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Abstract. In a bounded analysis, arithmetic operators become partial,
and a different semantics becomes necessary. One approach, mimick-
ing programming languages, is for overflow to result in wrap-around.
Although easy to implement, wrap-around produces unexpected coun-
terexamples that do not correspond to cases that would arise in the
unbounded setting. This paper describes a new approach, implemented
in the latest version of the Alloy Analyzer, in which instances that would
involve overflow are suppressed, and consequently, spurious counterex-
amples are eliminated. The key idea is to interpret quantifiers so that
bound variables range only over values that do not cause overflow.

1 Introduction

A popular approach to the analysis of undecidable logics artificially bounds
the universe, making a finite search possible. In model checking, the bounds
may be imposed by setting parameters at analysis time, or even hardcoded into
the system description. The Alloy Analyzer [1] is a model finder for the Alloy
language that follows this approach, with the user providing a ‘scope’ for an
analysis command that sets the number of elements for each basic type.

Such an analysis is not sound with respect to proof; just because a counterex-
ample is not found (in a given scope) does not mean that no counterexample
exists (in a larger scope). But it is generally sound with respect to counterex-
amples: if a counterexample is found, the putative theorem does not hold.

The soundness of Alloy’s counterexamples is a consequence of the fact that
the interpretation of a formula in a particular scope is always a valid interpre-
tation for the unbounded model. There is no special semantics for interpreting
formulas in the bounded case. This is possible because the relational operators
are closed, in the sense that if two relations draw their elements from a given
universe of atoms, then any relation formed from them (for example, by union,
intersection, composition, and so on) can be expressed with the same universe.

Arithmetic operators, in contrast, are not closed. For example, the sum of two
integers drawn from a given range may fall outside that range. So the arithmetic
operators, when interpreted in a bounded context, appear to be partial and
not total functions, and call for special treatment. One might therefore consider
applying the standard strategies that have been developed for handling logics of
partial functions.



A common strategy is to make the operators total functions by selecting
appropriate values when the function is applied out of domain. In some logics
(e.g. [9]) the value is left undetermined, but this approach is not easily imple-
mented in a search-based model finder. Alternatively, the value can be deter-
mined. In the previous version of the Alloy Analyzer, arithmetic operators were
totalized in this way by giving them wrap-around semantics, so that the smallest
negative integer is regarded as the successor of the largest positive integer. This
matches the semantics in some programming languages (e.g., Java), and is rela-
tively easy to implement. Unfortunately, however, it results in counterexamples
that would not arise in the unbounded context, so the soundness of counterexam-
ples is violated. This approach leads to considerable confusion amongst users [2],
and imposes the burden of having to filter out the spurious cases.

Another common strategy is to introduce a notion of undefinedness — at the
value, term or formula level — and extend the semantics of the operators ac-
cordingly. However this is done, its consequence will be that formulas expressing
standard properties will not hold. The associativity of addition, for example, will
be violated, because the definedness of the entire expression may depend on the
order of summation. In logics that take this approach, the user is expected to in-
sert explicit guards that ensure that desired properties do not rely on undefined
values. In our setting, however, where the partiality arises not from any feature
of the system being described, but from an artifact of the analysis, demanding
that such guards be written would be unreasonable, and would violate Alloy’s
principle of separating description from analysis bounds.

This paper provides a different solution to the dilemma. Roughly speaking,
counterexamples that would result in arithmetic overflow are excluded from the
analysis, so that any counterexample that is presented to the user is guaranteed
not to be spurious. This is achieved by redefining the semantics of quantifiers
in the bounded setting so that the models of a formula are always models of
the formula in the unbounded setting. This solution has been implemented in
Alloy4.2 and can be activated via the “Forbid Overflows” option.

The rest of the paper is organized as follows. Section 2 illustrates some of the
anomalies that arise from treating overflow as wraparound. Section 3 shows the
problem in a more realistic context, by presenting an Alloy model of a minimum
spanning tree algorithm that combines arithmetic and relational operators, and
shows how a valid theorem can produce spurious counterexamples. Section 4
gives our new semantics, and Section 5 explains its implementation in boolean
circuits. Finally, Section 7 presents related work on the topic of partial functions
in logic, compares our approach with the existing ones, and discusses alternatives
for solving the issue of overflows in Alloy.

2 Prototypical Overflow Anomalies

While a wraparound semantics for integer overflow is consistent and easily ex-
plained, its lack of correspondence to unbounded arithmetic produces a variety of
anomalies. Most obviously, the expected properties of arithmetic do not necessar-



check {

all a, b: Int |

a > 0 && b > 0 => a.plus[b] > 0

} for 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

a = 3; b = 1;

a.plus[b] = - 4

(a) Sum of two positive integers is not necessarily positive.

check {

all s: set univ |

some s iff #s > 0

} for 4 but 3 Int

counterexamples

Int = {-4, -3, ..., 2, 3}

s = {S0, S1, S2, S3}

#s = -4

(b) Overflow anomaly involving cardinality of sets.

Fig. 1. Prototypical overflow anomalies in the previous version of Alloy.

ily hold: for example, that the sum of two positive integers is positive (Fig. 1.a).
More surprisingly, expected properties of the cardinality operator may not hold.
For example, the Alloy formula some s is defined to be true when the set s con-
tains some elements. One would expect this to be equivalent to stating that the
set has a non-zero cardinality (Fig. 1.b). And yet this property will not hold if
the cardinality expression #s overflows, since it may wrap around, so that a set
with enough elements is assigned a negative cardinality.

Of course, in practice, Alloy is more often used for analyzing software designs
than for exploring mathematical theorems, and so properties of this kind are
rarely stated explicitly. But such properties are often relied upon implicitly, and
consequently, when they fail to hold, the spurious counterexamples that are
produced are even harder to comprehend. Such a case arises in the the example
discussed in the next section, where a test for an undirected graph being treelike
is expressed by saying that there should be one fewer edge than nodes. Clearly,
when using such a formulation, the user would rather not consider the effects of
wraparound in counting nodes or edges.

3 Motivating Example

Consider checking Prim’s algorithm [7, §23.2], a greedy algorithm that finds
a minimum spanning tree (MST) for a connected graph with positive integral
weights. Alloy is for the most part well-suited to this task, since it makes good
use of Alloy’s quantifiers and relational operators, including transitive closure.
The need to sum integer weights, however, is potentially problematic, due to
Alloy’s bounded treatment of integers. 1

1 An alternative approach would be to use an analysis that includes arithmetic without
imposing bounds. It is not clear, however, whether such an approach could be fully
automated, since the logics that are sufficiently expressive to include both arithmetic
and relational operators do not have decision procedures, and those (such as SMT)
that do offer decision procedures for arithmetic are not expressive enough. In this
paper, we are not arguing that such an approach cannot work. But, either way,



1 open util/ordering[Time]

2

3 sig Time {}

4

5 sig Node {covered: set Time}

6

7 sig Edge {

8 weight: Int,

9 nodes: set Node,

10 chosen: set Time

11 } {

12 weight >= 0 and #nodes = 2

13 }

14

15 pred cutting (e: Edge, t: Time) {

16 (some e.nodes & covered.t) and (some e.nodes & (Node - covered.t))

17 }

18

19 pred step (t, t’: Time) {

20 -- stutter if done, else choose a minimal edge from a covered to an uncovered node

21 covered.t = Node =>

22 chosen.t’ = chosen.t and covered.t’ = covered.t

23 else some e: Edge {

24 cutting[e,t] and (no e2: Edge | cutting[e2,t] and e2.weight < e.weight)

25 chosen.t’ = chosen.t + e

26 covered.t’ = covered.t + e.nodes}

27 }

28

29 fact prim {

30 -- initially just one node marked

31 one covered.first and no chosen.first

32 -- steps according to algorithm

33 all t: Time - last | step[t, t.next]

34 -- run is complete

35 covered.last = Node

36 }

37

38 pred spanningTree (edges: set Edge) {

39 -- empty if only 1 node and 0 edges, otherwise covers set of nodes

40 (one Node and no Edge) => no edges else edges.nodes = Node

41 -- connected and a tree

42 #edges = (#Node).minus[1]

43 let adj = {a, b: Node | some e: edges | a + b in e.nodes} |

44 Node -> Node in *adj

45 }

46

47 correct: check { spanningTree [chosen.last] } for 5 but 10 Edge, 5 Int

48

49 smallest: check {

50 no edges: set Edge {

51 spanningTree[edges]

52 (sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}

53 } for 5 but 10 Edge, 5 Int

Fig. 2. Alloy model for bounded verification of Prim’s algorithm that finds a minimum
spanning tree for a weighted connected graph.



Figure 2 shows an Alloy representation of the problem. The sets (signatures
in Alloy) Node and Edge (lines 5–5 and 7–13) represent the nodes and edges of
a graph. Each edge has a weight (line 8) and connects a set of nodes (line 9);
weights are non-negative and edges connect exactly two nodes (line 12).

This model uses the event-based idiom [10, §6.2.4] to model sequential exe-
cution. The Time signature (line 3) is introduced to model discrete time instants,
and fields covered (line 5) and chosen (line 10) track which nodes and edges
have been covered and selected respectively at each time. Initially (line 31) an
arbitrary node is covered and no edges have been chosen. In each subsequent
time step (line 33), the state changes according to the algorithm. The algorithm
terminates (line 35) when the set of all nodes has been covered.

At each step, a ‘cutting edge’ (that is, one that connects a covered and a
non-covered node) is selected such that there is no other cutting edge with a
smaller weight (line 24). The edge is marked as chosen (line 25), and its nodes
as covered (line 26)2. If the node set has already been covered (line 21), instead
no change is made (line 22), and the algorithm stutters.3

Correctness entails two properties, namely that: (1) at the end, the set of
covered edges forms a spanning tree (line 47), and (2) there is no other spanning
tree with lower total weight (lines 49–53). The auxiliary predicate (spanningTree,
lines 38–45) defines whether a given set of edges forms a spanning tree, and
states that, unless the graph has no edges and only one node, the edges cover
all nodes of the graph (line 40), the number of given edges is one less than the
number of nodes (line 42), and that all nodes are connected by the given set of
edges (lines 43–44).

If we run the previous version of the Alloy Analyzer to check these two
properties, the smallest check fails. In each of the reported counterexamples, the
expression sum e: edges | e.weight (representing the sum of weights in the alter-
native tree, line 52) overflows and wraps around, and thus appears (incorrectly)
to have a lower total weight than the tree constructed.4 In the latest version of
the Alloy Analyzer that incorporates the approach described in this paper, the
check, as expected, yields no counterexamples for a scope of up to 5 nodes, up
to 10 edges and integers ranging from -16 to 15.

4 Approach
Our goal is to give a semantics to formulas whose arithmetic expressions might
involve out-of-domain applications, such as the addition of two integers that ide-

exploring ways to mitigate the effects of bounding arithmetic has immediate benefit
for users of Alloy, and may prove useful for other tools that impose ad hoc bounds.

2 For a field f modeling a time-dependent state component, the expression f.t repre-
sents the value of f at time t.

3 An implementation would, of course, terminate rather than stuttering. Ensuring
that traces can be extended to a fixed length allows better symmetry breaking to be
employed, dramatically improving performance.

4 One might think that this overflow could be avoided by adding guards, for example
that the total computed weight in the alternative tree is not negative. This does not
work, since the sum can wrap around all the way back into positive territory.



ally would require a value that cannot be represented. In contrast to traditional
approaches to the treatment of partial functions, the out-of-domain applications
arise here not from any intrinsic property of the system being modeled, but rather
from a limitation of the analysis.5 Consequently, whereas it would be appropriate
in more traditional settings to produce a counterexample when an out-of-bounds
application occurs, in this setting, we aim to mask such counterexamples, since
they do not indicate problems with the model per se.

First, a standard three-valued logic [13] is adopted, in which elementary for-
mulas involving out-of-bounds arithmetic applications are given the third logical
value of ‘undefined’ (⊥), and undefinedness is propagated through the logical
connectives in the expected way (so that, for example, ‘false and undefined’
evaluates to false). But the semantics of quantifiers diverges from the standard
treatment: the meaning of a quantified formula is adjusted so that the bound
variable ranges only over values that would yield a body that evaluates to true or
false. Thus bindings that would result in an undefined quantification are masked,
and quantified formulas are never undefined. Since every top level formula in an
Alloy model is quantified6 this means that counterexamples (and, in the case of
simulation, instances) never involve undefined terms.

This semantics cannot be implemented directly, since the analysis does not
explicitly enumerate values of bound variables, but instead uses a translation to
boolean satisfiability (SAT) [21]. A scheme is therefore needed in which the for-
mula is translated compositionally to a SAT formula. To achieve this, a boolean
formula is created to represent whether or not an arithmetic expression is unde-
fined. This is then propagated to elementary subformulas in an unconventional
way which ensures the high-level semantics of quantifiers given above.

To understand this intuitively, it may help to think of all the quantifiers being
eliminated by explicit unrolling, and the entire formula being put in disjunctive
normal form, as a collection of clauses, each consisting of a conjunction of el-
ementary subformulas. The goal is to ensure that when an arithmetic term is
undefined, the clause containing it evaluates to false and is effectively dropped.

We therefore have given two semantics: the high level semantics that the user
needs to understand, and the low level semantics that justifies the analysis. This
lower level semantics is then implemented by a translation to boolean circuits.

4.1 User-Level Semantics

As explained above, the key idea of our approach is to change the semantics
of quantifiers so that the quantification domain is restricted to those values for
which the body of the quantifier is defined (determined by the def function):

5 Note that this discussions concern only the partial function applications arising from
arithmetic operators; partial functions over uninterpreted types are treated differ-
ently in Alloy, and counterexamples involving their application are never masked.

6 The fields and signatures of an Alloy model are always implicitly bound in an out-
ermost existential quantifier, which is eliminated in analysis by skolemization.



Jall x: Int | p(x)K = ∀x ∈ Int ● defJp(x)K Ô⇒ p(x)
Jsome x: Int | p(x)K = ∃x ∈ Int ● defJp(x)K ∧ p(x)

Integer expressions (i.e. those employing Alloy’s arithmetic operators) are
undefined if any argument is undefined or the evaluation results in overflow:

defJα(i1, . . . , in)K = (i1 ≠⊥) ∧ ⋅ ⋅ ⋅ ∧ (in ≠⊥) ∧ ¬(Jα(i1, . . . , in)K overflows)
Integer predicates are boolean formulas that relate one or more integer ex-

pressions. In Alloy, the only integer predicates are the integer comparison oper-
ators. They are also undefined if any argument is undefined:

defJρ(i1, . . . , in)K = (i1 ≠⊥) ∧ ⋅ ⋅ ⋅ ∧ (in ≠⊥)
A formula is defined if it evaluates to either true or false when three-valued

logic truth tables of propositional operators are used (e.g. [13, Table A.1]):

defJand(p, q)K = (p ∧3 q) ≠⊥ defJimplies(p, q)K = (p⇒3 q) ≠⊥
defJor(p, q)K = (p ∨3 q) ≠⊥ defJnot(p)K = (¬3p) ≠⊥

Finally, quantifiers are always defined:

defJall x ∣ p(x)K = true defJsome x ∣ p(x)K = true

Note that the semantics of the rest of the Alloy logic (in particular, of the
relational operators) remains unchanged.

4.2 Implementation-Level Semantics

A direct implementation of the user-level semantics in Alloy would entail a three-
valued logic, and the translation to SAT would thus require 2 bits for a single
boolean variable (to represent the 3 possible values), a substantial change to
the existing Alloy engine. Furthermore, such a change would likely adversely
affect the analysis performance of models that do not use integer arithmetic. In
this section, we show how the same semantics can be achieved using the existing
Alloy engine, merely by adjusting the translation of elementary integer functions
and integer predicates.

To make all formulas denote (and thus to avoid the need for a third boolean
value), a truth value must be assigned to an integer predicate even when some
of its arguments are undefined. A common approach [8,17] is to assign the value
false. For example, the sentence e1< e2 will be true iff both e1 and e2 are defined
and e1 is less than e2 (and similarly for e1>= e2):

J lt(e1,e2) K = e1 < e2 ∧ e1↓ ∧ e2↓ J gte(e1,e2) K = e1 ≥ e2 ∧ e1↓ ∧ e2↓
(using the syntactic shortcuts e↓ ≡ e ≠⊥, and e↑ ≡ e =⊥).

Negation presents a challenge. Following the high-level semantics, negation
of an integer predicate (e.g., !(e1< e2)) is still undefined if any argument is
undefined. Therefore, under the low-level semantics, !(e1< e2) must also, despite
the negation, evaluate to false if either e1 or e2 is undefined (and thus have



(a) Semantic Domains
Formula = BoolConst | IntPred(IntExpr, ..., IntExpr) |

BoolPred(Formula, ..., Formula) |

QuantFormula(VarDecl, Formula)

IntExpr = IntConst | IntVar | IntFunc(IntExpr, ..., IntExpr)

BoolConst = true | false

IntConst = ⊥ | 0 | -1 | 1 | -2 | 2 | ...

QuantFormula = all | some

BoolPred = not1 | and2 | or2 | implies2 | iff2
IntPred = eq2 | neq2 | gt2 | gte2 | lt2 | lte2
IntFunc = neg1 | plus2 | minus2 | times2 | div2 | mod2 |

shl2 | shr2 | sha2 | bitand2 | bitor2 | bitxor2
Store = {var: IntVar; val: IntConst; quant: QuantFormula;

polarity: BoolConst; parent: Store}

(b) Symbols
⊥ ∈ IntConst (undefined integer) bi ∈ BoolConst (boolean constants)
ii ∈ IntConst (integer constants) pi ∈ Formula (boolean formulas)
ei ∈ IntExpr (integer expressions) βi ∈ BoolPred (boolean predicates)
ρi ∈ IntPred (integer predicates) xi ∈ IntVar (integer variables)
αi ∈ IntFunc (arithmetic functions) qi ∈ QuantFormula (quantified formula)

(c) Stores
σ : Store (environment of nested quantifiers and variable bindings)

Fig. 3. Overview of semantic domains, symbols, and stores to be used. Subscripts in
function and predicate names indicate their arities.

aeval : IntExpr → Store → IntConst

aevalJiKσ = i
aevalJxK{xσ, iσ, q, b, σp} = if xσ = x then iσ else aevalJxKσp

aevalJα(i1, . . . , in)Kσ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⊥ if ii =⊥ or ... or in =⊥
⊥ if α(i1, . . . , in) overflows
α(i1, . . . , in) otherwise

aevalJα(e1, . . . , en)Kσ = aevalJα(aevalJe1Kσ, . . . , aevalJenKσ)Kσ

Fig. 4. Evaluation of arithmetic operations (aeval). If any operand of an arithmetic
operation is undefined, the result is undefined too.

beval : Formula → Store → BoolConst

bevalJbKσ = b
bevalJρ(e1, e2)Kσ = ievalJρ(e1, e2)Kσ
bevalJnot(p)K{x, i, q, b, σp} = ¬ bevalJpK{x, i, q, ¬b, σp}
bevalJβ(p1, . . . , p2)Kσ = β(bevalJp1Kσ, . . . , bevalJp2Kσ)
bevalJall x: Int | pKσ = ⋀

i∈ Int
bevalJpK{x, i, all, true, σ}

bevalJsome x: Int | pKσ = ⋁
i∈ Int

bevalJpK{x, i, some, true, σ}

Fig. 5. Evaluation of boolean formulas. The new semantics (together with the ieval

function, Fig. 6) ensures that quantifiers quantify over only those values that do not
cause any overflows.



ieval : IntPred → Store → BoolConst

ievalJρ(e1, e2)Kσ = let b = ρ(aevalJe1Kσ, aevalJe2Kσ)in
ensureDefJb,{e1, e2}Kσ

ensureDef : BoolConst → {IntExpr} → Store → BoolConst

ensureDefJb, einK{x, i, q, bpol, σp} = let euniv = {e ∣ e ∈ ein ∧ isUnivQuantJeKσ} in

let eext = ein ∖ euniv in

let bdef = (eext = ∅) ∨ ⋀
e∈eext

(aevalJeKσ ≠⊥) in

let bundef = (euniv ≠ ∅) ∧ ⋁
e∈euniv

(aevalJeKσ =⊥) in

if bpol then (b ∨ bundef) ∧ bdef
else (b ∨ ¬bdef) ∧ ¬bundef

isUnivQuant : IntExpr → Store → BoolConst

isUnivQuantJeK{} = false

isUnivQuantJeK{x, i, q, b, σp} = if x ∈ varsJeK then q = all

else isUnivQuantJeKσp

vars : IntExpr → {IntVar}

varsJiK = ∅
varsJxK = {x}
varsJα(e1, . . . , en)K = varsJe1K ∪ . . .∪ varsJenK

Fig. 6. Evaluation of integer predicates. If any argument of an integer predicate is
undefined, the result is true if the expression is in a universally quantified context,
otherwise it is false.

exactly the same semantics as e1 ≥ e2). To achieve this behavior, the polarity [11]
of each expression must be known. Polarity is easily determined by the structure
of the enclosing negations. Evaluation of a binary integer predicate can be then
formulated as (ignoring the stack of enclosing quantifiers for the moment):

Jρ(e1, e2)K = if polarity is positive then ρ(Je1K, Je2K) ∧ Je1K↓ ∧ Je2K↓
else ρ(Je1K, Je2K) ∨ ¬(Je1K↓ ∧ Je2K↓)

The polarity approach is not compositional, since the meaning of the negation
of a formula is not simply the logical negation of the meaning of that formula.
For that reason, this approach violates the law of the excluded middle, which,
fortunately, will not be problematic, since the violation would only be observable
for variable bindings that result in overflow and such bindings are excluded by
the semantics (see Sec. 4.4).

The semantics are formally defined in Figs. 3–6. Expressions and formulas
are interpreted in the context of a store that holds, for each variable bound in
an enclosing quantifier: (a) the value of the variable in the particular binding,
(b) whether the quantifier is universal or existential, and (c) its current polarity.

Evaluation of integer expressions (aeval) and boolean formulas (beval) has
the same effect as evaluation in the user-level semantics; it is elaborated dif-
ferently here simply to account for the need to pass the store. Every time a
negation is seen, the inner formula is interpreted in a store in which the polarity
is negated. Quantifiers are unfolded, with the body interpreted in a new nested



store with polarity set to true. For the evaluation of top-level formulas, an empty
existential environment is presented.

Evaluation of integer predicates (ieval) is where the crucial differences lie.
Whereas in the user-level semantics predicates evaluate to true, false and unde-
fined, in this implementation semantics predicates evaluate only to true or false.
When a predicate would have been undefined in the user-level semantics, its
meaning will be either true or false, chosen in such a way as to ensure that the
associated binding becomes irrelevant. This choice is represented by the auxil-
iary function ensureDef, which determines the truth value based on the current
polarity and the stack of enclosing quantifiers.

For the existential case, the goal is to ensure that a predicate evaluates to
false when any argument is undefined. However, when such a predicate contains
a universally quantified variable, to achieve the desired semantics of the universal
quantifier (which is to ignore cases where the body is undefined), it is enough
to simply make the predicate evaluate to true instead. Therefore, all expressions
with universally quantified variables are identified first (euniv) and a definedness
condition for them (bundef) is computed as a disjunction of either being undefined.
For all other arguments (eext) the definedness condition (bdef) is a conjunction
of all being defined (as before). Finally, based on the value of the polarity flag
(bpol), the two conditions are attached to the base result (b).

4.3 Correspondence Between the Two Semantics

To show that our low-level semantics correctly implements the high-level user
semantics, it is enough to establish a correspondence between the two definitions
of quantifiers (the low-level semantics only introduced a change to the semantics
of quantifiers). Following directly from the two definitions, this is equivalent to
proving that whenever an expression p(x) is undefined by the laws of three-valued
logic (i.e., defJp(x)K is false), if x is universally quantified then bevalJp(x)K
evaluates to true, else it evaluates to false.

This hypothesis would traditionally be proved by a structural induction on
expressions. Instead of giving a complete proof (which would exceed the scope
of this paper), we explain several interesting base cases instead.

As said earlier, the low-level evaluation of integer predicates is where the
crucial differences lie. Let us therefore consider the case when p(x) is an integer
predicate, ρ(e1(x), e2(x)). Furthermore, let us assume that e1(x) is undefined,
which makes p(x) undefined as well. In this context, polarity is positive, and the
value of bevalJρ(e1(x), e2(x))K becomes the value of ensureDef. There are two
cases to consider: (1) if x is universally quantified, euniv contains both e1 and e2,
bundef becomes true, bdef is true by default, so the result is also true regardless of
the base value b; (2) if x is existentially quantified, eext contains both e1 and e2,
bdef becomes false, bundef is false by default, so the result is also false, as expected.

Let us now assume that p(x) is a negation of an integer predicate, p(x) =
¬ρ(e1(x), e2(x)), and that e1(x) is again undefined. Despite the negation, p(x)
is still undefined, so the low-level evaluation should behave exactly as in the
previous case. The result of bevalJp(x)K now becomes a negation of the value



returned by ensureDef, which, in contrast, now evaluates in a context where
the polarity is negative. Following exactly the same derivation as before, it can
be shown that ensureDef now returns false for the universal case, and true
for the existential case (because of the negative polarity), so the end result of
bevalJp(x)K remains the same, as expected.

4.4 The law of the excluded middle

We mentioned earlier that our non-compositional rule for negation breaks the
law of the excluded middle. Usually, this is not a problem.

Consider checking the theorem that all integers when multiplied by two are
either less than zero or not less than zero:

check { all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0) } for 3 Int

If we run the Alloy Analyzer with overflow prevention turned on, this sentence
is interpreted as “for all integers x s.t. x times two does not overflow, x times
two is either less than zero or not less than zero”, and thus no counterexample
is found, which is consistent with classical logic.

In a sense, however, the violation of the law is visible if truth is associated
with whether or not a check yields a counterexample at all. For example, a check
of whether 4 plus 5 is equal to 6 plus 3 for the bitwidth of 4 (Int = {-8, ..., 7})
does not return a counterexample, but neither does a check of whether 4 plus 5
is different from 6 plus 3.

check { 4.plus[5] = 6.plus[3] } for 4 Int -- no counterexample found

check { 4.plus[5] != 6.plus[3] } for 4 Int -- no counterexample found

Though this might at first appear confusing, it is consistent with our design goal:
indeed, for a bitwidth of 4, there is no non-overflowing instance in which 4 plus
5 is either equal to or different from 6 plus 3.

5 Implementation in Circuits

The core task of finding satisfying models for a relational formula is delegated
to Kodkod [20]. Kodkod is a bounded constraint solver for relational first-order
logic. It works by translating a given relational formula (together with bounds)
into an equivalent propositional formula and using an of-the-shelf SAT solver to
check its satisfiability.

Detecting arithmetic overflows at the level of relational logic would be dif-
ficult, and probably inefficient. We therefore implemented our approach at the
level of the translation to propositional logic, as an extension to Kodkod. Even
though the goal here is to translate the input formula into a digital circuit (in-
stead of evaluating it to a boolean constant), we only had to modify Kodkod’s
translation of appropriate terms directly following the denotational semantics
presented in this paper. In summary, we changed:
– the translation of arithmetic operations to generate an additional one-bit

overflow circuit which is set iff the operation overflows. We used textbook
overflow circuits for all arithmetic operations supported by Kodkod;



– the way the environment gets updated so that it additionally keeps track of
the polarity and the quantification stack;

– the translation of integer comparison predicates so that the original circuit
representing the comparison result is extended to include the definedness
conditions, exactly as defined above.

6 Evaluation

Finding suitable models for evaluating the new approach is difficult, because
most Alloy models do not involve arithmetic, in part because of the problem of
overflow that motivated this work.

To evaluate the approach of this paper, we took a previously published model
of a flash filesystem [15] which uses arithmetic operations and whose analysis
is non-trivial, and compared its execution under the old (Alloy4) and new (Al-
loy4.2) analysis schemes. This model involves both assertions (that certain prop-
erties hold) and simulations (that produce sample scenarios). First, we checked
that there are no new spurious counterexamples, and that none of the expected
valid scenarios are lost. This was not the focus of our evaluation, however, since
the design of the analysis ensures it. Rather, our concern was that the addition
of new clauses to the SAT formula generated by the Analyzer might increase
translation and solving time.

The new translation always results in a larger SAT formula, because extra
clauses are needed to rule out models that overflow. One might imagine that
adding clauses would cause the solving time to increase. On the other hand, the
additional clauses might result in a smaller search space, and thus potentially
reduce the search time.

We ran all checks that were present in the “concrete” module of the model.
The first 10 (run1 through run10) are simulations (which all find an instance),
and the remaining 6 (check1 through check6) are checks, which, with the ex-
ception of check5, produce no counterexamples. For each check, we measured
both the translation and solving time, as shown in Table 1. As expected, in some
cases the analysis runs faster, and sometimes it takes longer. In total, with the
overflow prevention turned on, the entire analysis finished in about 8 hours, as
opposed to almost 12 hours that the same analysis took otherwise.

7 Related Work

The problem addressed in this paper is an instance of the more general problem
of handling partial functions in logic. The most important difference, however, is
that, in our case, the out-of-bound function applications arise due to deficiencies
in the analysis, rather than from the inherent semantics of the logic. Requiring
the user to introduce guards in the formal description itself to mitigate the effects
of undefinedness is therefore not acceptable.

Despite this fundamental difference, our approach shares some features of
several previously explored approaches.



run1 run2 run3 run4 run5 run6 run7 run8 run9
old 1.2 0.9 2.1 0.4 0.8 0.2 12.9 2.3 5.9 0.5 12.7 1.0 11.9 1.1 9.0 1.0 12.5 1.0
new 1.2 0.8 1.6 0.4 0.8 0.3 13.4 8.7 6.2 0.5 12.6 0.8 12.1 1.5 9.1 1.0 12.7 2.6
abs diff 0 0.1 0.5 0 0 -0.1 -0.5 -6.4 -0.3 0 0.1 0.2 -0.2 -0.4 -0.1 0 -0.2 -1.6
speedup 0 11.1 23.8 0 0 -50.0 -3.9 -278.3 -5.1 0 0.8 20.0 -1.7 -36.4 -1.1 0 -1.6 -160.0

run10 check1 check2 check3 check4 check5 check6 total
old 25.7 14.8 20.0 39.6 12.1 2190.7 12.0 30673.3 12.5 3713.2 12.3 3.0 74.3 5782.6 42663.5
new 25.9 12.5 20.2 12.6 12.2 1670.4 12.2 16741.9 12.7 3526.9 12.5 1.3 73.9 7083.5 29304.5
abs diff -0.2 2.3 -0.2 27 -0.1 520.3 -0.2 13931.4 -0.2 186.3 -0.2 1.7 0.4 -1300.9 13359.0
speedup -0.8 15.5 -1.0 68.2 -0.8 23.8 -1.7 45.4 -1.6 5.0 -1.6 56.7 0.5 -22.5 31.3

Table 1. Analysis times of all checks found in the “concrete” module of a flash filesys-
tem from [15]. All values are in seconds, except the values in the “speedup” row which
are in percents. “old” stands for the previous version of Alloy, whereas “new” stands for
the new version with overflow prevention turned on.

The Logic of Partial Functions (LPF) was proposed for reasoning about
the development of programs [13, 14], and was adopted in VDM [12]. In this
approach, not only integer predicates but also boolean formulas may be non-
denoting, so truth tables extended to a three-valued logic are needed. This allows
guards for definedness to be treated intuitively; thus, for example, even when “x”
is equal to zero, formula x!=0 => x/x=1, evaluates to true in spite of x/x=1 being
undefined. Our approach uses this three-valued logic for determining whether the
body of a quantified formula is undefined, but the meaning of the formula as a
whole is treated differently – masking the binding that produces undefinedness
rather than interpreting the quantification in the same three-valued logic.

Our implementation-level semantics adopts the traditional approach to partial
functions (a term coined by Farmer [8]), in which all formulas must be denoting
but functions may be partial. Farmer’s approach, however, leaves open whether,
given an undefined a, !(a=a) and a!=a have different meanings — an issue that
in the standard setting is hard to resolve because of the competing concerns of
compositionality and preserving complementarity of predicates. In our case, the
non-compositional choice fits nicely with the user-level semantics.

Like the Alloy Analyzer, SMT [6] solvers can also be used for model finding.
They all support unbounded integer arithmetic, so the problem of overflows does
not arise. However, using Alloy over SMT-based tools has certain benefits, most
notably the expressiveness of the Alloy relational language. There are higher-
level languages that build on SMT technologies (e.g. Dafny [16]), but for a task
similar to verifying Prim’s algorithm, such tools are typically not fully automatic,
and demand that the user provide intermediate lemmas.

Model-based languages such as B [3] and Z [18], being designed for specifying
programs, make extensive use of partial functions. Both are based on set theory,
and model functions as relations. Whereas in Alloy out-of-bounds applications
of partial functions over uninterpreted types result in the empty set, in B such
an application results in an unknown (but determined) value [19]. The initial
specification of the Z notation [18] left the handling of partial functions open.

Several different approaches have been proposed (see [5] for a survey); in the
end, it appears that the same approach as in B has evolved to be the norm [19].
In both Z and B, integers are unbounded, and so the problems of integer overflow



do not arise. On the other side, the tools for discharging proof obligations (e.g.
Rodin [4]) are typically less automated than the Alloy Analyzer.
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