
Parallel Test Generation
and Execution with Korat

Sasa Misailovic (Univ. of Belgrade)

Aleksandar Milicevic (Univ. of Belgrade & Google)

Nemanja Petrovic (Google)

Sarfraz Khurshid (Univ. of Texas)

Darko Marinov (Univ. of Illinois)

FSE 2007
September 06, 2007

2

Motivation

� Testing a program developed at Google

– Input: based on acyclic directed graphs
(DAGs)

– Output: sets of nodes with specific link
properties

� Manual generation of test inputs hard

– Many “corner cases” for DAGs: empty DAG,
list, tree, sharing (aliasing), multiple roots,
disconnected components…

3

Automated generation with Korat

� Korat is a tool for automated generation
of structurally complex test inputs

– Well suited for DAGs

� User manually provides

– Properties of inputs (graph is a DAG)

– Bound for input size (number of nodes)

� Tool automatically generates all inputs
within given bound (all DAGs of size S)

– Bounded-exhaustive testing

4

Problem: Large testing time

� Korat can generate a lot of inputs

– Example: DAGs with 7 nodes: 1,468,397

� How to reduce testing time?

– Generation: Speed up test generation itself

– Execution: Generate fewer inputs

� Solutions

– Parallel Korat: Parallelized generation and
execution of structurally complex test inputs

– Reduction methodology: Developed to
reduce the number of equivalent inputs

5

Outline

� Overview

� Background: Korat

� Parallel Korat

� Reduction Methodology

� Conclusions

6

Korat: input

� User writes:

– Representation for test inputs

– Imperative predicate method to identify
valid test inputs

– Finitization defines search bounds

public class DAGNode {
DAGNode[] children;

}

public class DAG {
DAGNode[] nodes;
int size;

}

7

Imperative predicate: repOK

public class DAG {
public boolean repOK() {
Set<DAGNode> visited = new HashSet<DAGNode>();
Stack(DAGNode> path = new Stack<DAGNode>();
for (DAGNode node : nodes) {
if (visited.add(node))
if (!node.repOK(path, visited))
return false;

}
return size == visited.size();

}
}
public class DAGNode {
public boolean repOK() { ... } // 11 lines

}

� Methods that check validity of test inputs

8

Finitization

� Bounds search space

� Example

– Number of objects

� 1 DAG object (D0)

� S DAGNode objects (N0, N1, … NS-1)

– Values for fields
� S exactly for size (could be 0..S)

� 0..S-1 children for each node

� Each child is one of S nodes

9

Korat: output

� Generates structurally complex data

– Example: DAG

� Set of nodes and set of directed edges

� No cycles along those directed edges

… …

10

Korat: input space

� Korat exhaustively explores a bounded
input space

� Finitization describes all possible inputs

– Example for S=3

3 N0

N1

N2

0

1

2

N0

N1

N2

N0

N1

N2

0

1

2

N0

N1

N2

N0

N1

N2

0

1

2

N0

N1

N2

D0 N0 N1 N2

size len c0 c1 c0 len c0c1len c1

11

Candidate vector

� Sequence of indexes into possible values

� Encodes 1 object graph, valid or invalid

� Example (invalid DAG)
D0 N0 N1 N2

size len c0 c1 c0 len c0c1len c1

0 - 1 1 0 -0 - --

N0

DAG
size: 3

N1 N2

c0

12

Korat: search

� Starts from candidate vector with all 0’s

� Generates candidate vectors in a loop
until the entire space is explored

– For each vector, executes repOK to find

(1) whether the candidate is valid or not

(2) what next candidate vector to try out

– Field-access stack

� Korat monitors field accesses during execution
of repOK

� Backtracks on last accessed field on stack,
pruning large portions of the search space

13

Korat: next candidate vector

� Backtracking on N1.c0

� Produces next candidate (valid DAG)

N0

DAG
size: 3

N1 N2

c0

0 - 1 2 0 -0 - --

D0 N0 N1 N2

size len c0 c1 c0 len c0c1len c1

0 - 1 1 0 -0 - --

14

Two key Korat concepts

� repOK

– User provides predicates that check
properties of valid inputs

� Candidate vector

– Used in Korat search

– Next vector computed from previous by
executing repOK

15

Outline

� Overview

� Background: Korat

� Parallel Korat

� Reduction Methodology

� Conclusions

16

Parallel Korat: design goals

� Target clusters of commodity machines

– Google infrastructure

� Minimize inter-machine communication

– Improves overall performances by removing
any expensive message passing

– Makes code easily portable

� Challenge for load balancing: partition
search space among various machines
statically (before starting parallel search)

– No overlap of work among machines

17

Korat: easy for parallelization

� Candidate vector compactly encodes the
entire search state, both

– Part that has been explored

– Part that is yet to be explored

� Easy to parallelize search by using
candidate vectors as the bounds for the
ranges that split state space

18

Korat: hard for parallelization

� Korat pruning

– Makes search more efficient ☺

– Makes search mostly sequential �

� Next candidate vector depends on the execution
of repOK on current candidate vector

� Implication: given an arbitrary candidate
vector, cannot statically know if the
search would explore that vector or not

� Cannot purely randomly choose
candidate vectors for partitioning

19

Parallel Korat: four algorithms

� Test generation can be

– SEQuential: use one machine

– PARallel: use multiple machines

� Test execution always parallel, can be

– OFF-line: generation and execution
decoupled (all inputs stored on disk)

– ON-line: execution follows generation
(inputs not stored on disk)

� Four algorithms

– SEQ-OFF, SEQ-ON, PAR-OFF, PAR-ON

20

SEQ-OFF algorithm

� Runs test generation sequentially (SEQ)
and stores to disk all test inputs

� Distributes test inputs evenly across
several worker machines to execute
code under test in parallel (OFF)

� Use case

– Generation requires a lot of search and
produces only few inputs (so it is preferred
to store them for future execution)

21

SEQ-ON algorithm

� Use case: do not store inputs on disk

� Goal: Run sequentially once (SEQ) but
prepares to make future runs parallel

� Sequential test generation stores to disk
m equidistant candidate vectors: v1…vm

– Union of ranges [vi ,vi+1) covers entire space

– Each range explores same # of candidates

� All future generations/executions done in
parallel on w<=m worker machines (ON)

22

Equidistancing algorithm

� Challenge: Choose m equidistant vectors
not knowing total number before search

– If we knew total T, we would store T/m-th

� Solution uses an array of size 2m to
remember specific candidate vectors

– Example for m=3

– Fill out the array: 1,2,3,4,5,6

– Halve the array: 2,4,6

– Double distance: 2,4,6,8,10,12

– Repeat these 3 steps: 4,8,12… 16,18,20…

23

Evaluation: SEQ-ON, DAGs of size 8

� Experiments on Google infrastructure

– Up to 1024 machines, Google File System

– Testing time: from 35.9 hours (1 machine)
to 4 mins (1024 machines)

543.55

1

10

100

1000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Number of machines

S
p
e
e
d
-u

p

24

Evaluation: SEQ-ON, DAGs of size 7

7.62

20.32

1

100

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Number of machines

S
p
e
e
d
-u

p

� Experiments on Google infrastructure
– Peek on 128 machines

� Testing time: from 10 mins to 1/2 min

– A lot of time goes on file distribution

25

PAR-OFF algorithm

� Parallelizes the initial run (PAR)
– Challenges:

� How to partition input space into several ranges
without generating all inputs as in SEQ-ON

� Hard to estimate the number of vectors explored
between two given vectors (Korat’s dynamic pruning)

– Solution: use randomization

� Randomly fast-forward search on one machine to
generate vectors that cover the entire search space

� Parallelize search for generated vectors
and write all generated test inputs to disk

� Performs test execution separately (OFF)

26

Fast-forwarding algorithm

� Randomly chooses m candidate vectors

– Starts from candidate with all 0’s (as Korat)

– Repeatedly

� Chooses randomly a number of usual Korat
steps to apply

� Chooses randomly a “jump” in search
(discarding some fields from access stack)

� Stores current candidate

– If search space explored before storing m
candidates, repeat the process from 0’s

– Sort the candidates by their indexes

27

Results for PAR-OFF

� Ran PAR-OFF to select m candidates v1…vm

– Divided # of candidates over largest range [vi,vi+1)

� Repeated for 50 random seeds, averages:

7.94 8.087.93

1

10

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Number of machines

S
p
e
e
d
-u

p

28

Outline

� Overview

� Background: Korat

� Parallel Korat

� Reduction Methodology

� Conclusions

29

Reduction methodology

� Independent of parallel algorithms

� Goal to generate fewer equivalent inputs

– Equivalent: either all or none show bugs

– Korat prunes out some equivalent inputs

– User may want to prune out even more

� Methodology: Manually change repOK

– Add more checks to repOK to prune some
valid (but equivalent) inputs

– User encodes an ordering on candidates
such that “larger” can be pruned

30

Equivalence of DAGs

� Three versions of repOK

– Basic: no ordering

– Children: number of immediate children

– Descendants: total number of descendants

� DAGs of size 6: non-equivalent 5,984

Speedup: 60x exec. 7x gen.

repOK size Inputs Time [s]

Basic 22 1,336,729 213.36

Children 26 185,569 75.07

Descendants 34 21,430 30.48

31

Conclusions

� Developed parallel Korat

– Example speedups evaluated at Google

� Over 500x on 1024 machines for DAGs of size 8

� Slowdown after 128 machines for DAGs of size 7

� Developed reduction methodology

– Example improvements for DAGs of size 6

� Over 7x reduction in generation time

� Over 60x fewer test inputs (execution time)

32

http://korat.sourceforge.net

Thanks!

33

Isomorphic inputs

� Korat generates all valid non-isomorphic
test inputs within given bounds

� Isomorphic object graphs have:

– Same shape and primitive values

– Potentially different node identities

� Example

N0

DAG
size: 3

N1 N2

c0

N0

DAG
size: 3

N2 N1

c0

34

Equivalent inputs

� Isomorphism != equivalence

– Example: Two DAGs are equivalent if they
are isomorphic as graphs not object graphs

� Problem: Korat can generate object
graphs non-isomorphic at concrete level
but equivalent at abstract level, e.g.:

N0

DAG
size: 3

N1 N2

c0

N0

DAG
size: 3

N1 N2
c0

