines through the points and rejecting those splines that do
not match a model of road boundaries, the false positive rate
is reduced to an acceptable (very low) level.

The resulting road boundary detections are used as ev-
idence and incorporated into an evidence grid, a process
discussed in the following section. When road paint detec-
tion fails (due to absent or difficult-to-detect road paint),
our road-tracking system relies solely on lidar-derived road
boundaries in order to stay on the road.

2.2 Lane Centerline Estimation

The second stage of lane finding estimates the geometry of
nearby lanes using a weighted set of recent road paint and
curb detections, both of which are represented as piecewise
linear curves. To simplify the process, we estimate only lane
centerlines, which we model as locally parabolic segments.
While urban roads are not designed to be parabolic, this rep-
resentation is generally accurate for stretches of road that lie
within sensor range (about 50m in our case).

Lanes centerlines are estimated in two steps. First, a cen-
terline evidence image D is constructed, where the value
D(p) of each image pixel corresponds to the evidence that
a point p = [px, py] in the local coordinate frame lies on a
lane center. Second, parabolic segments are fit to the ridges
in D and evaluated as lane centerline candidates.

2.2.1 Centerline Evidence Image

To constructD, road paint and curb detections are used to in-
crease or decrease the values of pixels in the image, and are
weighted according to their age (older detections are given
less weight). The value of D at a pixel corresponding to the
point p is computed as the weighted sum of the influences
of each road paint and curb detection di at the point p:

D(p) =
∑
i

e−a(di)λg(di,p)



9

where a(di) denotes how much time has passed since di was
first detected, λ is a decay constant, and g(di,p) is the in-
fluence of di at p. We chose λ = 0.7.

Before describing how the influence is determined, we
make three observations. First, a lane is most likely to be
centered half a lane width from a strip of road paint or a
curb. Second, 88% of federally managed lanes in the U.S.
are between 3.05m and 3.66m wide [25]. Third, a curb gives
us different information about the presence of a lane than
does road paint. From these observations and the character-
istics of our road paint and curb detectors, we define two
functions frp(x) and fcb(x), where x is the Euclidean dis-
tance from di to p:

frp(x) = −e− x2
0.42 + e−

(x−1.83)2

0.14 (3)

fcb(x) = −e− x2
0.42 . (4)

The functions frp and fcb are intermediate functions used
to compute the influence of road paint and curb detections,
respectively, on D. frp is chosen to have a minimum at
x = 0, and a maximum at one half lane width (1.83m).
fcb is always negative, indicating that curb detections are
used only to decrease the evidence for a lane centerline. We
elected this policy due to our curb detector’s occasional de-
tection of curb-like features where no curbs were present.
Let c indicate the closest point on di to p. The actual influ-
ence of a detection is computed as:

g(di,p) =


0 if c is an endpoint of di,

else
frp(||p− c||) if di is road paint, else
fcb(||p− c||) if di is a curb

This last condition is introduced because road paint and curbs
are observed only in short sections. The effect is that a de-
tection influences only those centerline evidence values im-
mediately next to it, and not in front of or behind it.

In practice, D can be initialized once and updated in-
crementally by adding the influences of newly received de-
tections and applying an exponential time decay at each up-
date. Additionally, we improve the system’s ability to detect
lanes with dashed boundaries by injecting imaginary road
paint detections connecting two separate road paint detec-
tions when they are physically proximate and collinear.

2.2.2 Parabola Fitting

Once the centerline evidence imageD has been constructed,
the set R of ridge points is identified by scanning D for
points that are local maxima along either a row or a col-
umn, and whose value exceeds a minimum threshold. Next,
a random sample consensus (RANSAC) algorithm [11] fits
parabolic segments to the ridge points. At each RANSAC it-
eration, three ridge points are randomly selected for a three-
point parabola fit. The directrix of the parabola is chosen to
be the first principal component of the three points.

Fig. 9 The second stage of our system constructs a centerline evi-
dence image. Lane centerline candidates (blue) are identified by fit-
ting parabolic segments to the ridges of the image. Front-center camera
view is shown in top left for context.

To determine the set of inliers for a parabola, we first
compute its conic coefficient matrix C [13], and define the
set of candidate inliers L to contain the ridge points within
some algebraic distance α of C.

L = {p ∈ R : pTCp < α}

For our experiments, we chose α = 1m. The parabola
is then re-fit to L using a linear least squares method, and a
new set of candidate inliers is computed. Next, the candidate
inliers are partitioned into connected components, where a
ridge point is connected to all neighboring ridge points within
a 1 meter radius. The set of ridge points in the largest com-
ponent is chosen as the set of actual inliers for the parabola.
The purpose of this partitioning step is to ensure that a parabola
cannot be fit across multiple ridges, and requires that an en-
tire identified ridge be connected. Finally, a score s for the
entire parabola is computed.

s =
∑
p∈L

1
1 + pTCp

The contribution of an inlier to the total parabola score
is inversely related to the inlier’s algebraic distance, with
each inlier contributing a minimum amount to the score.
The overall result is that parabolas with many good inliers
have the greatest score. If the score of a parabola is below
some threshold, it is discarded. Experimentation with differ-
ent values yielded a useful score threshold of 140.

After a number of RANSAC iterations (we found 200
to be sufficient), the parabola with greatest score is selected
as a candidate lane centerline. Its inliers are removed from
the set of ridge points, and all remaining parabolas are re-
fit and re-scored using the reduced set of ridge points. The
next best-scoring parabola is chosen, and this process is re-
peated to produce at most 5 candidate lane centerlines (Fig-
ure 9). Each candidate lane centerline is then discretized into
a piecewise linear curve and transmitted to the lane tracker
for further processing. Figure 10b shows three such candi-
dates.
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(a) Two RNDF-derived lane centerline priors

(b) Candidate lane centerlines estimated from sensor data

(c) Filtered and tracked lane centerlines

Fig. 10 (a) The RNDF provides weak a priori lane centerline esti-
mates (white) that may go off-road, e.g. through trees and bushes. (b)
On-board sensors are used to detect obstacles, road paint, and curbs,
which are in turn used to estimate lanes of travel, modeled as parabolic
segments (blue). (c) The sensor-derived estimates are then filtered,
tracked, and fused with the RNDF priors.

2.3 Lane Tracking

The primary purpose of the lane tracker is to maintain a
stateful, smoothly time-varying estimate of the nearby lanes
of travel. To do so, it uses both the candidate lane center-
lines produced by the centerline estimator and an a priori
estimate derived from the provided road map.

In the context of the Urban Challenge, the road map was
provided as a Route Network Description File (RNDF) [1].
The RNDF can be thought of as a directed graph, where each
node is a waypoint in the center of a lane, and edges repre-
sent intersections and lanes of travel. Waypoints are given
as GPS coordinates, and can be separated by arbitrary dis-
tances; a simple linear interpolation of connected waypoints
may go off road, e.g. through trees and houses. In our sys-
tem, the RNDF was treated as a strong prior on the number
of lanes, and a weak prior on lane geometry.

As our vehicle travels, it constructs and maintains repre-
sentations of all portions of all lanes within a fixed radius of
75m. When the vehicle nears an RNDF waypoint and does
not already have an estimate for the waypoint’s lane, a new

lane estimate is instantiated and extended to the immediate
neighbors of the waypoint. The lane estimate is extended
and truncated as the vehicle approaches and withdraws from
waypoints in the lane.

The centerline of each lane is modeled as a piecewise
linear curve, with control points spaced approximately ev-
ery 2m. Each control point is given a scalar confidence value
indicating the certainty of the lane tracker’s estimate at that
point. The lane tracker decays the confidence of a control
point as the vehicle travels, and increases it either by detect-
ing proximity to an RNDF waypoint or by updating control
points with centerline estimates from the second stage.

As centerline candidates are generated, the lane tracker
attempts to match each candidate with a tracked lane. If
matching is successful, the centerline candidate is used to
update the lane estimate. To determine if a candidate c is
a good match for a tracked lane l, the longest segment sc
of the candidate is identified such that every point on sc is
within some maximum distance τ of l. We then define the
match score m(c, l) as:

m(c, l) =
∫
sc

1 +
τ − d(sc(x), l)

τ
dx

where d(p, l) is the distance from a point p to the lane l. In-
tuitively, if sc is sufficiently long and close to this estimate,
it is considered a good match. We designed the matching
function to rely only on the closest segment of the candi-
date, and not on the entire candidate, based on the premise
that as the vehicle travels, the portions of a lane that it ob-
serves vary smoothly over time, and previously unobserved
portions should not adversely affect the matching provided
that sufficient overlap is observed elsewhere.

Once a centerline candidate has been matched to a tracked
lane, it is used to update the lane estimates by mapping con-
trol points on the tracked lane to the candidate, with an ex-
ponential moving average applied for temporal smoothing.
Figure 10 illustrates this process. After a centerline candi-
date has been used to update a tracked lane estimate, it is
not re-used. At each update, the confidence values of control
points updated from a matching are increased, and others
are decreased. If the confidence value of a control point de-
creases below some threshold, its position is discarded and
recomputed as a linear interpolation of its closest surround-
ing confident control points.

3 Urban Challenge Results

The most difficult part of evaluating a lane detection and
tracking system for autonomous vehicle operation often lies
in finding a suitable test environment. Legal, financial, and
logistical constraints proved to be a significant hurdle in this
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Fig. 11 Aerial view of the Urban Challenge race course in Victorville, CA. Autonomously traversed roads are colored blue in areas where the lane
tracking system reported high confidence, and red in areas of low confidence. Some low-confidence cases are expected, such as at intersections
and areas with no clear lane markings. Failure modes occurring at the circled letters are described in Fig. 12.

process. We were fortunate to have the opportunity to con-
duct an extensive test in the 2007 DARPA Urban Challenge,
which provided a large-scale real-world environment with
a wide variety of roads. Both the type and quality of roads
varied significantly across the race, from well-marked ur-
ban streets, to steep unpaved dirt roads, to a 1.6 km stretch
of highway. Throughout the race, approximately 50 human-
driven and autonomous vehicles were simultaneously active,
thus providing realistic traffic scenarios.

Our most significant result is that our lane detection and
tracking system successfully guided our vehicle through a
90 km course in a single day, at speeds up to 40 km/h, with
an average speed of 16 km/h. A post-race inspection of our
log files revealed that at almost no time did our vehicle have
a lane centerline estimate more than half a lane width from
the actual lane centerline, and at no time did it unintention-
ally enter or exit a travel lane. We note that the output of
the lane tracking system was used directly to guide the nav-
igation and motion planning systems; had the lane tracking
system yielded an incorrect estimate, our vehicle would have
traveled along that estimate, possibly into an oncoming traf-
fic lane or off-road.

3.1 System Confidence

Visual range (m) Distance traveled (km)
0 30.3 (34.8%)

1− 10 10.8 (12.4%)
11− 20 24.6 (28.2%)
21− 30 15.7 (18.0%)
31− 40 4.2 (4.8%)
41− 50 1.3 (1.5%)
> 50 0.2 (0.2%)

Table 1 Distance traveled with high-confidence visual estimates in
current lane of travel (total distance = 87km).

We wished to determine how much our system relied on
perceptually-derived lane estimates, and how much it relied
on the prior knowledge of the road as given in the RNDF.
To answer this, we examined the distance the vehicle trav-
eled with high confidence visually-derived lane estimates,
excluding control points where high confidence resulted from
proximity to an RNDF waypoint.

At any instant, our system can either have no confidence
in its visual estimates of the current travel lane, or confi-
dence out to a certain distance a in front of the vehicle. If
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the vehicle then travels dmeters while maintaining the same
confidence in its visual estimates, then we say that the sys-
tem had a high-confidence estimate a meters in front of the
vehicle for d meters of travel. Computing a for all 90 km
of the race allows us to answer the question of how far out
our system could typically “see” (Table 1). From this, we
see that our vehicle maintained high confidence visual esti-
mates 1m or more ahead for 56.8 km, or 65.2% of the total
distance traveled. In the remaining portion, the lane tracker
relied on an interpolation of its most recent high-confidence
estimates.

A second way of assessing the system’s performance is
by examining its estimates as a function of location within
the course. Figure 11 shows an aerial view of areas visited
by our vehicle, colored according to whether or not the ve-
hicle had a high confidence estimate at each point. We note
that our system had high-confidence lane estimates through-
out the majority of the high-curvature and urban portions of
the course. Some of the low-confidence cases are expected,
such as when the vehicle is traveling through intersections
or along roads with no discernible lane boundaries. In other
cases, our system was unable to obtain a high-confidence es-
timate whereas a human would have had little trouble doing
so.

Images from our logged camera images at typical failure
cases are shown in Figure 12 (with locations at which these
failures occurred marked in Figure 11). A common failure
mode was an inability to detect road paint in the presence
of dramatic lighting variation such as that caused by cast
tree shadows. However, we note that in virtually all of these
cases our system reported no confidence in its estimates and
did not falsely report the presence of a lane.

Another significant failure occurred on the eastern part
of the course, with a 0.5 km dirt road followed by a 1.6 km
stretch of highway. Our vehicle traversed this path four times,
for a total of 8.4 km. The highway was an unexpected fail-
ure. The travel lane happened to be very wide; its width did
not fit the 3.66 m prior in the centerline estimator, which
had trouble constructing a stable centerline evidence image.
In addition, most of the highway was uphill and road paint
detection projected onto an assumed level ground plane had
so much projection error that no stable centerline evidence
image was created. Mean vehicle pitch can be seen in Figure
16. This last problem could have been addressed by actively
modeling the ground surface with either vision or LIDAR
data.

The final common failure mode occurred in areas with
faint or no road paint, such as the dirt road and roads with
well defined curbs but no paint markings. Since our system
uses road paint as its primary information source, in the ab-
sence of road paint it is no surprise that no lane estimate
ensues. Other environmental cues such as color and texture
may be useful in such situations [8].

3.2 Human-annotated Ground Truth

For a more objective and quantitative assessment of our sys-
tem, we compared its output to a human-annotated data set
of observable lanes. This data set provides, at every moment
of the race, the geometry of nearby travel lanes registered in
the vehicle’s local reference frame. We briefly describe its
creation here.

Perhaps the simplest method for a person to annotate
ground truth is to examine a visualization of the vehicle and
its sensor data at each desired moment and mark the nearby
travel lanes. While straightforward, this might take several
minutes per instance labeled, and would thus not be an ef-
ficient or even feasible way to densely label many hours of
data.

Instead, we note that over time scales spanning several
hours to several days, ground truth lane geometry does not
typically change relative to a global reference frame. Our
approach is to first produce ground truth lane geometry in
a global frame by annotating geo-registered ortho-rectified
imagery available on Google Maps. We then use our vehi-
cle’s GPS estimates to project ground truth into the vehi-
cle’s local reference frame for further analysis. This projec-
tion suffers from GPS error, so a manual correction is made
when necessary to align the ground truth with observable
cues in the sensor data. These corrections are linearly inter-
polated over time under the premise that the GPS error is
fairly continuous. In the course of annotating the 90km of
vehicle travel in our Urban Challenge data set, an average of
one correction was made every 45m.

Generating ground truth lane geometry in this manner
allows us to conduct a number of experiments that would
otherwise be impossible. We can assess the performance of
our system under a number of different measures, and see
how using it compares to using the RNDF alone without
any local perception. Most importantly, ground truth enables
use of a quantitative metric with which we can improve and
assess future systems.

Lastly, we note that what we are calling “ground truth
lane geometry” is perhaps more accurately described as how
a human would describe nearby lanes, given a visualization
of the vehicle’s sensor data. As such, it may be subject to
hidden or unknown experimental bias, but we believe it is
nevertheless highly useful as is.

3.3 Centerline Error

At each point along the centerline line of a lane estimate,
we define its centerline error to be the lateral distance from
that point to the ground truth lane centerline. In the absence
of other obstacles, the vehicle’s motion planner typically at-
tempts to track the lane centerline, so the centerline error is
a fair measure of the overall system accuracy.
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(a) (b) (c)

(d) (e) (f)

Fig. 12 Common failure cases (cf. Fig. 11). The most common failure was in areas with strong tree shadows, as in (a) and (b). Dirt roads, and
those with faint or no road paint (c-e) were also common causes of failure. In (f), a very wide lane and widely-spaced dashed markings were a
challenge due to our strong prior on lane width. In each of these failure situations, the system reported no confidence in its visual estimates.

Given that the resolution of our sensors decreases with
distance from the vehicle, we expect the accuracy of the lane
estimates to decrease the farther away they are. To confirm
this, lane estimates were evaluated approximately once per
meter of vehicle travel. Centerline error was computed at
1m intervals on each lane estimate evaluated, starting from
1m in front of the vehicle up to a distance of 50m. Lane
estimates behind the vehicle were not evaluated. While those
estimates tended to be much more accurate, they were no
longer useful for forward motion planning.

The results of this analysis are shown in in Figure 14.
Immediately in front of the vehicle, the mean centerline er-
ror was 57cm, which gradually increased to 70cm at a dis-
tance of 50m from the vehicle. This reflects all lane esti-
mates produced by our system, including cases where it re-
ported no confidence and was simply interpolating RNDF
waypoints. When evaluated in areas of high confidence, we
see that the mean error decreased to 40cm.

To reconcile these error statistics with our earlier claim
that our vehicle always remained in its lane, we can examine
the width of our vehicle, the centerline error, and the width
of lanes on the course. Most lanes on the course were be-
tween 4m and 5m wide. The roads were built to accommo-
date vehicles parked on the side, which would normally re-
sult in narrower lanes, but in the absence of parked cars, the
lanes were effectively much wider. Our vehicle measured
2m in width, so if it were perfectly centered in a lane, it
would have 1-2m of space to the lane boundary. A mean cen-
terline error of 57cm reduces this margin to 0.4-1.4m, which
still allows for an imperfect controller. Finally, we also note

that the strong prior our system had on lane width gave it a
tendency to “lock on” to one lane boundary, and thus pro-
duce a centerline estimate that was consistently 1.83m away
from one boundary (our prior on half a lane width), but that
did not coincide with the true lane centerline.

The lane centerline error also allows us to answer the
question, “Is our system better than simple GPS waypoint
interpolation, and by how much?” This is shown in Figures
14c and 14d. Overall, the system is modestly better than us-
ing the RNDF alone, with a mean improvement of 10cm at a
distance of 10m from the vehicle. If we again consider only
areas with a high confidence level, the mean improvement at
10m from the vehicle increases to 22cm. Curiously, at higher
confidence levels, the performance of our system relative to
the RNDF decreases with distance. While we do expect less
improvement at greater distances, we would not normally
expect our system to perform worse than the RNDF. To un-
derstand why this happens, we next examine the effects of
lane curvature on centerline error.

Our method of interpolating GPS waypoints given in the
RNDF was simple linear interpolation. As shown in Figure
15a, the centerline error of this interpolation grows with the
magnitude of road curvature. On examining this error, we
noticed that the RNDF was significantly more accurate in
areas of low curvature, and in some cases had almost no
error for long stretches of straight road (cf. Figure 13a). The
distance to which our system reports a confident estimate is
also related to lane curvature, as more of a lane is visible
for low-curvature roads. Thus, in low-curvature areas, our
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Fig. 13 Mean centerline error 10m
in front of vehicle. (a) RNDF error is
also dependent on GPS receiver er-
ror. (b) Lane tracker fuses vision and
laser range data to improve RNDF
estimates. (c) In most cases, our sys-
tem is as good as or better than using
the RNDF alone.

(a) RNDF Centerline Error

(b) Lane Tracker Centerline Error

(c) Lane Tracker Improvement over RNDF alone
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Fig. 14 Centerline error as a function of distance along lane. (a) Mean error with 1-σ bounds. (b) As system confidence increases, its accuracy
improves. (c) Mean improvement over the RNDF with 1-σ bounds. (d) Mean improvement over the RNDF by system confidence. For high
confidence estimates our system outperformed the RNDF only at close ranges.

system served mostly to add noise to already good estimates
at distance.

In contrast, our system excelled in areas of high curva-
ture, as shown in in Figures 15b and 15c. Most of these re-
gions were sufficiently locally parabolic that our model was
able to accurately capture the curvature of the roads and sig-
nificantly improve the RNDF interpolation. For curvatures
of 0.05m−1, mean improvements over the RNDF for high-
confidence estimates were almost 1m.

Lastly, we evaluate lane centerline error against vehicle
roll and pitch. Mean vehicle roll and pitch are shown in Fig-
ure 16, and error plots for these factors are given in Figure
17. Sustained roll and pitch are good indicators of non-level
terrain, and we expect worse performance in these cases in
light of our level ground-plane assumption. As mentioned
earlier, our implementation did not account for these terrain
scenarios, but doing so even crudely by estimating a non-
level ground plane should help.

Figures 17 shows a slight increase in overall centerline
error as roll increases, but not so for pitch. However, we note
that the RNDF error is inversely correlated with pitch and
roll, suggesting that the course was more accurately marked

in areas with non-level terrain. When compared together, we
can see that the performance of our system relative to the
RNDF decreases moderately as roll and pitch increase.

3.4 Centerline Candidates

Although our system relied on a road map prior for end-
to-end operation, our hope is that it will eventually be able
to provide highly accurate estimates of nearby travel lanes
without any prior at all. To assess its potential for this task,
we can evaluate the accuracy of the centerline candidates
produced by the second stage of the system. These estimates
are made purely from sensor data alone, and require no GPS
or road map prior.

Similar to the filtered and tracked centerline estimates
produced as a final output of the system, the centerline can-
didates can also be evaluated in terms of their centerline
error. We sampled centerline candidates generated approx-
imately every meter of travel, and then computed the center-
line error for various points on each candidate. In each case,
centerline error was computed by comparison to the nearest
ground truth lane.



16

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

50

100

150

200

250

300

350
RNDF overall centerline error

Lane curvature (1/m)

La
te

ra
l e

rr
or

 (
cm

)

(a)

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
20

40

60

80

100

120

140

160

180

200
Lane tracker centerline error

Lane curvature (1/m)

M
ea

n 
la

te
ra

l e
rr

or
 (

cm
)

 

 
conf >= 0

conf >= 0.1

conf >= 0.3

conf = 1.0

(b)

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−20

0

20

40

60

80

100

120

140
Lane tracker overall improvement over RNDF prior

Lane curvature (1/m)

E
st

im
at

e 
im

pr
ov

em
en

t (
cm

)

 

 
conf >= 0
conf >= 0.1
conf >= 0.3
conf = 1.0

(c)

Fig. 15 Mean centerline error as a function of lane curvature. (a) The
RNDF experiences greater error in high-curvature areas. 1-σ bounds
are shown. (b) Higher confidence lane estimates are largely able to
account for curvature. (c) Our system is able to significantly improve
RNDF estimates in high-curvature areas.

Figure 18a shows the error distribution for candidate cen-
terlines. 53.5% of points on all candidate centerlines were
within 50cm of a true lane centerline, and 4.5% were more
than 5m from any true lane centerline. A common case re-
sulting in large error was when the system generated a can-
didate centerline on the wrong side of a lane boundary. This
could happen when the top of a curb was detected as road

(a) Mean pitch

(b) Mean roll

Fig. 16 Mean vehicle pitch and roll throughout the Urban Challenge.
Positive pitch and roll values correspond to vehicle nose up and left
side up, respectively.

paint, or when road paint appeared as a lane boundary with
a corresponding curb.

Candidate centerline error as a function of distance from
the vehicle is shown in Figure 18b. Centerline candidates
generated very close to the vehicle had the least error, with
a mean error of 53cm at distances of 1-2m. At a distance
of 10-11m, mean centerline error was 129cm. Data for this
plot was taken only when the vehicle was actually in a travel
lane; centerline candidates generated in parking areas were
not considered.

After a lane centerline candidate was generated, it un-
derwent a data association step to either match it with an
existing lane estimate or to reject it as an outlier. Our system
relied on a topological prior to provide correct information
about the presence or absence of nearby lanes, and used the
candidates to refine the geometric estimates. By applying
techniques from vision-based object detection and tracking,
our system could be adapted to both detect and track multi-
ple travel lanes.
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Fig. 17 Centerline error of our system and the RNDF prior as a func-
tion of vehicle roll and pitch, with 1-σ bounds.

3.5 Stability

The output of our system is used for high-speed motion
planning; thus we desire that its estimates remain relatively
stable. Specifically, we desire that once the system produces
a high-confidence estimate, that the estimate does not change
significantly. To assess the suitability of our system for this
purpose, we can compute a stability ratio that measures how
much its high-confidence lane estimates change over time in
the lateral direction.

Consider a circle of radius r centered at the current posi-
tion of the rear axle center. We can find the intersection p0 of
this circle with the current lane estimate that extends ahead
of the vehicle. When the lane estimate is updated at the next
time step (10 Hz in this case) we can compute p1, the in-
tersection of the same circle with the new lane estimate. We
define the lane estimator’s stability ratio as:

R =
||p0 − p1||

dv
(5)

where dv is distance traveled by our vehicle in that time step.
Intuitively, the stability ratio is the ratio of the transverse

movement of the lane estimate to the distance traveled by
the car in that time, for some r. We can also compute an
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Fig. 18 (a) Error distribution for centerline candidates indicating the
frequency and magnitude of candidate centerline error. The ideal dis-
tribution is a single point in the top left corner of the graph. (b) Can-
didate centerline error as a function of distance from the vehicle, with
1-σ bounds.

average stability ratio for some r by averaging the stability
ratios for every time step of the vehicle’s trip through the
course (Figure 19). From this figure, we see that the average
stability ratio remains small and relatively constant, but still
nonzero, indicating that high-confidence lane estimates can
be expected to shift slightly as the vehicle moves.

4 Data and Software

The interprocess communications framework and software
infrastructure we used during the development of our ve-
hicle allowed us to log most of the sensor data collected
by the vehicle throughout the Urban Challenge Event, and
virtually all of its internal state estimates. In the hope that
this data will be useful to others, we have made it available
online along with software for parsing and visualizing the
data. Due to disk bandwidth constraints, we were able to
log only one camera at the source 22.8 Hz sample rate, with
the other four cameras spatially and temporally decimated.
Data from every other sensor, including the lidar and nav-
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Fig. 19 (Top) The average stability ratio. (Bottom) The number of
samples used to compute the stability ratio varies with r, as only con-
trol points with visually-derived high-confidence are used.

igation data, were timestamped and logged at the sensors’
maximum sample rate.

In addition to the original sensor data, these log files also
contain all of the internal state estimates of our system, such
as the road paint detections, centerline candidates, and lane
estimates. We encourage interested readers to use the soft-
ware to better understand our system. The log files and soft-
ware are at: http://dgc.mit.edu/public

5 Conclusion and Future Work

We have attempted to extend, to urban environments, the
scope of lane detection and tracking for autonomous ve-
hicles. This paper presented modular, scalable, perception-
centric lane detection and tracking system that fuses asyn-
chronous heterogeneous sensor streams with a weak prior
to estimate multiple travel lanes in real-time. The system
makes no assumptions about the position or orientation of
the vehicle with respect to the road, enabling it to oper-
ate when changing lanes, at intersections, and when exiting
driveways and parking lots. The vehicle using our system
was, to our knowledge, the only vehicle in the final stage of

the DARPA Urban Challenge to employ vision-based lane
finding for real-time motion planning and control.

Our system works in three stages. In the first stage, cal-
ibrated cameras and lidars are used to detect road paint and
curbs. A second stage combines the detections in a voting
process to construct a centerline evidence image, which is
then used to form estimates of potential lane centerlines. A
final stage filters and tracks these candidates into lane esti-
mates, while also incorporating a weak prior derived from a
road map.

We have provided a quantitative analysis of our vehicle
that evaluates its performance under a number of different
measures. Our evaluation framework allows us to accurately
explain failure modes and determine which aspects would
benefit the most from improvement. Additionally, it allows
us to objectively evaluate future improvements and compare
their successes and failures with those of existing systems.

Despite these advances, our method is not yet suitable
for real-world deployment. As with most vision-based sys-
tems, it is susceptible to strong lighting variations such as
cast shadows, and cannot handle adverse conditions such
as rain and snow. Moreover, we have not used all available
sources of sensor data, and our analysis has revealed cases
in which simplifying assumptions adversely affected system
performance.

We are investigating a number of improvements. For ex-
ample, using lidar intensity data to detect road paint should
improve performance in difficult lighting conditions. While
we used solar ephemeris to reject false positives due to solar
flare, we could also use it during daylight hours to predict
and detect false positives from shadows. Jointly estimating
lane width, lane geometry, and elevation gradients should
all improve detection accuracy. Finally, since many roads
do not use paint as boundary markers, we are extending our
method to incorporate other environmental cues.
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