
Advancing Declarative Programming
by

Aleksandar Milicevic

B.S., School of Electrical Engineering, University of Belgrade (2007)
M.S., Massachusetts Institute of Technology (2010)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

© Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 15, 2015

Certified by .
Daniel N. Jackson

Professor
Thesis Supervisor

Accepted by. .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses

2

Advancing Declarative Programming
by

Aleksandar Milicevic

Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
This thesis attempts to unite and consolidate two large and often culturally disjoint pro-
gramming paradigms: declarative (focusing on specifying what a program is supposed to
do, e.g., shuffle an array so that its elements are ordered) and imperative (detailing how the
program intention is to be implemented, e.g., by applying the QuickSort algorithm). The
ultimate result of such an effort would be a unified programming environment in which both
paradigms are seamlessly integrated, specifications are fully and efficiently executable, and
programs are written by freely mixing imperative statements and declarative specifications.

With the advent of automated constraint solving, executing declarative specifications as
standalone programs has become feasible. A number of challenges still remain. To achieve
full automation, constraint solvers often impose restrictions on specification languages and
their expressiveness; compromises are also made when integrating a (typically logic-based)
specification language with a traditional procedural programming language; and finally,
applicability is usually limited to specialized algorithmic domains (for which constraint
solving is particularly suitable) and programmers comfortable with writing formal logic.

This thesis proposes several advances to address these issues. First, a novel constraint
solving framework is presented, Alloy*, the first of its kind capable of automatically and
reliably solving arbitrary higher-order formulas (written in standard predicate logic) over
bounded domains. Second, a new approach to integrating a specification and an implemen-
tation language is proposed, where Alloy, a relational logic-based modeling and specifi-
cation language, is deeply embedded in Ruby. The resulting platform, called 𝛼Rby, uses
Alloy* as its back end, and serves both as an Alloy modeling environment with added
Ruby scripting layer around it, and as a Ruby programming environment with added ex-
ecutable specifications. Third, the general idea of declarative programming (focusing on
what instead of how) is applied to web programming, producing SUNNY, a model-based
reactive web framework with a clear separation between data, events (business logic), and
security policies. SUNNY is (1) policy-agnostic—allows security policies to be specified
individually and independently from the rest of the code, (2) reactive—automatically prop-
agates data updates to all connected clients while enforcing the security policies, (3) mostly
declarative—offers a unified sequential view of the entire distributed web system, allowing
events to be implemented only in terms of simple modifications to the data model.

Thesis Supervisor: Daniel N. Jackson
Title: Professor

3

4

Acknowledgments
This research was funded in part by the National Science Foundation under grants 0707612
(CRI: CRD—Development of Alloy Tools, Technology and Materials), and 1138967 (Col-
laborative Research: An Expedition in Computing for Compiling Printable Programmable
Machines), and by 1438982 (XPS: FULL: FP: Collaborative Research: Model-based, Event
Driven Scalable Programming for the Mobile Cloud).

I would like to thank my thesis advisor Prof. Daniel Jackson for his expert guidance
and all the help I received from him. Everything I learned from him, ranging from formal
software analysis and software design to writing papers and making beautiful presentations,
has been extremely useful and incredibly gratifying. I am also grateful to my thesis com-
mittee members, Prof. Armando Solar-Lezama and Prof. Robert Miller, whose suggestions
improved this thesis significantly.

I owe a big thanks to all my colleagues with whom I published together: Sasa Mis-
ailovic, Sarfraz Khurshid, Darko Marinov, Nemanja Petrovic, Derek Rayside, Zev Ben-
jamin, Joseph P. Near, Rishabh Singh, Daniel Jackson, Kuat Yessenov, Greg Dennis, Hillel
Kugler, Eunsuk Kang, Rustan Leino, Milos Gligoric, and Ido Efrati. I really appreciate the
opportunity to work with and learn from each one of them.

The content of this thesis would certainly be very different had I not been influenced
by a number of people I met and worked with throughout my academic career. Prof. Dra-
gan Milicev showed me the power of UML models in software engineering back when I
was an undergraduate student; the part of this thesis where I explore model-based web pro-
gramming is strongly influenced by this experience. Prof. Darko Marinov soon thereafter
introduced me to research opportunities in software engineering, guided me through my
first publications, helped me apply for graduate studies, and remained involved in my aca-
demic progress ever since. After joining MIT, I learned about the Alloy language and the
idea of lightweight formal analysis from Prof. Daniel Jackson; Alloy has been the central
part of my research while at MIT, and the majority of this thesis is dedicated to its improve-
ments and novel uses. In that process, Emina Torlak’s help with some of the internals of
the Alloy infrastructure was invaluable. Finally, Derek Rayside got me interested in the
idea of executing Alloy-like specifications, he encouraged me to explore it further, which
eventually led me to the broader and more general idea of declarative programming, the
topic of this thesis.

I had the good fortune to collaborate with a number of smart undergraduate MIT stu-
dents, who contributed to various parts of this thesis. Ido Efrati implemented the bridge
between 𝛼Rby and the Alloy Analyzer, Angel Yu explored the applicability of the event-
driven paradigm behind SUNNY in robot programming, Jing Fan ported the original version
of SUNNY from Ruby on Rails to Meteor, and Ebenezer Sefah developed a generic GUI
for SUNNY programs. I am thankful to all of them.

Finally, a huge thanks to my friends and colleagues at MIT, who made my day-to-day
work fun and enjoyable: Eunsuk Kang, Harshad Kasture, Ivan Kuraj, James Cowling, Jean
Yang, Joeseph Near, Jonathan Edwards, Kuat Yessenov, Matt McCutchen, Michal Depa,
Nadia Polikarpova, Rishabh Singh, Sachi Hemachandra, Santiago Perez De Roso, Sasa
Misailovic, and Stelios Sidiroglou.

5

6

Contents

1 Introduction 17

I Empowering the Solver 22

2 Alloy*: General-Purpose Higher-Order Constraint Solving 25
2.1 Example: Classical Graph Algorithms . 26
2.2 Example: Policy Synthesis . 30
2.3 Background and Key Ideas . 30

2.3.1 Skolemization . 30
2.3.2 CEGIS . 32
2.3.3 CEGIS for a general purpose solver 32

2.4 Semantics . 33
2.4.1 Translation of Formulas into Proc Objects 33
2.4.2 Satisfiability Solving . 35
2.4.3 Treatment of Bounds . 36

2.5 Implementation . 38
2.6 Case Study: Program Synthesis . 38
2.7 Optimizations . 40

2.7.1 Quantifier Domain Constraints . 40
2.7.2 Strictly First-Order Increments . 41

2.8 Evaluation . 42
2.8.1 Micro Benchmarks . 42
2.8.2 Program Synthesis . 43
2.8.3 Benefits of the Alloy* Optimizations 46
2.8.4 Distribution of Solving Time over Individual Candidates 46
2.8.5 Discussion . 47

2.9 Related Work . 49
2.10 Conclusion . 50

3 Preventing Arithmetic Overflows in Alloy* 53
3.1 Prototypical Overflow Anomalies . 54
3.2 Motivating Example . 56
3.3 Approach . 58

3.3.1 User-Level Semantics . 59

7

3.3.2 Implementation-Level Semantics . 60
3.3.3 Correspondence Between the Two Semantics 65
3.3.4 The Law of the Excluded Middle . 66

3.4 Implementation in Circuits . 67
3.5 Evaluation . 67

3.5.1 Exhaustive Testing of the New Translation Scheme 68
3.5.2 Effects on Models with Integer Arithmetic 69

3.6 Related Work . 70
3.7 Conclusion . 71

II Unifying Specification and Implementation Languages 73

4 𝛼Rby: An Embedding of Alloy in Ruby 75
4.1 Why an Imperative Shell Around a Modeling Language 76
4.2 Examples of Motivating Use Cases . 77
4.3 𝛼Rby for Alloy Users . 79
4.4 Beyond Standard Analysis . 79
4.5 The 𝛼Rby Language . 82

4.5.1 Syntax . 83
4.5.2 Semantics . 84
4.5.3 Implementation Considerations . 86

4.6 Discussion . 89
4.7 Related Work . 90
4.8 Discussion . 91
4.9 Conclusion . 92

III Declarative Programming for the Web 93

5 SUNNY: Model-Based Paradigm for Programming Reactive Web Applications 95
5.1 Motivation . 97
5.2 Example . 98
5.3 What is Different About SUNNY . 100

5.3.1 The Java Approach . 101
5.3.2 The Rails Approach . 101
5.3.3 The Meteor Approach . 102

5.4 The SUNNY Approach . 103
5.4.1 Sample Execution . 103
5.4.2 Domain-Specific Programming Language 106
5.4.3 Runtime Environment . 107
5.4.4 Online Code Generator . 108
5.4.5 Dynamic Template-Based Rendering Engine 112

5.5 Semantics . 113
5.5.1 Policy Checking . 115

8

5.5.2 Reactivity . 118
5.5.3 Concurrency Model . 120

5.6 Automated Reasoning and Analysis . 120
5.6.1 Testing . 120
5.6.2 Model Checking . 122
5.6.3 Verification and Program Synthesis 122

5.7 Discussion . 122
5.8 Evaluation . 123

5.8.1 Gallery of Sunny.js Applications . 123
5.8.2 Comparison with a Web Application in Meteor 130
5.8.3 Limitations . 130

5.9 Related Work . 132
5.9.1 Event-Driven Programming . 132
5.9.2 Data-Centric Programming . 133
5.9.3 Code Generation and Program Synthesis 134
5.9.4 Declarative Privacy Policies . 134
5.9.5 GUI Builders . 136

5.10 Conclusion . 136

6 Conclusion 139

9

10

List of Figures

1-1 Spectrum of the declarative programming space explored in this thesis . . . 21

2-1 An automatically generated instance satisfying maxClique 28
2-2 Alloy* GUI showing a trace of all explored candidate instances 29
2-3 Alloy* formalization: overview of the syntactic domains 34
2-4 Alloy* formalization: overview of semantic and built-in functions 34
2-5 Translation of boolean Formulas to Procs 36
2-6 The higher-order model finding algorithm 37
2-7 Average (over 5 different edge densities) (a) solving times, and (b) number

of explored candidates for the graph algorithms 42
2-8 Avgerage times over thresholds for graph algorithms 44
2-9 Comparison between Alloy* and Reference Solvers. 45
2-10 Distribution of total solving time over individual (sequentially explored)

candidates for the three hardest benchmarks. Each candidate time is further
split into times for each CEGIS phase . 48

3-1 Overview of semantic domains, symbols, and stores to be used 63
3-2 Evaluation of arithmetic operations (aeval) 63
3-3 Evaluation of boolean formulas (beval) . 63
3-4 Evaluation of integer predicates (ieval) . 64

4-1 Core 𝛼Rby syntax in BNF. Productions starting with: ruby are defined by
Ruby. 83

4-2 Semantic domains. (Expr and Decl correspond directly to the Alloy AST) . 86
4-3 Semantic functions which translate grammar rules to semantic domains . . 86
4-4 Evaluation of 𝛼Rby expressions (expr production rules) into Alloy expres-

sions (Expr). 87
4-5 Evaluation of blocks and all declarations . 88
4-6 Helper functions. 88

5-1 Internal architecture of SUNNY’s runtime environment for concurrent pro-
cessing of events and user requests. 103

5-2 Snippets of automatically generated code for the IRC example 109
5-3 Datatypes, global variables, built-in and framework-provided functions . . 114
5-4 Formalization of policy checking in SUNNY 116
5-5 Formalization of CRUD operations in SUNNY 117

11

5-6 Formalization of auto publishing in SUNNY 119
5-7 State diagram for the IRC example . 121
5-8 Views of three different users of the same Chat application 126
5-9 Views of two different users of the same PartyPlanner application 127
5-10 Views of two different users of the same SocNet application 129

12

List of Tables

2.1 Performance on Synthesis Benchmarks . 46
2.2 Performance of Alloy* (in seconds) with and without optimizations. 47

3.1 List of checked arithmetic tautologies . 70
3.2 Analysis times of checks from the flash filesystem model [88] 70

4.1 Examples of differences in syntax between 𝛼Rby and Alloy 84

13

14

List of listings

1 Automatic checking of Turan’s theorem in Alloy* 27
2 Grade Assignment Policy in Alloy* . 31
3 Prototypical overflow anomalies in the previous version of Alloy 55
4 Alloy model for bounded verification of Prim’s algorithm that finds a min-

imum spanning tree for a weighted connected graph 57
5 A unit test for exhaustively checking overflow detection in elementary arith-

metic formulas . 68
6 Hamiltonian Path example . 80
7 A declarative Sudoku solver using 𝛼Rby with partial instances 81
8 A full implementation (excluding any GUI) of a simple public IRC appli-

cation written in RED . 99
9 ERB template views for the IRC example from Listing 8 104
10 Excerpt from the JavaScript translation of the domain model, which the

client-side code can program against . 112
11 Sunny.js Chat application code listing: data and security models 125
12 Sunny.js PartyPlanner application code listing: data and security models . . 127
13 Sunny.js SocNet application code listing: data and security models 129
14 Implementation of the IRC example in Meteor 131

15

16

Chapter 1

Introduction

This thesis attempts to unite and consolidate two large and often culturally disjoint pro-
gramming paradigms: declarative and imperative. Declarative is taken to mean any pro-
gramming environment that allows the programmer to focus on expressing what the pro-
gram is supposed to do; this is in contrast to imperative programming, which requires the
programmer to prescribe a step-by-step algorithm detailing how the program intention is to
be achieved.

To illustrate the main difference between the two paradigms, consider the problem of
computing a maximum clique in a graph. A purely declarative program would only state
that the result is the largest set of nodes in which each pair of nodes is connected (i.e., the
largest complete subgraph in the input graph); an imperative program, on the other hand,
would express some kind of search algorithm that, might, e.g., explore all complete sub-
graphs and return the largest one. The former can succinctly be expressed using classical
predicate logic and basic set algebra, which is arguably easier than writing a custom search
algorithm implementing some form of backtracking or dynamic programming. More im-
portantly, the declarative program directly corresponds to the problem statement, making it
correct by construction.

Statements about program behavior, i.e., what the program is supposed to do, are of-
ten called program specifications. Traditionally, a specification is thought of as a rigorous
mathematical characterization of a program, written alongside an imperative implementa-
tion. As such, it mainly serves as part of the program requirement documentation. In more
advanced scenarios, advocated strongly by the formal methods community, a formal proof
should additionally be constructed to verify that the implementation meets the specification
(e.g., [21, 45, 46, 122–124]).

In practice, however, software verification is not an easy task. It requires significant
human effort, typically by highly trained personnel. Consequently, its use is often limited
to safety critical systems of utmost importance. For that reason, agile software development
approaches, which argue that software development should be driven by concrete tests and
use cases instead of formal specifications [27, 28], have been widely adopted in industry.

The idea of treating specifications as standalone programs and being able to execute
them directly (without requiring a separate imperative implementation) is not a new one.
Until recently, however, it has been widely assumed that any implementation would be
hopelessly inefficient, and thus not feasible for practical applications. Back in 1987, Hoare

17

acknowledged the benefits that such technology would have, but also predicted that com-
puters would never be powerful enough to carry out any interesting computation in this
way [75], while Hayes and Jones argued in 1989 that direct execution of specifications
would inevitably lead to a decrease in the expressive power of the specification language [74].

With the advent of automated constraint solving (e.g., [25, 29, 41, 48, 50, 97, 162]) and
lightweight formal methods [77, 80], executing specifications as standalone programs has
become feasible [90,118,141,161]. Moreover, many modern programming languages (e.g.,
Ruby [105], Scala [132], Racket [56]) are highly extensible and support powerful mecha-
nisms for embedding domain specific languages, so the expressive power of the specifica-
tion language does not have to suffer either (provided, of course, that the underlying solver
is powerful enough to support it).

In my previous work, I developed SQUANDER, a unified environment for executing
declarative and imperative code [118], and also argued how such a unified environment
might create a smooth continuum between the formal and the agile [136]. SQUANDER inte-
grates first-order relational specifications into object-oriented Java programs. A declarative
specification can be asserted against the program heap at runtime, at which point SQUAN-
DER automatically translates the heap into relations, invokes a relational constraint solver,
namely Kodkod [162], and updates the heap according to the solution returned by the solver
(if one is found). In a related project, I developed JENNISYS [99], a program synthesis tech-
nique, which, for certain classes of programs, takes a similar declarative specification and
generates an equivalent imperative program. The benefit of the synthesis approach is that
no performance penalty is incurred while executing the generated program; the downside
is, however, that the synthesis algorithm is computationally significantly more expensive,
and in practice it is limited to only a small class of programs.

In this thesis, I make the following advances over my previous work on the topic of
executable specifications:

(1) Empowering the Solver. To execute specifications seamlessly within a larger
program, where imperative and declarative statements are mixed freely, it is mandatory
that the declarative statements can be solved fully automatically. State-of-the-art con-
straint solvers, typically used for this purpose, limit their use to various forms of first-
order logic (e.g., boolean satisfiability—SAT, satisfiability modulo theories—SMT, predi-
cate logic over bounded relations—Kodkod, etc.). For many practical purposes, however,
first-order logic is not sufficiently expressive. The aforementioned maximal clique prob-
lem, for instance, is not first-order, and thus could not be solved by SQUANDER or any other
similar tool, specifically because of the limitations of the underlying constraint solver.

To address this issue, I designed and implemented Alloy* , the first general-purpose
constraint solver capable of automatically solving formulas with higher-order quantifica-
tion over bounded domains [116,117]. Existing solvers either do not admit such quantifiers,
or fail to produce a solution in most cases. Alloy*, by contrast, is both sound and complete
for the given bounds, and still efficient for many practical purposes. For example, the prob-
lem of software synthesis is higher-order. Existing synthesizers implement a custom search
algorithm on top of a first-order constraint solver, whereas with Alloy* this problem be-
comes solvable directly (in one step) and purely declaratively, from a single higher-order
formula. Furthermore, Alloy* scales better than JENNISYS and the standard reference syn-

18

thesizers1, and is competitive with highly optimized, purpose-built synthesizers. Alloy* is
built on top of Alloy [78], retaining its syntax and its input language (many-sorted predi-
cate logic with relational algebra), and changes its semantics only by expanding the set of
specifications that can be analyzed, namely to include the higher-order ones.

This thesis also addresses another deficiency, specific to bounded constraint solvers like
Kodkod and Alloy, relevant for the purpose of executing specifications—that of arithmetic
overflows. In a bounded setting, integers must also be bounded, causing all arithmetic
functions to become partial. Partial functions in logic are known to be a hard problem, so
a common strategy is to regard the smallest negative integer as the successor of the largest
positive integer and give the arithmetic functions wraparound semantics (for example, 3 +
2 becomes -3 if integers are bounded to {-4, -3, -2, -1, 0, 1, 2, 3}). This approach, unfortu-
nately, results in bogus solutions (when solving declarative statements) that would not hold
in the unbounded context. Alloy* retains the bounded nature of integers in Alloy, but mit-
igates this problem (completely separately from its solution to higher-order quantifiers) by
adjusting the translation from relational to propositional logic in a clever way that ensures
that no solution with overflows is ever returned by the solver [113, 114].

(2) Unifying Specification and Implementation Languages. For writing specifica-
tion statements, SQUANDER supports JFSL [170], an Alloy-like relational language, that
supports both relational algebra and standard Java expressions. These properties make it
easy to succinctly write complex relational properties in terms of a program’s data struc-
tures and reachable objects on the heap. Unfortunately, however, the JFSL specification
statements in SQUANDER are written as plain strings, embedded in standard Java anno-
tations. This is suboptimal, because none of the JFSL language constructs are first-class,
making it is impossible to manipulate and process them programmatically. Some other
approaches (e.g., [90, 161]), in contrast, choose to use the unmodified (imperative) host
language also for writing specification statements; this mitigates the first-class problem,
but leads to a decrease in the expressive power of the specification language.

As part of this thesis, I designed and implemented 𝛼Rby [112], a single unified pro-
gramming language for writing declarative specification statements and imperative object-
oriented code. 𝛼Rby is implemented as a deep embedding of the Alloy modeling language
(backed by an automated constraint solver, namely Alloy*) in Ruby. This approach aims
to bring these two distinct paradigms (imperative and declarative) together in a novel way.
Having the other paradigm available within the same language is beneficial to both the
modeling community of Alloy users and the object-oriented community of Ruby program-
mers: the Alloy users gain a full-fledged imperative shell around the modeling language
(allowing them to programmatically construct their models, parameterize them, script cer-
tain tasks around their modeling workflow, etc.), while the Ruby community can still take
the full advantage of executable specifications.

Additionally, I explore how the general idea of declarative programming (“saying what
instead of how”) can be applied to an entirely different domain, where no knowledge of for-
mal logic is required to write specifications, and no expensive runtime calls to a constraint
solver are necessary:

1Taken from the official SyGuS [17] synthesis competition initiative.

19

(3) Declarative Programming for the Web. Web application development poses a
unique set of challenges. Applications are increasingly distributed and event-driven, but
concurrent and distributed programming (including distributed data management) is still
difficult and a significant source of software bugs. With the adoption of ubiquitous (al-
beit often unnecessary) online sharing, security and privacy are becoming major concerns.
Implementing privacy policies, however, is still, by and large, a cross-cutting concern,
requiring the implementation to be scattered across the codebase, making it fragile and un-
reliable. Finally, for the most part, modern three-tier web applications still require different
languages and technologies to be used for each tier (e.g., relational database and SQL for
the data tier, Ruby, Java, Python or some other programming language for the server-side
logic tier, and Javascript for the presentation and client-side logic tier). This not only poses
a cognitive burden on the developer, but more importantly, causes undesirable redundan-
cies across the tiers (e.g., a single data model typically has three different representations:
in the database, in the server-side programming language, and in Javascript for the client
side).

Despite the technological complexities of building interactive web applications, most
such applications are conceptually very simple. Imagine a straightforward chat application,
where all rooms are public, users can freely create and join chat rooms, and once joined,
they can post messages, which are then automatically shown to other participating users.
Although the functionality (data model + business logic) of such an app is arguably trivial,
implementing it using a standard model-view-controller web framework (e.g., Ruby on
Rails, or Django), even without any scalability considerations, proves to be a tedious, time-
consuming, and error-prone task, exactly because of all the accidental complexities stated
above.

Applying the idea of declarative programming (saying what instead of how), I designed
SUNNY [115], a model-based, event-driven, policy-agnostic paradigm for developing reac-
tive web applications. SUNNY imposes a clear separation between four main (often cross-
cutting) concerns of web applications: (1) data model, (2) reactive GUI, (3) event model,
and (4) security model. The programmer specifies each model separately and indepen-
dently from each other, and the SUNNY runtime is in charge of different technologies and
ensuring that events are executed atomically, that there are no data races, that all security
policies are applied consistently throughout the application, that the data model is automat-
ically persisted (e.g., by translating everything behind the scene to a relational database),
that the data is automatically replicated and appropriately sent to all clients (without violat-
ing any “read” security policies), etc. As a result, SUNNY allows a programmer to represent
a distributed application if it were a simple sequential program, with atomic actions updat-
ing a single, shared global state.

I implemented SUNNY both on top of a traditional model-view-controller web frame-
work, and a lightweight pure JavaScript web platform. The purpose of the former is to
demonstrate how the SUNNY concepts can be achieved across the full web stack; I used
Ruby on Rails [6] and 𝛼Rby as the input modeling language. The latter implementation,
made on top of Meteor [4], takes advantage of “thick client” and “client-side rendering”
technologies to improve scalability and responsiveness.

Figure 1-1 graphically depicts the portion of the declarative programming spectrum
explored in this thesis. The main contributions include:

20

spec formal logic
engine sophisticated search
apps complex algorithms,

constraint solving

spec DSL
engine translation/compilation
apps domain-specific uses

• more powerful constraint solver
• capable of solving a whole new
category of formal specifications

• model-based web framework
• reactive, single-tier, policy-agnostic
• what instead of how

• unified specification &
implementation language

Figure 1-1: Spectrum of the declarative programming space explored in this thesis

• Alloy*: (1) a framework for extending a first-order solver to the higher-order case,
including an implementation of the first general-purpose constraint solver capable
of automatically solving formulas with higher-order quantification over bounded do-
mains, and (2) a formalization of a novel treatment of partial arithmetic functions in
logic, and its application in Alloy*;

• 𝛼Rby: a new kind of combination of a declarative and an imperative language, justi-
fied by a collection of examples demonstrating how both imperative and declarative
paradigms can benefit from having the other available in the same language;

• SUNNY: a novel declarative programming paradigm for reactive web applications,
imposing a clear separation between main (often cross-cutting) concerns and allow-
ing a simple single-tier programming model for developing distributed systems.

The technical content of this thesis is split into three chapters, one for each of the
three main contributions. Part I is dedicated to the improvements to the constraint solving
technologies, Part II is about the language integration challenges, and Part III focuses on
declarative programming in the domain of web applications.

21

Part I

Empowering the Solver

22

The last decade has seen a dramatic growth in the use of constraint solvers as a com-
putational mechanism, not only for analysis of software, but also at runtime. Solvers are
available for a variety of logics but are generally restricted to first-order formulas. Some
tasks, however, most notably those involving synthesis, are inherently higher order; these
are typically handled by embedding a first-order solver (such as a SAT or SMT solver) in a
domain-specific algorithm.

Using strategies similar to those used in such algorithms, Chapter 2 of this thesis shows
how to extend a first-order solver (in this case Kodkod, a model finder for relational logic
used as the engine of the Alloy Analyzer) so that it can handle quantifications over higher-
order structures. The resulting solver is sufficiently general that it can be applied to a range
of problems; it is higher order, so that it can be applied directly, without embedding in an-
other algorithm; and it performs well enough to be competitive with specialized tools. Just
as the identification of first-order solvers as reusable backends advanced the performance
of specialized tools and simplified their architecture, factoring out higher-order solvers may
bring similar benefits to a new class of tools.

Chapter 3 of this thesis proposes a solution to another outstanding problem in the do-
main of bounded constraint solving. In a bounded analysis, arithmetic operators become
partial, and a different semantics becomes necessary. One approach, mimicking program-
ming languages, is for overflow to result in wrap-around. Although easy to implement,
wrap-around produces unexpected counterexamples that do not correspond to cases that
would arise in the unbounded setting. This thesis describes a new approach, implemented
in the latest version of the Alloy Analyzer, in which instances that would involve overflow
are suppressed, and consequently, spurious counterexamples are eliminated. The key idea
is to interpret quantifiers so that bound variables range only over values that do not cause
overflow.

Both of the two solver-level improvements presented in this chapter have immediate
benefits in the domain of executable specifications, thus contributing to the overall goal of
this thesis: advancing the state of the art of declarative programming in general.

23

24

Chapter 2

Alloy*: General-Purpose Higher-Order
Constraint Solving

As constraint solvers become more capable, they are increasingly being applied to problems
previously regarded as intractable. Program synthesis, for example, requires the solver to
find a single program that computes the correct output for all possible inputs. This “∃∀”
quantifier pattern is a particularly difficult instance of higher-order quantification, and no
existing general-purpose constraint solver can reliably provide solutions for problems of
this form.

Instead, tools that rely on higher-order quantification use ad hoc methods to adapt exist-
ing solvers to the problem. A popular technique for the program synthesis problem is called
CEGIS (counterexample guided inductive synthesis) [150], and involves using a first-order
solver in a loop: first, to find a candidate program, and second, to verify that it satisfies
the specification for all inputs. If the verification step fails, the resulting counterexample is
transformed into a constraint that is used in generating the next candidate.

This chapter presents Alloy*, a general-purpose, higher-order, bounded constraint solver
based on the Alloy Analyzer [78]. Alloy is a specification language combining first-order
logic with relational algebra; the Alloy Analyzer performs bounded analysis of Alloy spec-
ifications. Alloy* admits higher-order quantifier patterns, and uses a general implementa-
tion of the CEGIS loop to perform bounded analysis. It retains the syntax of Alloy, and
changes the semantics only by expanding the set of specifications that can be analyzed,
making it easy for existing Alloy users to adopt.

Alloy* handles higher-order quantifiers in a generic and model-agnostic way, mean-
ing that it allows higher-order quantifiers to appear anywhere where allowed by the Alloy
syntax, and does not require any special idiom to be followed. Alloy* first creates a solv-
ing strategy by decomposing an arbitrary formula (possibly containing nested higher-order
quantifiers) into a tree of subformulas and assigning a decision procedure to each of them.
Each such tree is either (1) a higher-order “∃∀” pattern, (2) a disjunction where at least
one disjunct is higher-order, or (3) a first-order formula. To solve the “∃∀” nodes, Alloy*
applies CEGIS; for the disjunction leaves, Alloy* solves each disjunct separately; and for
first-order formulas, Alloy* uses Kodkod [163].

To solve “∃∀” constraints, Alloy* first finds a candidate solution by changing the uni-
versal quantifier into an existential and solving the resulting first-order formula. Then,

25

it verifies that candidate solution by attempting to falsify the original universal formula
(again, a first-order problem); if verification fails, Alloy* adds the resulting counterexam-
ple as a constraint to guide the search for the next candidate, and begins again. When
verification succeeds, the candidate represents a solution to the higher-order quantification,
and can be returned to the user.

To our knowledge, Alloy* is the first general-purpose constraint solver capable of solv-
ing formulas with higher-order quantification. Existing solvers either do not admit such
quantifiers, or fail to produce a solution in most cases. Alloy*, by contrast, is both sound
and complete for the given bounds, and still efficient for many practical purposes.

We have evaluated Alloy* on a variety of case studies taken from the work of other
researchers. In the first, we used Alloy* to solve classical higher-order NP-complete graph
problems like max-clique, and found it to scale well for uses in modeling, bounded veri-
fication, and fast prototyping. In the second, we encoded all of the SyGuS [17] program
synthesis benchmarks that do not require bit vectors, and found that, while state-of-the-art
purpose-built synthesizers are typically faster, Alloy* beats all the reference synthesizers
provided by the competition organizers. In the third, we encoded security properties used in
Margrave, and were able to synthesize new security policies consistent with the properties.

Alloy* retains Alloy’s syntax, and changes its semantics only by expanding the set
of specifications that can be analyzed. Our improved Alloy Analyzer is identical to the
original besides the addition of higher-order solving, and will be easy for existing Alloy
users to adopt. It is available [1] under the terms of the GPLv3, and we hope that Alloy
users will find the additional expressive power useful.

The main contributions are as follows:

• A framework for extending a first-order solver to the higher-order case, consisting of
the design of datatypes and a general algorithm comprising syntactic transformations
(skolemization, conversion to negation normal form, etc.) and an incremental solving
strategy;

• A collection of case study applications demonstrating the feasibility of the approach
in different domains (including synthesis of code, execution and bounded verifica-
tion of higher-order NP-hard algorithms), and showing encouraging performance on
standard benchmarks;

• The recognition of higher-order solving as the essence of a range of computational
tasks;

• The identification of the key properties of a first-order solver that are required for
such a framework.

2.1 Example: Classical Graph Algorithms
Classical graph algorithms have become prototypical Alloy examples, showcasing both the
expressiveness of the Alloy language and the power of the Alloy Analyzer. Many complex
problems can be specified declaratively in only a few lines of Alloy, and then in a matter of

26

1 some sig Node {val: one Int}

2 // between every two nodes there is an edge
2𝑒

𝑘2

𝑒

3 pred clique[edges: Node -> Node, clq: set Node] {
4 all disj n1, n2: clq | n1 -> n2 in edges }

5 // no other clique with more nodes
2𝑒

𝑘2

𝑒

6 pred maxClique[edges: Node -> Node, clq: set Node] {
7 clique[edges, clq]
8 no clq2: set Node | clq2 != clq and clique[edges,clq2] and #clq2 > #clq }

9 // symmetric and irreflexive
2𝑒

𝑘2

𝑒

10 pred edgeProps[edges: Node -> Node] {
11 (~edges in edges) and (no edges & iden) }

12 // max number of edges in a (𝑘 + 1)-free graph with 𝑛 nodes is
(𝑘−1)𝑛2

2𝑘

2𝑒

𝑘2

𝑒

13 check Turan {
14 all edges: Node -> Node | edgeProps[edges] implies
15 some mClq: set Node {
16 maxClique[edges, mClq]
17 let n = #Node, k = #mClq, e = (#edges).div[2] |
18 e <= k.minus[1].mul[n].mul[n].div[2].div[k] }
19 } for 7 but 0..294 Int

Listing 1: Automatic checking of Turan’s theorem in Alloy*

seconds fully automatically animated (for graphs of small size) by the Alloy Analyzer. This
ability to succinctly specify and quickly solve problems like these—algorithms that would
be difficult and time consuming to implement imperatively using traditional programming
languages—has found its use in many applications, including program verification [42,60],
software testing [104, 140], fast prototyping by means of executing specifications [118,
141], teaching [54], etc.

For a whole category of interesting problems, however, the current Alloy engine is not
powerful enough. Those are the higher-order problems, for which the specification has to
quantify over relations rather than scalars. Many well-known graph algorithms fall into
this category, including finding maximal cliques, max cuts, minimum vertex covers, and
various coloring problems. In this section, we show such graph algorithms can be specified
and analyzed using the new engine implemented in Alloy*.

Suppose we want to check Turán’s theorem, one of the fundamental results in graph
theory [14]. Turán’s theorem states that a (𝑘 + 1)-free graph with 𝑛 nodes can maximally
have (𝑘−1)𝑛

2

2𝑘 edges. A graph is (𝑘+1)-free if it contains no clique with 𝑘+1 nodes (a clique
is a subset of nodes in which every two nodes are connected by an edge).

Listing 1 shows how Turán’s theorem might be formally specified in Alloy. A signature
is defined to represent the nodes of the graph (line 1). Next, the clique property is em-
bodied in a predicate (lines 3–4): for a given edges relation and a set of nodes clq, every
two different nodes in clq are connected by an edge; the maxClique predicate (lines 6–8)
additionally asserts that no other clique contains more nodes.

Having defined maximal cliques in Alloy, we can proceed to formalize Turán’s theo-
rem. The Turan command (lines 13–19) asserts that for all possible edge relations that are

27

(a) A maxClique candidate (b) A counterexample for (a)

(c) Final maxClique instance

Figure 2-1: An automatically generated instance satisfying maxClique

symmetric and irreflexive (line 14), if the max-clique in that graph has 𝑘 nodes (k=#mClq),
the number of selected edges (e=(#edges).div[2]) must be at most (𝑘−1)𝑛

2

2𝑘 . (The number of
tuples in edges is divided by 2 because the graph in the setup of the theorem in undirected.)

Running the Turan command was previously not possible. Although the specification,
as given in Listing 1, is allowed by the Alloy language, trying to execute it causes the
Analyzer to immediately return an error: “Analysis cannot be performed since it requires
higher-order quantification that could not be skolemized”. In Alloy*, in contrast, this check
can be automatically performed to confirm that indeed no counterexample can be found
within the specified scope. The scope we used (7 nodes, ints from 0 to 294) allows for
all possible undirected graphs with up to 7 nodes. The upper bound for ints was chosen
to ensure that the formula for computing the maximal number of edges ((𝑘−1)𝑛

2

2𝑘) never
overflows for 𝑛 ≤ 7 (which implies 𝑘 ≤ 7). The check completes in about 45 seconds.

To explain the analysis problems that higher-order quantifiers pose to the standard Alloy
Analyzer, and how those problems are tackled in Alloy*, we look at a simpler task: finding
an instance of a graph with a subgraph satisfying the maxClique predicate. The problem-
atic quantifier in this case is the inner “no clq2: set Node | . . .” (line 8) constraint, which
requires checking that for all possible subsets of Node, not one of them is a clique with
more nodes than the given set clq. A direct translation into the current SAT-based back-
end would require the Analyzer to explicitly, and upfront, enumerate all possible subsets
of Node—which would be prohibitively expensive. Instead, Alloy* implements the CEGIS
approach:

1. First, it finds a candidate instance, by searching for a clique clq and only one set of

28

nodes clq2 that is not a clique larger than clq. A possible first candidate is given
in Figure 2-1(a) (with the clique nodes are highlighted in green). At this point clq2
could have been anything that is either not a clique or not larger than clq.

2. Next, Alloy* attempts to falsify the previous candidate by finding, again, only one
set of nodes clq2, but this time such that clq2 is a clique larger than clq, for the
exact (concrete) graph found in the previous step. In this case, it finds one such
counterexample clique (red nodes in Figure 2-1(b)) refuting the proposition that clq
from the first step is a maximal clique.

3. Alloy* continues by trying to find another candidate clique, encoding the previous
counterexample to prune the remainder of the search space (as explained in detail in
Sections 2.3 and 2.4). After several iterations, it finds the candidate in Figure 2-1(c)
which cannot be refuted, so it returns that candidate as a satisfying solution.

Once written, the maxClique predicate (despite containing a higher-order quantification)
can be used in other parts of the model, like any other predicate, just as we used it to for-
mulate and check Turán’s theorem. In fact, the turan check contains another higher-order
quantifier, so the analysis ends up spawning two nested CEGIS loops and exhaustively it-
erating over them; every candidate instance and counterexample generated in the process
can be opened and inspected in the Alloy visualizer (as depicted in Figure 2-2).

Figure 2-2: Alloy* GUI showing a trace of all explored candidate instances

In Section 2.8.1 we run Alloy* on concrete graph instances to compute max clique, max
cut, max independent set, and min vertex cover on graphs with up to 50 nodes.

29

2.2 Example: Policy Synthesis
Policy design and analysis is an active area of research. A number of existing tools [58,76,
131, 145] use a declarative language to specify policies, and a constraint-based analysis to
verify them against a high-level property. In this section, we demonstrate how Alloy* can
be used to automatically synthesize policies satisfying given properties.

Listing 2 shows an Alloy model that describes the problem of grade assignment at a
university, based on the running example from [58]. A policy specification contains three
basic concepts: roles, actions, and resources. A system consists of a set of users, each
having one or more roles and performing some actions on a set of resources. A policy (acl)
is a set of tuples from Role to Action to Resource, describing a set of allowed actions. For
example, a policy containing only a single tuple Faculty->Assign->ExtGrade means that a
user may assign an external grade only if it has the Faculty role.

There are two desirable properties over this system: (1) students should not be able to
assign external grades, and (2) no user should be able to both assign and receive external
grades. A policy is considered valid if and only if, when quantified over every possible
combination of user roles and behaviors, it ensures that the properties hold. This higher-
order property is encoded in the valid predicate.

Running Alloy* to search for an instance satisfying the valid predicate completes in
about 0.5 seconds, and retuns an empty policy, which is technically valid but not very useful
(since it allows no actions to be performed by anyone!). Fortunately, we can leverage the
higher-order feature of Alloy* to synthesize more interesting policies. For example, 3
additional lines of Alloy are enough to describe the most permissive policy as a policy that
is valid such that no other valid policy has more tuples in it (lines 37–41). It takes about
3.5 seconds to generate one such policy:

{Faculty,Receive,ExtGrade}, {Faculty,Assign,Resource},
{Student,Receive,Resource}, {Student,Assign,IntGrade},

{TA,Receive,Resource}, {TA,Assign,IntGrade}

This policy provides a starting point for further exploration of the policy space. The de-
signer may decide, for example, that students should not be able to assign IntGrade, add
another property, and then repeat the synthesis process.

2.3 Background and Key Ideas

2.3.1 Skolemization

Many first-order constraint solvers allow some form of higher-order quantifiers to appear
at the language level. Part of the reason for this is that, in certain cases, quantifiers can
be eliminated in a preprocessing step called skolemization. In a model finding setting,
every top-level existential quantifier is eliminated by (1) introducing a skolem constant for
the quantification variable, and (2) replacing every occurrence of that variable with the
newly created skolem constant. For example, solving some s: set univ | #s > 2, which
is higher-order, is equivalent to solving $s in univ && #$s > 2, which is first-order and

30

1 /* Basic signatures */
2 abstract sig Resource, Action, Role {}
3 sig User {}
4

5 /* ’performs’ describes the behavior of users */
6 pred enforce[acl: Role->Action->Resource,
7 roles: User->Role,
8 performs: User->Action->Resource] {
9 all u: User, a: Action, r: Resource |

10 /* ’u’ can perform ’a’ on ’r’ only if allowed by ’acl’ */
11 u->a->r in performs => (some ro: u.roles | ro->a->r in acl)
12 }

13 /* Domain-specific concepts
2𝑒

𝑘2

𝑒 */

14 one sig Faculty, Student, TA extends Role {}
15 one sig IntGrade, ExtGrade extends Resource {}
16 one sig Assign, Receive extends Action {}

17 /* Properties
2𝑒

𝑘2

𝑒 */

18 pred prop1[roles : User->Role, performs : User->Action->Resource] {
19 /* no student can assign external grade */
20 no u: User | u.roles = Student and Assign->ExtGrade in u.performs
21 }
22 pred prop2[roles : User->Role, performs : User->Action->Resource] {
23 /* no user can both receive and assign external grades */
24 no u: User | Assign + Receive in u.performs.ExtGrade
25 }
26 /* Assumption: no user can both be a faculty and a student/TA */
27 pred noDualRoles[roles : User->Role] {
28 no u: User | Faculty in u.roles and some (Student + TA) & u.roles
29 }
30 /* ’acl’ satisfies properties over every user role and behavior */
31 pred valid[acl: Role->Action->Resource] {
32 all roles: User->Role, performs : User->Action->Resource |
33 (enforce[acl, roles, performs] and noDualRoles[roles]) implies
34 (prop1[roles, performs] and prop2[roles, performs])
35 }
36 /* ’acl’ allows the most number of actions while being valid */
37 pred mostPermissive[acl: Role->Action->Resource] {
38 valid[acl]
39 no acl’: Role->Action->Resource |
40 acl != acl’ and valid[acl’] and #acl’ > #acl
41 }

Listing 2: Grade Assignment Policy in Alloy*

thus solvable by general purpose constraint solvers. (Throughout, following the Alloy
convention, skolem constants will be prefixed with a dollar sign.)

31

2.3.2 CEGIS
CounterExample-Guided Inductive Synthesis [150] is an approach for solving higher-order
synthesis problems, which is extended in Alloy* to the general problem of solving higher-
order formulas. As briefly mentioned before, the CEGIS strategy applies only to formulas
in the form ∃𝑝∀𝑒⋅𝑠(𝑝, 𝑒) and prescribes the following three steps:

(1) search: attempt to find a candidate value for 𝑝 by solving ∃𝑝∃𝑒⋅𝑠(𝑝, 𝑒)—a first-
order problem;

(2) verification: if a candidate $𝑝 is found, try to verify it by checking if it holds for all
possible bindings for 𝑒. The verification condition, thus, becomes ∀𝑒⋅𝑠($𝑝, 𝑒). This check
is done by refutation, i.e., by satisfying the negation of the verification condition; pushing
the negation through yields ∃𝑒⋅¬𝑠($𝑝, 𝑒), which, again, is first-order.

(3) induction: if the candidate is verified, a solution is found and the algorithm ter-
minates. Otherwise a concrete counterexample $𝑒𝑐𝑒𝑥 is found. The search continues by
searching for another candidate which must also satisfy the counterexample, that is, solving
∃𝑝∃𝑒⋅𝑠(𝑝, 𝑒) ∧ 𝑠(𝑝, $𝑒𝑐𝑒𝑥). This strategy in particular tends to be very effective at reducing
the search space and improving the overall scalability.

2.3.3 CEGIS for a general purpose solver
Existing CEGIS-based synthesis tools implement this strategy internally, optimizing for the
target domain of synthesis problems. The key insight is that the CEGIS algorithm can be
implemented, generically and efficiently, inside a general purpose constraint solver. For an
efficient implementation, it is important that such a solver supports the following:

• Partial Instances. The verification condition must be solved against the previously
discovered candidate; explicitly designating that candidate as a “partial instance”,
i.e., a part of the solution known upfront, is significantly more efficient than encoding
it with constraints [163].

• Incremental solving. Except for one additional constraint, the induction step solves
exactly the same formula as the search step. Many modern SAT solvers already
allow new constraints to be added to already solved propositional formulas, making
subsequent runs more efficient (because all previously learned clauses are readily
reusable).

• Atoms as expressions. The induction step needs to be able to convert a concrete
counterexample (given in terms of concrete atoms, i.e., values for each variable)
to a formula to be added to the candidate search condition. All atoms, therefore,
must be convertible to expressions. This is trivial for SAT solvers, but requires extra
functionality for solvers offering a richer input language.

• Skolemization. Skolemizing higher-order existential quantifiers is necessary for all
three CEGIS steps.

This approach is formalized in Section 2.4, assuming availability of a first-order con-
straint solver offering all the features above. In Section 2.5 an implementation is presented

32

as an extension to Kodkod [160], a first-order relational constraint solver already equipped
with most of the required features.

2.4 Semantics
We give the semantics of our decision procedure for bounded higher-order logic in two
steps. First, we formalize the translation of a boolean formula into a Proc datatype instance
(corresponding to an appropriate solving procedure); next we formalize the semantics of
Proc satisfiability solving.

Figure 2-3 gives an overview of all syntactic domains used throughout this section. We
assume the datatypes in Figure 2-3(b) are provided by the solver; on top of these basic
datatypes, Alloy* defines the following additional datatypes:

• FOL—a wrapper for a first-order formula

• OR—a compound type representing a disjunction of Procs

• E
A
—a compound type representing a conjunction of a first-order formula and a num-

ber of higher-order universal quantifiers (each enclosed in a QP datatype). The inten-
tion of the QP datatype is to hold the original formula, and a translation of the same
formula but quantified existentially (used later to find candidate solutions).

Figure 2-4(a) lists all the semantic functions defined in this chapter. The main two are
translation of formulas into Procs (𝒯 , defined in Figure 2-5) and satisfiability solving (𝒮 ,
defined in Figure 2-6). Relevant functions assumed to be either exported by the solver
or provided by the host programming language are listed in Figures 2-4(b) and 2-4(c),
respectively.

For simplicity of exposition, we decided to exclude the treatment of bounds from our
formalization, as it tends to be mostly straightforward; we will, however, come back to this
point and accurately describe how the bounds are constructed before every solver invoca-
tion.

Syntax notes. A language reminiscent of F# is used. In a nutshell, it is a functional language
with algebraic datatypes, imperative loops, and mutable fields. The “.” syntax is used to refer
to field values of datatype instances. If the left-hand side in such constructs resolves to a
list, we assume the operation is mapped over the entire list (e.g., ea.qps.forAll, is equivalent to
map 𝜆q ⋅q.forAll, ea.qps). In function signatures,→ is used to delimit individual argument and
return types (e.g., in 𝑓 ∶ Int→ String→ Int, 𝑓 is a function that takes an integer and a string
and returns an integer), × is used to delimit column types in a tuple type (e.g., String × Int

is a tuple type of string-integer pairs), and mutations are denoted using the ←[symbol (e.g.,
𝑜.𝑓 ←[3).

2.4.1 Translation of Formulas into Proc Objects
The top-level translation function (𝒯 , Figure 2-5, line 1) ensures that the formula is con-
verted to negation normal form (NNF), and that all top-level existential quantifiers are

33

(a) Alloy* syntactic domains

type QP = {forAll: Quant, pExists: Proc}
type Proc = FOL(form: Formula) | OR(disjs: Proc list) | E

A
(conj: FOL, qps: QP list)

(b) Solver data types

type Mult = ONE | SET

type Decl = {mult: Mult, var: Expr}
type QuantOp = ∀ | ∃
type BinOp = ∧ | ∨ | ⇐⇒ | Ô⇒
type Formula = Quant(op: QuantOp, decl: Decl, body: Formula)

| BinForm(op: BinOp, lhs: Formula, rhs: Formula)
| NotForm(form: Formula)

type Expr = ... // relational expressions, irrelevant here

type Instance = {...} // holds a concrete solution

Figure 2-3: Alloy* formalization: overview of the syntactic domains

(a) Alloy* semantic functions

𝒯 : Formula → Proc top-level formula translation
𝒮 : Proc → Instance Proc evaluation (solving)
𝜏 : Formula → Proc intermediate formula translation
⋏ : Proc → Proc → Proc Proc composition: conjunction
⋎ : Proc → Proc → Proc Proc composition: disjunction

(b) Functions exported by first-order sover

solve : Formula → Instance option first-order solver
eval : Instance → Expr → Value evaluator
replace : Formula → Expr → Value → Formula replacer
nnf : Formula → Formula NNF conversion
skolemize : Formula → Formula skolemization
∧, ∨ : Formula → Formula → Formula conjunction, disjunction
TRUE, FALSE : Formula true and false constant formulas

(c) Built-in functions

fold : (A → E → A) → A → E list→ A functional fold
reduce : (A → E → A) → E list→ A fold w/o init value
map : (E → T) → E list → T list functional map
length : E list → int list length
hd : E list → E list head
tl : E list → E list list tail
+ : E list → E list → E list list concatenation
× : E list → E list → E list list cross product
fail : String → void runtime error

Figure 2-4: Alloy* formalization: overview of semantic and built-in functions

34

subsequently skolemized away, before the formula is passed to the 𝜏 function. Conversion
to NNF pushes the quantifiers towards the roots of the formula, while skolemization elim-
inates top-level existential quantifiers (including the higher-order ones). Alloy* applies
these techniques aggressively to achieve completeness in handling arbitrary formulas.

Translating a binary formula (which is either a conjunction or disjunction, since it is in
NNF) involves translating both left-hand and right-hand sides and composing the resulting
Procs using the corresponding composition operator (lines 2–4). A disjunction demands
that both sides be skolemized again (thus the use of 𝒯 instead of 𝜏), since they were surely
unreachable by any previous skolemization attempts. This ensures that any higher-order
quantifiers found in a clause of a disjunction will eventually either be skolemized or con-
verted to an E

A
Proc.

A first-order universal quantifier (determined by 𝑑.mult being equal to ONE) whose body
is also first-order (line 6) is simply enclosed in a FOL Proc (line 7). Otherwise, an E

A
Proc

is returned, wrapping both the original formula (∀𝑑 ⋃︀ 𝑓) and the translation of its existential
counterpart (p = 𝒯 J∃𝑑 ⋃︀ 𝑓K, used later to find candidate solutions).

In all other cases, the formula is wrapped in FOL (line 10).
Composition of Procs is straightforward for the most part, directly following the dis-

tributivity laws of conjunction over disjunction and vice versa. The common goal in all the
cases in lines 11–26 is to reduce the number of Proc nodes. For example, a conjunction
of two E

A
nodes can be merged into a single E

A
node (line 17), as can a conjunction of

a FOL and an E
A

node (line 14). With disjunction, however, we need to be more careful.
Remember that before applying the ⋎ operator skolemization had to be performed on both
sides (line 2); since skolemization through disjunction is not sound, it would be wrong, for
example, to try and recombine two FOL Procs into a single FOL (line 20). Instead, a safe
optimization (which we implemented in Alloy*) would be to modify line 2 to first check if
𝑓1 ∨ 𝑓2 is first-order as a whole, and if so return FOL(𝑓1 ∨ 𝑓2).

2.4.2 Satisfiability Solving

The procedure for satisfiability solving is given in Figure 2-6.
A first-order formula (enclosed in FOL) is given to the solver to be solved directly, in

one step (line 29).
An OR Proc is solved by iteratively solving its disjuncts (lines 30–34). An instance is

returned as soon as one is found; otherwise, None is returned.
The procedure for the E

A
Procs implements the CEGIS loop (lines 35–46), following

the algorithm in Section 2.3. The candidate condition is a conjunction of the first-order
𝑝.conj Proc and all the existential Procs from 𝑝.qps.pExists (line 35); the verification condi-
tion is a conjunction of all original universal quantifiers within this E

A
(line 39). Encoding

the counterexample back into the search formula boils down to obtaining a concrete value
that each quantification variable has in that counterexample (by calling the eval function
exported by the solver) and embedding that value directly in the body of the corresponding
quantifier (lines 42-45).

35

𝒯 : Formula → Proc

1. 𝒯 J𝑓K ≡ 𝜏Jskolemize nnf 𝑓K

𝜏 : Formula → Proc

2. 𝜏J𝑓 1∨𝑓 2K ≡ 𝒯 J𝑓 1K ⋎ 𝒯 J𝑓 2K
3. 𝜏J𝑓 1∧𝑓 2K ≡ 𝜏J𝑓 1K ⋏ 𝜏J𝑓 2K
4. 𝜏J∃𝑑 ⋃︀ 𝑓K ≡ fail “can’t happen”
5. 𝜏J∀𝑑 ⋃︀ 𝑓K ≡ let p = 𝒯 J∃𝑑 ⋃︀ 𝑓K in

6. if 𝑑.mult is ONE && p is FOL then

7. FOL(∀𝑑 ⋃︀ 𝑓)
8. else

9. E
A
(FOL(TRUE), [QP(∀𝑑 ⋃︀ 𝑓, p)])

10. 𝜏J𝑓K ≡ FOL(𝑓)

⋏ : Proc → Proc → Proc

11. 𝑝1 ⋏ 𝑝2 ≡ match 𝑝1, 𝑝2 with

12. | FOL, FOL → FOL(𝑝1.form ∧ 𝑝2.form)
13. | FOL, OR → OR(map(𝜆𝑝 ⋅ 𝑝1 ⋏ 𝑝, 𝑝2.disjs))
14. | FOL, E

A
→ E

A
(𝑝1⋏𝑝2.conj, 𝑝2.qps)

15. | OR , OR → OR(map(𝜆𝑝,𝑞 ⋅ 𝑝 ⋏ 𝑞, 𝑝1.disjs × 𝑝2.disjs))
16. | OR , E

A
→ OR(map(𝜆𝑝 ⋅ 𝑝 ⋏ 𝑝2, 𝑝1.disjs))

17. | E
A

, E
A
→ E

A
(𝑝1.conj ⋏ 𝑝2.conj, 𝑝1.qps + 𝑝2.qps)

18. | _ , _ → 𝑝2 ⋏ 𝑝1

⋎ : Proc → Proc → Proc

19. 𝑝1 ⋎ 𝑝2 ≡ match 𝑝1, 𝑝2 with

20. | FOL, FOL → OR([𝑝1, 𝑝2]) //wrong: FOL(𝑝1.form ∨ 𝑝2.form)

21. | FOL, OR → OR([𝑝1] + 𝑝2.disjs)
22. | FOL, E

A
→ OR([𝑝1, 𝑝2])

23. | OR , OR → OR(𝑝1.disjs + 𝑝2.disjs)
24. | OR , E

A
→ OR(𝑝1.disjs + [𝑝2])

25. | E
A

, E
A
→ OR([𝑝1, 𝑝2])

26. | _ , _ → 𝑝2 ⋎ 𝑝1

Figure 2-5: Translation of boolean Formulas to Procs

2.4.3 Treatment of Bounds

Bounds are a required input of any bounded analysis; for an analysis involving structures,
the bounds may include not only the cardinality of the structures, but may also indicate that
a structure includes or excludes particular tuples. Such bounds serve not only to finitize
the universe of discourse and the domain of each variable, but may also specify a partial
instance that embodies information known upfront about the solution to the constraint.
If supported by the solver, specifying the partial instance through bounds (as opposed to
enforcing it with constraints) is an important mechanism that generally improves scalability
significantly.

Although essential, the treatment of bounds in Alloy* is mostly straightforward—

36

𝒮 : Proc → Instance option

27. 𝒮J𝑝K ≡

28. match 𝑝 with

29. | FOL → solve 𝑝.form
30. | OR → if length 𝑝.disjs = 0
31. then None

32. else match 𝒮Jhd 𝑝.disjsK with

33. | None → 𝒮JOR(tl 𝑝.disjs)K
34. | Some(inst)→ Some(inst)
35. | E

A
→ let 𝑝𝑐𝑎𝑛𝑑 = fold ⋏, 𝑝.conj, 𝑝.qps.pExists in

36. match 𝒮J𝑝𝑐𝑎𝑛𝑑K with

37. | None → None

38. | Some(cand)→
39. let 𝑓 𝑐ℎ𝑒𝑐𝑘 = fold ∧, TRUE, 𝑝.qps.forAll in

40. match 𝒮J𝒯 J¬𝑓 𝑐ℎ𝑒𝑐𝑘KK with

41. | None → Some(cand)
42. | Some(cex)→ let repl(q) =
43. replace(q.body, q.decl.var, eval(cex, q.decl.var))
44. let 𝑓∗𝑐𝑒𝑥 = map repl, 𝑝.qps.forAll in

45. let 𝑓𝑐𝑒𝑥 = fold ∧, TRUE, 𝑓∗𝑐𝑒𝑥 in

46. 𝒮J𝑝𝑐𝑎𝑛𝑑 ⋏ 𝒯 J𝑓𝑐𝑒𝑥KK

Figure 2-6: The higher-order model finding algorithm

including it in the above formalization (Figures 2-5 and 2-6) would only clutter the pre-
sentation and obscure the semantics of our approach. Instead, all the relevant details are
precisely (albeit informally) provided next.

Bounds may change during the translation phase by means of skolemization: every time
an existential quantifier is skolemized, a fresh variable is introduced and a bound for it is
added. Therefore, we associate bounds with Procs, as different Procs may have different
bounds. Whenever a composition of two Procs is performed, the resulting Proc gets the
union of the two corresponding bounds.

During the solving phase, whenever the solve function is applied (line 28), bounds must
be provided as an argument. We simply use the bounds associated with the input Proc (𝑝).
When supplying bounds for the translation of the verification condition (𝒯 J¬𝑓 𝑐ℎ𝑒𝑐𝑘K, line
40), it is essential to encode the candidate solution (cand) as a partial instance, to ensure
that the check is performed against that particular candidate, and not some other arbitrary
one. This is done by bounding every variable from 𝑝.bounds to the exact value it was given
in cand:

let add_bound(𝑏, 𝑣𝑎𝑟) = 𝑏 + 𝑟 ↦ eval(cand, 𝑣𝑎𝑟)
𝑏𝑐ℎ𝑒𝑐𝑘 = fold add_bound, 𝑝.bounds, 𝑝.bounds.variables

Finally, when translating the formula obtained from the counterexample (𝑓𝑐𝑒𝑥) to be used
in a search for the next candidate (line 46), the same bounds are used as for the current
candidate (𝑝𝑐𝑎𝑛𝑑.bounds).

37

2.5 Implementation
A concrete implementation of the decision procedure for higher-order constraint solving
was done as an extension to Kodkod [160]. Kodkod, the backend engine used by the Alloy
Analyzer, is a bounded constraint solver for relational first-order logic (thus, ‘variable’,
as used previously, translates to ‘relation’ in Kodkod, and ‘value’ translates to ‘tuple set’).
It works by translating a given relational formula (together with bounds finitizing relation
domains) into an equisatisfiable propositional formula and using an of-the-shelf SAT solver
to check its satisfiability. The Alloy Analyzer delegates all its model finding (constraint
solving) tasks to Kodkod. No change was needed to the existing translation from Alloy to
Kodkod.

The official Kodkod distribution already offers most of the required features identified
in Section 2.3. While efficient support for partial instances has always been an integral part
of Kodkod, incremental solving was not supported until version 2.0.. Kodkod performs
skolemization of top-level (including higher-order) existential quantifiers; the semantics of
our translation from boolean formulas to Procs ensures that all quantifiers, regardless of
their position in the formula, eventually get promoted to the top level, where they become
subject to skolemization.

Conversion from atoms to expressions, however, was not available in Kodkod prior to
this work. Being able to treat all atoms from a single domain as indistinguishable helps
generate a stronger symmetry-breaking predicate. Since encoding a counterexample back
to a candidate condition is crucial for CEGIS to scale, this work also extended Kodkod
with the ability to create a singleton relation for each declared atom, after which converting
atoms back to expressions (relations) becomes trivial. Kodkod’s symmetry-breaking predi-
cate generator was also updated to ignore all such singleton relations that are not explicitly
used. This modification does not seem to incur any performance overhead; running the ex-
isting Kodkod test suite with and without the modification does not result in any observable
time difference (in both cases running the 249 tests took around 230s).

Alloy* is implemented in Java directly following the semantics defined in Figures 2-5
and 2-6. Additionally, Alloy* performs the following important optimizations: (1) instead
of creating an OR node for every disjunction (line 2, Figure 2-5), it first check if the disjunc-
tion is a first-order formula as a whole, in which case it creates a FOL node instead, and (2)
it uses incremental solving to implement line 46 from Figure 2-6 whenever possible.

2.6 Case Study: Program Synthesis
Program synthesis is one of the most popular applications of higher-order constraint solv-
ing. The goal is to produce a program that satisfies a given (high-level) specification. The
SyGuS [17] (syntax-guided synthesis) project has proposed an extension to SMTLIB for
encoding such problems. The project has also organized a competition between solvers for
the format, and provides three reference solvers.

We encoded a subset of the SyGuS benchmarks in Alloy* to test its expressive power
and scalability. These benchmarks have a standard format, are well tested, and allow com-
parison to the performance of the reference solvers, making them a good target for evalu-

38

ating Alloy*.
To demonstrate our strategy for encoding program synthesis problems in Alloy*, we

present the Alloy* specification for the problem of finding a program to compute the max-
imum of two numbers (the max-2 benchmark).

We encode the max-2 benchmark in Alloy* using signatures to represent the production
rules of the program grammar, and predicates to represent both the semantics of programs
and the constraints restricting the target program’s semantics. Programs are composed of
abstract syntax nodes, which can be integer- or boolean-typed.

abstract sig Node {}
abstract sig IntNode, BoolNode extends Node {}
abstract sig Var extends IntNode {}
one sig X, Y extends Var {}

sig ITE extends IntNode {
condition: BoolNode,
then, elsen: IntNode

}

sig GTE extends BoolNode {
left, right: IntNode

}

Integer-typed nodes include variables and if-then-else expressions, while boolean-typed
nodes include greater-than-or-equal expressions. Programs in this space evaluate to integers
or booleans; integers are built into Alloy, but we must model boolean values explicitly.

abstract sig Bool{}
one sig BoolTrue, BoolFalse extends Bool{}

The standard evaluation semantics can be encoded in a predicate that constrains the
evaluation relation. It works by constraining all compound syntax tree nodes based on the
results of evaluating their children, but does not constrain the values of variables, allowing
them to range over all values.

pred semantics[eval: Node -> (Int+Bool)] {
all n: ITE | eval[n] in Int and
eval[n.condition] = BoolTrue implies
eval[n.then] = eval[n] else eval[n.elsen] = eval[n]

all n: GTE | eval[n] in Bool and
eval[n.left] >= eval[n.right] implies
eval[n] = BoolTrue else eval[n] = BoolFalse

all v: Var | one eval[v] and eval[v] in Int
}

The specification says that the maximum of two numbers is equal to one of them, and
greater than or equal to both.

pred spec[root: Node, eval: Node -> (Int+Bool)] {
(eval[root] = eval[X] or eval[root] = eval[Y]) and
(eval[root] >= eval[X] and eval[root] >= eval[Y])

}

Finally, the problem itself requires solving for some abstract syntax tree such that for all
possible valuations for the variables, the specification holds.

39

pred synth[root: IntNode] {
all eval: Node -> (Int+Bool) |
semantics[eval] implies spec[root, eval]

}

(A.1)

run synth for 4

The evaluation results, including a performance comparison between Alloy* and exist-
ing program synthesizers, are presented in Section 2.8.2. Before that, two general purpose
optimizations are presented in Section 2.7, which significantly imrove the overall scalabil-
ity of Alloy*.

2.7 Optimizations

2.7.1 Quantifier Domain Constraints
As defined in Listing A.1 (Section 2.6), the synth predicate, although logically sound,
suffers from serious performance issues. The main issue is the effect on the CEGIS loop
of the implication inside the universal quantifier. To trivially satisfy the implication, the
candidate search step can simply return an instance for which the semantics does not hold.
Furthermore, adding the encoding of the counterexample refuting the previous instance is
not going to constrain the next search step to find a program and a valuation for which the
spec holds. This cycle can go on for unacceptably many iterations.

To overcome this problem, a bit of new syntax is added to identify the constraints that
should be treated as part of the bounds of a quantification. The synth predicate, e.g., now
becomes

pred synth[root: IntNode] {
all eval: Node -> (Int + Bool) when semantics[eval] |
spec[root, eval]

}

The existing first-order semantics of Alloy is unaffected, i.e.,

all x when D[x] | P[x] ⇐⇒ all x | D[x] implies P[x]
some x when D[x] | P[x] ⇐⇒ some x | D[x] and P[x]

(A.2)

The rule for pushing negation through quantifiers (used by the converter to NNF) becomes:

not (all x when D[x] | P[x]) ⇐⇒ some x when D[x] | not P[x]
not (some x when D[x] | P[x]) ⇐⇒ all x when D[x] | not P[x]

(which is consistent with classical logic).
The formalization of the Alloy* semantics needs only a minimal change. The change

in semantics is caused by essentially not changing (syntactically) how the existential coun-
terpart of a universal quantifier is obtained— only by flipping the quantifier, and keeping
the domain and the body the same (line 5, Figure 2-5). Consequently, the candidate con-
dition always searches for an instance satisfying both the domain and the body constraint
(i.e., both the semantics and the spec). The same is automatically true for counterexamples
obtained in the verification step. The only actual change to be made to the formalization is
expanding q.body in line 43 according to the rules in Listing A.2.

40

Going back to the synthesis example, even after rewriting the synth predicate, unnec-
essary overhead is still incurred by quantifying over valuations for all the nodes, instead of
valuations for just the input variables. Consequently, the counterexamples produced in the
CEGIS loop do not guide the search as effectively. This observation leads to the following
(final) formulation of the synth predicate (which was used in all benchmarks presented in
Section 2.8.2):

pred synth[root: IntNode] {
all env: Var -> Int |
some eval: Node -> (Int+Bool)
when env in eval && semantics[eval] |
spec[root, eval]

}

(A.3)

Despite using nested higher-order quantifiers, it is the most efficient: the inner quantifier
(over eval) always takes exactly one iteration (to either prove or disprove the current env),
because for a fixed env, eval is uniquely determined.

2.7.2 Strictly First-Order Increments

We already pointed out the importance of implementing the induction step (line 46, Fig-
ure 2-6) using incremental SAT solving. A problem, however, arises when the encoding of
the counterexample (as defined in lines 42–45) is not a first-order formula—since not di-
rectly translatable to SAT, it cannot be incrementally added to the existing SAT translation
of the candidate search condition (𝑝𝑐𝑎𝑛𝑑). In such cases, the semantics in Figure 2-6 de-
mands that the conjunction of 𝑝𝑐𝑎𝑛𝑑 and 𝒯 J𝑓𝑐𝑒𝑥K be solved from scratch, losing any benefits
from previously learned SAT clauses.

This problem occurs in our final formulation of the synth predicate (Listing A.3), due
to the nested higher-order quantifiers. To address this issue, we relax the semantics of the
induction step by replacing 𝒮J𝑝𝑐𝑎𝑛𝑑⋏𝒯 J𝑓𝑐𝑒𝑥KK (line 39) with

⇑⇑ 𝒯fo ∶ Formula → FOL
let 𝒯fo(𝑓) = match 𝑝 = 𝒯 J𝑓K with

| FOL → 𝑝
| OR → FOL(reduce ∨, map(𝜆

𝑑
⋅ 𝒯fo(𝑑).form, 𝑝.disjs))

| E
A → fold ⋏, 𝑝.conj, map(𝒯fo, 𝑝.qps.pExists)

𝒮J𝑝𝑐𝑎𝑛𝑑 ⋏ 𝒯fo(𝑓𝑐𝑒𝑥)K

The 𝒯fo function ensures that 𝑓𝑐𝑒𝑥 is translated to a first-order Proc, which can always
be added as an increment to the current SAT translation of the candidate condition. The
trade-off involved here is that this new encoding of the counterexample is potentially not as
strong, and therefore may lead to more CEGIS iterations before a resolution is reached. For
that reason, Alloy* accepts a configuration parameter (accessible via the “Options” menu),
offering both strategies. In Section 2.8 we provide experimental data showing that for all
of our synthesis examples, the strictly first-order increments yielded better performance.

41

(a) (b)

Figure 2-7: Average (over 5 different edge densities) (a) solving times, and (b) number of
explored candidates for the graph algorithms

2.8 Evaluation

2.8.1 Micro Benchmarks

To assess scalability, we measure the time Alloy* takes to solve 4 classical, higher-order
graph problems for graphs of varying size: max clique, max cut, max independent set, and
min vertex cover.

We implemented the graph benchmarks in 𝛼Rby (a unified language/environment for
writing/executing declarative specifications and imperative code, presented in detail in
Chapter 4). The four graph problems were specified purely declaratively, using Alloy-like
higher-order relational logic.

We used the Erdős-Rényi model [52] to randomly generate graphs to serve as inputs
to the benchmark problems. We generated graphs of sizes ranging from 2 to 50. To cover
a wide range of edge densities, for each size we generated 5 graphs, using different prob-
abilities of inserting an edge between a pair of nodes: 0.1, 0.3, 0.5, 0.7, 0.9. This part
was written in the imperative part of 𝛼Rby, which coincides with the unrestricted Ruby
language.

Finally, we used the 𝛼Rby runtime backed by Alloy* to automatically execute individ-
ual higher-order specifications on concrete graphs generated in the previous step. To ensure
correctness of the results returned by Alloy*, we made sure they matched those of known
imperative algorithms for the same problems1. The timeout for each Alloy* run was set to
100 seconds.

Figure 2-7 plots two graphs: (a) the average solving time across graphs size, and (b)
the average number of explored candidates per problem. More detailed results, including
individual times for each of the 5 densities, can be found in our technical-report [116].

The performance results show that for all problems but max cut, Alloy* was able to han-

1For max clique and max independent set, we used the Bron-Kerbosch heuristic algorithm; for the
other two, no good heuristic algorithm is known, and so we implemented enumerative search. In both cases,
we used Java.

42

dle graphs of sizes up to 50 nodes in less than a minute (max cut started to time out at around
25 nodes). The original target goal for these benchmarks was to be able to solve graphs
with 10-15 nodes, and claim that Alloy* can be effectively used for teaching, specification
animation, and small scope bounded verification, all within the Alloy Analyzer IDE (which
is one of the most common uses of the Alloy technology). These results, however, suggest
that executing higher-order specifications may be feasible even for declarative program-
ming approaches such as 𝛼Rby (where a constraint solver is embedded in a programming
language, e.g., [112, 118, 161]), which is very encouraging.

The average number of explored candidates (Figure 2-7(b)) confirms the effectiveness
of the CEGIS induction step at pruning the remainder of the search space. Even for graphs
of size 50, in most cases the average number of explored candidates is around 6; the excep-
tion is, again, max cut, where this curve is closer to being linear. We further analyze how
the total time is split over individual candidates in Section 2.8.4.

Figure 2-8 shows average solving times for individual probability thresholds used to
generate graphs for the micro benchmark experiments. Lower the threshold (T), denser the
graph is (similarly, higher T values lead to sparser graphs). In general, the solving time
tends to be greater for denser graphs, as the search space is bigger. This trend is especially
evident in the max cut problem (Figure 2-8(b)), where the solving time increases drastically
for T=0.1 until Alloy* times out at graphs of size 20.

On the other hand, sparsity does not necessarily lead to faster performance. For exam-
ple, in the max clique and max independent set, note how Alloy* takes longer on graphs
with T=0.9 (Listings 2-8(a) and (c)) than on those with lower threshold as the graph size
increases. We believe that this is because sparser graphs tend to permit fewer cliques (and
independent sets) than more densely connected graphs.

Figure 2-8 shows average solving times over different probability thresholds used to
generate graphs for the micro benchmark experiments. Lower the threshold (T), denser a
graph is (similarly, higher T values lead to sparser graphs). In general, the solving time
tends to be greater for denser graphs, since Alloy* needs to explore a larger number of
edges than in sparser graphs. This trend is especially evident in the max cut problem
(Figure (b)), where the solving time increases drastically for T=0.1 until Alloy* times out
at graphs of size 20.

On the other hand, sparsity does not necessarily lead to faster performance. For exam-
ple, in the max clique and max independent set, note how Alloy* takes longer on graphs
with T=0.9 (Figures (a) and (c)) than on those with lower threshold as the graph size in-
creases. We believe that this is because large, sparser connected graphs tend to permit
fewer cliques (and independent sets) than more densely connected graphs. As the figures
show, Alloy* tends to perform best on graphs that lie in the middle of the spectrum (T=0.5
or T=0.7).

2.8.2 Program Synthesis
To demonstrate the expressive power of Alloy*, we encoded 123 out of 173 benchmarks
available in the SyGuS 2014 GitHub repository [8]—all except those from the “icfp-problems”
folder. We skipped the 50 “icfp” benchmarks because they all use large (64-bit) bit vectors,
which are not supported by Alloy; none of them could be solved anyway by any of the

43

(a) max clique

0	

10	

20	

30	

40	

50	

60	

70	

80	

2	
 3	
 5	
 7	
 9	
 13	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	

So
lv

in
g

Ti
m

e
(s

)

Nodes

T=0.1	

T=0.3	

T=0.5	

T=0.7	

T=0.9	

(b) max cut

0	

20	

40	

60	

80	

100	

120	

140	

2	
 3	
 5	
 7	
 9	
 13	
 15	
 20	
 25	

So
lv

in
g	

Ti
m
e	

(s
)	

Nodes

T=0.1	

T=0.3	

T=0.5	

T=0.7	

T=0.9	

(c) max independent set

0	

10	

20	

30	

40	

50	

60	

2	
 3	
 5	
 7	
 9	
 13	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	

So
lv

in
g

Ti
m

e
(s

)

Nodes

T=0.1	

T=0.3	

T=0.5	

T=0.7	

T=0.9	

(d) min vertex

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	
 3	
 5	
 7	
 9	
 13	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	

So
lv

in
g

Ti
m

e
(s

)

Nodes

T=0.1	

T=0.3	

T=0.5	

T=0.7	

T=0.9	

Figure 2-8: Avgerage times over thresholds for graph algorithms

solvers that entered the SyGuS 2014 competition. All of our encoded benchmarks come
with the official Alloy* distribution [1] and are accessible from the main menu.

Some SyGuS benchmarks require synthesizing multiple functions at once, and some
require multiple applications of the synthesized functions. All of these cases can be han-
dled with small modifications to our encoding presented in Section 2.6. For example, to
synthesize multiple functions at once, we add additional root node pointers to the signature
of the synth predicate; to allow for multiple applications of the same function we modify
the synth predicate to compute multiple eval relations (one for each application). Finally,
to support SyGuS benchmarks involving bit vectors, we exposed the existing Kodkod bit-
wise operators over integers at the Alloy level, and also made small changes to the Alloy
grammar to allow for a more flexible integer scope specification (so that integer atoms can
be specified independently of integer bitwidth).

To evaluate Alloy*’s performance, we ran the same benchmarks on the same computer
using the three reference solvers. We limit the benchmarks to those found in the “inte-
ger-benchmarks” folder because they: (1) do not use bit vectors (which Alloy does not
support natively), and (2) allow for the scope to be increased arbitrarily, and thus are suit-
able for performance testing. Our test machine had an Intel dual-core CPU, 4GB of RAM,
and ran Ubuntu GNU/Linux and Sun Java 1.6. We set Alloy*’s solver to be MiniSAT.

44

 0.01

 0.1

 1

 10

 100

 1000

max-2 max-3 max-4 max-5 array-2 array-3 array-4 array-5

S
o
lv

in
g
 T

im
e
 (

s
)

Alloy*
Enumerative

Stochastic
Symbolic

Sketch

Figure 2-9: Comparison between Alloy* and Reference Solvers.

Figure 2-9 compares the performance of Alloy* against the three SyGuS reference
solvers and Sketch [150], a highly-optimized, state-of-the-art program synthesizer. Ac-
cording to these results, Alloy* scales better than the three reference solvers, and is even
competitive with Sketch. On the array-search benchmarks, Sketch outperforms Alloy*
for larger problem sizes, but on the max benchmarks, the opposite is true. Both solvers scale
far more predictably than the reference solvers, but Alloy* has the additional advantage,
due to its generality, of a flexible encoding of the target language’s semantics, while Sketch
relies on the semantics of the benchmark problems being the same as its own.

Other researchers have reported [82] that benefits can be gained by specifying tighter
bounds on the abstract syntax tree nodes considered by the solver. Table 2.1 confirms that
for max and array significant gains can be realized by tightening the bounds. In the case
of max, tighter bounds allow Alloy* to improve from solving the 5-argument version of the
problem to solving the 7-argument version. For these experiments, Scope 1 specifies the
exact number of each AST node required; Scope 2 specifies exactly which types of AST
nodes are necessary; and Scope 3 specifies only how many total nodes are needed. Other
solvers also ask the user to bound the analysis—Sketch, for example, requires both an
integer and recursion depth bound—but do not provide the same fine-grained control over
the bounds as Alloy*. For the comparison results in Figure 2-9, we set the most permissive
scope (Scope 3) for Alloy*.

These results show that Alloy*, in certain cases, not only scales better than the refer-
ence solvers, but can also be competitive with state-of-the-art solvers based on years of
optimization. Such cases are typically those that require a structurally complex program
AST (adhering to complex relational invariants) be discovered from a large search space.
When the size of the synthesized program is small, however, the results of the SyGuS
2014 competition show [18] that non-constraint based techniques, such as enumerative and
stochastic search, tend to be more efficient.

Finally, Alloy* requires only the simple model presented here—which is easier to pro-
duce than even the most naive purpose-built solver. Due to its generality, Alloy* is also,

45

Problem Scope 1 Scope 2 Scope 3
Steps Time (s) Steps Time (s) Steps Time (s)

max-2 3 0.3 3 0.4 3 0.4
max-3 6 0.9 7 0.9 8 1.2
max-4 8 1.5 8 3.0 15 5.9
max-5 25 4.2 23 36.3 19 28.6
max-6 29 16.3 n/a t/o n/a t/o
max-7 34 256.5 n/a t/o n/a t/o
array-2 8 1.6 8 2.4 8 1.9
array-3 13 4.0 9 8.1 7 3.6
array-4 15 16.1 11 98.0 15 310.5
array-5 19 386.9 n/a t/o n/a t/o

Table 2.1: Performance on Synthesis Benchmarks

in some respects, a more flexible program synthesis tool—it makes it easy, for example, to
experiment with the semantics of the target language, while solvers like Sketch have their
semantics hard-coded.

2.8.3 Benefits of the Alloy* Optimizations

We used the program synthesis benchmarks (with the tightest, best performing scope), and
the bounded verification of Turán’s theorem from Section 2.2 to evaluate the optimizations
introduced in Section 2.7 by running the benchmarks with and without them. The baseline
was a specification written without using domain constraints and an analysis without first-
order increments. The next two columns correspond to (1) adding exactly one optimization
(rewriting the specification to use the domain constraints for the synthesis benchmarks,
and using first-order increments for Turán’s theorem2), and (2) adding both optimizations.
Table 2.2 shows the results. Across the board, writing domain constraints makes a huge
difference; using first-order increments often decreases solving time significantly, and, in
the synthesis cases, causes the solver to scale to slightly larger scopes.

2.8.4 Distribution of Solving Time over Individual Candidates

In Figure 2-10 we take the three hardest benchmarks (max-7, array-search-5, and turan-10,
with tightest bounds and both optimizations applied) and show how the total solving time
is distributed over individual candidates (which are sequentially explored by Alloy*). Fur-
thermore, for each candidate we show the percentage of time that went into each of the
three CEGIS phases (search, verification, induction). Instead of trying to draw strong con-
clusions, the main idea behind this experiment is to illustrate the spectrum of possible
behaviors the Alloy* solving strategy may exhibit at runtime.

2If we first rewrote Turán’s theorem to use domain constraints, there would be no nested CEGIS loops
left, so increments would be first-order even without the other optimization.

46

base base + 1 optimization base + both optimizations
max2 0.4 0.4 0.3
max3 7.6 1.0 0.9
max4 t/o 4.7 1.5
max5 t/o 10.3 4.2
max6 t/o 136.4 16.3
max7 t/o t/o 163.6
max8 t/o t/o 987.3
array-search2 140 2.9 1.6
array-search3 t/o 6.3 4.0
array-search4 t/o 76.9 16.1
array-search5 t/o t/o 485.6
turan5 3.5 1.1 0.5
turan6 12.8 5.1 2.1
turan7 235 43 3.8
turan8 t/o t/o 15
turan9 t/o t/o 45
turan10 t/o t/o 168

Table 2.2: Performance of Alloy* (in seconds) with and without optimizations.

The problems seen early in the search tend to be easy in all cases. The results reveal
that later on, however, at least three different scenarios can happen. In the case of max-7,
the SAT solver is faced with a number of approximately equally hard problems, which is
where the majority of time is spent. In array-search-5, in contrast, saturation is reached
very quickly, and the most time is spent solving very few hard problems. For turan-10, the
opposite is true: the time spent solving a large number of very easy problems dominates
the total time.

2.8.5 Discussion

Alloy* can solve arbitrary higher-order formulas and is sound and complete for the given
bounds. The current Alloy language, however, is not necessarily the most intuitive way to
express certain higher-order properties. Its semantics for encoding a candidate solution as
a partial instance during the verification step, on the other hand, might not always be what
the user wants.

Alloy users are used to using sigs and fields for representing relations (which are always
implicitly existentially quantified over), but to express certain higher-order properties, ex-
plicit quantification is necessary. For example, to verify Turán’s theorem from Listing 1, for
most Alloy users it would be more natural to represent edges as a field of sig Node of type
Node, and then, in the Turan predicate, somehow say “for all possible graph structures,
assert the property of Turán’s theorem”. But in Alloy, all g: Graph already has a very
different semantics than the one needed for this example [78, 91]; in Alloy*, we wanted

47

Candidate Ordinal Number

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

C
a

n
d

id
a

te
 S

o
lv

in
g

 T
im

e
 (

s
) max-7

total time: 256s
(search: 99%, ver: 0.9%, ind: 0.1%)

search
verification

induction
total

 0.01

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
a

n
d

id
a

te
 S

o
lv

in
g

 T
im

e
 (

s
) array-search-5

total time: 389s
(search: 99.48%, ver: 0.45%, ind: 0.07%)

search
verification

induction
total

 0.01

 0.1

 1

 10

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460

C
a

n
d

id
a

te
 S

o
lv

in
g

 T
im

e
 (

s
) turan-10

total time: 168s
(search: 36%, ver: 63.7%, ind: 0.3%)

search
verification

induction
total

Figure 2-10: Distribution of total solving time over individual (sequentially explored) can-
didates for the three hardest benchmarks. Each candidate time is further split into times for
each CEGIS phase

to preserve backward compatibility, as well as not introduce any significant changes to
the language, so the user has to explicitly quantify over all possible edges relations (line
14, Listing 1) to achieve the desired behavior.

Several higher-order idioms can be solved more efficiently than by applying CEGIS.
Minimization/maximization are probably the most obvious such idioms. To find a maximal
clique in a graph, rather than finding a clique and asserting that there is no other clique that
is larger than it, it is more efficient to start with one (arbitrary) clique, and then iteratively
keep searching for a larger clique, until one cannot be found. We believe that many such

48

special higher-order idioms can be implemented in a general-purpose solver, but would
require adding special new quantifiers, which would conflict with our initial decision to
retain the existing Alloy language.

Regarding Alloy*’s semantics for encoding a candidate solution as a partial instance
during the verification step, because it has no domain-specific knowledge of the problem
being solved, to proceed from candidate search to verification, Alloy* always encodes all
relations except the higher-order quantification variable as a partial instance. As said, Alloy
users, mostly for convenience reasons, write sigs to represent relations that are implicitly
existentially quantified over, so it is possible that it is not always desirable to include all of
them in the partial instance.

2.9 Related Work
The ideas and techniques used in this chapter span a number of different areas of research
including constraint solvers, synthesizers, program verifiers, and executable specification
tools. A brief discussion of how a more powerful analysis engine for Alloy (as offered by
Alloy*) may affect the plethora of existing tools built on top of Alloy is also in given.

Constraint solvers. SMT solvers, by definition, find satisfying interpretations of
first-order formulas over unbounded domains. In that context, only quantifier-free frag-
ments are decidable. Despite that, many solvers (e.g., Z3 [41]) support certain forms of
quantification by implementing an efficient matching heuristic based on patterns provided
by the user [40]. Certain non-standard extension allow quantification over functions and
relations for the purpose of checking properties over recursive predicates [30], as well as
model-based quantifier instantiation [62]. In the general case, however, this approach of-
ten leads to “unknown” being return as the result. Tools that build on top of SMT raise
the level of abstraction of the input language and provide quantification patterns that work
more reliably in practice (e.g., [23, 98]), but are limited to first-order forms.

SAT solvers, on the other hand, are designed to work with bounded domains. Tools
built on top may support logics richer than propositional formulas, including higher-order
quantifiers. One such tool is Kodkod [160]. At the language level, it allows quantification
over arbitrary relations, but the analysis engine, however, is not capable of handling those
that are higher-order. Rosette [161] builds on top of Kodkod a suite of tools for embedding
constraint solvers into programs for a variety of purposes, including synthesis. It imple-
ments a synthesis algorithm internally, so at the user level, unlike Alloy*, this approach
enables only one predetermined form of synthesis, namely, finding an instantiation of a
user-provided grammar that satisfies a specified property.

Synthesizers. State-of-the-art synthesizers today are mainly purpose-built. Domains
of application include program synthesis (e.g., [92,99,148,150,153]), automatic grading of
programming assignments [147], synthesis of data manipulation regular expressions [69],
and so on, all using different ways for the user to specify the property to be satisfied. Each
such specialized synthesizer, however, would be hard to apply in a domain different than
its own. A recent effort has been made to establish a standardized format for program
synthesis problems [17]; this format is syntax-guided, similar to that of Rosette, and thus
less general than the language (arbitrary predicate logic over relations) offered by Alloy*.

49

Program Verifiers. Program verifiers benefit directly from expressive specification
languages equipped with more powerful analysis tools. In recent years, many efforts have
been made towards automatically verifying programs in higher-order languages. Liquid
types [139] and HMC [83] respectively adapt known techniques for type inference and
abstract interpretation for this task. Bjørner et al. examine direct encodings into Horn
clauses, concluding that current SMT solvers are effective at solving clauses over integers,
reals, and arrays, but not necessarily over algebraic datatypes. Dafny [98] is the first SMT-
based verifier to provide language-level mechanisms specifically for automating proofs by
co-induction [100].

Executable Specifications. Many research projects explore the idea of extending a
programming language with symbolic constraint-solving features (e.g., [90, 118, 141, 161,
168]). Limited by the underlying constraint solvers, none of these tools can execute a
higher-order constraint. In contrast, we used 𝛼Rby [112] (our most recent take on this idea
where we embed the entire Alloy language directly into Ruby), equipped with Alloy* as
its engine, to run all our graph experiments (where 𝛼Rby automatically translated input
partial instances from concrete graphs, as well as solutions returned from Alloy back to
Ruby objects), demonstrating how a higher-order constraint solver can be practical in this
area.

Existing Alloy Tools. Certain tools built using Alloy already provide means for
achieving tasks similar to those we used as Alloy* examples. Aluminum [130], for in-
stance, extends the Alloy Analyzer with a facility for minimizing solutions. It does so by
using the low-level Kodkod API to selectively remove tuples from the resulting tuple set.
In our graph examples, we were faced with similar tasks (e.g., minimizing vertex covers),
but, in contrast, we used a purely declarative constraint to assert that there is no other sat-
isfying solution with fewer tuples. While Aluminum is likely to perform better on this
particular task, we showed (Section 2.8.1) that even the most abstract form of specifying
such minimization/maximization tasks scales reasonably well.

Rayside et al. used the Alloy Analyzer to synthesize iterators from abstraction func-
tions [137], as well as complex (non-pure) AVL tree operations from abstract specifica-
tions [94]. In both cases, they target a very specific categories of programs, and their
approach is based on insights that hold only for those particular categories. In another
instance, Montaghami et al. recognize a particular Alloy idiom involving a universal quan-
tifier, and change the semantics to force all atoms in the domain of that quantifier to be
always included in the analysis [121], effectively supporting only a small class of higher-
order models.

2.10 Conclusion
Software analysis and synthesis tools have typically progressed by the discovery of new
algorithmic methods in specialized contexts, and then their subsequent generalization as
solutions to more abstract mathematical problems. This trend—evident in the history of
dataflow analysis, symbolic evaluation, abstract interpretation, model checking, and con-
straint solving—brings many benefits. First, the translation of a class of problems into a
single, abstract and general formulation allows researchers to focus more sharply, resulting

50

in deeper understanding, cleaner APIs and more efficient algorithms. Second, generaliza-
tion across multiple domains allows insights to be exploited more widely, and reduces the
cost of tool infrastructure through sharing of complex analytic components. And third, the
identification of a new, reusable tool encourages discovery of new applications. This thesis
argues that general-purpose higher-order constraint solving can, and should, be viewed in
this context.

51

52

Chapter 3

Preventing Arithmetic Overflows in
Alloy*

A popular approach to the analysis of undecidable logics artificially bounds the universe,
making a finite search possible. In model checking, the bounds may be imposed by setting
parameters at analysis time, or even hardcoded into the system description. The Alloy
Analyzer [16] is a model finder for the Alloy language that follows this approach, with the
user providing a ‘scope’ for an analysis that sets the number of elements for each basic
type.

Such an analysis is not sound with respect to proof; just because a counterexample
is not found (in a given scope) does not mean that no counterexample exists (in a larger
scope). But it is generally sound with respect to counterexamples. That is, no spurious
counterexamples are generated, so if a counterexample is found, the putative theorem does
not hold. Equivalently, in the context of model finding (e.g., for the purpose of executing a
declarative specification), if an instance (e.g., a solution to the specification) is found, that
instance is a valid interpretation of the specification even in the unbounded context.

The soundness of Alloy’s counterexamples is a consequence of the fact that the interpre-
tation of a formula in a particular scope is always a valid interpretation for the unbounded
model. There is no special semantics for interpreting formulas in the bounded case. This is
possible because the relational operators are closed, in the sense that if two relations draw
their elements from a given universe of atoms, then any relation formed from them (for
example, by union, intersection, composition, and so on) can be expressed with the same
universe.

Arithmetic operators, in contrast, are not closed. For example, the sum of two integers
drawn from a given range may fall outside that range. So the arithmetic operators, when
interpreted in a bounded context, appear to be partial and not total functions, and call for
special treatment. One might therefore consider applying the standard strategies that have
been developed for handling logics of partial functions.

A common strategy is to make the operators total functions by selecting appropriate val-
ues when the function is applied out of domain. In some logics (e.g., [67]) the value is left
undetermined, but this approach is not easily implemented in a search-based model finder.
Alternatively, the value can be determined. In the previous version of the Alloy Analyzer,
arithmetic operators were totalized in this way by giving them wraparound semantics, so

53

that the smallest negative integer is regarded as the successor of the largest positive integer.
This matches the semantics in some programming languages (e.g., Java), and is relatively
easy to implement. Unfortunately, however, it results in counterexamples that would not
arise in the unbounded context, so the soundness of counterexamples is violated. This ap-
proach leads to considerable confusion among users, and imposes the burden of having to
filter out the spurious cases.

Another common strategy is to introduce a notion of undefinedness—at the value, term
or formula level—and extend the semantics of the operators accordingly. However this is
done, its consequence will be that formulas expressing standard properties will not hold.
The associativity of addition, for example, will be violated, because the definedness of the
entire expression may depend on the order of summation. In logics that take this approach,
the user is expected to insert explicit guards that ensure that desired properties do not rely on
undefined values. In our setting, however, where the partiality arises not from any feature
of the system being described, but from an artifact of the analysis, demanding that such
guards be written would be unreasonable, and would violate Alloy’s principle of separating
description from analysis bounds.

This thesis provides a different solution to the dilemma. Roughly speaking, counterex-
amples that would result in arithmetic overflow are excluded from the analysis, so that any
counterexample that is returned by the analysis is guaranteed not to be spurious (while
guaranteeing that no non-overflowing counterexamples are ever excluded from the anal-
ysis). This is achieved by redefining the semantics of quantifiers in the bounded setting
so that the models of a formula are always models of the formula in the unbounded set-
ting. This solution has been implemented in Alloy* (and also Alloy4.2) and it is by default
turned on; it can be deactivated via the “Prevent Overflows” option.

Integers are an important part of Alloy, because they enable various program analysis
tools that build on top of it; examples include tools for testing [104], verification [42], and
specification execution [118]. To motivate the problem of arithmetic overflow further, a
number of toy examples are presented to illustrate some of the typical anomalies that arise
from treating overflow as wraparound (Section 3.1), as well as a more realistic example of
modeling a minimum spanning tree algorithm, in which case none of the known (previously
commonly used) “integer tricks” can be applied to fully eliminate spurious counterexam-
ples (Section 3.2). The new semantics is formalized (Section 3.3) and an argument is made
that the concrete implementation in Alloy*, realized in boolean circuits, ensures the desired
semantics (Section 3.4).

To evaluate this approach, (1) a case study is shown where the analysis time is cut by
33% due to the reduced search space imposed by the new semantics, and (2) an exhaustive
test suite is designed and presented to ensure that the implementation in Alloy* meets the
specification.

3.1 Prototypical Overflow Anomalies
While a wraparound semantics for integer overflow is consistent and easily explained, its
lack of correspondence to unbounded arithmetic produces a variety of anomalies. Most
obviously, the expected properties of arithmetic do not necessarily hold: for example, that

54

(a) Sum of two positive integers is not necessarily positive.

check {
all a, b: Int |
a > 0 && b > 0 => a.plus[b] > 0

} for 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

a = 3; b = 1;

a.plus[b] = - 4

(b) Overflow anomaly involving cardinality of sets.

check {
all s: set univ |
some s iff #s > 0

} for 4 but 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

s = {S0, S1, S2, S3}

#s = -4

(c) Overflow anomaly involving cardinality of relations.

check {
all p, q: univ -> univ |
p in q => #p <= #q

} for 3 but 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

p = {}

q = {S0->S0, S0->S1, S1->S0, S1->S1}

#p = 0; #q = -4

Listing 3: Prototypical overflow anomalies in the previous version of Alloy

the sum of two positive integers is positive (Listing 3(a)). More surprisingly, expected
properties of the cardinality operator may not hold. For example, the Alloy formula some s

is defined to be true when the set s contains some elements. One would expect this to be
equivalent to stating that the set has a cardinality greater than zero (Listing 3(b)). And yet
this property will not hold if the cardinality expression #s overflows, since it may wrap
around, so that a set with enough elements is assigned a negative cardinality.

One might imagine that this problem could be eliminated by requiring that the scope
of any analysis always assign a bitwidth to integers that can measure, without overflow,
the cardinality of any signature. But this is not practical, since the cardinality operator by
definition counts tuples, and can be applied to any relational expression—including one
of higher arity (whose cardinality rises exponentially with the number of columns). An
example of the use of the cardinality operator for non-set relations is the claim that a binary
relation p has no more tuples than a binary relation q if p is a subrelation of q (Listing 3(c)).

In practice, Alloy is more often used for analyzing software designs than for exploring
mathematical theorems, and so properties of this kind are rarely stated explicitly. But
such properties are often relied upon implicitly, and consequently, when they fail to hold,
the spurious counterexamples that are produced are even harder to comprehend. Such a
case arises in the the example discussed in the next section, where a test for an undirected
graph being treelike is expressed by saying that there should be one fewer edge than nodes.
Clearly, when using such a formulation, the user would rather not consider the effects of
wraparound in counting nodes or edges.

55

3.2 Motivating Example

Consider checking Prim’s algorithm [37, §23.2], a greedy algorithm that finds a minimum
spanning tree (MST) for a connected graph with positive integral weights. Alloy is for the
most part well-suited to this task, since it makes good use of Alloy’s quantifiers and rela-
tional operators, including transitive closure. The need to sum integer weights, however, is
potentially problematic, due to Alloy’s bounded treatment of integers.

An alternative approach would be to use an analysis that includes arithmetic without
imposing bounds. It is not clear, however, whether such an approach could be fully au-
tomated, since the logics that are sufficiently expressive to include both arithmetic and
relational operators do not have decision procedures, and those (such as SMT) that do offer
decision procedures for arithmetic are not expressive enough. We are not arguing that such
an approach cannot work, and indeed, experts in these other approaches may find a suitable
encoding of the problem that makes it tractable. But, either way, exploring ways to mitigate
the effects of bounding arithmetic has immediate benefit for users of Alloy, and may prove
useful for other tools that impose ad hoc bounds.

Listing 4 shows an Alloy representation of the problem. The sets (signatures in Alloy)
Node and Edge (lines 3–10) represent the nodes and edges of a graph. Each edge has a
weight (line 5) and connects a set of nodes (line 6); weights are non-negative and edges
connect exactly two nodes (line 9).

This model uses the event-based idiom [78, §6.2.4] to model sequential execution. The
Time signature (line 2) is introduced to model discrete time instants, and fields covered

(line 3) and chosen (line 7) track which nodes and edges have been covered and selected
respectively at each time. Initially (line 25) an arbitrary node is covered and no edges have
been chosen. In each subsequent time step (line 27), the state changes according to the
algorithm. The algorithm terminates (line 29) when the set of all nodes has been covered.

At each step, a ‘cutting edge’ (that is, one that connects a covered and a non-covered
node) is selected such that there is no other cutting edge with a smaller weight (line 19).
The edge is marked as chosen (line 20), and its nodes as covered (line 21)1. If the node set
has already been covered (line 16), instead no change is made (line 17), and the algorithm
stutters. An implementation would, of course, terminate rather than stuttering. In Alloy,
however, ensuring that traces can be extended to a fixed length allows the Alloy Analyzer
to employ a better symmetry breaking strategy, dramatically improving performance.

Correctness entails two properties, namely that: (1) at the end, the set of covered edges
forms a spanning tree (line 39), and (2) there is no other spanning tree with lower total
weight (lines 40–44). The auxiliary predicate (spanningTree, lines 31–38) defines whether
a given set of edges forms a spanning tree, and states that, unless the graph has no edges
and only one node, the edges cover all nodes of the graph (line 33), the number of given
edges is one less than the number of nodes (line 35), and that all nodes are connected by
the given set of edges (lines 36–37).

If we run the previous version of the Alloy Analyzer (v4.1.2) to check these two prop-
erties, the smallest check fails. In each of the reported counterexamples, the expression

1For a field f modeling a time-dependent state component, the expression f.t represents the value of f
at time t.

56

1 open util/ordering[Time]

2 sig Time {}

3 sig Node {covered: set Time}

4 sig Edge {
5 weight: Int,
6 nodes: set Node,
7 chosen: set Time
8 } {
9 weight >= 0 and #nodes = 2

10 }

11 pred cutting (e: Edge, t: Time) {
12 (some e.nodes & covered.t) and (some e.nodes & (Node - covered.t))
13 }

14 pred step (t, t’: Time) {
15 -- stutter if done, else choose a minimal edge from a covered to an uncovered node
16 covered.t = Node =>
17 chosen.t’ = chosen.t and covered.t’ = covered.t
18 else some e: Edge {
19 cutting[e,t] and (no e2: Edge | cutting[e2,t] and e2.weight < e.weight)
20 chosen.t’ = chosen.t + e
21 covered.t’ = covered.t + e.nodes }
22 }

23 fact prim {
24 -- initially just one node marked
25 one covered.first and no chosen.first
26 -- steps according to algorithm
27 all t: Time - last | step[t, t.next]
28 -- run is complete
29 covered.last = Node
30 }

31 pred spanningTree (edges: set Edge) {
32 -- empty if only 1 node and 0 edges, otherwise covers set of nodes
33 (one Node and no Edge) => no edges else edges.nodes = Node
34 -- connected and a tree
35 #edges = (#Node).minus[1]
36 let adj = {a, b: Node | some e: edges | a + b in e.nodes} |
37 Node -> Node in *adj
38 }

39 correct: check { spanningTree[chosen.last] } for 5 but 10 Edge, 5 Int

40 smallest: check {
41 no edges: set Edge {
42 spanningTree[edges]
43 (sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}
44 } for 5 but 10 Edge, 5 Int

Listing 4: Alloy model for bounded verification of Prim’s algorithm that finds a minimum
spanning tree for a weighted connected graph

57

sum e: edges | e.weight (representing the sum of weights in the alternative tree, line 43)
overflows and wraps around, and thus appears (incorrectly) to have a lower total weight
than the tree constructed. One might think that this overflow could be avoided by adding
guards, for example that the total computed weight in the alternative tree is not negative.
This does not work, since the sum can wrap around all the way back into positive territory.
In Alloy*, which implements the approach described in this section, the check, as expected,
yields no counterexamples for a scope of up to 5 nodes, up to 10 edges and integers ranging
from -16 to 15.

3.3 Approach

This section defines a formal semantics to formulas whose arithmetic expressions might
involve out-of-domain applications, such as the addition of two integers that ideally would
require a value that cannot be represented. In contrast to traditional approaches to the
treatment of partial functions, the out-of-domain applications arise here not from any in-
trinsic property of the system being modeled, but rather from a limitation of the analysis.2

Consequently, whereas it would be appropriate in more traditional settings to produce a
counterexample when an out-of-bounds application occurs, in this setting, we aim to mask
such counterexamples, since they do not indicate problems with the model per se.

First, a standard three-valued logic [86] is adopted, in which elementary formulas in-
volving out-of-bounds arithmetic applications are given the third logical value of ‘unde-
fined’ (⊥), and undefinedness is propagated through the logical connectives in the expected
way (so that, for example, ‘false and undefined’ evaluates to false). But the semantics of
quantifiers diverges from the standard treatment: the meaning of a quantified formula is
adjusted so that the bound variable ranges only over values that would yield a body that is
not undefined (i.e., evaluates to true or false)3. Thus bindings that would result in an unde-
fined quantification are masked (never presented to the user), and quantified formulas are
never undefined. Since every top level formula in an Alloy model is quantified (the fields
and signatures of an Alloy model are always implicitly bound in an outermost existential
quantifier) this means that counterexamples (and, in the case of specification execution,
instances) never involve undefined terms.

This semantics cannot be implemented directly, since the Alloy Analyzer does not ex-
plicitly enumerate values of bound variables, but instead uses a translation to boolean sat-
isfiability (SAT) [162]. A scheme is therefore needed in which the formula is translated
compositionally to a SAT formula. To achieve this, a boolean formula is created to rep-
resent whether or not an arithmetic expression is undefined. This is then propagated to

2Note that this discussions concern only the partial function applications arising from arithmetic operators;
partial functions over uninterpreted types are treated differently in Alloy, and counterexamples involving their
application are never masked.

3One might wonder at this point how an automated solver for this logic can possibly know in advance
which bindings will not yield an overflow (without explicitly enumerating and checking every single com-
bination); indeed, our compilation to SAT does not modify the ranges of the bound variables, rather, it uses
a clever translation (as explained in Section 3.3.2) that make the associated bindings irrelevant whenever an
overflow occurs.

58

elementary subformulas in an unconventional way that ensures the high-level semantics of
quantifiers given above.

This section therefore gives two semantics: the user-level (high level) semantics that
the user needs to understand, and the implementation-level (low level) semantics that jus-
tifies the analysis. This lower level semantics is then implemented by a straightforward
translation to boolean circuits.

3.3.1 User-Level Semantics
As explained above, the key idea of our approach is to change the semantics of quantifiers
so that the quantification domain is restricted to those values for which the body of the
quantifier is defined (determined by the dfn predicate). For the universal quantifier, that
means that the body must be satisfied for all bindings for which the body does not overflow;
similarly for the existential quantifier, there must exist at least one binding for which the
body does not overflow and evaluates to true:

Jall 𝑟:ℛ | 𝜑(𝑟)K ≡ ∀𝑟 ∈ ℛ ∖ {𝑖 ⋃︀ 𝑟 → 𝑖 causes overflow in 𝜑(𝑟)} ● J𝜑(𝑟)K
Jsome 𝑟:ℛ | 𝜑(𝑟)K ≡ ∃𝑟 ∈ ℛ ∖ {𝑖 ⋃︀ 𝑟 → 𝑖 causes overflow in 𝜑(𝑟)} ● J𝜑(𝑟)K

An important subtlety to note about this definition is that it is more strict than simply
saying that, for a given binding, some subexpression in the body of the quantifier is unde-
fined (e.g., because of an arithmetic overflow); additionally, it is crucial to ensure that the
undefinedness is caused by this particular binding and not something else (e.g., an addition
of two integer constants that overflows). Formally defining this causation relation at this
level would only clutter this semantics and defeat its main purpose—namely to be intuitive
and easy to understand. Instead, we formalize here how formulas are evaluated (denoted
with JK brackets) and what it means for a formula/expression to be undefined (embodied
in the dfn function); the implementation-level semantics (Section 3.3.2), of course, pro-
vides a complete formalization. A concrete example of applying the user-level semantics
to evaluate quantifiers can be found in Section 3.3.3.

We have already given the quantifier evaluation semantics; all other formulas are either
undefined or evaluate to the same value they do in the standard Alloy Analyzer (denoted as
𝒜(︀𝜑⌋︀, which is always defined):

J𝜑K ≡ {
⊥ , if ¬dfn (︀𝜑⌋︀
𝒜 (︀𝜑⌋︀ , otherwise

Quantifiers are always defined. This simply follows from the idea to restrict quantifica-
tion domains to bindings for which the quantifier body is defined—if every instantiation of
the body is defined, the quantifier as a whole must also be defined:

dfn (︀all 𝑟 ∶ ℛ ⋃︀ 𝜑(𝑟)⌋︀ ≡ true dfn (︀some 𝑟 ∶ ℛ ⋃︀ 𝜑(𝑟)⌋︀ ≡ true

Integer expressions (i.e., those using Alloy’s arithmetic operators) are defined if all
arguments are defined and the evaluation does not result in overflow:

dfn (︀𝛼(𝑖1, . . . , 𝑖𝑛)⌋︀ ≡ dfn (︀𝑖1⌋︀ ∧ ⋅ ⋅ ⋅ ∧ dfn (︀𝑖𝑛⌋︀ ∧ ¬(𝛼(︀𝑖1, . . . , 𝑖𝑛⌋︀ overflows)

59

Other expressions supported in Alloy include: (1) relational algebra operators (e.g.,
union, intersection, etc.), (2) operators that take a relation and produce an integer (e.g., the
cardinality operator), and (3) operators that take an integer and produce a relation (e.g., the
int-to-expression cast operator). They are all defined if all arguments are defined:

dfn (︀𝜓(𝑟1, . . . , 𝑟𝑛)⌋︀ ≡ dfn (︀𝑟1⌋︀ ∧ ⋅ ⋅ ⋅ ∧ dfn (︀𝑟𝑛⌋︀

Predicates are boolean formulas that relate one or more (either integer or relational) ex-
pressions. In Alloy, predicates that relate integer expressions correspond directly to integer
comparison operators (e.g., less than, greater than, equal to, etc.), and predicates that relate
relational expressions correspond to standard boolean operators in relational algebra (e.g.,
subset, equality, etc.). Predicates are also defined if all arguments are defined:

dfn (︀𝜑(𝑟1, . . . , 𝑟𝑛)⌋︀ ≡ dfn (︀𝑟1⌋︀ ∧ ⋅ ⋅ ⋅ ∧ dfn (︀𝑟𝑛⌋︀

A constant is defined unless it is equal to ⊥:

dfn (︀𝑐⌋︀ ≡ 𝑐 ≠⊥

A formula is defined if it evaluates to either true or false when three-valued logic truth
tables (e.g., [86, Table A.1]) of propositional operators are used (denoted here as ∧3, ∨3, ¬3 ,
⇒3, and⇔3). Before the three-valued propositional operators can be applied, the operands
must first be evaluated to determine their definedness:

dfn (︀and(𝑝, 𝑞)⌋︀ ≡ (J𝑝K ∧3 J𝑞K) ≠⊥
dfn (︀or(𝑝, 𝑞)⌋︀ ≡ (J𝑝K ∨3 J𝑞K) ≠⊥
dfn (︀implies(𝑝, 𝑞)⌋︀ ≡ (J𝑝K⇒3 J𝑞K) ≠⊥
dfn (︀iff(𝑝, 𝑞)⌋︀ ≡ (J𝑝K⇔3 J𝑞K) ≠⊥
dfn (︀not(𝑝)⌋︀ ≡ (¬3J𝑝K) ≠⊥

The semantics of the rest of the Alloy logic (in particular, of the relational operators)
remains unchanged.

3.3.2 Implementation-Level Semantics
A direct implementation of the user-level semantics in Alloy would entail a three-valued
logic, and the translation to SAT would thus require 2 bits for a single boolean variable
(to represent the 3 possible values), a substantial change to the existing Alloy engine. Fur-
thermore, such a change would likely adversely affect the analysis performance of models
that do not use integer arithmetic. In this section, we show how the same semantics can be
achieved using the existing Alloy engine, merely by adjusting the evaluation of elementary
integer functions and integer predicates.

We call this semantics “implementation-level”, not because it shows how boolean for-
mulas and relational expressions are translated (rewritten) to propositional formulas (to be
solved by a SAT solver), but because it is directly implementable on top of Kodkod, the
solver used by the Alloy Analyzer. This section, thus, shows the mathematical seman-
tics of evaluating formulas to boolean constants in the presence of arithmetic overflows;
Section 3.4 explains how to modify Kodkod to achieve this semantics.

60

Syntax notes. For semantic function definitions, the expression fun_name(︀𝑎𝑟𝑔𝑠...⌋︀𝜎 is used
whenever the content of the store is irrelevant; otherwise, fun_name(︀𝑎𝑟𝑔𝑠...⌋︀(𝑥, 𝑖, 𝑞, 𝑏, 𝜎p) is
written to assign concrete variable names to store fields. The same square brackets are used to
explicitly designate cases where a built-in function or predicate (e.g., 𝛼, 𝜌, 𝛽) is to be applied
to a number of constant arguments to produce a concrete (constant) result.

To make all formulas denote (and thus avoid the need for a third boolean value), a
truth value must be assigned to an integer predicate even when some of its arguments
are undefined. The key idea behind the approach proposed in this thesis is that in such
cases a logic value can be assigned to make the subformula irrelevant in the context of the
entire (enclosing) formula (i.e., the Alloy specification as a whole). This is different from
common approaches (e.g., [53, 135]) which in those cases simply assign the value false.
For example, the sentence 𝑒1< 𝑒2 will be true iff both 𝑒1 and 𝑒2 are defined and 𝑒1 is less
than 𝑒2 (and similarly for 𝑒1>= 𝑒2):

J lt(𝑒1,𝑒2) K ≡ J𝑒1K < J𝑒2K ∧ dfn (︀𝑒1⌋︀ ∧ dfn (︀𝑒2⌋︀
J gte(𝑒1,𝑒2) K ≡ J𝑒1K ≥ J𝑒2K ∧ dfn (︀𝑒1⌋︀ ∧ dfn (︀𝑒2⌋︀

Negation presents a challenge. Following the user-level semantics, negation of an in-
teger predicate (e.g., !(𝑒1< 𝑒2)) is still undefined if any argument is undefined. Therefore,
under the implementation-level semantics, !(𝑒1< 𝑒2) must also, despite the negation, eval-
uate to false if either 𝑒1 or 𝑒2 is undefined (and thus have exactly the same semantics as
𝑒1 ≥ 𝑒2). To achieve this behavior, the polarity [81] of each expression must be known
(which is, loosely speaking, the number of enclosing negations). Evaluation of a binary
integer predicate can be then formulated (ignoring the stack of enclosing quantifiers for the
moment) as:

J𝜌(𝑒1, 𝑒2)K ≡ {
𝜌(︀J𝑒1K, J𝑒2K⌋︀ ∧ (dfn (︀𝑒1⌋︀ ∧ dfn (︀𝑒2⌋︀), if polarity is positive;
𝜌(︀J𝑒1K, J𝑒2K⌋︀ ∨ ¬(dfn (︀𝑒1⌋︀ ∧ dfn (︀𝑒2⌋︀) otherwise.

The polarity approach is not compositional, since the meaning of the negation of a for-
mula is not simply the logical negation of the meaning of that formula. For that reason,
this approach violates the law of the excluded middle, which, fortunately, will not be prob-
lematic, since the violation would only be observable for variable bindings that result in
overflow and such bindings are excluded by the semantics (see Section 3.3.4).

In the presence of quantifiers, to achieve the goal of restricting quantification domains
to values that do not cause overflows, the key idea is to assign truth values to formulas that
overflow such that the associated bindings to quantification variables become irrelevant.
For example, consider the following formula:

some x: Int | x > 0 and x+1 < 0

Kodkod unrolls this existential quantifier to a disjunction with as many clauses as there are
integers in the given scope. Assuming that the bitwidth is set to 4 (integers ranging from -8
to 7), the clause in which x is bound to 7 will overflow. To make a clause in a disjunction
of clauses irrelevant, the truth value false must be assigned to it; in this context, therefore,
we define x+1 < 0 to be false when x is bound to 7.

Now consider an example involving a universal quantifier:

61

all x: Int | x+1 > x

Universal quantifiers get unrolled to a conjunction of clauses; making a binding irrelevant
in this case means assigning the value true to the associated clause. Assuming the same
scope for integers, when x is bound to 7, we define x+1 > x in this context to be true.

The semantics is formally defined in Figures 3-1–3-4. Expressions and formulas are
interpreted in the context of a store (defined in Figure 3-1(a)) which for each variable
(var) bound in an enclosing quantifier holds: (1) the value of the variable in the particular
binding (val), (2) whether the quantifier is universal or existential (quant), and (3) its
current polarity (polarity). Here we only focus on handling integers, as the semantics of
the relational operators remains the same.

Evaluation of integer expressions (aeval) and boolean formulas (beval) has the same
effect as evaluation in the user-level semantics; it is elaborated differently here simply to
account for the need to pass the store. Every time a negation is seen, the inner formula is
interpreted in a store in which the polarity is negated. Quantifiers are unfolded, with the
body interpreted in a new nested store (depending on the current polarity, the quantifier
is adjusted according to De Morgan’s laws). For the evaluation of top-level formulas, an
empty existential environment is presented.

The crucial differences lie in the evaluation of integer predicates (ieval). Whereas
in the user-level semantics predicates evaluate to true, false and undefined, in this
implementation semantics predicates evaluate only to true or false. When a predicate
would have been undefined in the user-level semantics, its meaning will be either true or
false, chosen in such a way as to ensure that the associated binding becomes irrelevant.
This choice is represented by the auxiliary function ensureDfn, which determines the truth
value based on the current polarity and the stack of enclosing quantifiers.

As explained before, to make bindings resulting in overflow irrelevant, it is enough to
make predicates containing existentially quantified variables evaluate to false and pred-
icates containing universally quantified variables evaluate to true. Therefore, all expres-
sions with universally quantified variables are identified first (𝑒univ) and a definedness con-
dition for them (𝑏undef) is computed as a disjunction of either being undefined. For all
other arguments (𝑒ext) the definedness condition (𝑏def) is a conjunction of all being defined
(as before). Finally, based on the value of the polarity flag (𝑏pol), the two conditions are
attached to the base result (𝑏).

Following the formalization in Figure 3-4, evaluating an integer predicate 𝜌 boils down
to evaluating its arguments (𝑒1, and 𝑒2), applying 𝜌 to obtained integer values, and append-
ing the definedness condition to the previous result. Since 𝜌 is a built-in integer comparison
predicate, it can be applied concretely to two given constants to obtain a concrete boolean
constant (𝑏) corresponding to the result of the comparison. If any of the arguments evalu-
ates to ⊥, the definedness condition appended in the next step will ensure that the concrete
value of 𝑏 becomes irrelevant.

The definedness condition function (ensureDfn) takes a boolean constant (𝑏), a set of
integer expressions (𝑒in), and a store. If all received expressions are defined, the result is
𝑏; otherwise the result is computed so that the associated binding in the enclosing quanti-
fiers becomes irrelevant. Concretely, the ensureDfn function splits 𝑒in into two sets, 𝑒univ
and 𝑒ext, first containing expressions with universally quantified integer variables, and the

62

(a) Syntactic Domains
Formula = BoolConst

| IntPred(op: IntPredOp, operands: IntExpr*)
| BoolPred(op: BoolPredOp, operands: Formula*)
| QuantFormula(quant: Quant, var: VarDecl, body: Formula)

IntExpr = IntConst
| IntVar
| IntFunc(fun: IntFuncOp, args: IntExpr*)

BoolConst = true | false
IntConst = ⊥ | 0 | -1 | 1 | -2 | 2 | ...
Quant = all | some
BoolPredOp = not1 | and2 | or2 | implies2 | iff2
IntPredOp = eq2 | neq2 | gt2 | gte2 | lt2 | lte2
IntFuncOp = neg1 | plus2 | minus2 | times2 | div2 | mod2 |

shl2 | shr2 | sha2 | bitand2 | bitor2 | bitxor2
Store = {var: IntVar, val: IntConst, quant: Quant, polarity: BoolConst, parent: Store}

(b) Symbols
⊥ ∈ IntConst (undefined value) 𝑏𝑖 ∈ BoolConst (boolean constants)
𝑖𝑖 ∈ IntConst (integer constants) 𝑝𝑖 ∈ Formula (formulas)
𝑒𝑖 ∈ IntExpr (integer expressions) 𝛽𝑖 ∈ BoolPred (boolean predicates)
𝜌𝑖 ∈ IntPred (integer predicates) 𝑥𝑖 ∈ IntVar (integer variables)
𝛼𝑖 ∈ IntFunc (arithmetic functions) 𝑞𝑖 ∈ QuantFormula (quantified formula)

(c) Stores
𝜎 : Store (environment of nested quantifiers and variable bindings)

Figure 3-1: Overview of semantic domains, symbols, and stores to be used

aeval : IntExpr → Store → IntConst

aeval(︀𝑖⌋︀𝜎 ≡ 𝑖
aeval(︀𝑥⌋︀(𝑥𝜎 , 𝑖𝜎 , 𝑞, 𝑏, 𝜎p) ≡ if 𝑥𝜎 = 𝑥 then 𝑖𝜎 else aeval(︀𝑥⌋︀𝜎p

aeval(︀𝛼(𝑖1, . . . , 𝑖𝑛)⌋︀𝜎 ≡
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

⊥, if 𝑖𝑖 =⊥ or ... or 𝑖𝑛 =⊥;
⊥, if 𝛼[𝑖1, . . . , 𝑖𝑛] overflows;
𝛼(︀𝑖1, . . . , 𝑖𝑛⌋︀ otherwise.

aeval(︀𝛼(𝑒1, . . . , 𝑒𝑛)⌋︀𝜎 ≡ aeval(︀𝛼(aeval (︀𝑒1⌋︀𝜎, . . . , aeval (︀𝑒𝑛⌋︀𝜎)⌋︀𝜎

Figure 3-2: Evaluation of arithmetic operations (aeval)

beval : Formula → Store → BoolConst

beval(︀𝑏⌋︀𝜎 ≡ 𝑏
beval(︀𝜌(𝑒1, 𝑒2)⌋︀𝜎 ≡ ieval(︀𝜌(𝑒1, 𝑒2)⌋︀𝜎
beval(︀not(𝑝)⌋︀(𝑥, 𝑖, 𝑞, 𝑏, 𝜎p) ≡ ¬ beval(︀𝑝⌋︀(𝑥, 𝑖, 𝑞, ¬𝑏, 𝜎p)
beval(︀𝛽(𝑝1, . . . , 𝑝2)⌋︀𝜎 ≡ 𝛽 (︀beval (︀𝑝1⌋︀𝜎, . . . , beval (︀𝑝2⌋︀𝜎⌋︀
beval(︀all 𝑥: Int | 𝑝⌋︀𝜎 ≡ let 𝑞 = (𝜎.polarity) ? all : some in

≡ ⋀
𝑖∈Int

beval (︀𝑝⌋︀ (𝑥, 𝑖, 𝑞, 𝜎.polarity, 𝜎)

beval(︀some 𝑥: Int | 𝑝⌋︀𝜎 ≡ let 𝑞 = (𝜎.polarity) ? some : all in
≡ ⋁

𝑖∈Int
beval (︀𝑝⌋︀ (𝑥, 𝑖, 𝑞, 𝜎.polarity, 𝜎)

Figure 3-3: Evaluation of boolean formulas (beval)

63

ieval : IntPred → Store → BoolConst

ieval(︀𝜌(𝑒1, 𝑒2)⌋︀𝜎 ≡ let 𝑏 = 𝜌(︀aeval (︀𝑒1⌋︀𝜎,aeval (︀𝑒2⌋︀𝜎⌋︀in
ensureDfn (︀𝑏,{𝑒1, 𝑒2}⌋︀𝜎

ensureDfn : BoolConst → set IntExpr → Store → BoolConst

ensureDfn(︀𝑏, 𝑒in⌋︀ (𝑥, 𝑖, 𝑞, 𝑏pol, 𝜎p) ≡
let 𝜎 = (𝑥, 𝑖, 𝑞, 𝑏pol, 𝜎p) in

let 𝑒univ = {𝑒 ⋃︀ 𝑒 ∈ 𝑒in ∧ isUnivQuant (︀𝑒⌋︀𝜎} in
let 𝑒ext = 𝑒in ∖ 𝑒univ in

let 𝑏def = (𝑒ext = ∅) ∨ ⋀
𝑒∈𝑒ext

(aeval (︀𝑒⌋︀𝜎 ≠⊥) in

let 𝑏undef = (𝑒univ ≠ ∅) ∧ ⋁
𝑒∈𝑒univ

(aeval (︀𝑒⌋︀𝜎 =⊥) in

if 𝑏pol then (𝑏 ∨ 𝑏undef) ∧ 𝑏def
else (𝑏 ∨ ¬𝑏def) ∧ ¬𝑏undef

isUnivQuant : IntExpr → Store → BoolConst

isUnivQuant(︀𝑒⌋︀ ({}) ≡ false
isUnivQuant(︀𝑒⌋︀ (𝑥, 𝑖, 𝑞, 𝑏, 𝜎p) ≡ if 𝑥 ∈ vars (︀𝑒⌋︀then 𝑞 = all

else isUnivQuant (︀𝑒⌋︀𝜎p

vars : IntExpr → set IntVar

vars(︀𝑖⌋︀ ≡ ∅
vars(︀𝑥⌋︀ ≡ {𝑥}
vars(︀𝛼(𝑒1, . . . , 𝑒𝑛)⌋︀ ≡ vars(︀𝑒1⌋︀ ∪ . . .∪ vars(︀𝑒𝑛⌋︀

Figure 3-4: Evaluation of integer predicates (ieval)

second all others (which are implicitly considered as existentially quantified). The con-
ditions associated with the existentially and universally quantified expressions (𝑏def and
𝑏undef) state that none of the expressions are undefined, or at least one is undefined, respec-
tively. If the polarity is positive (the easiest way to think about it is the case when there
are no enclosing negations), the final result is computed as (𝑏 ∨ 𝑏undef) ∧ 𝑏def. Intuitively, if
any existentially quantified expression is undefined (𝑏def equal to false), the result must be
false (since false is the value that makes a binding irrelevant inside an existential quanti-
fier); given no existentially quantified expression is undefined, if any universally quantified
expression is undefined (𝑏undef equal to true), the result must be true (since true makes a
binding irrelevant inside a universal quantifier); otherwise, the result is exactly equal to the
original value 𝑏. When the polarity is negative, the same reasoning applies, except that the
conditions need to be flipped, so 𝑏def becomes ¬𝑏undef, and 𝑏undef becomes ¬𝑏def.

The helper functions used in the definition of ensureDfn, isUnivQuant and vars are
straightforward. An expression is universally quantified if any of its variables (computed
by a simple top-down algorithm embodied in the vars function) is quantified over by a
universal quantifier (information about the enclosing quantifiers is directly accessible from
the store).

Finally, the user-level semantics also allows relational expressions to be undefined, for
example, when the int-to-expression cast operator is applied to an undefined integer expres-
sion. Under the user-level semantics, whenever a boolean predicate is applied to a number

64

of relational expressions, the result is undefined if at least one of its arguments is unde-
fined; here, however, a truth value must be assigned for all cases. The way this is done is
analogous to evaluating integer predicates (ieval), which we already formally defined.

3.3.3 Correspondence Between the Two Semantics
To show that our low-level semantics correctly implements the high-level user semantics,
it is enough to establish a correspondence between the two definitions of quantifiers (the
low-level semantics only introduced a change to the semantics of quantifiers). Following
directly from the two definitions, this is equivalent to proving that whenever an expres-
sion 𝑝(𝑥) is undefined by the laws of three-valued logic (i.e., dfn(︀𝑝(𝑥)⌋︀ is false), if 𝑥 is
universally quantified then beval(︀𝑝(𝑥)⌋︀ evaluates to true, else it evaluates to false.

This hypothesis could be proved by a structural induction on expressions. Instead of
giving a complete proof, several interesting cases are explained instead.

The low-level evaluation of integer predicates is where the crucial differences lie. Let
us therefore consider the case when 𝑝(𝑥) is an integer predicate, 𝜌(𝑒1(𝑥), 𝑒2(𝑥)). Further-
more, let us assume that 𝑒1(𝑥) is undefined, which makes 𝑝(𝑥) undefined as well. In this
context, polarity is positive, and the value of beval(︀𝜌(𝑒1(𝑥), 𝑒2(𝑥))⌋︀ becomes the value of
ensureDfn. There are two cases to consider: (1) if 𝑥 is universally quantified, 𝑒univ con-
tains both 𝑒1 and 𝑒2, 𝑏undef becomes true, 𝑏def is true by default, so the result is also true

regardless of the base value 𝑏; (2) if 𝑥 is existentially quantified, 𝑒ext contains both 𝑒1 and
𝑒2, 𝑏def becomes false, 𝑏undef is false by default, so the result is also false, as expected.

Let us now assume that 𝑝(𝑥) is a negation of an integer predicate, 𝑝(𝑥) = ¬𝜌(𝑒1(𝑥), 𝑒2(𝑥)),
and that 𝑒1(𝑥) is again undefined. Despite the negation, 𝑝(𝑥) is still undefined, so the low-
level evaluation should behave exactly as in the previous case. The result of beval(︀𝑝(𝑥)⌋︀
now becomes a negation of the value returned by ensureDfn, which, in contrast, now eval-
uates in a context where the polarity is negative. Following exactly the same derivation as
before, it can be shown that ensureDfn now returns false for the universal case, and true

for the existential case (because of the negative polarity), so the end result of beval(︀𝑝(𝑥)⌋︀
remains the same, as expected.

Another class of interesting examples is those with nested quantifiers. Consider the
following formula:

run {
all x: Int | some y: Int | y = 3 and (x = 3 implies plus[x,x] = plus[y,y])

} for 3 Int

Applying the user-level semantics, this formula evaluates to

Jall x:Int | some y:Int | f[x,y]K
= ∀x ∈ Int ∖ {xOF} ● Jsome y:Int | f[x,y]K
= ∀x ∈ Int ∖ {xOF} ● ∃y ∈ Int ∖ {yOF} ● Jf[x,y]K

where f[x,y] is y = 3 and (x = 3 implies plus[x,x] = plus[y,y]). The set of excluded
bindings for variable x, {xOF}, is a set of all integers for which plus[x,x] overflows (which
is the only subexpression containing variable x that can possibly be undefined); similarly,
{yOF} is a set of all integers for which plus[y,y] overflows. In both cases, the excluded

65

bindings are equal to {−3,2,3}. Since the only binding that satisfies f[x,y] is 𝑥 → 3,
𝑦 → 3, the formula as a whole is unsatisfiable. Now following the implementation-level se-
mantics (the definition of the ensureDfn function), the 𝑒ext set contains plus[y,y]; given
the binding 𝑥 → 3, 𝑦 → 3, 𝑏def evaluates to false, and since the polarity is positive (𝑏pol is
true), ensureDfn returns false, thus, the formula as a whole is, again, unsatisfiable.

As an exercise, the reader may want to check that if the quantifiers in the previous
formula swap places, the result does not change. When plus[x,y] = plus[x,y] is used
instead of plus[x,x] = plus[y,y], the order of quantification does matter: the formula

all x: Int | some y: Int | y = 3 and (x = 3 implies plus[x,y] = plus[x,y])

is not satisfiable, but
some y: Int | all x: Int | y = 3 and (x = 3 implies plus[x,y] = plus[x,y])

is, because the two arithmetic expressions are both treated as “existentially” quantified in
the former case, and “universally” in the latter. This behavior is not simply an artifact of
the presented formalization. Rather, it is by design, as the intention was to have

all x: Int | some y: Int | plus[x,y] > x

be false (indeed, in a bounded setting, for x = MAXINT, there is no integer that can be added
to it to obtain an integer greater than MAXINT), and

some y: Int | all x: Int | plus[x,y] > x

be true (for, e.g., y = 1, every integer x when added to it can only produce a number greater
than x).

3.3.4 The Law of the Excluded Middle
As mentioned earlier, the non-compositional rule for negation breaks the law of the ex-
cluded middle. Usually, this is not a problem.

Consider checking the theorem that all integers (within the bitwidth of 3) when multi-
plied by two are either less than zero or not less than zero:

check { all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0) } for 3 Int

If we run the Alloy Analyzer with overflow prevention turned on, this sentence is inter-
preted as “for all integers x s.t. x times two does not overflow, x times two is either less than
zero or not less than zero”, and thus no counterexample is found, which is consistent with
classical logic.

Similarly, if we ask the Alloy Analyzer to find all instances of x where x multiplied by
two is either less or not less than zero, we will not get all integers from the domain, but
only those that do not overflow when multiplied by two.

run {
some x: Int | x.mul[2] < 0 or !(x.mul[2] < 0)

} for 3 Int

instances

x = -2, x = 0

x = -1, x = 1

In a sense, however, the violation of the law of the excluded middle is visible if truth
is associated with whether or not a check yields a counterexample at all. For example, a
check of whether 4 plus 5 is equal to 6 plus 3 for the bitwidth of 4 (Int = {-8, ..., 7})

66

does not return a counterexample, but neither does a check of whether 4 plus 5 is different
from 6 plus 3.

check { 4.plus[5] = 6.plus[3] } for 4 Int -- no counterexample found
check { 4.plus[5] != 6.plus[3] } for 4 Int -- no counterexample found

Though this might at first appear confusing, it is consistent with the main design decision
behind this approach: indeed, for a bitwidth of 4, there is no non-overflowing instance in
which 4 plus 5 is either equal to or different from 6 plus 3.

3.4 Implementation in Circuits
Detecting arithmetic overflows at the level of relational logic would be difficult, and prob-
ably inefficient. We therefore implemented our approach at the level of the translation to
propositional logic, as an extension to Kodkod.

The Alloy Analyzer delegates the core task of finding satisfying models to Kodkod, a
bounded constraint solver for relational first-order logic. Kodkod works by translating a
given relational formula (together with bounds) into an equisatisfiable propositional for-
mula and using an of-the-shelf SAT solver to check its satisfiability.

Even though the goal here is to translate the input formula into a digital circuit (instead
of evaluating it to a boolean constant), the denotational semantics defined in Section 3.3.1
still applies, simply because all logic operators used in our formalization are also available
at the level of digital gates. Only Kodkod’s translation of appropriate terms had to be mod-
ified, directly following the formal semantics presented in this thesis. The list of changes
made to Kodkod is as follows:

• the translation of arithmetic operations was changed to generate an additional one-
bit overflow circuit which is set if and only if the operation overflows. Textbook
overflow circuits were used for all arithmetic operations supported by Kodkod, and
the definition in Figure 3-2 was used to propagate this information from the operands
to the operation result;

• the way the store gets updated was modified so that it additionally keeps track of the
polarity and the quantification stack (the store is defined in Figure 3-1, and how it
gets updated in Figure 3-3);

• the translation of boolean predicates was also updated so that the original circuit
representing the predicate result is extended to include the definedness conditions,
exactly as defined in Figure 3-4;

3.5 Evaluation
The goal of this evaluation is twofold: (1) test the new semantics as embodied in code
within Alloy* and make sure that all the anomalies presented in Section 3.1 are fixed, as
well as spurious counterexamples caused by integer overflows in several other prototypical
cases are eliminated, and (2) provide some evidence about potential effects (in terms of

67

public void testArithmeticOverflows() {
int bw = 5, l = -(1 << (bw - 1)), h = (1 << (bw - 1));
IntOperator[] ops = new IntOperator[]{PLUS, MINUS, MULTIPLY, DIVIDE, MODULO};
for (IntOperator op: ops) for (int i=l; i<h; i++) for (int j=l; j<h; j++) {
// f: ret = Int[(i op j)]
Formula f = ret.eq(compose(op, constant(i), constant(j)).toExpression());
int javaRes = -1;
try { javaRes = exeJava(op, i, j); } catch(ArithmeticException e){ continue; }
if (javaRes >= h || javaRes < l) {
try { exeKodkod(f); fail("Overflow not detected"); } catch(NoSolution e){}

} else {
assertEquals("Wrong result", javaRes, exeKodkod(f));

}
}

}

Listing 5: A unit test for exhaustively checking overflow detection in elementary arithmetic
formulas

scalability of the analysis) the new semantics might have on existing models already using
integer arithmetics.

3.5.1 Exhaustive Testing of the New Translation Scheme
To ensure the correctness of the new semantics, as well as the implementation of the new
translation scheme, we ran a series of exhaustive tests (up to a finite bound) and verified
that the results were as expected.

Basic Arithmetic Tests

The unit test in Listing 5 exhaustively checks whether overflows are detected in all sup-
ported binary arithmetic functions. It dynamically constructs all possible expressions in
the form of

ret = {i op j},

where i and j are integers drawn from {-16, . . . , 15}, and op is an arithmetic operator
drawn from {+, -, *, /, %}. For each case, it first computes the expected result using Java
built-in arithmetic operators (which certainly will not overflow in this small scope). If the
computed result falls outside of the [-16, 15] range, an overflow is expected, that is, no
satisfying instance is expected to be found by Kodkod; otherwise, the value of ret returned
by Kodkod is expected to be equal to the value obtained in Java.

A slightly modified version of this test uses the same ideas to check all expressions in
the form of

ret = (some {i op j} => {i op j} else {-1}).

This test shows that a constraint can be written to check whether an integer expression over-
flows. The formula above uses that feature to assign a default value (-1) to ret whenever i

68

op j overflows. One might (wrongly) expect this entire formula to be unsatisfiable when
{i op j} overflows; recalling the semantics, however, applying the int-to-expression cast
operator to an overflowing integer expression (i op j) results in an undefined relational
expression, then applying the some boolean predicate to it yields false (since the polarity
is positive), which finally selects the else branch (regardless of the evaluation of the then
branch).

Yet another variation of the same test uses relations in place of integer constants i and
j, so that it can ask Kodkod to enumerate all valid solutions to ret = {i op j}. It then
checks that the result exactly matches the set of all non-overflowing solutions computed in
Java.

Testing Tautologies

Table 3.1 shows the list of arithmetic tautologies that were checked for counterexamples
using Kodkod.

For the purpose of exercising various polarity cases (that is, nestings of negations and
quantifiers), for each row from Table 3.1 we ran the test on the following equivalent formu-
las:

all decl | pre => post
!!(all decl | pre => post)
all decl | !!(pre => post)
all decl | !(pre && !post)
all decl | !pre || post

!(some decl | !(pre => post))
!!!(some decl | !(pre => post))
!(some decl | pre && !post)
!(some decl | !!(pre && !post))
!(some decl | !(!pre || post))

The cardinality operator (#) returns the number of elements in a given relation. If
that number is greater than the largest integer in the scope, the operation overflows, often
causing anomalies especially difficult to debug. To ensure that the new semantics correctly
prevents overflows in those cases, we checked the following tautologies:

all s: set univ | #s >= 0
no s: set univ | #s < 0
all s: set univ | (some s) iff #s > 0
all s, t: set univ | #(s + t) >= #s && #(s + t) >= #t
all s, t: set univ | s in t => #s <= #t
all s, t: set univ | (no s & t && some s) => #(s + t) > #t

As expected, none of the tautologies could be refuted given the integer bitwidth of 5.

3.5.2 Effects on Models with Integer Arithmetic
We took a previously published model of a flash filesystem [88], which uses arithmetic
operations and whose analysis is non-trivial, and compared its execution under the old (Al-
loy4) and new (Alloy*) analysis schemes. This model involves both assertions (that certain
properties hold) and simulations (that produce sample scenarios). First, we checked that
there are no new spurious counterexamples, and that none of the expected valid scenarios
are lost. This was not the focus of our evaluation, however, since the design of the analysis
ensures it. Rather, our concern was that the addition of new clauses to the SAT formula
generated by the Analyzer might increase translation and solving time.

69

decl precondition postcondition
a, b: Int a > 0 && b > 0 a + b > 0 && a + b > a && a + b > b

a, b: Int a < 0 && b < 0 a + b < 0 && a + b < a && a + b < b

a, b: Int a > 0 && b < 0 a - b > 0 && a - b > a && a - b > b

a, b: Int a < 0 && b > 0 a - b < 0 && a - b < a && a - b < b

a, b: Int a > 0 && b > 0 a * b > 0 && a * b >= a && a * b >= b

a, b: Int a < 0 && b < 0 a * b > 0 && a * b >= -a && a * b >= -b

a, b: Int a > 0 && b < 0 a * b < 0 && -(a * b) > a && -(a * b) > -b

a, b: Int a < 0 && b > 0 a * b < 0 && -(a * b) > -a && -(a * b) > b

Table 3.1: List of checked arithmetic tautologies

The new translation always results in a larger SAT formula, because extra clauses are
needed to rule out models that overflow. One might imagine that adding clauses would
cause the solving time to increase. On the other hand, the additional clauses might result
in a smaller search space, and thus potentially reduce the search time.

We ran all checks that were present in the “concrete” module of the model. The first
11 (run1 through run11) are simulations (which all find an instance), and the remaining
5 (check1 through check5) are checks, which, with the exception of check5, produce no
counterexamples. For each check, we measured both the translation and solving time, as
shown in Table 3.2. As expected, in some cases the analysis runs faster, and sometimes it
takes longer. In total, with the overflow prevention turned on, the entire analysis finished
in about 8 hours, as opposed to almost 12 hours that the same analysis took otherwise.

run1 run2 run3 run4 run5 run6 run7 run8 run9

old [s] 1.2 0.9 2.1 0.4 0.8 0.2 12.9 2.3 5.9 0.5 12.7 1.0 11.9 1.1 9.0 1.0 12.5 1.0
new [s] 1.2 0.8 1.6 0.4 0.8 0.3 13.4 8.7 6.2 0.5 12.6 0.8 12.1 1.5 9.1 1.0 12.7 2.6
diff [s] 0 0.1 0.5 0 0 -0.1 -0.5 -6.4 -0.3 0 0.1 0.2 -0.2 -0.4 -0.1 0 -0.2 -1.6
x [%] 0 11.1 23.8 0 0 -50.0 -3.9 -278.3 -5.1 0 0.8 20.0 -1.7 -36.4 -1.1 0 -1.6 -160.0

run10 run11 check1 check2 check3 check4 check5 total

old [s] 25.7 14.8 20.0 39.6 12.1 2190.7 12.0 30673.3 12.5 3713.2 12.3 3.0 74.3 5782.6 42663.5
new [s] 25.9 12.5 20.2 12.6 12.2 1670.4 12.2 16741.9 12.7 3526.9 12.5 1.3 73.9 7083.5 29304.5
diff [s] -0.2 2.3 -0.2 27 -0.1 520.3 -0.2 13931.4 -0.2 186.3 -0.2 1.7 0.4 -1300.9 13359.0
speedup [%] -0.8 15.5 -1.0 68.2 -0.8 23.8 -1.7 45.4 -1.6 5.0 -1.6 56.7 0.5 -22.5 31.3

Table 3.2: Analysis times of checks from the flash filesystem model [88]

3.6 Related Work

The problem addressed in this thesis is an instance of the more general problem of handling
partial functions in logic. The most important difference, however, is that, in this case, the
out-of-bound function applications arise due to deficiencies in the analysis, rather than from
the inherent semantics of the logic. Requiring the user to introduce guards in the formal
description itself to mitigate the effects of undefinedness is therefore not acceptable.

70

Despite this fundamental difference, our approach shares some features of several pre-
viously explored approaches.

The Logic of Partial Functions (LPF) was proposed for reasoning about the develop-
ment of programs [86, 87], and was adopted in VDM [85]. In this approach, not only inte-
ger predicates but also boolean formulas may be non-denoting, so truth tables extended to a
three-valued logic are needed. This allows guards for definedness to be treated intuitively;
thus, for example, even when “x” is equal to zero, formula x!=0 => x/x=1, evaluates to
true in spite of x/x=1 being undefined. Our approach uses this three-valued logic for de-
termining whether the body of a quantified formula is undefined, but the meaning of the
formula as a whole is treated differently—masking the binding that produces undefinedness
rather than interpreting the quantification in the same three-valued logic.

Our implementation-level semantics adopts the traditional approach to partial func-
tions (a term coined by Farmer [53]), in which all formulas must be denoting but functions
may be partial. Farmer’s approach, however, leaves open whether, given an undefined a,
!(a=a) and a!=a have different meanings—an issue that in the standard setting is hard to
resolve because of the competing concerns of compositionality and preserving complemen-
tarity of predicates. In our case, the non-compositional choice fits nicely with the user-level
semantics.

Like the Alloy Analyzer, SMT [26] solvers can also be used for model finding. They all
support unbounded integer arithmetic, so the problem of overflows does not arise. However,
using Alloy over SMT-based tools has certain benefits, most notably the expressiveness of
the Alloy relational language. There are higher-level languages that build on SMT tech-
nologies (e.g. Dafny [98]), but for a task similar to verifying Prim’s algorithm, such tools
are typically not fully automatic, and demand that the user provide intermediate lemmas.

Model-based languages such as B [13] and Z [151], being designed for specifying pro-
grams, make extensive use of partial functions. Both are based on set theory, and model
functions as relations. Whereas in Alloy out-of-bounds applications of partial functions
over uninterpreted types result in the empty set, in B such an application results in an
unknown value [155] (consequently, propositions containing unknown values cannot be
proved). The initial specification of the Z notation [151] left the handling of partial func-
tions open.

Several different approaches have been proposed (see [20] for a survey); in the end, it
appears that the same approach as in B has evolved to be the norm [155]. In both Z and
B, integers are unbounded, and so the problems of integer overflow do not arise. On the
other side, the tools for discharging proof obligations (e.g. Rodin [12]) are typically less
automated than the Alloy Analyzer.

3.7 Conclusion
A new logic has been presented, a logic that provides a special treatment of quantifiers
to eliminate models yielding out-of-domain applications of partial functions. The main
motivation for the new logic was making an automated analysis based on it sound with
respect to counterexamples (i.e., instances), even in the presence of partial functions. This
thesis focuses on applying this approach to integer functions (which in a bounded setting

71

become partial), with the goal of excluding the models containing arithmetic overflows.
The proposed approach has been implemented in the Alloy Analyzer, and thus eliminated
its only source of spurious counterexamples, making it more practical for use in fully au-
tomated tools that are built on top of it (like Alloy* [117], 𝛼Rby [112], SQUANDER [118],
Forge [43, 44], TestEra [104], etc.).

72

Part II

Unifying Specification and
Implementation Languages

73

74

Chapter 4

𝛼Rby: An Embedding of Alloy in Ruby

Part I focused on improving automated constraint solving—a technology often used as the
main engine in many declarative programming systems—and presented Alloy* and its key
advancements: (1) full support for higher-order formulas, and (2) a novel treatment of
partial arithmetic function for the purpose of preventing integer overflows. The next step
when developing a specification-based declarative programming system is designing an
interface between the user (programmer) and the underlying solver. This chapter discusses
the set of challenges that arise in this phase, offers a novel approach to address them, and
presents a tool implementing the approach.

Probably the most important characteristic of any specification language is its expres-
sive power. One of the main benefits of writing a specification is to describe the behavior of
a program succinctly and accurately, in terms that are easier to understand and comprehend
than any possible imperative implementation of the same program. To achieve this, specifi-
cation languages often resort to using various logics and formalisms that are not commonly
found in traditional programming languages. This poses a language design challenge when
developing a programming environment which allows declarative specifications and imper-
ative statements be arbitrarily mixed.

To write specifications, previous approaches either employ the same imperative con-
structs provided by the host language (e.g., [90,161]) or simply use plain strings (e.g., [118,
141]); the former often has to sacrifice expressive power, while the latter tends to be incon-
venient to use and manipulate (because the specification language is not first-class). This
thesis takes a different approach: instead of adding specification statements to an impera-
tive programming language, we propose that, at least conceptually, an imperative shell is
created around a specification language. We recognize that extending an existing specifi-
cation language to support imperative construct may turn to be very impractical from the
implementation standpoint, so this chapter also presents how the same idea can be imple-
mented more conveniently using a modern programming language equipped with powerful
metaprogramming features.

We present 𝛼Rby, an embedding of the Alloy language in Ruby, as well as the bene-
fits of having a declarative specification and modeling language (backed by an automated
solver) embedded in a traditional object-oriented imperative programming language. This
approach aims to bring these two distinct paradigms (imperative and declarative) together
in a novel way. We argue that having the other paradigm available within the same lan-

75

guage is beneficial to both the modeling community of Alloy users and the object-oriented
community of Ruby programmers. Our embedding is specific in that one of its main ob-
jectives is to preserve as much as possible the original character of the chosen specification
language (Alloy), in terms of both syntax and semantics.

The main contributions include:

• An argument for a new kind of combination of a declarative and an imperative lan-
guage, justified by a collection of examples of functionality implemented in a variety
of tools, all of which are subsumed by this combination, becoming expressible by
the end-user;

• An embodiment of this combination in 𝛼Rby, a deep embedding of Alloy in Ruby,
along with a semantics, a discussion of design challenges, and an implementation for
readers to experiment with;

• An illustration of the use of the new language in a collection of small but non-trivial
examples.

4.1 Why an Imperative Shell Around a Modeling Lan-
guage

A common approach in formal modeling and analysis is to use (1) a declarative language
(based on formal logic) for writing specifications, and (2) an automated constraint solver for
finding valid models of such specifications1. Such models are most often either examples
(of states or execution traces), or counterexamples (of correctness claims).

In many practical applications, however, the desired analysis involves more than a sin-
gle model finding step. At the very least, a tool must convert the generated model into a
form suitable for showing to the user; in the case of Alloy [78], this includes projecting
higher-arity relations so that the model can be visualized as a set of snapshots. In some
cases, the analysis may involve repeating the model finding step, e.g., to find a minimal
model by requesting a solution with fewer tuples [130].

To date, these additional analyses have been hard-coded in the analysis tool. The key
advantage of this approach is that it gives complete freedom to the tool developer. The
disadvantage is that almost no freedom is given to the modeler, who must make do with
whatever additional processing the tool developer chose to provide.

This thesis explores a different approach, in which, rather than embellishing the analysis
in an ad hoc fashion in the implementation of the tool, the modeling language itself is
extended so that the additional processing can be expressed directly by the end user. An
imperative language seems most suitable for this purpose, and the challenge therefore is to
find a coherent merging of two languages, one declarative and one imperative. We show
how this has been achieved in the merging of Alloy and Ruby.

1Throughout this chapter, we use the term ‘model’ in its mathematical sense, and never to mean the artifact
being analyzed, for which we use the term ‘specification’ instead.

76

This challenge poses two questions, one theoretical and one practical. Theoretically,
a semantics is needed for the combination: what combinations are permitted, and what is
their meaning? Practically, a straightforward way to implement the scheme is needed. In
particular, can a tool be built without requiring a new parser and engine that must handle
both languages simultaneously?

Roughly speaking, 𝛼Rby answers these questions as follows. Execution consists of
interleaved phases of imperative program execution and declarative model finding. The
imperative phases construct specifications as abstract objects, which are then solved by the
model finder; subsequent imperative phases can process the resulting models, and construct
new specifications, based not only on previous specifications but also on the models found.
To implement this, the modeling language is embedded as a domain-specific language in
the imperative programming language. The keywords of the specification are implemented
as functions that construct abstract syntax trees. Thus no special parsing is required, and
the model finding phase is handled by passing a tree representing the entire specification to
an existing model finder.

This project focuses on the combination of Alloy and Ruby. In some respects, these
choices are significant. Alloy’s essential structuring mechanism, the signature [77], allows
a relational logic to be viewed in an object-oriented way (in just the same way that instance
variables in an object-oriented language can be viewed as functions or relations from mem-
bers of the class to members of the instance variable type). So Alloy is well suited to an
interpretation scheme that maps it to object-oriented constructs. Ruby is a good choice
because, in addition to being object-oriented and providing (like most recent scripting lan-
guages) a powerful metaprogramming interface, it offers a syntax that is flexible enough to
support an almost complete embedding of Alloy with very few syntactic modifications.

At the same time, these key ideas could be applied to other languages; there is no reason,
in principle, that similar functionality might not be obtained by combining the declarative
language B [13] with the programming language Racket, for example.

4.2 Examples of Motivating Use Cases
Analysis of a declarative specification typically involves more than just model finding. In
this section, we outline the often needed additional steps.

Preprocessing. The specification or the analysis command may be updated based on
user input. For example, in an analysis of Sudoku, the size of the board must be specified.
In Alloy, this size would be given as part of the ‘scope’, which assigns an integer bound to
each basic type. For Sudoku, we would like to ensure that the length of a side is a perfect
square; this cannot be specified directly in Alloy.

Postprocessing. Once a model has been obtained by model finding, some processing
may be needed before it is presented to the user. A common application of model finding in
automatic configuration is to cast the desired configuration constraints as the specification,
then perform the configuration steps based on the returned solution.

Partial instances. A partial instance is a partial solution that is known (given) up-
front. In solving a Sudoku problem, for example, the model finder must be given not only
the rules of Sudoku but also the partially filled board. It is easy to encode a partial solution

77

as a formula that is then just conjoined to the specification. But although this approach is
conceptually simple, it is not efficient in practice, since the model finder must work to re-
construct from this formula information (namely the partial solution) that is already known,
thus needlessly damaging performance.

Kodkod (the back-end solver for Alloy) explicitly supports partial instances: it allows
the user to specify relation bounds in terms of tuples that must (lower bound) and may
(upper bound) be included in the final value. Kodkod then uses the bounds to shrink the
search space, often leading to significant speedups [160]. At the Alloy level, however, this
feature is not directly available2.

Staged model finding. Some analyses involve repeated calls to the model finder. In
the simplest case, the bounds on the analysis are iteratively increased (when no counterex-
ample has been found, to see if one exists within a larger scope), or decreased (when a
counterexample has already been found, to see if a smaller one exists).

Mixed execution. Model finding can be used as a step in a traditional program execu-
tion. In this case, declarative specifications are executed ‘by magic’, as if, in a conventional
setting, the interpreter could execute a program assertion by making it true despite the lack
of any explicit code to establish it [90, 118]. Alternatively, flipping the precedence of the
two paradigms, the interpreter can be viewed as a declarative model finder that uses imper-
ative code to setup a declarative specification to be solved. In this chapter, we are primarily
concerned with the latter direction, which has not been studied in the literature as much.

The Alloy Analyzer—the official and the most commonly used IDE for Alloy—does
not currently provide any scripting mechanisms around its core model finding engine. In-
stead, its Java API must be used to automate even the most trivial scripting tasks. Using
the Java API, however, is inconvenient; the verbosity and inflexibility of the Java language
leads to poor transparency between the API and the underlying Alloy specification, mak-
ing even the simplest scripts tedious and cumbersome to write. As a result, the official API
is rarely used in practice, and mostly by expert users and researchers building automated
tools on top of Alloy. This is a shame, since a simple transparent scripting shell would be,
in many respects, beneficial to the typical Alloy user—the user who prefers to stay in an
environment conceptually similar to that of Alloy and not have to learn a second, foreign
API.

This is exactly what 𝛼Rby provides—an embedding of the Alloy language in Ruby.
Thanks to Ruby’s flexibility and a very liberal parser, the 𝛼Rby language manages to offer
a syntax remarkably similar to that of Alloy, while still being syntactically correct Ruby. To
reduce the gap between the two paradigms further, instead of using a separate AST, 𝛼Rby
maps the core Alloy concepts are onto the corresponding core concepts in Ruby (e.g., sigs
are classes, fields are instance variables, atoms are objects, functions and predicates are
methods, most operators are the same in both languages). 𝛼Rby automatically interoperates
with the Alloy back end, so all the solving and visualization features of the Alloy Analyzer
can be easily invoked from within an 𝛼Rby program. Finally, the full power of the Ruby
language is at the user’s disposal for other tasks unrelated to Alloy.

2The Alloy Analyzer recognizes certain idioms as partial instances; some extensions (discussed in Sec-
tion 4.7) support explicit partial instance specification.

78

4.3 𝛼Rby for Alloy Users
A critical requirement for embedding a modeling language in a programming language is
that the embedding should preserve enough of the syntax of the language for users to feel
comfortable in the new setting. We first introduce a simple example to illustrate how 𝛼Rby
achieves this for Alloy. Next, we address the new features brought by 𝛼Rby, highlighted
in Section 4.2, which are the primary motivation for the embedding.

Consider using Alloy to specify directed graphs and the Hamiltonian Path algorithm.
Signatures are used to represent unary sets: Node, Edge, and Graph. Fields are used to
represent relations between the signatures: val mapping each Node to an integer value; src
and dst mapping each Edge to the two nodes (source and destination) that it connects; and
nodes and edges mapping each Graph to its sets of nodes and edges.

A standard Alloy model for this is shown in Listing 6(b), lines 2–4; the same declara-
tions are equivalently written in 𝛼Rby as shown in Listing 6(a), lines 2–4.

To specify a Hamiltonian path (that is, a path visiting every node in the graph exactly
once), a predicate is defined; lines 6–12 in Listings 6(b) and 6(a) show the Alloy and 𝛼Rby
syntax, with equivalent semantics. This predicate asserts that the result (path) is a sequence
of nodes, with the property that it contains all the nodes in the graph, and that, for all but the
last index i in that sequence, there is an edge in the graph connecting the nodes at positions
i and i+1. A run command is defined for this predicate (line 18), which, when executed,
returns a satisfying instance.

Just as a predicate can be run for examples, an assertion can be checked for coun-
terexamples. Here we assert that starting from the first node in a Hamiltonian path and
transitively following the edges in the graph reaches all other nodes in the graph (lines
13–17). We expect this check (line 19) to return no counterexample.

From the model specification in Listing 6(a), 𝛼Rby dynamically generates the class
hierarchy in Listing 6(c). The generated classes can be used to freely create and manipulate
graph instances, independent of the Alloy model.

In Alloy, a command is executed by selecting it in the user interface. In 𝛼Rby, execution
is achieved by calling the exe_cmd method. Listing 6(d) shows a sample program that
calls these methods, which includes finding an arbitrary satisfying instance for the hampath

predicate and checking that the reach assertion indeed cannot be refuted.
This short example is meant to include as many different language features as possible

and illustrate how similar 𝛼Rby is to Alloy, despite being embedded in Ruby. We discuss
syntax in Section 4.5.1; a summary of main differences is given in Table 4.1.

4.4 Beyond Standard Analysis
Sudoku has become a popular benchmark for demonstrating constraint solvers. The solver
is given a partially filled 𝑛 × 𝑛 grid (where 𝑛 must be a square number, so that the grid is
perfectly divided into 𝑛 times

⌋︂
𝑛 ×

⌋︂
𝑛 sub-grids), and is required to fill the empty cells

with integers from {1, . . . , 𝑛} so that all cells within a given row, column, and sub-grid
have distinct values.

Implementing a Sudoku solver directly in Alloy poses a few problems. A practical one

79

(a) Graph specification in 𝛼Rby

1 alloy :GraphModel do
2 sig Node [val: (lone Int)]
3 sig Edge [src, dst: (one Node)] {src != dst}
4 sig Graph[nodes:(set Node), edges:(set Edge)]
5

6 pred hampath[g: Graph, path: (seq Node)] {
7 path[Int] == g.nodes and
8 path.size == g.nodes.size and
9 all(i: 0...path.size-1) |

10 some(e: g.edges) {
11 e.src == path[i] && e.dst == path[i+1] }
12 }
13 assertion reach {
14 all(g: Graph, path: (seq Node)) |
15 if hampath(g, path)
16 g.nodes.in? path[0].*((~src).dst)
17 end }
18 run :hampath, 5, Graph=>exactly(1), Node=>3
19 check :reach, 5, Graph=>exactly(1), Node=>3
20 end

↝ ↝

⇔

(b) Equivalent Alloy specification

1 module GraphModel
2 sig Node {val: lone Int}
3 sig Edge {src, dst: one Node}{src != dst}
4 sig Graph{nodes: set Node, edges: set Edge}
5

6 pred hampath[g: Graph, path: seq Node] {
7 path[Int] = g.nodes
8 #path = #g.nodes
9 all i: Int | i >= 0 && i < minus[#path,1] => {

10 some e: g.edges |
11 e.src = path[i] && e.dst = path[plus[i,1]] }
12 }
13 assert reach {
14 all g: Graph, path: seq Node |
15 hampath[g, path] =>
16 g.nodes in path[0].*(~src.dst)
17 }
18 run hampath for 5 but exactly 1 Graph, 3 Node
19 check reach for 5 but exactly 1 Graph, 3 Node
20

module GraphModel
class Node; attr_accessor :val end
class Edge; attr_accessor :src, :dst end
class Graph; attr_accessor :nodes, :edges end

def self.hampath(g, path) #same as above end
def self.reach() #same as above end
def self.run_hampath() exe_cmd :hampath end
def self.check_reach() exe_cmd :reach end
end

(c) Automatically generated Ruby classes

1 # find an instance satisfying the :hampath pred
2 sol = GraphModel.run_hampath
3 assert sol.satisfiable?
4 g, path = sol["$hampath_g"], sol["$hampath_path"]
5 puts g.nodes # => e.g., {<Node$0>, <Node$1>}
6 puts g.edges # => e.g., {<Node$1, Node$0>}
7 puts path # => {<0, Node$1>, <1, Node$0>}
8 # check that the "reach" assertion holds
9 sol = GraphModel.check_reach

10 assert !sol.satisfiable?

(d) Running hampath, checking reach

Listing 6: Hamiltonian Path example

is that such an implementation cannot easily be used as a stand-alone application, e.g., to
read a puzzle from some standard format and display the solution in a user-friendly grid.
A more fundamental problem is the inability to express the information about the pre-filled
cell values as a partial instance; instead, the given cell values have to be enforced with log-
ical constraints, resulting in significant performance degradation [160]. The 𝛼Rby solution
in Listing 7 addresses both of these issues: on the left is the formal 𝛼Rby specification, and
on the right is the Ruby code constructing bounds and invoking the solver for a concrete
puzzle.

Mixed execution. The imperative statements (lines 2, 7, 8) used to dynamically pro-
duce a Sudoku specification for a given size would not be directly expressible in Alloy.
A concrete Ruby variable N is declared to hold the size, and can be set by the user before
the specification is symbolically evaluated. Another imperative statement calculates the
square root of N (line 7); that value is later embedded in the symbolic expression specify-
ing uniqueness within sub-grids (line 13). For illustration purposes, a lambda function is
defined (line 8) and used to compute sub-grid ranges (line 15).

Partial instances. Listing 7(b) shows how the bounds are computed for a given
Sudoku puzzle (embodied in a Ruby function pi, for "partial instance"). Remember that
bounds are just tuples (sequences of atoms) that a relation must or may include; since sig-

80

(a) Sudoku specification in 𝛼Rby

1 alloy :SudokuModel do
2 SudokuModel::N = 9
3

4 sig Sudoku[grid: Int ** Int ** (lone Int)]
5

6 pred solved[s: Sudoku] {
7 m = Integer(Math.sqrt(N))
8 rng = lambda{|i| m*i...m*(i+1)}
9

10 all(r: 0...N) {
11 s.grid[r][Int] == (1..N) and
12 s.grid[Int][r] == (1..N)
13 } and
14 all(c, r: 0...m) {
15 s.grid[rng[c]][rng[r]] == (1..N)
16 }
17 }
18 end

(b) Solving the specification for a partial instance

1 class SudokuModel::Sudoku
2 def pi
3 bnds = Arby::Ast::Bounds.new
4 inds = (0...N)**(0...N) - self.grid.project(0..1)
5 bnds[Sudoku] = self
6 bnds.lo[Sudoku.grid] = self ** self.grid
7 bnds.hi[Sudoku.grid] = self ** inds ** (1..N)
8 bnds.bound_int(0..N)
9 end

10 def solve() SudokuModel.solve :solved, self.pi end
11 def display() puts grid end
12 def self.parse(s) Sudoku.new grid:
13 s.split(/;\s*/).map{|x| x.split(/,/).map(&:to_i)}
14 end
15 end
16 SudokuModel.N = 4
17 s = Sudoku.parse "0,0,1; 0,3,4; 3,1,1; 2,2,3"
18 s.solve(); s.display(); # => {<0,0,1>, <0,1,3>, ...}

Listing 7: A declarative Sudoku solver using 𝛼Rby with partial instances

nature definitions in 𝛼Rby are turned into regular Ruby classes, instances of those classes
will be used as atoms. The Sudoku signature is bounded by a singleton set containing only
the self Sudoku object (line 5). Tuples that must be included in the grid relation are the
values currently present in the puzzle (line 6); additional tuples that may be included are
values from 1 to N for the empty cells (line 7; empty cell indexes computed in line 4). We
also bound the set of integers to be used by the solver; Alloy, in contrast, only allows a
cruder bound, and would include all integers within a given bitwidth. Finally, a Sudoku
instance can be parsed from a string, and the solver invoked to find a solution satisfying the
solved predicate (lines 17–18). When a satisfying solution is found, if a partial instance
was given, fields of all atoms included in that partial instance are automatically populated
to reflect the solution (confirmed by the output of line 18). This particular feature makes for
seamless integration of executable specifications into otherwise imperative programs, since
there is no need for any manual back and forth conversion of data between the program and
the solver.

Staged model finding. Consider implementing a Sudoku puzzle generator. The goal
is now to find a partial assignment of values to cells such that the generated puzzle has
a unique solution. Furthermore, the generator must be able to produce various difficulty
levels of the same puzzle by iteratively decrementing the number of filled cells (while
maintaining the uniqueness property). With 𝛼Rby, it takes only the following 8 lines to
achieve this with a simple search algorithm on top of the already implemented solver:

1 def dec(sudoku, order=Array(0...sudoku.grid.size).shuffle)
2 return nil if order.empty? # all possibilities exhausted
3 s_dec = Sudoku.new grid: sudoku.grid.delete_at(order.first) # delete a tuple at random position
4 sol = s_dec.clone.solve() # clone so that "s_dec" doesn’t get updated if a solution is found
5 (sol.satisfiable? && !sol.next.satisfiable?) ? s_dec : dec(sudoku, order[1..-1])
6 end
7 def min(sudoku) (s1 = dec(sudoku)) ? min(s1) : sudoku end
8 s = Sudoku.new; s.solve(); s = min(s); puts "local minimum found: #{s.grid.size}"

The strategy here is to generate a solved puzzle (line 8), and keep removing one tuple

81

from its grid at a time until a local minimum is reached (line 7); the question is which one
can be removed without violating the uniqueness property. The algorithm first generates a
random permutation of all existing grid tuples (line 1) to determine the order of trials. It
then creates a new Sudoku instance with the chosen tuple removed (line 3) and runs the
solver to find a solution for it. It finally calls next on the obtained solution (line 5) to check
if a different solution exists; if it does not, a decremented Sudoku is found, otherwise moves
on to trying the rest of the tuples. On a commodity machine, on average it takes about 8
seconds to minimize a Sudoku of size 4 (generating 13 puzzles in total, number of filled
cells ranging from 16 down to 4), and about 6 minutes to minimize a puzzle of size 9 (55
intermediate puzzles), number of filled cells ranging from 81 down to 27).

4.5 The 𝛼Rby Language
𝛼Rby is implemented as a domain-specific language in Ruby, and is (in standard parlance)
“deeply embedded”. Embedded means that all syntactically correct 𝛼Rby programs are
syntactically correct Ruby programs; deeply means that 𝛼Rby programs exist as an AST
that can be analyzed, interpreted, and so on. Ruby’s flexibility makes it possible to create
embedded languages that look quite different from standard Ruby. 𝛼Rby exploits this,
imitating the syntax of Alloy as closely as possible. Certain differences are unavoidable,
mostly because of Alloy’s infix operators that cannot be defined in Ruby.

The key ideas behind our approach are: (1) mapping the core Alloy concepts directly
to those of object-oriented programming (OOP), (2) implementing keywords as methods,
and (3) allowing mixed (concrete and symbolic) execution in 𝛼Rby programs.

Mapping Alloy to OOP is aligned with the general intuition, encouraged by Alloy’s
syntax, that signatures can be understood as classes, atoms as objects, fields as instance
variables, and all function-like concepts (functions, predicates, facts, assertions, commands)
as methods [15].

Implementing keywords as methods works because Ruby allows different formats
for specifying method arguments. 𝛼Rby defines many such methods (e.g., sig, fun, fact,
etc.) that (1) mimic the Alloy syntax and (2) dynamically create the underlying Ruby
class structure using the standard Ruby metaprogramming facilities. For an example of the
syntax mimicry, compare Listings 6(a) and 6(b)); for an example of metaprogramming, see
Listing 6(c).

Note that the meta information that appears to be lost in Listing 6(c) (for example,
the types of fields) is actually preserved in separate meta objects and made available via
the meta methods added to each of the generated modules and classes (for example, the
following returns the type of the “Graph.nodes” field: Graph.meta.field("nodes").type).

Mixed execution, implemented on top of the standard Ruby interpreter, translates
𝛼Rby programs into symbolic Alloy models. Using the standard interpreter means adopt-
ing the Ruby semantics of name resolution and operator precedence (which is inconvenient
when it conflicts with Alloy’s); a compensation, however, is the benefit of being able to mix
symbolic and concrete code. We override all the Ruby operators in our symbolic expression
classes to match the semantics of Alloy, and using a couple of other tricks (Section 4.5.3),
are able to keep both syntactic (Section 4.5.1) and semantic (Section 4.5.2) differences to

82

spec ::= "alloy" cname "do" [open*] paragraph* "end"
open ::= "open" cnameID
paragraph ::= factDecl | funDecl | cmdDecl | sigDecl
sigQual ::= "abstract" | "lone" | "one" | "some" | "ordered"
sigDecl ::= sigQual* "sig" cname,+ ["extends" cnameID] ["[" rubyHash "]"] [block]
factDecl ::= "fact" [fname] block
funDecl ::= "fun" fname "[" rubyHash "]" "[" expr "]" block

| "pred" fname ["[" rubyHash "]"] block
cmdDecl ::= ("run"|"check") fname "," scope

| ("run"|"check") "(" scope ")" block
expr ::= ID | rubyInt | rubyBool | "(" expr ")"

| unOp expr | unMeth "(" expr ")"
| expr binOp expr | expr "[" expr "]" | expr "if" expr
| expr "." "(" expr ")" // relational join
| expr "." (binMeth | ID) "(" expr,* ")" // function/predicate call
| "if" expr "then" expr ["else" expr] "end"
| quant "(" rubyHash ")" block

quant ::= "all" | "no" | "some" | "lone" | "one" | "sum" | "let" | "select"
binOp ::= "||" | "or" | "&&" | "and" | "**" | "&" | "+" | "-" | "*" | "/" | "%"

| "<<" | ">>" | "==" | "<=>" | "!=" | "<" | ">" | "<=" | ">="
binMeth ::= "closure" | "rclosure" | "size" | "in?" | "shr" | "<" | ">" | "*" | "^"
unOp ::= "!" | "~" | "not"
unMeth ::= "no" | "some" | "lone" | "one" | "set" | "seq"
block ::= "{" stmt* "}" | "do" stmt* "end"
stmt ::= expr | rubyStmt
scope ::= rubyInt "," rubyHash // global scope, individual sig scopes
ID ::= cnameID | fnameID
cname ::= cnameID | ’"’cnameID’"’ | "’"cnameID"’" | ":"cnameID
fname ::= fnameID | ’"’fnameID’"’ | "’"fnameID"’" | ":"fnameID
cnameID ::= constant identifier in Ruby (starts with upper case)
fnameID ::= function identifier in Ruby (starts with lower case)

Figure 4-1: Core 𝛼Rby syntax in BNF. Productions starting with: ruby are defined by Ruby.

a minimum.

4.5.1 Syntax
A grammar of 𝛼Rby is given in Figure 4-1 and examples of principal differences in Ta-
ble 4.1. In a few cases (e.g., function return type, field declaration, etc.) Alloy syntax
has to be slightly adjusted to respect the syntax of Ruby (e.g., by requiring different kind
of brackets). More noticeable differences stem from the Alloy operators that are illegal
or cannot be overridden in Ruby; as a replacement, either a method call (e.g., size for
cardinality) or a different operator (e.g., ** for cross product) is used.

The difference easiest to overlook is the equality sign: == versus =. Alloy has no assign-
ment operator, so the single equals sign always denotes boolean equality; 𝛼Rby, in contrast,
supports both concrete and symbolic code, so we must differentiate between assignments
and equality checks, just as Ruby does.

The tokens for the join and the two closure operators (., ^ and *) exist in Ruby, but have

83

fundamentally different meanings than in Alloy (object dereferencing and an infix binary
operator in Ruby, as opposed to an infix binary and a prefix unary operator in Alloy).
Despite this, 𝛼Rby preserves Alloy syntax for many idiomatic expressions. Joins in Alloy
are often applied between an expression and a field whose left-hand type matches the type
of the expression (ie, in the form e.f, where f is a field from the type of e). This corresponds
closely to object dereferencing, and is supported by 𝛼Rby (e.g., g.nodes in Listing 6(a)). In
other kinds of joins, the right-hand side must be enclosed in parentheses. Closures are often
preceded by a join in Alloy specifications. Those constructs yield join closure expressions
of the form x.*f. In Ruby, this translates to calling the * method on object x passing f as
an argument, so we simply override the * method to achieve the same semantics (e.g., line
15, Listing 6(a)).

This grammar is, for several reasons, an under-approximation of programs accepted by
𝛼Rby: (1) Ruby allows certain syntactic variations (e.g., omitting parenthesis in method
calls, etc.), (2) 𝛼Rby implements special cases to enable the exact Alloy syntax for certain
idioms (which do not always generalize), and (3) 𝛼Rby provides additional methods for
writing expression that have more of a Ruby-style feel.

description Alloy 𝛼Rby
equality x = y x == y

sigs and fields
sig S {
f: lone S -> Int

}

sig S [
f: lone(S) ** Int

]

fun return type declaration fun f[s: S]: set S {} fun f[s: S][set S] {}

set comprehension {s: S | p1[s]} S.select{|s| p1(s)}

quantifiers
all s: S {
p1[s]
p2[s]

}

all(s: S) {
p1(s) and
p2(s)

}

illegal Ruby operators

x in y, x !in y
x !> y
x -> y
x . y
#x
x => y
x => y else z
S <: f, f >: Int

x.in?(y), x.not_in?(y)
not x > y
x ** y
x.(y)
x.size
y if x
if x then y else z
S.< f, f.> Int

operator arity mismatch ^x, *x x.closure, x.rclosure

fun/pred calls f1[x] f1(x)

Table 4.1: Examples of differences in syntax between 𝛼Rby and Alloy

4.5.2 Semantics
This section formalizes the translation of 𝛼Rby programs into Alloy. We provide semantic
functions (summarized in Figure 4-3) that translate the syntactic constructs of Figure 4-1
to Alloy AST elements defined in Figure 4-2. A store, binding names to expressions or
declarations, is maintained throughout, representing the current evaluation context.

Expressions. The evaluation of the 𝛼Rby expression production rules (expr) into
Alloy expressions (Expr) is straightforward for the most part (Figure 4-4). Most of the

84

unary and binary operators have the same semantics as in Alloy; exceptions are ** and
if, which translate to -> and => (lines 5–11). For the operators that do not exist in Ruby,
an equivalent substitute method is used (lines 12–20). A slight variation of this approach
is taken for the ^ and * operators (lines 21–22), to implement the “join closure” idiom
(explained in Section 4.5.1).

The most interesting part is the translation of previously undefined method calls (lines
23–27). We first apply the 𝜏 function to obtain the type of the left-hand side expression,
and then the ⊕ function to extend the current store with that type (line 23). In a nutshell,
this will create a new store with added bindings for all fields and functions defined for the
range signature of that type (the ⊕ function is formally defined in Figure 4-6 and discussed
in more detail shortly). Afterward, we look up meth as an identifier in the new store (line
24) and, if an expression is found (line 25), the expression is interpreted as a join; if a
function declaration is found (line 26), it is interpreted a function call; otherwise, it is an
error.

For quantifiers (lines 29-30), quantification domains are evaluated in the context of the
current store (using the 𝛿 helper function, defined in Figure 4-6) and the body is evaluated
(using the 𝛽 function, defined in Figure 4-5) in the context of the new store with added
bindings for all the quantified variables (returned previously by 𝛿).

Blocks. The semantics of 𝛼Rby blocks differs from Alloy’s. An Alloy block (e.g.,
a quantifier body) containing a sequence of expressions is interpreted as a conjunction of
all the constituent constraints (a feature based on Z [151]). In 𝛼Rby, in contrast, such
as sequence evaluates to the meaning of the last expression in the sequence. This was
a design decision, necessary to support mixed execution (as in Listing 7(a), lines 7–16).
Since Ruby is not a pure functional language, previous statements can affect the result of
the last statement by mutating the store, which effectively gives us the opportunity to easily
mix concrete and symbolic execution.

This behavior is formally captured in the 𝛽 function (Figure 4-5). Statements (𝑠1, ..., 𝑠𝑛)
are evaluated in order (line 32). If a statement corresponds to one of the expression rules
from the 𝛼Rby grammar (line 34), it is evaluated using the previously defined ℰ function;
otherwise (line 35), it is interpreted by Ruby (abstracted as a call to theℛ functions). State-
ments interpreted by Ruby may change the store, which is then passed on to the subsequent
statements.

Function declarations. The evaluation function (𝜑, Figure 4-5, lines 37–38) is sim-
ilar to quantifier evaluation, except that the return type is different. The semantics of other
function-like constructs (predicates, facts, etc.) is analogous.

Signature declarations. The evaluation function (function 𝜉, Figure 4-5, lines 39–
45) is conceptually straightforward: as before, functions 𝛿 and 𝛽 can be reused to evaluate
the field name-domain declarations and the appended facts block, respectively. The caveat
is that appended facts in Alloy must be evaluated in the context of Alloy’s implicit this,
meaning that the fields from the parent signature should be implicitly joined on the left with
an implicit this keyword. To achieve this, we create a variable corresponding to this and
a new list of fields with altered domains (lines 42–43). A temporary SigDecl containing
those fields is then used to extend the current store (line 44). A binding for this is also
added and the final store is used to evaluate the body (line 45). The temporary signature
is created just for the convenience of reusing the semantics of the ⊕ operator (explained

85

shortly).
Top-level specifications. Evaluation of an 𝛼Rby specification (function𝒜, Figure 4-

5, lines 46–52) uses the previously defined semantic functions to evaluate the nested signa-
tures and functions. Since declaration order does not matter in Alloy, multiple passes may
be needed until everything is resolved or a fixed point is reached (lines 51–52).

Name-domain declaration lists. Name-domain lists are used in several places (for
fields, method parameters, and quantification variables); common functionality is extracted
and defined in the 𝛿 function (Figure 4-6). It simply maps the input list into a list of VarExpr
expressions, each having 𝑛𝑎𝑚𝑒 the same as in the declaration list and 𝑑𝑜𝑚𝑎𝑖𝑛 equal to the
evaluation of the declared domain against the current store (line 53). It returns that list and
the current store extended with those variables (line 54).

Store extension. The ⊕ operator (Figure 4-6) is used to extend a store with one or
more VarExpr or FunDecl, a Type, and a Spec. If a VarExpr or a FunDecl is given, its name
is bound to itself. If a list is given, the operation is folded over the entire list. Extending
with a Type reduces to extending with the range of that type. Extending with a SigDecl

means recursively adding bindings for its parent signature, adding a binding for the name
of that signature, bindings for all the functions that take that signature as the first argument
(an auxiliary function funs(x) discovers such functions), and bindings for all its fields.
Extending with a Spec adds bindings for all the sigs and functions defined in it, including
those from all opened specifications.

Expr = VarExpr(name: String, domain: Expr | Type)
| IntExpr(value: Int)
| BoolExpr(value: Bool)
| UnExpr(sub: Expr)
| BinExpr(lhs: Expr, rhs: Expr)
| CallExpr(target: Expr, fun: FunDecl, args: Expr*)
| QuantExpr(kind: String, vars: VarExpr*, body: Expr)

Decl = Spec(name: String, opens: Spec*, sigs: SigDecl*, funs: FunDecl*)
| SigDecl(name: String, parent: SigDecl, fields: VarExpr*, inv: FunDecl)
| FunDecl(name: String, params: VarExpr*, ret: Expr, body: Expr)

Type = Univ | None | Int | SigDecl | ProductType(lhs: Type, rhs: Type)
Store = {name: String; binding: Expr | Decl}

Figure 4-2: Semantic domains. (Expr and Decl correspond directly to the Alloy AST)

𝒜: spec → Store→ Spec ℰ : expr → Store→ Expr
𝜉 : sigDecl → Store→ SigDecl 𝛽: block → Store→ Expr
𝜑 : funDecl → Store→ FunDecl 𝛿 : decl* → Store→ (VarExpr*, Store)

Figure 4-3: Semantic functions which translate grammar rules to semantic domains

4.5.3 Implementation Considerations

Symbolic Execution. Using the standard Ruby interpreter to symbolically execute 𝛼Rby
programs relieves us from having to keep an explicit representation of the store; instead, the

86

ℰ : expr → Store→ Expr

1. ℰJIDK𝜎 ≡ 𝜎[ID]
2. ℰJrubyIntK𝜎 ≡ IntExpr(rubyInt)
3. ℰJrubyBoolK𝜎 ≡ BoolExpr(rubyBool)
4. ℰJ(𝑒)K𝜎 ≡ ℰJ𝑒K𝜎
5. ℰJunOp 𝑒K𝜎 ≡ UnExpr(unOp, ℰJ𝑒K𝜎)
6. ℰJunMeth(𝑒)K𝜎 ≡ UnExpr(unMeth, ℰJ𝑒K𝜎)
7. ℰJ𝑒1 ** 𝑒2K𝜎 ≡ BinExpr("->", ℰJ𝑒1K𝜎, ℰJ𝑒2K𝜎)
8. ℰJ𝑒1 binOp 𝑒2K𝜎 ≡ BinExpr(binOp, ℰJ𝑒1K𝜎, ℰJ𝑒2K𝜎)
9. ℰJ𝑒1[𝑒2]K𝜎 ≡ BinExpr("[]", ℰJ𝑒1K𝜎, ℰJ𝑒2K𝜎)
10. ℰJ𝑒1 if 𝑒2K𝜎 ≡ BinExpr("=>", ℰJ𝑒2K𝜎, ℰJ𝑒1K𝜎)
11. ℰJ𝑒1.(𝑒2)K𝜎 ≡ BinExpr(".", ℰJ𝑒1K𝜎, ℰJ𝑒2K𝜎)
12. ℰJ𝑒.binMethK𝜎 ≡ match binMeth with
13. | closure → UnExpr("^", ℰJ𝑒K𝜎)
14. | rclosure → UnExpr("*", ℰJ𝑒K𝜎)
15. | size → UnExpr("#", ℰJ𝑒K𝜎)
16. ℰJ𝑒.binMeth(𝑎1)K𝜎 ≡ match binMeth with
17. | in? → BinExpr("in", ℰJ𝑒K𝜎, ℰJ𝑎1K𝜎)
18. | shr → BinExpr(">>>", ℰJ𝑒K𝜎, ℰJ𝑎1K𝜎)
19. | < → BinExpr("<:", ℰJ𝑒K𝜎, ℰJ𝑎1K𝜎)
20. | > → BinExpr(":>", ℰJ𝑒K𝜎, ℰJ𝑎1K𝜎)
21. | ^ → ℰJ𝑒.(𝑎1.closure)K𝜎
22. | * → ℰJ𝑒.(𝑎1.rclosure)K𝜎
23. ℰJ𝑒.ID(𝑎1, . . .)K𝜎 ≡ let 𝜎𝑠𝑢𝑏 = 𝜎 ⊕𝜏 (𝑒) in
24. match 𝜎𝑠𝑢𝑏[ID] as 𝑥 with
25. | Expr → BinExpr(".", ℰJ𝑒K𝜎, 𝑥)
26. | FunDecl → CallExpr(ℰJ𝑒K𝜎, 𝑥, ℰJ𝑎1K𝜎, . . .)
27. | → 𝑓𝑎𝑖𝑙
28. ℰJif 𝑒1 then 𝑒2 else 𝑒3 endK𝜎 ≡ ℰJ(𝑒2 if 𝑒1) and (𝑒3 if !𝑒1)K𝜎
29. ℰJquant(𝑑∗) blockK𝜎 ≡ let 𝑣∗, 𝜎𝑏 = 𝛿(𝑑∗)𝜎 in
30. QuantExpr(quant, 𝑣∗, 𝛽JblockK𝜎𝑏)

Figure 4-4: Evaluation of 𝛼Rby expressions (expr production rules) into Alloy expressions
(Expr).

store is implicit in the states of the object in which the execution takes place. Having signa-
tures, fields, and functions represented directly as classes, instance variables, and methods,
means having most of the bindings (as defined in Section 4.5.2) already in place for all sigs
and atoms; for all other expressions, missing methods are dynamically forwarded to the
signature class corresponding to the expression’s type.

One technical challenge is that the semantics of quantifiers requires a new scope to
be created, which, for our syntax, Ruby does not already ensure. Consider the following
𝛼Rby code: all(s: S){some s}. This is just a hash and a block passed to the all DSL
method. When the block is eventually executed (to obtain the symbolic body for this uni-
versal quantifier), s must be available as a symbolic variable inside of that block. We do
that by first dynamically defining a method with the same name in the context of that block,
then calling the block, and, finally, redefining the same method to call super:

ctx = block.binding.eval("self")
ctx.define_singleton_method :s, lambda{VarExpr.new(:s, S)}
begin block.call ensure ctx.define_singleton_method(:s) do super() end end

87

𝛽 : block → Store → Expr

31. 𝛽Jdo 𝑠1; . . . ; 𝑠𝑛 endK𝜎 ≡ 𝛽J{ 𝑠1; . . . ; 𝑠𝑛 }K𝜎 ≡ 𝜎𝑐𝑢𝑟𝑟 = 𝜎, 𝑟𝑒𝑠 = nil
32. for 𝑠𝑖: {𝑠1, . . ., 𝑠𝑛} do
33. match 𝑠𝑖 with
34. | expr → 𝑟𝑒𝑠←ℰJ𝑠𝑖K𝜎𝑐𝑢𝑟𝑟

35. | → 𝑟𝑒𝑠, 𝜎𝑐𝑢𝑟𝑟 ←ℛ(𝑠𝑖)𝜎𝑐𝑢𝑟𝑟

36. return 𝑟𝑒𝑠

𝜑 : funDecl → Store → FunDecl

37. 𝜑Jfun fname[𝑑∗][𝑒𝑟𝑒𝑡] blockK𝜎 ≡ let 𝑣∗, 𝜎𝑏 = 𝛿(𝑑∗)𝜎 in
38. FunDecl(fname, 𝑣∗, ℰJ𝑒𝑟𝑒𝑡K𝜎, 𝛽JblockK𝜎𝑏)

𝜉 : sigDecl → Store → SigDecl

39. 𝜉Jsig cname extends sup [𝑑∗] blockK𝜎 ≡
40. let 𝑠𝑝 = 𝜏 (𝜎[sup]) in
41. let 𝑓𝑙𝑑∗, _= 𝛿(𝑑∗)𝜎 in
42. let 𝑡ℎ𝑖𝑠 = VarExpr("this", cname) in
43. let 𝑡𝑓𝑙𝑑∗ = 𝑚𝑎𝑝(𝜆𝑓𝑖 ⋅ BinExpr(".", 𝑡ℎ𝑖𝑠, 𝑓𝑖), 𝑓 𝑙𝑑∗) in
44. let 𝜎𝑠 = 𝜎⊕SigDecl(cname, 𝑠𝑝, 𝑡𝑓𝑙𝑑∗, BoolExpr(true)) in
45. SigDecl(cname, 𝑠𝑝, 𝑓𝑙𝑑∗, 𝛽JblockK𝜎𝑠(︀"this"↦ 𝑡ℎ𝑖𝑠⌋︀)
𝒜 : spec → Store → Spec

46. 𝒜Jalloy cname do open* paragraph* endK𝜎 ≡
47. let 𝑜𝑝𝑛∗ = 𝑚𝑎𝑝(𝜆cnameID ⋅ 𝜎(︀cnameID⌋︀,open*) in
48. let 𝑠𝑖𝑔∗ = 𝑚𝑎𝑝(𝜉, 𝑓𝑖𝑙𝑡𝑒𝑟(sigDecl, paragraph*)) in
49. let 𝑓𝑢𝑛∗ = 𝑚𝑎𝑝(𝜑, 𝑓𝑖𝑙𝑡𝑒𝑟(funDecl, paragraph*)) in
50. let 𝑎 = Spec(cname, 𝑜𝑝𝑛∗, 𝑠𝑖𝑔∗, 𝑓𝑢𝑛∗) in
51. if resolved(𝑎) then 𝑎
52. elsif 𝜎⊕𝑎 ≠ 𝜎 then 𝒜Jalloy cname do open* paragraph* endK𝜎⊕𝑎 else 𝑓𝑎𝑖𝑙

Figure 4-5: Evaluation of blocks and all declarations

𝛿 : decl* → Store → (VarExpr*, Store)

53. 𝛿(𝑣1: 𝑒1, . . ., 𝑣𝑛: 𝑒𝑛)𝜎 ≡ let 𝑣𝑎𝑟𝑠 = ⋃1<=𝑖<=𝑛 VarExpr(𝑣𝑖, ℰJ𝑒𝑖K𝜎) in
54. [𝑣𝑎𝑟𝑠, 𝜎 ⊕𝑣𝑎𝑟𝑠]

⊕ : Store → Any → Store

55. 𝜎⊕𝑥 ≡ match 𝑥 with
56. | VarExpr(𝑛,_) | FunDecl(𝑛,_) → 𝜎(︀𝑛↦ 𝑥⌋︀)
57. | VarExpr* | FunDecl* → 𝑓𝑜𝑙𝑑(⊕, 𝜎, 𝑥)
58. | ProductType(_, 𝑟ℎ𝑠) → 𝜎⊕𝑟ℎ𝑠
59. | SigDecl(𝑛, 𝑠𝑝, 𝑓 𝑙𝑑∗,_) → let 𝜎𝑝 = 𝜎⊕𝑠𝑝 in
60. let 𝜎𝑠 = 𝜎𝑝(︀𝑛↦ VarExpr(𝑛,𝑥)⌋︀ in
61. 𝑓𝑜𝑙𝑑(⊕, 𝜎𝑠,funs(𝑥) + 𝑓𝑙𝑑∗)
62. | Spec(𝑛, 𝑜𝑝𝑛∗, 𝑠𝑖𝑔∗, 𝑓𝑢𝑛∗) → 𝑓𝑜𝑙𝑑(⊕, 𝜎, 𝑜𝑝𝑛∗ + 𝑓𝑢𝑛∗ + 𝑠𝑖𝑔∗)
63. | → 𝜎

ℛ : rubyStmt → Store → (Object → Store) Executes arbitrary Ruby code
𝜏 : Expr → Type Type of the given expression
funs : SigDecl → FunDecl* Functions where given sig is first param
resolved : Spec → Bool Whether all references are resolved

Figure 4-6: Helper functions.

88

Responding to Missing Methods and Constants. To avoid requiring strings instead
of identifiers for every new definition (e.g., sig :Graph instead of sig Graph, where Graph

is previously undefined), 𝛼Rby overrides const_missing and method_missing and instead
of failing returns a MissingBuilder instance. Furthermore, MissingBuilder instances also
accept a block at creation time, and respond to several operator methods, making constructs
like fun f[s: S][set S] {} possible. To guard against unintended conversions (e.g., ty-
pos), 𝛼Rby raises a syntax error every time a MissingBuilder is not “consumed” (by certain
DSL methods, like sig and fun) by the end of its scope block.

Online Source Instrumentation. For the purpose of symbolic evaluation, the source
code of every 𝛼Rby function/predicate is instrumented before it is turned into a Ruby
method. The need for instrumentation arises because certain operators and control struc-
tures, which we would like to treat symbolically, cannot be overridden; examples include
all the if-then-else variants, as well as the logic operators. Our instrumentation uses an off-
the-shelf parser and implements a visitor over the generated AST to replace these constructs
with appropriate 𝛼Rby expressions (e.g., x if y gets translated to BinExpr.new(IMPLIES,

proc{y}, proc{x})). This “traverse and replace” algorithm is far simpler than implement-
ing a full parser for the entire Alloy grammar.

Distinguishing Equivalent Ruby Constructs. Ruby allows different syntactic con-
structs for the same underlying operation. For example, some built-in infix operators can
be written with or without a dot between the left-hand side and the operator (e.g., a*b is
equivalent to a.*b). Since 𝛼Rby already performs online source instrumentation, it ad-
ditionally detects the following syntactic nuances for the purpose of assigning different
semantics: (1) in Ruby, “<b2> if <b1>” is equivalent to “b1 and b2”, but our instrumenter
always rewrites and and or to boolean conjunction and disjunction; (2) when prefixed with
a dot, operators *, < and > are translated to join closure, domain restriction, and range
restriction, respectively (.*, <:, and :> in Alloy).

𝛼Rby to Alloy Bridge. All model-finding tasks are delegated to a slightly modified
version of our Alloy* Java implementation. The main modification made was adding an
extra API method, which additionally accepts a partial instance (represented in a simple
textual format independent of the Alloy language). The Alloy Analyzer already has a com-
plex heuristic for computing bounds from the scope specification and certain (automatically
detected) idioms; all those features are retained, and on top of them the 𝛼Rby-provided par-
tial instance is used to shrink the bounds further. To interoperate between Ruby and Java,
RJB [138] is used, which conveniently automates most of the process.

4.6 Discussion
The technical part of this chapter described a number of Ruby techniques for designing
convincingly looking DSLs. In addition to syntax, however, some common ground has to
be found between the DSL and the host language to make the integration smooth, and thus,
the whole embedding transparent—that in particular is the key reason we argued that 𝛼Rby
is more than just a neat API to Alloy. Furthermore, we believe that much of the discussions
generalize to broader domains, and could be applied to a different pair of specification and
implementation language.

89

Unfortunately, however, this integration is not perfect. We have mentioned several cases
where, because of the limitations of the Ruby parser, a generic syntax concept in Alloy
is implemented only as a special case idiom in 𝛼Rby (e.g., the ~, ^, * Alloy relational
operators). This often creates confusion among users who are already used to the Alloy
syntax. Other small peculiarities of the Ruby parser, which come handy in some cases (like
allowing in certain cases parenthesis around function call arguments to be omitted), in the
general case break the uniformity of the language, meaning that the user has to learn many
special cases instead of a few general rules.

𝛼Rby relies heavily on Ruby’s metaprogramming facilities to imitate Alloy’s pure re-
lational nature. That means that all field values of Ruby classes representing 𝛼Rby sigs are
wrapped to appear as sets of tuples. While an Alloy user might not object this behavior,
a Ruby user is probably more used to scalar values and thus prefers to think about 𝛼Rby
sigs as regular Ruby classes. For that reason, 𝛼Rby performs implicit coercion whenever
possible to meet expectations of both sides; again, however, this cannot be implemented
uniformly so corner cases where manual conversion is necessary typically come as a big
surprise. Finally, the heavy use of metaprogramming sometimes incurs unexpected perfor-
mance penalties (only during the translation to Alloy phase, not during solving), especially
when dealing with large 𝛼Rby models.

4.7 Related Work
Montaghami and Rayside extended the Alloy language with special syntax for specify-
ing partial instances [120]. They argue convincingly for the importance of having partial
instances for Alloy, giving use cases such as test-driven model development, regression
testing of models, modeling by example etc. They also provide experimental evidence that
staged model finding can lead to better scalability. Their approach is limited to partial in-
stances only, and it does not provide any scripting mechanisms for automating such tasks.
Thus to carry out their staged model finding experiments, after obtaining an instance in the
first stage, they manually inspected it (e.g., in the visualizer), rewrote it using the new syn-
tax, and then solved in the second stage. Using 𝛼Rby would automate the whole process,
since an 𝛼Rby instance can provide a set of exact bounds for all included relations, and can
handle all the use cases discussed.

The same authors provide another extension of the Alloy language to allow (for perfor-
mance reasons) certain idiomatic specifications to be evaluated in two stages [121]. Their
extension implements additional semantics, specific to their syntax extension and the cho-
sen idiom, so it is not entirely subsumed by 𝛼Rby’s out-of-the-box staged model finding
functionality. However, we argue that it is much simpler to implement such an extension
in 𝛼Rby than on top of the Alloy Java API.

A number of tools built on top of Alloy have implemented (often in an ad hoc fashion)
one or more features that can now be provided by 𝛼Rby. Aluminum [130] implements an
interesting heuristic for minimizing Alloy instances and by default showing the minimal
one first. It also allows the user to augment the current instance by selecting one or more
tuples to be included in the next instance. 𝛼Rby provides a more generic mechanism that
lets the user provide an arbitrary formula (possibly involving atoms from the current in-

90

stance) to be satisfied in the next solution. TACO [60] is a bounded verifier for Java that
achieves scalability by relying heavily on the Alloy Analyzer to recognize certain idioms as
partial instances; we believe 𝛼Rby would have made their implementation much simpler.

Our mixed execution was inspired by Rubicon’s [129] symbolic evaluator, which also
uses the standard Ruby interpreter. Unlike 𝛼Rby, Rubicon stubs the library code with
custom expressions in order to symbolically execute and verify existing web apps.

Many research projects explore the idea of extending a programming language with
symbolic constraint-solving features (e.g., [90,118,141,149,161,169]). 𝛼Rby can be under-
stood as a kind of dual, with the opposite goal. While these efforts aim to bring declarative
features in imperative programming, 𝛼Rby aims to bring imperative features to declarative
modeling. Although the basic idea of combining declarative model finding and imperative
model finding is shared, the research challenges are very different. As this chapter has
explained, 𝛼Rby addresses the challenge of embedding an entire modeling language in a
programming language, whereas these related projects instead tend to use a constraint lan-
guage that is only a modest extension of the programming language’s existing expression
sublanguage. 𝛼Rby also addresses the challenge of reconciling two different views of a
data structure: one as objects on a heap, and the other as relations (and in this respect is
related to work on relational data representation, such as [73]).

4.8 Discussion
The technical part of this chapter described a number of Ruby techniques for designing
convincingly looking DSLs. In addition to syntax, however, some common ground has to
be found between the DSL and the host language to make the integration smooth, and thus,
the whole embedding transparent—that in particular is the key reason we argued that 𝛼Rby
is more than just a neat API to Alloy. Furthermore, we believe that much of the discussions
generalize to broader domains, and could be applied to a different pair of specification and
implementation language.

Unfortunately, however, this integration is not perfect. We have mentioned several cases
where, because of the limitations of the Ruby parser, a generic syntax concept in Alloy
is implemented only as a special case idiom in 𝛼Rby (e.g., the ~, ^, * Alloy relational
operators). This often creates confusion among users who are already used to the Alloy
syntax. Other small peculiarities of the Ruby parser, which come handy in some cases (like
allowing in certain cases parenthesis around function call arguments to be omitted), in the
general case break the uniformity of the language, meaning that the user has to learn many
special cases instead of a few general rules.

𝛼Rby relies heavily on Ruby’s metaprogramming facilities to imitate Alloy’s pure re-
lational nature. That means that all field values of Ruby classes representing 𝛼Rby sigs are
wrapped to appear as sets of tuples. While an Alloy user might not object this behavior,
a Ruby user is probably more used to scalar values and thus prefers to think about 𝛼Rby
sigs as regular Ruby classes. For that reason, 𝛼Rby performs implicit coercion whenever
possible to meet expectations of both sides; again, however, this cannot be implemented
uniformly so corner cases where manual conversion is necessary typically come as a big
surprise. Finally, the heavy use of metaprogramming sometimes incurs unexpected perfor-

91

mance penalties (only during the translation to Alloy phase, not during solving), especially
when dealing with large 𝛼Rby models.

4.9 Conclusion
On the one hand, 𝛼Rby addresses a collection of very practical problems in the use of a
model finding tool. The contribution can thus be regarded as primarily architectural, in
demonstrating a different way to build an analysis tool that uses a DSL embedding to allow
end-user scripting, rather than a closed compiler-like tool that can be extended only by one
of the tool’s developers.

On the other hand, 𝛼Rby suggests a new way to think about a modeling language. The
constructs of the language are not treated as functions that generate abstract syntax trees
only in a mathematical sense, but are implemented as these functions in a manner that the
end user can exploit. This leads us to wonder whether it might be possible to use this style
of embedding in the very design of the modeling language. Perhaps, had this approach
been available when Alloy was designed, an essential core might have been more cleanly
separated from a larger collection of structuring idioms, implemented as functions on top
of the core’s functions.

Practically speaking, the hope is that the developers of tools that use Alloy as a backend
will be able to use 𝛼Rby in their implementations, at the very least making it easier to
prototype new functionality. And perhaps the implementors of tools for other declarative
languages will find ideas here that they can exploit in similar embeddings.

92

Part III

Declarative Programming for the Web

93

94

Chapter 5

SUNNY: Model-Based Paradigm for
Programming Reactive Web
Applications

Parts I and II were primarily concerned with different aspects of declarative programming
based on executable specifications, where, at any point in a program, a full functional
specification (often expressed in a formal logic) can be asserted against the program state
and be treated like any other executable program statement. Automatically solving for such
a declarative statement necessitates a computationally complex algorithm; when this is
done via a translation to SAT (as in Alloy*), every such execution is NP-complete. Despite
the high complexity and the associated runtime cost, we argued that for many practical
purposes this approach is not only adequate, but also competitive with hand-optimized
solutions. In many other cases, however, this approach still, unfortunately, turns out to
be intractable, hindering its wider adoption. Another (unrelated) criticism of the idea of
executable specifications is that, for most programmers, it is hard to learn formal logic and
effectively write full functional specifications.

In this chapter we explore an alternative form of declarative programming, applied to
a specific domain, which avoids functional logic-based specifications and does not require
an expensive solver at runtime, but nevertheless, aims to provide similar benefits to the
programmer (saying what instead of how). The chosen domain is that of web applica-
tion programming. This is a particularly suitable domain, since building even the simplest
web applications seems to be more difficult than necessary, mostly due to a multitude of
involved technologies and big abstraction gaps between them, as well as a number of com-
mon programming problems arising from concurrency, data distribution/consistency/seri-
alization, event handling, synchronizations, etc.

We propose SUNNY, a model-based, event-driven, policy-agnostic paradigm for devel-
oping reactive web applications. SUNNY allows a programmer to represent a distributed
application as if it were a simple sequential program, with atomic actions updating a sin-
gle, shared global state. SUNNY imposes a clear separation between four main (often
cross-cutting) concerns of web applications: (1) data model, (2) network model, (3) event
model, and (4) security model. The programmer specifies each model, in a style similar
to object-oriented programming, separately and independently from each other. A run-

95

time environment executes the program on a collection of clients and servers, automatically
handling (and hiding from the programmer) complications such as network communication
(including server push), serialization, concurrency and races, persistent storage of data, and
queuing and coordination of events.

96

5.1 Motivation
Today’s era of social networks, online real-time user collaboration, and distributed comput-
ing brings new demands for application programming. Interactiveness and multi-user ex-
perience are essential features of successful and popular applications. However, program-
ming such inherently complex software systems, especially when the interactive (real-time)
multi-user component is needed, has not become much easier. Reasons for this complexity
are numerous and include:

• the distributed architecture of multiple servers running on the cloud (server farms) in-
teracting with clients running on different platforms (e.g., smartphones, web browsers,
desktop widgets, etc.);

• the abstraction gap between the problem-domain level (high-level, often event-driven)
and the implementation-level (low-level messages, queues, schedulers, asynchronous
callbacks);

• shared data consistency;

• concurrency issues such as data races, atomicity violations, deadlocks, etc.

Problems of this kind are known as accidental complexity [31], since they arise purely
from abstraction mismatches and are not essential to the actual problem being solved. Care-
fully managing accidental complexity, however, is absolutely crucial to developing a cor-
rect and robust system. Although thoroughly studied in the literature, these problems not
only pose serious challenges even for experienced programmers, but also distract the pro-
grammer from focusing on essential problems, i.e., designing and developing the system to
achieve its main goals.

This thesis proposes a new model-based programming paradigm for designing and de-
veloping interactive event-driven systems, accompanied by a runtime environment for mon-
itored execution of programs written in that language. Our paradigm is structured around
models (mostly declarative, but fully executable) using concepts from the domain of inter-
active web applications, (e.g., shared data, system events, interactions and interconnections
between clients, etc.), and also explicitly separating concerns like data, core business logic,
user interface, privacy and security rules, etc. This allows the programmer to think and
write code at a high-level, close to the actual problem domain, directly addressing the ab-
straction gap issue.

The structural information about the system, which is inherently present in these mod-
els, allows the runtime environment to automatically manage many forms of accidental
complexity, from synchronizing and dispatching concurrent events to propagating data up-
dates to all connected clients (also known as “server push” in the web developers commu-
nity). The programmer, therefore, has a very simple sequential programming view, and it
is the job of the runtime environment to turn that into a distributed application. Relieving
the programmer of writing multithreaded code eliminates, by construction, a whole class
of concurrency bugs, which are notoriously difficult to debug and fix.

We call this whole approach SUNNY, as our goal is to shine some light on the dark world
of distributed systems, making it less tedious and more fun, and, at the same time, more

97

robust and more secure. In support of this approach, two concrete implementations were
developed: (1) RED [110] (Ruby Event Driven, implemented on top of Ruby on Rails), and
(2) Sunny.js [111] (a pure JavaScript implementation on top of Meteor). The purpose of
the former is to demonstrate how the SUNNY concepts can be achieved across the full web
stack (including a relational database); the latter additionally takes advantage of the “thick
client”, a NoSQL database, and “client-side rendering” technologies to improve scalability
and responsiveness.

5.2 Example
In this section we present a simple example of a real-world application to explain the

proposed programming paradigm and illustrate the expressiveness and ease of use of the
SUNNY language.

This example implements a “public IRC” (Internet Relay Chat) web application, in
which anyone can create a chat room and the existing rooms are public (anyone can join
and send messages once joined). With most applications of this kind, the web GUI must be
responsive and interactive, automatically refreshing parts of the screen whenever something
important happens (e.g., a new message is received), without reloading the whole page.

Listing 8 shows a simple IRC implementation written in RED (our implementation of
SUNNY for Ruby on Rails). RED programs consist of several different models of the system
(described next), and as such are fully executable. These models are fairly high-level and
mostly declarative, so we occasionally refer to them as specifications, even though they are
not full functional specifications in the traditional sense.

The data model of the IRC application (Listing 8(a)) consists of a User record (which
specializes the RED library AuthUser record and adds a status field), a Msg record (where
each message has a textual body and a sender), and a ChatRoom record (each room has
a name, a set of participating users, and a sequence of messages that have been sent).
These fields are defined using the refs and owns keywords: the former denotes aggregation
(simple referencing, without any constraints), and the latter denotes composition (implying
that (1) when a record is deleted, all owned records should be deleted, and (2) no two
distinct records can point to the same record via the same owned field).

The network model in this example (Listing 8(b)) consists of two machines, namely
Server and Client. The Client machine has a corresponding User, whereas the Server

machine maintains a set of active ChatRooms. They respectively inherit from the library
AuthClient and AuthServer machines, to bring in some fairly standard (but library-defined,
as opposed to built-in) user management behavior, like new user registration, sign-in and
sign-out events, etc.

To implement the basic functionality of IRC, we defined an event model with three
event types: CreateRoom, JoinRoom, and SendMsg, as shown in Listing 8(c).

Each event has an appropriate precondition (given in the requires clause) that checks
that the requirements for the event are all satisfied before the event may be executed. For
instance, events CreateRoom, JoinRoom, and SendMsg all require that the user has signed in
(client.user is non-empty), SendMsg requires that the user has joined the room, etc.

A specification of the effects of an event (given in the ensures clause) is concerned

98

(a) data model

record User < AuthUser do
inherited fields
name: String,
email: String,
pswd_hash: String,
refs status: String
end

record Msg do
refs

text: Text,
sender: User

end

record ChatRoom do
refs
name: String,
members: (set User)

owns
messages: (seq Msg)

end

(b) network model

machine Client < AuthClient do
refs user: User

end

machine Server < AuthServer do
owns rooms: (set ChatRoom)

end

(c) event model

event CreateRoom do
from client: Client
to serv: Server

params roomName: String

requires {
client.user &&
roomName &&
roomName != ""

}

ensures {
room = ChatRoom.create
room.name = roomName
room.members = [client.user]
serv.rooms << room

}
end

event JoinRoom do
from client: Client
to serv: Server

params room: ChatRoom

requires {
u = client.user
client.user &&

!room.members.include?(u)
}

ensures {
u = client.user
room.members << u

}
end

event SendMsg do
from client: Client
to serv: Server

params room: ChatRoom,
msgText: String

requires {
client.user &&
room.members.include?(client.user)
}

ensures {
msg = Msg.create
msg.text = msgText
msg.sender = client.user
room.messages << msg
}

end

(d) security model

policy HideUserPrivateData do
principal client: Client

restrict access to passwords
restrict User.pswd_hash.unless do |user|
client.user == user

end

restrict access to status messages to users
who share at least one chat room
with the owner of that status message
restrict User.status.when do |user|
client.user != user &&
ChatRoom.none? { |room|
room.members.include?(client.user) &&
room.members.include?(user)

}
end

end

policy FilterChatRoomMembers do
principal client: Client

filter out anonymous users (those who have not
sent anything) from the ’members’ field
restrict ChatRoom.members.reject do |room, user|
!room.messages.sender.include?(user) &&
client.user != user

end
end

Listing 8: A full implementation (excluding any GUI) of a simple public IRC application
written in RED

only with updating relevant data records and machines to reflect the occurrence of that
event. For example, the effects of the JoinRoom event amount to simply adding the user
requesting to join the room to the set of room members; the runtime system will make sure

99

that this update is automatically pushed to all clients currently viewing that room. Bindings
between the GUI elements and the data model are specified elsewhere (in GUI templates,
to be exact), independently of the event model; this is a key to achieving separation of
concerns.

By default, all fields in our models are public and visible to all machines in the sys-
tem. That approach might be appropriate for the running “public IRC” example, where
everything is supposed to be public anyway. For many other systems, however, it is often
necessary to restrict access to sensitive data. Let us therefore define some privacy rules even
for this example to show how that can be done in SUNNY, declaratively and independently
of the event model.

The HideUserPrivateData policy from Listing 8(d) dictates that the value of a user’s
password should not be revealed to any other user and, similarly, that the status message
of a user should not be revealed to any other user, unless the two users are currently both
members of the same chat room. Note that the latter rule is dynamic, i.e., it depends on
the current state of the system (two users being together in a same chat room) and thus its
evaluation for two given users may change over time.

In addition to restricting access to a field entirely, when a field is of a collection type, a
policy can also specify a filtering condition to be used to remove certain elements from that
collection before the collection is sent to another machine. The FilterChatRoomMembers

policy hides those members of a chat room who have not sent any messages (this simulates,
to some extent, “invisible users”, a feature supported by some chat clients).

SUNNY automatically checks policies at every field access; if any policy is violated the
access is forbidden simply by replacing the field value with an empty value.

5.3 What is Different About SUNNY

Interactive multi-user applications, even when having relatively simple functional require-
ments, are difficult to write using today’s programming languages and available state-of-
the-art frameworks, the main reason being the abstraction gap between the problem domain
and the concepts available at the implementation level.

Just as one example, current systems typically do not offer much help with structuring
and organizing the system around events, despite proper event handling being at the core
of most interactive applications. Instead, they offer callbacks, which can be registered
from any source code location, almost inevitably leading to what is known as callback
hell [49]. As a consequence, programs end up being cluttered, the flow structure becomes
very difficult to infer from the source code, leading to programs that are hard to understand
and maintain.

Other than event-handling, the programmer has to face a number of other technolog-
ical barriers, including concurrency, object-relational mapping, server push, etc. Even
though these technological barriers have been individually overcome, the solutions some-
times come in a form of best-practices or guidelines, so the programmer still has to spend
time implementing them for the project at hand, which is, for the barriers mentioned above,
time-consuming, tedious, and also error-prone.

100

We illustrate these points in terms of three concrete platforms for developing web ap-
plications.

5.3.1 The Java Approach
The Java language, which gained much of its success from being proposed as a platform for
web development, is still one of the top choices for development of enterprise web systems.
The language being mature, the runtime (JVM) being fast and solid, and an abundance of
freely available third-party libraries are some of the points in favor.

The trend of web development in Java still seems to be based around manually con-
figuring and integrating a multitude of standalone, highly specialized libraries, designed
independently to solve various web-related tasks, as opposed to having a single overarch-
ing framework designed to address most of the common issues. A highly experienced Java
expert, who is already familiar with the existing libraries for web development, object-
relational mapping, database management, server push, and such (also already knowing
how to configure them all so that they can interoperate and work well together) would have
a good start developing our IRC example. For the rest of us, however, the situation is much
worse. For someone already familiar with Java, but not too familiar with web development
in Java, the effort just to get a handle on all the necessary libraries would by far exceed the
effort needed to implement the functionality of our example.

Even the expert would have to be very careful about managing concurrent requests
on the server side, setting up event processing queues (to avoid common concurrency is-
sues), implementing corresponding producer and consumer threads, and so on. Probably
equally cumbersome would be manually keeping track of which clients are viewing what,
automatically propagating updates when the data underlying the views change, and im-
plementing Ajax-style code on the client side to refresh the GUI smoothly. All these are
generic enough tasks, for which the implementation does not seem to differ much from one
project to another, so it seems unfortunate that they have to be repeated every time. One of
the design goals of SUNNY was to explicitly address this issue, and let the framework, not
the programmer, fight the technology.

5.3.2 The Rails Approach
In contrast to Java, the design of Rails [6] adopted the “convention over configuration”
school of thought: instead of manually configuring every single aspect of the application,
if certain conventions are followed, the Rails framework will automatically perform most
of the boilerplate tasks behind the scene and “magically” make things happen.

Underneath the surface, unfortunately, it is still a configuration mess, and the magic is
mostly concerned with low-level configuration of different components and how to tie them
all together. This creates problems for many Rails programmers, because, as this magic has
no high-level semantics, it is often difficult to understand and remember not only how it
works, but also what it does. In SUNNY, we aim to offer a different kind of magic, which is
easy to understand at the conceptual level (e.g., data updates are automatically propagated
to clients, all the way to automatically refreshing the GUI), so the programmer need not
understand the technical details behind its implementation.

101

By imposing some structure on how the system should be organized and implemented
(e.g., using the Model View Controller (MVC) architecture), Rails can indeed provide a
lot of benefits for free. One of the most appealing features of Rails (especially back when
it first appeared) is “scaffolding”: given just a few model files describing how the data
structures are organized, Rails automatically generates a running web application, with the
full stack, from the database to the web server, automatically configured and set up.

While scaffolding greatly reduces the startup cost of developing a new application (even
for inexperienced programmers), it is not meant to be a permanent, system-level solution.
The reason is that it is based on code generation from transient models: the generated files
(including database configuration files, Rails controller classes, HTML views) work fine
at the beginning, but as soon as something needs to be changed, everything needs to be
changed manually, since there is nothing to keep them in sync otherwise. Furthermore, the
models used for scaffolding support only scalar, primitive-typed fields. In SUNNY, in con-
trast, models (like those shown in Listing 8) are first-class citizens; not only do they exist
at runtime, but they are central to the whole paradigm (i.e., the entire runtime semantics
is built around them). Our models are also much richer, so there is enough information
available to the SUNNY runtime environment to interpret them on the fly, instead of gener-
ating code up front. That way, the common problem of having inconsistencies between the
models and the code is eliminated in SUNNY.

Concurrency in Ruby is an interesting topic. Ruby is inherently not concurrent (because
of a Global Interpreter Lock). As a result, Rails programmers can safely ignore threads and
synchronization, and still have no data race issues. This, of course, comes at the cost
of low scalability. When a more scalable implementation is needed, typically solutions
require that the system is restructured so that blocking operations (like I/O) are offloaded
to a different process, which is at the same time told what to do upon completion of the
requested operation (the so called Reactor pattern). Refactoring a system in this manner is
almost never trivial nor straightforward.

We believe that concurrency and parallel processing do not have to be sacrificed to this
extent to give the programmer a safe sequential programming model, as explained in more
detail in Section 5.4.1.

5.3.3 The Meteor Approach
Meteor [4] is a newer web framework for fast and convenient development of modern
web applications. Meteor has been rapidly gaining popularity. It is a pure JavaScript im-
plementation (both server and client have to be written in JavaScript) of an event-driven
(publish/subscribe) system which also automatically propagates updates to all connected
clients whenever the shared data changes.

Unlike SUNNY, Meteor focuses on providing a platform for automatic data propaga-
tion, whereas SUNNY is designed to also handle other aspects of the system, including
richer models for shared data, GUI scaffolding, automated support for concurrency, etc.
Specifically, Meteor does not offer much structure to help design the system, nor does it
have rich models of the underlying shared data. The data model in Meteor consists of a
number of flat collections (corresponding directly to database tables), with no type infor-
mation, and no explicit relationship between different model classes. Rich models enable

102

View
RendererHTTP

GET

Data

template

Event
Hanlder

event event

View Req Queue

Event Queue

read/write

HTML

read

data update

Client View Tree

update

Update Queue

Discover
Affected
Nodes

Rerender
Nodes

Push
Changes

Pusher

writeread

View Tree

Ajax
call

Figure 5-1: Internal architecture of SUNNY’s runtime environment for concurrent process-
ing of events and user requests.

both software engineering benefits (like automated test generation and verification of end-
to-end properties), as well as productivity benefits (like automated GUI scaffolding)1.

5.4 The SUNNY Approach
A key idea of SUNNY is to make it possible to think about different events in isolation, and
only in terms of modifications to the data model they entail. Therefore, in the design phase,
the programmer does not have to think about other issues, such as how to update the user
interface to reflect the changes, or even about security and privacy policies; those can be
specified separately and independently from the core event model. Limiting the specifica-
tion this way is what forces the programmer to focus on the core logic of the system first
(hence reducing the chances of software bugs in those core parts of the system) and what
enables us to provide a unified and overarching runtime environment for fully automated
resource management and constant data access monitoring for security violations.

The main components of SUNNY are: (1) a Domain Specific Programming Language
(2) a Runtime Environment (3) an Online Code Generator (4) a Dynamic Template-Based
Rendering Engine The following subsections walk through a sample execution of our
system (still using the running IRC example) to better illustrate how the system works and
how the benefits are achieved.

5.4.1 Sample Execution
Consider a scenario in which a user initially opens the home page of our IRC applica-

tion. This request is received by the web server via the HTTP GET method and placed in
a processing queue (namely View Req Queue, Figure 5-1, top pipeline). From there, it is
picked up by the View Renderer component, while the web server can immediately go back
to serving incoming requests.

Let us assume that the view corresponding to the home page is the irc template shown
in Listing 9(a) and that the user is not logged in yet. These templates are written in the ERB

1In contrast to GUI scaffolding implemented in Rails, ours is not a one-off code generation approach; it
is rather based on generic (application-agnostic) templates which get evaluated at runtime, so again, there is
no problem of falling out of sync.

103

(a) template file: irc.html.erb

<% if client.user %>
<%= render client.user %>
<%= render server.rooms, :as => ’room’ %>
<% else %>
<form id="login-form">
Email: <input type="text" name="email"/>
Password: <input type="password"

name="password"/>
</form>
<button data-trigger-event="SignIn"

data-params-form="login-form">
Sign In</button>

<% end %>

(b) template file: user.html.erb

<div class="User">
Welcome <%= user.name %> (<%= user.email %>)
</div>

(c) template file: chat_room.html.erb

<div class="ChatRoom">
Name: <%= room.name %>
Members: <%= room.members.name.join(", ") %>
Posts: <%= render room.messages %>

<input id="txt-<%=room.id%>" type="text"/>
<button
data-trigger-event="SendMsg"
data-param-room="${new ChatRoom(<%=room.id%>)}"
data-param-msgText="${$(’#txt-<%=room.id%>’).val()}">

Send</button>
</div>

(d) template file: msg.html.erb

<div class="post">
<%= msg.sender.name %>: <%= msg.text %>

</div>

Listing 9: ERB template views for the IRC example from Listing 8

language, which allows arbitrary Ruby expressions to be embedded inside the <% %> and
<%= %> marks (the difference being that only the latter produces a textual output, while the
output of the former is ignored). The View Renderer, therefore, evaluates the “else” branch
of the template, and returns a login page with two input fields (for email and password) and
a “Sign-in” button.

While rendering a template, the View Renderer also maintains a View Tree structure
which holds a single node for each Ruby expression that was evaluated during the execu-
tion of the template (templates can invoke other templates, potentially creating a hierarchy
of nodes). Each node stores a list of fields that were accessed while the corresponding
expression was being evaluated. In the case of this example, there is only one node in that
tree, and the only field that was accessed was the user field of the current client instance
(during the evaluation of the “if” condition).

On the client side, our JavaScript library automatically recognizes the “Sign-in” button
by its data-trigger-event HTML5 attribute, and, according to its value, associates it with
the SignIn event (which is a part of the previously imported Auth library. More concretely,
it assigns an “onclick” handler to it, so that when the button is clicked, the associated
form (discovered via the data-params-form attribute) is submitted (via an Ajax call) as the
parameters of the SignIn event.

When the user clicks this button, the SignIn event is triggered and received on the
server side via the bottom processing pipeline in Figure 5-1. The EventHandler then picks
it up from the queue, checks its precondition, and if it holds (in this case it does, since the
requires method is empty), proceeds to execute its postcondition. Assuming that the user
entered valid credentials, the execution will assign value to the user field of the current
client instance (the client instance is always implicit and denotes the machine which
submitted the currently executing event).

Any modification to the data model triggers an internal “data update” signal, which is

104

placed in the Update Queue (the right-most pipeline in Figure 5-1). A component called
Pusher is in charge of serving the Update Queue. Every time an update is received, it
goes through a list of all connected clients and corresponding view trees, discovers which
nodes could potentially be affected by the current update (by checking their list of field
accesses), re-renders those nodes, updates the global Client → View Tree map, and pushes
those changes to clients. On the client side, only the corresponding portion of the HTML
DOM is replaced by the newly rendered text.

In the running scenario, the only node that was stored for the current client was de-
pendent on the user field, so only it has to be re-rendered. The new content is produced
by executing the “then” branch, which amounts to rendering the user.html.erb template for
the current user (the user object is by default available to the callee template via the user

variable), and rendering the chat_room.html.erb template once for each room on the server
(in this case the default variable name would be “chat_room”, but it is instead explicitly set
to “room” via the :as option).

The execution then continues in the same manner: clients continue to perform actions
by triggering events from the domain, and the server keeps processing events, detecting
changes in the data model, and re-rendering parts of the client views when needed. An
explanation of how asynchronous message sending is declaratively specified directly in
an HTML template (no separate JavaScript file), and without any Ajax code, is given in
Section 5.4.4.

To get a running version of this sample execution, if using RED, the programmer only
needs to:

• write the data, machine, and event models from Listing 8 (the security model is not
necessary);

• write the HTML templates from Listing 9;

• deploy the application to a server running Ruby on Rails with our extensions; and

• set the application home page to irc.html.erb (by configuring the root route in Rails).

Comparing to implementing the same application in standard Rails:

• in place of our data model, the programmer would write ActiveRecord model classes
(one model class per record), which are more verbose and require more configuration
(as discussed in Section 5.4.4);

• in place of our machine model, the programmer would likely use in-memory classes
and the Rails session storage (not affecting the complexity of the implementation);

• in place of our event model, the programmer would write controllers of approxi-
mately the same complexity;

• the HTML templates would remain the same, as well as the deployment process.

Additionally, the Rails programmer would have to

105

• write a database schema (discussed in Section 5.4.4), carefully following the Rails
naming convention;

• write a controller for each model class implementing the standard CRUD (Create,
Read, Update, Delete) operations (again, certain naming conventions have to be fol-
lowed);

• configure routes for each controller;

• decide on a third party library to use to implement the server push (pushing data
updates to connected clients in real time);

• implement server-side code that keeps track of what data each client is currently
displaying;

• implement server-side code that detects model changes (made during the execution
of controllers);

• implement server-side code that pushes data changes to each client whenever a piece
of data currently being displayed on that client is changed;

• implement client-side code that listens for data changes from the server;

• implement client-side code that dynamically re-renders affected parts of the GUI
whenever a data update is received.

In both cases, a CSS file is necessary in order to make the GUI look pretty.
While RED provides dynamic GUI updates for free, and for that does not require the

programmer to write any JavaScript, it does not prevent him or her from doing so; RED

comes with a client-side JavaScript library (see Section 5.4.4) which can be used to interact
with the server-side, customize how the GUI gets updated (e.g., implement special visual
effects or animations), asynchronously trigger events, etc.

5.4.2 Domain-Specific Programming Language
We designed a domain-specific language for writing SUNNY models in order to better em-
phasize the key concepts of our paradigm. This language has strong foundations in the
Alloy modeling language [78], a relational language based on first-order logic. Alloy
is declarative, and as such, it is not executable per se; it is instead used primarily for
modeling and checking logical properties of various kinds of systems. Most of Alloy’s
expressive power comes from its relational base (including all the supported relational op-
erators), which, however, can be efficiently executable in the context of object-oriented
programs [137]. For example, the dot operator (‘.’) is actually a relational join, so an ex-
pression that fetches all users currently present in any chat room on a server can be written
simply as Server.rooms.members.

In RED, we implemented this domain-specific language as an adaptation of 𝛼Rby (pre-
sented in Chapter 4), which makes it deeply embedded in Ruby. Concretely, each of record,
machine, and event is just a function that takes a name, a hash of field 𝑛𝑎𝑚𝑒 → 𝑡𝑦𝑝𝑒 pairs,

106

and a block; it (1) returns a Class having those field names as attributes, while storing the
type information in a separate meta-class, (2) creates, in the current module, a constant
with the given name and assigns the newly created class to it, and (3) if a block is given,
evaluates that block in the context of that class. The block parameter can be used to define
additional instance methods, but also to define fields with more information than just name
and type (e.g., the call to the owns function in Listing 8(a), which additionally specifies
that whenever a chat room is deleted, the deletion operation should be propagated to all the
messages referenced by that room via the messages field).

Having this syntactic sugar (instead of just using the built-in class keyword) provides
a convenient way of specifying typed fields, but more importantly, being in charge of class
generation also gives us an easy way to hook into all field accesses, where we perform the
necessary policy checks.

Note that, however, none of our language features mandated this implementation choice;
a different implementation targeting a different platform is possible.

5.4.3 Runtime Environment

One of our main goals is to relieve the programmer of having to explicitly implement
a distributed system, i.e., explicitly synchronize multiple processes, handle inter-process
communication, manage queues and messages, ensure data consistency, and a number of
other tasks typical for distributed and concurrent programming. By introducing a specific
programming model (as described previously), we tailored a generic runtime environment
to automate all those tasks. The runtime implements a standard message-passing architec-
ture, a well-known and widely used idiom for designing distributed systems, which we use
to dispatch events and data updates between entities (Figure 5-1).

Another important role of the runtime environment is to automatically check and en-
force privacy policies at runtime. Policies are checked at every field access attempted by
the user-defined code: all relevant restriction rules are discovered and applied. Instead of
throwing an exception when the access is forbidden, an empty relation is returned. This
makes it possible for the client code to be written in a mostly policy-agnostic style. For ex-
ample, the client code can simply say room.members to fetch the members of a chat room,
and rely on the runtime to return only those elements that the client is allowed to see.

Policies are also considered when objects are being serialized (by the runtime) prior to
being sent to another machine (e.g., as part of the automatic propagation of data updates).
Consider a client (client) attempting to fetch all rooms by executing server.rooms. This
is a legal operation, as all field accesses are permitted (it is a public IRC application). Any
sensitive data (e.g., the password and status fields of the room members), however, must
still be hidden or their values properly filtered out, which our runtime does automatically
(simply by returning an empty relation every time access is forbidden).

This illustrates the declarative nature of our privacy policies, and how the runtime can
automatically enforce them. It also shows that the operational code (e.g., event handlers,
embedded GUI formulas, etc.) usually can be written independently of privacy policies,
and does not need to be updated when policies change.

107

5.4.4 Online Code Generator

Many of the responsibilities of the runtime environment are enabled by the code automat-
ically generated from the core models, on the fly, during the system initialization phase.
In addition, we use code generation to automate various common tasks. These tasks are
briefly described next.

Database Migrations

The richness of our data model makes it possible to handle data persistence fully automati-
cally. This includes (1) generating and maintaining a database schema, and (2) implement-
ing an object-relational mapper (i.e., mapping domain objects onto that schema).

A database schema provides a way to persist all relevant information from the domain
model. Because the schema is always supposed to closely mirror the model, ideally it
should not have to be written/programmed separately. In standard Rails, however, that is not
the case; the schema exists as a standalone code artifact, and the programmer is in charge
of maintaining it and keeping it in sync with the application model. Although Rails comes
with automated generators that can create schema skeleton files from simple 𝑛𝑎𝑚𝑒→ 𝑡𝑦𝑝𝑒
pairs, they only work for primitive types and scalar fields; for more advanced features like
type inheritance and non-scalar fields (many-to-many relations), the programmer has to
manually extend the generated schema file in such a way that it works with the object-
relational mapper on the other side.

Figure 5-2(a) gives a full listing of the database schema (in the form of a Ruby migration
class, standard for the Rails framework) that RED automatically generates for the IRC
example. This schema supports all the features of the model, so the programmer does not
even have to look at it.

ActiveRecord (the object-relational mapper used in Rails and in our framework) imple-
ments the single table inheritance strategy for handling inheritance. Hence, for each base
type we generate one table with columns for all fields of all of its subtypes, plus an extra
string-valued column (named :type) where the actual record type is stored. For example,
in the :auth_users table, the first three columns correspond to fields from AuthUser and the
fourth column is for the single field from User. Furthermore, in every other table referenc-
ing such a table, an additional “column type” column must be added to denote the declared
type of the corresponding field, as in the :msg table (columns :sender and :sender_type).

When a record field type is of arity greater than 1, a separate join table must be created
to hold that relation. This is the case with the ChatRoom.members field (referencing a set
of Users). The corresponding join table (:chat_rooms_users_members) stores all tuples of
the :members relation by having each row point to a row in the :chat_rooms table and a
row in the :users table. In the special case when a field owns a set of records (e.g., field
ChatRoom.messages, meaning that a given message can be referenced via that field by at
most one chat room), instead of a join table, a referencing column is placed in the table
corresponding to the type of that field (the :chat_room_as_message column in table :msgs).

The last create_table statement in Figure 5-2(a) simply creates a table where the ses-
sion data will be stored, and is independent of the domain data model.

Despite being mostly straightforward, writing migrations by hand is still tedious and

108

(a) auto-generated Rails migration file

class UpdateTables < ActiveRecord::Migration
def change
create_table :auth_clients do |t|
t.column :auth_token, :string
t.references :user
t.column :user_type, :string
t.references :user
t.column :user_type, :string
t.column :type, :string
t.timestamps

end
create_table :auth_servers do |t|
t.column :type, :string
t.timestamps

end
create_table :auth_users do |t|
t.column :name, :string
t.column :email, :string
t.column :password_hash, :string
t.column :status, :string
t.column :type, :string
t.timestamps

end
create_table :msgs do |t|
t.column :text, :text
t.references :sender
t.column :sender_type, :string
t.references :chat_room_as_message
t.timestamps

end
create_table :chat_rooms do |t|
t.column :name, :string
t.references :server_as_room
t.column :server_as_room_type, :string
t.timestamps

end
create_table :chat_rooms_users_members,

:id => false do |t|
t.column :chat_room_id, :int
t.column :user_id, :int

end
create_table :sessions do |t|
t.string :session_id, :null => false
t.text :data
t.timestamps

end
add_index :sessions, :session_id
add_index :sessions, :updated_at

end
end

(b) auto-generated ActiveRecord classes

class Msg < Red::Model::Record # < ActiveRecord::Base
attr_accessible :text
belongs_to :sender,

:class_name => "User",
:foreign_key => :sender_id

belongs_to :chat_room_as_message,
:class_name => "ChatRoom",
:foreign_key => :chat_room_as_message_id,
:inverse_of => :messages

interceptors for field getters and setters
...
end

class ChatRoom < Red::Model::Record # < ActiveRecord::Base
attr_accessible :name
has_and_belongs_to_many :members,

:class_name => "User",
:foreign_key => :chat_room_id,
:association_foreign_key => :user_id,
:join_table => "chat_rooms_users_members"

has_many :messages,
:class_name => "Msg",
:foreign_key => :chat_room_as_message_id,
:dependent => :destroy

belongs_to :server_as_room,
:class_name => "Server",
:foreign_key => :server_as_room_id,
:inverse_of => :rooms

interceptors for field getters and setters
...
end

class User < RedLib::Web::Auth::AuthUser
attr_accessible :status
has_and_belongs_to_many :chat_rooms_as_member,

:class_name => "ChatRoom",
:foreign_key => :user_id,
:association_foreign_key => :chat_room_id,
:join_table => "chat_rooms_users_members"

has_many :msgs_as_sender,
:class_name => "Msg",
:foreign_key => :sender_id,
:inverse_of => :sender

has_many :clients_as_user,
:class_name => "Client",
:foreign_key => :user_id,
:inverse_of => :user

interceptors for field getters and setters
...
end

Figure 5-2: Snippets of automatically generated code for the IRC example

time consuming, and, for developers new to Rails, can often be a source of mysterious
runtime errors. Even after those initial errors have been fixed, the gap between the schema
and the application model still remains. RED eliminates all these issues by having a sin-
gle unified model of the system and automatically driving various implementation-level
technologies (such as the database schema maintenance) directly from it.

109

ActiveRecord Classes and Reflections

As explained in Section 5.4.2, the record keyword in RED is actually implemented as a
Ruby function that creates a new class and assigns a named constant to it. This section
explains generated record classes (listed in Figure 5-2(b)) in more detail.

ActiveRecord provides “reflections” for specifying associations between model classes
(i.e., records in our terminology). Primitive fields are declared with attr_accessible (e.g.,
ChatRoom.name), one-to-many associations with has_many on one side and belongs_to on
the other (e.g., ChatRoom.messages), and has_and_belongs_to_many is used for many-to-many
associations with (e.g., ChatRoom.members). Various options can be provided to specify the
exact mapping onto the underlying database schema.

As with migration generators, Rails provides generators for ActiveRecord model classes
as well, but again, with limited features and capabilities. While most of the schema-
mapping options (e.g., :foreign_key, :join_table, :association_foreign_key) can be
omitted if the naming convention is followed when the schema is written, the program-
mer still has to manually write these reflections for all but primitive fields. Furthermore,
ActiveRecord requires that reflections are written on both sides of an association, mean-
ing that each non-primitive field has to have its inverse explicitly declared in the opposite
class (which is another step that our system eliminates). Finally, even though the database
schema and the model classes are coupled, there is nothing that keeps them in sync in
standard Rails. This not only makes the development process more cumbersome and error-
prone, but also makes it difficult to perform any system redesign or refactoring.

Controlling the generation of model classes also lets us intercept all field accesses,
where we perform all the necessary security checks, detect changes to the data model for
the purpose of updating client views, wrap the results of getter methods to enable special
syntax (e.g., the Alloy-style relational join chains), etc.

JavaScript Model for the Client-Side

One of the main ideas behind SUNNY is to have a single unified model of the system, and
a model-based programming paradigm that extends beyond language and system bound-
aries. In RED, we wanted to preserve this idea and enable the same kind of model-based
programming style on both the server side and the client side, despite the language mis-
match. More concretely, we wanted to provide the same high-level programming constructs
for instantiating and asynchronously firing events in JavaScript on the client side, as well
as constructing and manipulating records.

To that end, we translate the system domain model into JavaScript, to make all the
model meta-data available on the client side. We also implemented a separate JavaScript
library that provides prototypes for the generated model classes, as well as many utility
operations.

Listing 10 gives an excerpt from the translation of the IRC application’s domain model.
Up on the top are constructor functions for all records, machines, and events. The mk_record

and mk_event functions (part of our library) take a name and (optionally) a super construc-
tor, and return a constructor function with the given name and a prototype extending the
super constructor’s prototype. This is followed by the meta-data for each record, machine,

110

and event, which contains various information about the type hierarchy, fields, field types,
etc. All this information is necessary for our library to be able to provide generic and
application-agnostic operations. One such operation we mentioned before, in Section 5.4.1,
where we talked about how DOM elements having the data-trigger-event attribute are
automatically turned into event triggers.

Let us finally take a look at how asynchronous message sending is implemented on
the client side, that is, how such an operation can be specified declaratively, directly in an
HTML template file, without writing any Ajax code.

The chat_room.html.erb template (Listing 9(c)) contains a text input field and a send
button, with the intention to trigger the SendMsg event and send whatever message is in
the text input field whenever the send button is pressed. To achieve that, we added three
HTML5 data attributes to the send button element; we used data-trigger-event, as before,
to denote the type of the event, and two data-param attributes to specify the two mandatory
arguments of the SendMsg event, room and msgText.

The value for the room parameter is known statically—it is exactly the chat room object
for which the chat_room template is being executed. However, that value is an object, so
it is not possible to directly embed it in the template as a string-valued attribute. Instead,
we inline a small piece of JavaScript code that, when executed, creates an equivalent room
on the client side. Knowing the id of that room, and having a full replica of the model
classes on the client, that code is as simple as new ChatRoom(<%=room.id%>)2; we only
need to tell our JavaScript library that the value we are passing is not a string, but code, by
enclosing it in ${}3.

The value for the msgText parameter is not known statically, and has to be retrieved
dynamically when the user presses the send button. As in the previous case, we can specify
that by inlining a piece of JavaScript that finds the input text field by its id (using the jQuery
syntax $(’#<id>’)) and reads its current value (by calling the .val() function).

An alternative approach to declaratively specifying event parameter bindings, that would
require no JavaScript from the programmer, would be to somehow annotate the input text
field (e.g., again by using the HTML5 data attributes) as the designated value holder for
the msgText event parameter. A drawback of such an approach is that, in general, it leads
to code fragmentation, where a single conceptual task can be specified in various different
(and not predetermined) places, potentially significantly reducing code readability. For that
reason, we thought it was better to have all the code and specification in one place, even if
the user has to write some JavaScript.

2Our JavaScript library actually does not complain if a numeric id is passed where a record object is
expected—having all the meta-model information available, it can easily find the event parameter by the
name, look up its type, and reflectively construct an instance of that type. Instead of using this shortcut
(which works only for record objects) in the main text, we used a more verbose version to illustrate a more
general approach and all of its power and flexibility.

3Note that this dollar sign has nothing to do with the jQuery dollar sign; it is rather our own syntax for
recognizing attribute values that should be computed by evaluating the JavaScript code inside ${}.

111

/* ------------- record signatures ------------- */
var AuthUser = Red.mk_record("AuthUser");
var User = Red.mk_record("User", AuthUser);
var Msg = Red.mk_record("Msg");
var ChatRoom = Red.mk_record("ChatRoom");
var AuthClient = Red.mk_record("AuthClient");
var AuthServer = Red.mk_record("AuthServer");
var Client = Red.mk_record("Client", AuthClient);
var Server = Red.mk_record("Server", AuthServer);

/* ------------- event signatures ------------- */
var Register = Red.mk_event("Register");
var SignIn = Red.mk_event("SignIn");
var SignOut = Red.mk_event("SignOut");
var Unregister = Red.mk_event("Unregister");
var CreateRoom = Red.mk_event("CreateRoom");
var JoinRoom = Red.mk_event("JoinRoom");
var SendMsg = Red.mk_event("SendMsg");

/* ------------- record meta ------------- */
ChatRoom.meta = new Red.Model.RecordMeta({
"name" : "ChatRoom",
"short_name": "ChatRoom",
"sigCls" : ChatRoom,
"abstract" : false,
"parentSig" : Red.Model.Record,
"subsigs" : [],
"fields" : [
new Red.Model.Field({parent: ChatRoom, name: "name", type: "String", multiplicity: "one" }),
new Red.Model.Field({parent: ChatRoom, name: "members", type: User, multiplicity: "set" }),
new Red.Model.Field({parent: ChatRoom, name: "messages", type: Msg, multiplicity: "seq",

owned: true })
]
});
...

/* ------------- event meta ------------- */
SendMsg.meta = new Red.Model.EventMeta({
"name" : "SendMsg",
"short_name": "SendMsg",
"sigCls" : SendMsg,
"abstract" : false,
"parentSig" : Red.Model.Event,
"subsigs" : [],
"params" : [
new Red.Model.Field({parent: SendMsg, name: "room", type: ChatRoom, multiplicity: "one" }),
new Red.Model.Field({parent: SendMsg, name: "msgText", type: "String", multiplicity: "one" })

]
});
...

Listing 10: Excerpt from the JavaScript translation of the domain model, which the client-
side code can program against

5.4.5 Dynamic Template-Based Rendering Engine

To go along with this declarative approach for programming the core business logic of
an event-based system, RED implements a mechanism for declaratively building graphical
user interfaces. The main responsibility of this mechanism is to automatically and effi-
ciently update and re-render the GUI (or relevant parts of it) when a change is detected in
the data model. This idea is similar to the concept of “data bindings” (e.g., [128,134]), but
is more general and more flexible.

112

Traditionally, GUIs are built by first constructing a basic visual layout, and then reg-
istering callbacks to listen for events and dynamically update bits and pieces of the GUI
when those events occur. In contrast, we want the basic visual layout (like the one in List-
ing 9) to be sufficient for a dynamic and fully responsive GUI. In other words, we want to
let the designer implement (design) a single static visualization of the data model, and from
that point on rely on the underlying mechanisms to appropriately and efficiently re-render
that same visualization every time the underlying data changes.

To implement this approach, we expand on the well-known technique of writing GUI
widgets as textual templates with embedded formulas (used to display actual values from
the data model) and using a template engine [9] to evaluate the formulas and paste the
results in the final output. To specify input templates, we use the ERB language (the default
template language in Rails) without any modifications. Unlike the existing renderer for
ERB, however, our system detects and keeps track of all field accesses that happen during
the evaluation of embedded formulas. Consequently, the result of the rendering procedure
is not a static text, but a view tree where embedded formulas are hierarchically structured
and associated with corresponding field accesses (as illustrated in Section 5.4.1). That view
tree is what enables the permanent data bindings—whenever the underlying data changes,
the system can search the tree, find the affected nodes, and automatically re-render them.

In the context of web applications, only a textual response can be sent back to the client.
Therefore, when an HTTP request is received, the associated template is rendered, and a
view tree is produced. The view tree is saved only on the server side. The client receives
the same plain-text result that the standard ERB renderer would produce along with some
meta-data to denote node delimiters; the browser renders the plain-text response, and our
client-side JavaScript library saves the meta-data. When a data change is detected on the
server-side, the server finds and re-renders the affected nodes and pushes plain-text node
updates to corresponding clients; each client then, already having the meta-data, knows
where to cut and paste the received update to automatically refresh the GUI.

5.5 Semantics
This section formalizes SUNNY’s notion of policies, as well as the computational model
behind it. The syntax introduced in Section 2.4 is used here again.

Figure 5-3(a) lists the datatypes defined by SUNNY. Sig denotes a user-defined record
type; the three predefined sigs are SunnyUser, SunnyClient, and SunnyServer. A Value

is either a Record or an Object. A Record instance has fields (a set of name-value pairs)
and a corresponding type (Sig). A Policy is assigned a prototype Operation to which
it applies and a checker function; the checker function, for a given client and a concrete
operation, returns an Outcome to designate whether the operation should be Allowed or
Denied. The special case is the Read operation, for which the policy checker can also return
Restricted to provide a different value to serve as the result (these policies will be referred
to as filtering policies). This feature is particularly convenient for defining client-specific
views of the data model, for example, to filter out sensitive information for unauthorized
clients. Finally, SUNNY defines the standard CRUD operations (Create, Read, Update,
Delete), and two additional Push and Pull operations for inserting and removing a tuple

113

(a) SUNNY syntactic domains

type Sig = SunnyUser | SunnyClient | SunnyServer | <user-defined types>
type Value = Record(fields: String × Value, type: Sig)

| Object

type Operation = Create(type: Sig)
| Read(r: Record, fld: String, val: Value)
| Update(r: Record, fld: String, val: Value)
| Push(r: Record, fld: String, val: Value)
| Pull(r: Record, fld: String, val: Value)
| Delete(r: Record)

type Policy = {op: Operation,
checker: SunnyClient → Operation → Outcome}

type Outcome = Allowed | Restricted(val: Value) | Denied(reason: String)
type FldComp = {client: SunnyClient, r: Record, fld: String}
type Dep = {comps: FldComp list}
type SunnyMeta = {sigs: Sig list,

policies: Policy list,
fieldDeps: Record × String × Dep,
queryDeps: Sig × Dep,
server: SunnyServer,
online: SunnyClient list,
client: SunnyClient option,
stack: Operation list,
comp: FldComp option}

let Sunny = SunnyMeta(...) // global Sunny variable

(b) built-in functions

fold : (A→ E→ A) → A → E list → A functional fold

filter : (E→ Bool) → E list → E list functional filter

keys : A × B → A extract keys from a dictionary

(c) framework-provided datatypes and functions

type SigListener = {created: Record → unit,
updated: Record → String list → unit,
deleted: String → unit}

observeChanges : Sig → SigListener → unit observe changes to sig records

push : SunnyClient → Sig → String → Object → unit push msg to client

db_create : Record → unit create record in the database

db_read : Record → String → Value read field value from the database

db_update : Record → String → Value → unit write field value to the database

db_delete : Record → unit delete record from the database

db_find : Record → String → Record list query the database

Figure 5-3: Datatypes, global variables, built-in and framework-provided functions

114

from a relation, respectively.
Datatypes FldComp and Dep are used for keeping track of field dependencies on the

server side. The former designates a “field computation” for a given client, while the latter
keeps a list of computations that depend on it. The purpose of this is to automatically re-
run a field computation whenever any of the fields it depends on changes, to ensure that all
clients always have the current view of the system.

Finally, the Sunny global variable keeps both (1) all the application metadata: sigs,
policies, and dependency objects, and (2) some dynamic information about the current
state of the system execution: the server record, a list SunnyClient records representing
currently connected clients, the principal client (on whose behalf the code is currently
running), the current field computation, and a stack of operations currently being checked.
The metadata is populated once, upon initialization, after which it remains immutable;
the dynamic variables are mutable and used at runtime to communicate between different
SUNNY components.

Figures 5-3(b) and (c) summarize the functions assumed to be provided either by the
programming language or the underlying web framework.

5.5.1 Policy Checking
Policies are attached to operation prototypes. Multiple policies can be defined for the same
operation. Before each operation is executed, applicable policies are dynamically discov-
ered and checked first. If no policy is applicable, the operation is by default allowed (a
concrete implementation can easily make this default configurable). If any policy returns
Denied the operation is denied; when Restricted is returned for a Read operation, the
result is set to the restricted value.

Policy checking is formalized in the checkPolicies function in Figure 5-4. If there
is no current client, the operation is executing on behalf of the server, thus, it is allowed.
Otherwise, applicable policies are discovered (using the opsMatch auxiliary function) and
their checker functions are executed against the principal client (Sunny.client). The checker
results (outcomes) are finally combined using the AND function, which out of two given
outcomes selects the more restrictive one.

Since policies can depend on sensitive values (those guarded by policies), there may
exist circular dependencies among policies. To avoid infinite loops, the checkPolicies

function maintains a stack of concrete operations for which the policies are being checked.
If a current operation is found on the stack, Allowed is immediately returned.

The stack of operations currently under policy checking is kept in the Sunny.stack global
variable. Our formalization of how the checkPolicies function maintains that variable
makes use of a special language construct, with var← [val do <block>, which is a shortcut
for the following: (1) set the value of the var variable (which is typically global) to val,
(2) execute the given block, and finally (3) restore the value of var to its original value. We
introduce this shortcut construct, as it will be used several more times later in this section.

Figure 5-5 formally shows how the policy checker is invoked before each CRUD op-
eration is performed. The most interesting is the read function: when access is denied,
instead of raising an exception, an empty value is returned. This supports the idea of
policy-agnostic programming; for example, it allows the programmer to have generic UIs

115

opsMatch: Bool→ Operation→ Operation→ Bool

let opsMatch = 𝜆(prototypeOnly, o1, o2) ⋅
let recEq = 𝜆(r1, r2) ⋅ if prototypeOnly then r1.type == r2.type else eq(r1, r2)
match o1, o2
| Create, Create → o1.type == o2.type
| Delete, Delete → o1.r.type == o2.r.type
| Read, Read → recEq(o1.r, o2.r) ∧ o1.fld == o2.fld
| Update, Update → recEq(o1.r, o2.r) ∧ o1.fld == o2.fld
| Push, Push → recEq(o1.r, o2.r) ∧ o1.fld == o2.fld
| Pull, Pull → recEq(o1.r, o2.r) ∧ o1.fld == o2.fld
| _, _ → FALSE

AND: Outcome→ Outcome→ Outcome

let AND = 𝜆(out1, out2) ⋅
match out1, out2
| Denied, _ → out1

| _, Denied → out2

| _, Restricted → out2

| _, _ → out1

applicablePolicies: Operation→ Policy list

let applicablePolicies = 𝜆(op) ⋅
filter 𝜆(p) ⋅ opsMatch(TRUE, p.op, op), Sunny.policies

checkPolicies: Operation → Outcome

let checkPolicies = 𝜆(op) ⋅
if filter opsMatch(FALSE, op), Sunny.stack == []
Allowed() // recursive call → allow to avoid infinite loops

else

with Sunny.stack← [op :: Sunny.stack do

match Sunny.client
| None → Allowed() // no principal client → privileged mode → allow

| Some(clnt) → let checkAndCombine = 𝜆(acc, policy) ⋅
let o = match op, acc
| Read, Restricted → Read(op.r, op.fld, acc.val)
| _, _ → op

AND(acc, policy.checker(clnt, o))
fold checkAndCombine, Allowed(), applicablePolicies(op)

Figure 5-4: Formalization of policy checking in SUNNY

designed to display the entire underlying data model, and safely rely on the runtime to
remove any sensitive information. The read function also invokes depend to establish a de-
pendency between any enclosing computation and this read operation (explained in more
detail shortly). Two other interesting cases are the push and pull functions: if no appli-
cable push/pull policies are found, update policies are checked instead, but if both kind of
policies are found, the more specific push/pull take precedence.

116

create: Sig → Record

let create = 𝜆(s) ⋅
match checkPolicies(Create(s))

| Denied → raise(AccessDenied)

| _ → db_create(Record({}, s))

read: Record → String → Value

let read = 𝜆(r, fld) ⋅
depend(SunnyMeta.fieldDeps[r][fld])
let val = db_read(r, fld)
match checkPolicies(Read(r, fld, val))
| Denied → []

| Allowed → val

| Restricted(v) → v

update: Record → String → Value → unit

let update = 𝜆(r, fld, val) ⋅
match checkPolicies(Update(r, fld, val))
| Denied → raise(AccessDenied)

| _ → db_update(r, fld, val)

push: Record → String → Value → unit

let push = 𝜆(r, fld, val) ⋅
let pushOp = Push(r, fld, val)
let op = applicablePolicies(pushOp) == [] ? pushOp : Update(r, fld, val)
match checkPolicies(op)

| Denied → raise(AccessDenied)

| _ → db_push(r, fld, val)

pull: Record → String → Value → unit

let pull = 𝜆(r, fld, val) ⋅
let pullOp = Pull(r, fld, val)
let op = applicablePolicies(pullOp) == [] ? pullOp : Update(r, fld, val)
match checkPolicies(op)

| Denied → raise(AccessDenied)

| _ → db_pull(r, fld, val)

delete: Record → unit

let delete = 𝜆(r) ⋅
match checkPolicies(Delete(r.type))
| Denied → raise(AccessDenied)

| _ → db_delete(r)

find: Sig→ String→ Record list

let find = 𝜆(sig, query) ⋅
depend(SunnyMeta.queryDeps[sig])
db_find(sig, query)

Figure 5-5: Formalization of CRUD operations in SUNNY

117

5.5.2 Reactivity

In this thesis, by “reactive system” we mean distributed system that automatically keeps
the shared data up to date on all connected peers. In a web framework, this is typically
done by explicitly pushing data updates from the server to the connected clients. Exist-
ing approaches like Touch Develop [158, 159] and Meteor [4] implement this for “public”
data sources only, by replicating their content on all clients. In the presence of declarative
privacy policies (as proposed in this thesis), this task becomes more difficult. The poli-
cies can deny access to certain data elements (i.e., fields, in SUNNY), or even modify their
content. The logic behind such a policy is often defined in terms of other data elements;
consequently, executing a policy to determine a field value can dynamically induce depen-
dencies to other fields. A reactive system that promises to always keep the data consistent
and updated on all clients must, therefore, (1) remember those dependencies, (2) automat-
ically recalculate field values upon field changes, and (3) automatically send the updated
field values to relevant clients.

Figure 5-6 formalizes this process. Upon system initialization, for each record type
(Sunny.sigs) callbacks are registered to observe changes to its records. We assume the
existence of the observeChanges function, which simply notifies all registered listeners
whenever a record is created, updated, or deleted. Before forwarding a received change to
the online clients, computations dependent on that change are invalidated first. This is done
by invoking the changed function, passing an instance of the Dep datatype; all three listeners
trigger the “query” dependency for the associated record type, while the updated listener
additionally triggers the “field” dependencies for updated fields. Next, separately for each
client, field values are filtered out according to applicable policies, after which the update
is finally pushed to the client (by calling the framework-provided push function). The
each_clnt function iterates through the online clients, and the restrict function performs
the field filtering.

The each_clnt function is simple in its nature: it iterates through the list of online
clients (Sunny.online) and each time passes the client to a callback function. The main
reason for using a global variable to designate the principal client (Sunny.client) is that any
practical implementation would likely have to do the same. That is simply because, for
example, a client record is required for policy checking, which is done at every field access
inside of the corresponding field getter method, and getter methods typically cannot accept
an additional client argument.

The restrict function builds a map of field name-value pairs by folding over all fields
names of a given record and for each performing the read operation. The read operation
will consult all applicable policies, so the return values will be appropriate for the current
principal client. More importantly, just before invoking read, the restrict function sets
the current field computation (Sunny.comp). This is done so that all field accesses and
other dependencies induced during the policy checking phase are remembered for this field
computation. For example, as explained earlier in this section, every read operation calls
depend on the Dep object associated with its target field. As formalized now in Figure 5-
6, the depend function simply remembers the current computation, if one is set. On the
other hand, whenever a dependency is triggered (e.g., inside observeChanges), the changed

function is called, which, as now formally defined, goes through the list of its remembered

118

computations, reevaluates the fields of the associated record (by calling restrict on it) and
pushing the change to the associated client.

The design of our server-side reactive field computations is very much inspired by that
of Meteor [4]; Meteor, however, supports only client-side reactive computations.

depend: Dep→ unit

let depend = 𝜆(dep) ⋅
match Sunny.comp
| Some(comp) → dep.comps ← [comp :: dep.comps

changed: Dep→ unit

let changed = 𝜆(dep) ⋅
let comps = dep.comps
dep.comps← [[]
for c in comps do

with Sunny.client← [Some(c.client) do

push(c.client, c.r.type, "changed", restrict(c.r))

restrict: Record→ String × Value

let restrict = 𝜆(r) ⋅
let accumFldNameVals = 𝜆(accDict, fldName) ⋅
let fComp = Some(FldComp(Sunny.client, r, fldName))
with Sunny.comp← [fComp do

accDict + fldName × read(r, fldName)
fold accumFldNameVals, {}, keys(r.fields)

each_clnt: (SunnyClient→ unit)→ unit

let each_clnt = 𝜆(cb) ⋅
for clnt in Sunny.online do

with Sunny.client← [Some(clnt) do cb(clnt)

publishing changes (executed once at initialization)

for s in Sunny.sigs do

observeChanges s, SigListener(

created = 𝜆(r) ⋅
changed(Sunny.queryDeps[s])
each_clnt 𝜆(c) ⋅ push(c, s, "added", restrict(r))

updated = 𝜆(r, fldNames) ⋅
changed(Sunny.queryDeps[s])
for f in fldNames do changed(Sunny.fieldDeps[r][f])
each_clnt 𝜆(c) ⋅ push(c, s, "changed", restrict(r))

deleted = 𝜆(id) ⋅
changed(Sunny.queryDeps[s])
each_clnt 𝜆(c) ⋅ push(c, s, "removed", id)

)

Figure 5-6: Formalization of auto publishing in SUNNY

119

5.5.3 Concurrency Model

We assume the concurrency model of fibers. Fibers are similar to threads in that the ex-
ecution can switch from one fiber to another before the first fiber has finished. The big
difference with fibers is that the switch is always initiated explicitly, at predefined points.
In other words, a fiber cannot be interrupted unless it explicitly yields the execution (e.g.,
by invoking a special function) to another fiber.

Our formalization does not contain any explicit yield points. Yields can still hap-
pen within our functions, however. For example, every call to a database function (e.g.,
db_find) potentially yields to another fiber. Since multiple fibers can be queued up at a
same time (e.g., each HTTP request executes in a separate fiber, sig listeners (registered
with observeChanges) are concurrently invoked by the database in separate fibers, etc.), the
fact that global shared variables are used (e.g., Sunny.client, Sunny.comp, etc.) means that
data races may happen. In practice, we mitigated this by keeping the shared variables in a
fiber-local storage.

5.6 Automated Reasoning and Analysis
Although SUNNY simplifies the development of interactive web applications, and by con-
struction eliminates a whole class of concurrency bugs, it does not eliminate all possible
bugs. The user implementation of events can still fail to satisfy the functional requirements
of the application. Applying the standard software quality assurance techniques to SUNNY

programs is, therefore, still of high importance. We designed SUNNY with this in mind,
and in this section we discuss how our programming paradigm is amenable to techniques
like automated testing, model checking, and software verification. This thesis, however,
we only discusses how such techniques could be carried out in principle.

5.6.1 Testing

Testing is the most widely used method for checking program correctness. Testing an
event-driven system is both challenging and time consuming, because one needs to gener-
ate realizable traces (sequences of events). The challenging part in discovering realizable
traces is that the preconditions need to hold for each event in the sequence, and the time-
consuming part is that the traces can be long, and therefore, there can be too many of them
to explore manually. Having both preconditions and postconditions of each event formally
specified in our event model allows us to use symbolic-execution techniques [89], and build
on recent successes in this domain [166], to discover possible traces automatically.

A symbolic execution engine would start with an empty path condition; at each step, the
engine would consider all events from the model and discover the ones that are realizable
from the current state (this can be done by using an automated SMT solver [24,48] to check
if there exists a model in which both the current path condition and the event’s precondition
are satisfied). When an event is found to be realizable, a new state is created and the event’s
postcondition is appended to the path condition for the new state. Since at each step of this
process multiple events may be found to be realizable, the algorithm proceeds by exploring

120

∃ email, pswd ●
u = User.find_by_email(email) and

u.authenticate(pswd) /
SignIn :email=>email,

:pswd=>pswd

∃ name ●
name != "" &&

!server.rooms.find_by_name(name) /
CreateRoom :roomName=>name

∃ room ●

server.rooms.include?(room) /
JoinRoom :room=>room

true /
SendMsg

Figure 5-7: State diagram for the IRC example

the entire graph, effectively yielding a state diagram by the end. Figure 5-7 depicts the
state diagram extracted from the running example (Listing 8). Each node in the diagram
describes a symbolic state and each edge describes a transition that can happen when the
condition on the edge is satisfied and the event is executed. For example, moving from
the initial state to the next state requires that a user initiates a SignIn event and provides a
correct name and password. This transition results in the execution of the postcondition of
the SignIn event.

In addition to automated testing of traces, a state diagram can be used to automatically
create a test environment—the state necessary before the execution of a test—for all unit
tests. Considering Figure 1, if a developer wants to test the SendMsg event, there should be
a registered user in a room. To create such a state, a sequence of other events have to be
executed before SendMsg. Inferring from Figure 5-7, SignIn and CreateRoom event handlers
must be executed. Executing these events requires solving the precondition of each event
on the path.

Functional unit testing of events also becomes easier. A black-box unit test for the
SendMsg event would have to check that the message sent indeed gets added to the list of
messages of the given room, that it gets added to the very end of the list, that no other
messages get dropped from that list, etc. In SUNNY, this can be done directly, without
having to set up any mock objects, e.g., to abstract the network and the actual peer points,
as no network is required.

In a traditional event-driven system, an implementation of a single functional unit is
often fragmented over several classes. Consider the SignIn event: the user sends his or
her credentials to the server, the server checks the authenticity, sends back the result, and
based on that result, both the server and the client update their local state. In the traditional
model, the client-side code can initiate the event (by sending a message to the server), and
schedule a continuation that will run when a response is received. The continuation, which
is typically a separate procedure, then implements the logic for updating the local state
based on the server response. Such fragmented code is very hard to test as a unit, so it
is often turned into an integration test, and integration tests are typically more laborious to
write and require more elaborate setup. In SUNNY, because of the shared view of the global

121

data, there is no need for such fragmentation; the event handler can be a single procedure
that updates only the global data model, meaning that it can easily be tested as a unit.

5.6.2 Model Checking
Loosely coupled events without explicit synchronization and communication allow model
checking to scale. The source of non-determinism in SUNNY models is the order in which
events are executed. Because of the non-determinism in scheduling, a model may exhibit
different behavior for the same input (i.e., the same values of event parameters) with a dif-
ferent order of event execution. The goal of software model checking is conceptually to
explore all orders to ensure the correct execution. Note that the exploration need consider
only the semantics of the model and not the semantics of the underlying runtime system.
Based on our prior experience with model checking actor programs [96, 156], X10 pro-
grams [65], and database applications [64], we believe that an efficient model checking
approach can be developed for our new paradigm.

For example, a model checker can be used to check end-to-end properties for all scenar-
ios that the system can possibly exhibit. One such property could be “it is impossible that
at one point two different chat rooms have two different users with the same name”. The
tool can automatically either confirm that the property in question always holds, or find a
scenario (i.e., a sequence of events leading to a state) in which the property is violated.

5.6.3 Verification and Program Synthesis
The technique of discovering realizable sequences of events can also be used to synthesize
higher-level operations. For example, a novice IRC user may wonder what are the steps that
need to be taken in order to post a message in a chat room. Given such an end-goal, a tool
can discover that one possible scenario to achieve that goal is to first SignIn, then JoinRoom,
and finally SendMsg. An alternative solution would be to CreateRoom instead of JoinRoom at
the second step. These scenarios can be displayed to the designer and serve as a guide to
better understanding possible functionalities of the system (which can be especially useful
for bigger systems with many possible events).

5.7 Discussion
It can be argued that designing a system around a given property is the best way to ensure
that the system correctly implements that property [79]. The SUNNY approach is certainly
in that spirit since it encourages the programmer to carefully design and specify the core
part of an event-driven system, i.e., the event model. Furthermore, the programmer does
so mostly declaratively, by specifying key properties of events in isolation, without being
bogged down by the operational details of the entire distributed system.

We believe that, in most cases, even the event effects (postconditions) might be specified
fully declaratively, and yet efficiently executed. We showed previously that declarative
specifications can be executable (within a traditional object-oriented language) with certain
performance handicaps [119]. Moreover, Near and Jackson [129] showed that, in a setting

122

of a typical web application, most server-side actions (or “events” in our terminology)
boil down to (possibly conditional) assignments to variables, which is still declarative,
but much easier to execute efficiently. They also showed how this fact can be exploited
to build a scalable verifier, which is of comparable complexity to executing a declarative
postcondition in the first place.

Our system also lends itself to model-based user interface software tools, which, by def-
inition, take a high-level declarative model of an interactive system and help the program-
mer build a user interface (UI) for it (either through an integrated development environment
or automated code generation) [146]. For example, a UI can be automatically generated
from a SUNNY model that contains generic widgets for querying existing records, creat-
ing new instances of records defined in the model, creating associations between existing
records via the fields defined in the model, triggering events, and so on, all while respect-
ing the model-defined invariants, event preconditions, and privacy policies. Some existing
implementations of scaffolding can already generate a graphical UI that supports standard
CRUD operations (create, read, update, delete) for all data model classes; in contrast, with
SUNNY models scaffolding of events is supported, thus enabling a fully generic user inter-
face that actually covers the full functionality of the system.

5.8 Evaluation

5.8.1 Gallery of Sunny.js Applications
We used Sunny.js, our pure-JavaScript implementation of SUNNY, to develop a number of
prototypical reactive web applications. In this section, our intention is to demonstrate the
applicability of the SUNNY approach and the expressive power of its policies. Sunny.js is
written in CoffeeScript, so the syntax of our code listings is slightly different from the one
used in Section 5.2, but it closely follows all the presented language concepts and ideas.
When we informally describe policies, we say how they apply to a certain user, where by
“user” (or “acting user”) we formally mean the corresponding SunnyUser record associated
(via the user field) with the implicit client (this.client, as written in policy listings) on
whose behalf the code is running.

Chat

This application is the same as our main chat example, explained in more detail in Sec-
tion 5.2. Here, thus, we only summarize the policies, formally in Listing 11, and informally
as follows:

(1) all User fields except name, avatar, and status are private , i.e., not readable by
other users;

(2) a User record cannot be edited or deleted by other users;

(3) Users whose status is “busy” are not visible (or searchable) by other users;

(4) a Client record cannot be edited or deleted by other clients;

123

(5) a Msg record cannot be edited or deleted by a user who did not send it;

(6) ChatRoom messages are not shown to clients without a logged-in user;

(7) ChatRoom messages containing “#private” are not shown to users who are not mem-
bers of that room.

Figure 5-8 shows screenshots of three different clients interacting with the Chat ap-
plication at the same time: one where the logged-in user is Bob, whose status is “busy”
(Figure 5-8(a)), one where the logged-in user is Alice, whose status is something other
than “busy” (Figure 5-8(b)), and one where no user is logged-in (Figure 5-8(c)). The same
template, containing no knowledge of application’s policies, was used to render all three
clients. For example, the following snippets were used to render a room’s members and
messages:
{{#each room.members}}

<div>{{this.name}}</div>
{{/each}}

{{#each room.messages}}
{{salute this.sender}}: [...]

{{/each}}
, where

salute is a helper function defined as salute = (user) -> user?.name || "<unnamed>".
These templates do require some defensive programming, e.g., to check for null refer-
ences where they would normally not be expected, but they are completely policy-agnostic.
The differences in the rendered views are a direct effect of the User.find policy (List-
ing 11), which literally removes all User records whose status is “busy” from individ-
ual client databases, so when those user records are referenced via other objects (e.g.,
message.sender), they cannot be found and null is returned. In the case of array fields
(e.g., room.members), SUNNY automatically removes them.

Party Planner

PartyPlanner offers a simple functionality for organizing social events, but requires intricate
policies for hiding sensitive data. Furthermore, policies themselves depends on sensitive
data, creating circular dependencies which can lead to information leaks if not handled
carefully. This particular example is often used by Yang et al. to motivate Jeeves [3, 168],
an information flow framework for automatically enforcing privacy policies by using a
constraint solver.

Listing 12 the data model and the security model defined for the PartyPlanner applica-
tion. A Party can be created by any user. It contains fields for specifying name, time, and
location, a boolean field (finalized) for indicating whether all party preparations have
been finalized (used later for defining policies), a list of hosts, and a list of guests.

The following privacy policies must hold:

(1) all User fields except name, and avatar are private , i.e., not readable by other users;

(2) a User record cannot be edited or deleted by other users;

(3) only hosts are allowed to edit/delete a Party, but guest may remove themselves from
the guests list.

(4) all Party fields must not be readable by users who are neither in hosts or guests;

124

user class User
status: Text

record class Msg
text: Text
sender: User
time: Val

record class ChatRoom
name: Text
members: set User
messages: compose seq Msg

client class Client
user: User
selectedRooms: set ChatRoom

server class Server
rooms: compose set ChatRoom

policy User,
ONLY for user records not equal to the client logged-in user
precondition: (u) -> not u.equals(this.client?.user)
deny reads of private fields (all other than ’name’ and ’status’)
read: "! name, status": () -> return this.deny()
deny deletions and all writes
update: "*": () -> return this.deny()
destroy: () -> return this.deny()
hide "busy" Users
find: (users) ->
clnt = this.client
filterNot users, (u) -> u.status=="busy" && !u.equals(clnt?.user)

policy Client,
precondition: (c) -> c.user && !c.user.equals(this.client?.user)
update: "*": () -> return this.deny("can’t edit other clients")
destroy: () -> return this.deny("can’t delete other clients")

policy Msg,
precondition: (m) -> !(m.sender && m.sender.equals(this.client?.user))
update: "*": () -> return this.deny("can’t edit other’s messages")
destroy: () -> return this.deny("can’t delete other’s messages")

policy ChatRoom,
read: messages: (room, msgs) ->
don’t show messages to clients without a logged-in user
return this.deny() if not this.client?.user
allow full access to chat room members
return this.allow() if room.members.contains this.client?.user
otherwise filter out messages containing ’#private’
return this.allow(filter msgs, (m) -> !/\#private\b/.test(m.text))

Listing 11: Sunny.js Chat application code listing: data and security models

(5) fields hosts and guests must additionally not be readable by guests if the party has
not been finalized.

Notice the subtle interaction between the last two policies. Say, for example, Alice and
Bob are hosting a surprise party for Eve. Eve has been added to the guest list, and the party
has not been finalized yet. Because of Policy 5, to Eve, the guest list should appear as
empty. Now applying Policy 4, all party information should, therefore, also be hidden from
Eve. A naive implementation—one that executes policies in a privileged context (where
all information is accessible)—on the other hand, would only check Policy 4, realize that
Eve is indeed in the guest list, and, wrongly, allow access to the name, location, and
time fields. Figure 5-9 shows that, in this scenario, Sunny.js correctly hides the sensitive
information from Eve.

Social Network

In this example, we implement a simple social networking site, which we call SocNet, and
focus how SUNNY polices can be used to highly customize and personalize privacy settings
for individual users.

In addition to built-in name, email, and avatar fields, a User in SocNet also has a status
message, a location, a network of labeled connections with other users, and a wall of posts.
Connections in SocNet need not be symmetric; each user is free to add any other user to
his/her network and label it with an arbitrary string (thus the Text → User type for the

125

(a) Bob’s view

(b) Alice’s view

(c) View of an anonymous (not logged-in) user

Figure 5-8: Views of three different users of the same Chat application

126

record class Party
name: Text
location: Text
time: Val
finalized: Bool
hosts: set SunnyUser
guests: set SunnyUser

client class Client
user: SunnyUser
selectedEvent: Party

policy SunnyUser,
WHEN the acting user is not the same as the user record
precondition: (u) -> not u.equals(this.client?.user)
deny reads of fields other than ’name’ and ’avatar’
read: "! name, avatar": () -> return this.deny()
deny deletions and all writes
update: "*": () -> return this.deny()
destroy: () -> return this.deny()

policy Party,
WHEN the acting user is not a host
precondition: (party) -> not party.hosts.contains(this.client?.user)
allow users to remove themselves from guests, but no one else
pull:
"guests": (party, u) -> return this.allowIf(this.client?.user?.equals(u))

deny deletions and all writes
update: "*": -> return this.deny()
destroy: -> return this.deny()

policy Party,
WHEN the acting user is neither a host nor a guest
precondition: (party) ->
u = this.client?.user
!party.hosts.contains(u) && !party.guests.contains(u)

hide everything
read:
"name": () -> return this.allow("<private party>")
"location": () -> return this.allow("<secret location>")
"time": () -> return this.allow("<unknown time>")
"finalized": () -> return this.allow(false)
"hosts": () -> return this.allow([])
"guests": () -> return this.allow([])

policy Party,
WHEN the acting user is not a host and the party hasn’t been finalized
precondition: (party) ->
!party.hosts.contains(this.client?.user) && !party.finalized

hide hosts and guests
read:
"hosts": () -> return this.allow([])
"guests": () -> return this.allow([])

Listing 12: Sunny.js PartyPlanner application code listing: data and security models

(a) Alice’s view (b) Eve’s view

Figure 5-9: Views of two different users of the same PartyPlanner application

127

network field in Listing 13). A Post is authored by a single user, has a textual content,
and a timestamp. A post is created from a single string, which then get converted to a
list of Chunks, converting every occurrence of the “@username” pattern into a reference to
a SocNet user (enclosed in a UserTagChunk record), and every occurrence of the “#tag”
pattern into a tag reference (HashTagChunk).

The following generic policies are defined:

(1) all User fields except name, email, status, and avatar are private, i.e., not readable
by other users;

(2) the email and status fields of a User record are readable only by users that are
connections of that user record;

(3) a User record cannot be deleted or edited by other users, but allow posts to be added
to the wall field;

(4) a Post record cannot be deleted or edited by a user who did not author the post.

These policies apply to all users and posts. Now assume Alice wants to customize her
own privacy settings to meet her own specific needs. Specifically, she wants to hide some of
her activities that might not be appropriate for her supervisors at work to see. In particular,
to any user Alice labeled as “boss” in her network:

(5) Alice’s status should always appear as “working hard”;

(6) Alice’s location should always appear at “Stata Center” (which is her workplace);

(7) Alice’s network should not be shown;

(8) all Alice’s posts containing the #fun hashtag should be hidden;

(9) all posts on Alice’s wall containing the #fun hashtag should be hidden, except for
those authored by the acting “boss” user (to avoid unnecessary suspicion).

The full listing of the SocNet data and security models, including Alice’s custom pri-
vacy policies, is given in Listing 13; as before, the event model is omitted, since it tends
to be straightforward and boils down to simple record manipulations. Figure 5-10 shows
screenshots of two different users, Bob and Carol, viewing Alice’s profile. In Alice’s net-
work, Bob is labeled as “friends”, while Carol is labeled as “boss”, so Bob’s and Carol’s
views of Alice’s profile are very different.

Today’s social networking web sites typically do not offer flexible mechanisms to their
users for configuring privacy settings. A big technological reason for that is the inability of
the popular web frameworks to automatically enforce arbitrary policies across the system.
To implement Alice’s privacy rules in SocNet, by contrast, we only needed to write ~20
lines of SUNNY policy code. Although we do not expect end users to write SUNNY code
just to specify their privacy settings, we do think that with the SUNNY engine in the back
end, and an appropriate graphical user interface in the front end, the users would still have
a more powerful and flexible mechanism for fine-tuning their policies, more so than what
is already provided in mainstream social web sites.

128

user class User
status: Text
location: Text
network: [Text, "User"]
wall: seq "Post"

hasConn: (u) ->
return findIndex(
this.network,
(e) -> e[1].equals(u)

) != -1
connKinds: (u) ->
return map(filter(
this.network,
(e) -> e[1].equals(u)

), (e) -> e[0])

record (class Chunk)

record class TextChunk \
extends Chunk

text: Text
record class HashTagChunk \

extends Chunk
tag: Text

record class UserTagChunk \
extends Chunk

user: User

record class Post
author: User
content: Text
time: Val
body: compose seq Chunk

policy User, # WHEN the acting user is not the same as the user record
precondition: (u) -> not u.equals(this.client?.user)
read: "! name, email, status, avatar": () -> return this.deny()

"email, status": (u) -> if !u.hasConn(this.client?.user) \
then this.allow("") else this.allow()

deny record deletion and writes to all fields other than ’wall’
destroy: () -> return this.deny()
update: "*": () -> return this.deny()
push: "wall": () -> return this.allow()

policy Post, # deny deletion and writes to users other than the post author
precondition: (post) -> not post.author.equals(this.client?.user)
update: "*": -> return this.deny()
destroy: () -> return this.deny()

========================== Alice’s policies =============================
policy User, # WHEN the user record is Alice and the acting user is her boss
precondition: (u) -> u.email == "alice@mit.edu" and

u.connKinds(this.client?.user).contains("boss")
return "professional"-looking values for status, location, and network
read: "status": () -> return this.allow("working hard")

"location": () -> return this.allow("Stata Center")
"network": () -> return this.allow([["boss", this.client.user],

["best_friends", this.client.user]])
policy Post,
from each Alice’s boss hide all posts that are either authored by Alice
or posted on Alice’s wall that contain the ’#fun’ tag, except for post
authored by the acting user (to avoid suspicion)
find: (posts) ->
actingUser = this.client?.user
alice = User.findOne(email: "alice@mit.edu")
return this.allow() if !alice.connKinds(actingUser).contains("boss")
return this.allow(filterNot posts, (post) ->
(post.author.equals(alice) or alice.wall.contains(post)) and
not post.author.equals(actingUser) and
post.content.search("#fun") != -1)

Listing 13: Sunny.js SocNet application code listing: data and security models

(a) Bob’s view of Alice’s profile (b) Carol’s view of Alice’s profile

Figure 5-10: Views of two different users of the same SocNet application

129

5.8.2 Comparison with a Web Application in Meteor

We implemented the IRC example in Meteor, a framework designed specifically for fast
development of modern, interactive web applications, and compared it to the presented
implementation in SUNNY. We make no strong claims based on this simple case study; we
only quantify the effort needed to develop this example (in terms of the number of lines of
code) and report on our experiences using both systems.

SUNNY and Meteor share the idea that a single data model should be used across the
application, even in a distributed setting, and that any updates to it should be automatically
propagated to all connected nodes. The main difference is in the representation of the
shared data. Meteor relies on MongoDB [5], a NoSQL database which stores data as
untyped JSON documents, meaning that the database schema is fully dynamic, and can
change anytime. In contrast, models in SUNNY are strongly typed, which is essential to
achieving a precise code analysis, but also necessary for implementing various tools, such
as the GUI builder.

For comparison, our implementation of the IRC example in Meteor is given in List-
ing 14. The number of lines of code is about the same, but we believe that SUNNY models
tend to be more readable because they make much more explicit both conceptual and struc-
tural information about the system. Furthermore, because all the concepts in SUNNY mod-
els have a precisely defined semantics, these models can serve as a good documentation on
their own.

Another consequence of lack of structure in the Meteor code is the tendency to tightly
couple business logic and GUI code. For example, events are often directly tied to JavaScript
UI events (e.g., lines 6, 24, 44), and their handlers can fetch values directly from the DOM
elements (e.g., lines 7, 8, 25, 26).

We believe that our model-based paradigm has a clear advantage over the dynamic
NoSQL model when it comes to applying tools and techniques for various code analyses.
In other words, Meteor is mainly focused on providing a platform where data updates are
automatically propagated to relevant clients; we are also concerned about the software engi-
neering aspects of the system, its overall design, correctness, testability, and analyzability,
as described in Section 5.6. Most of the ideas from that section would be difficult to apply
to Meteor programs.

5.8.3 Limitations

Scalability

The current SUNNY architecture is not readily amenable to horizontal scaling, that is, scal-
ing out from one physical web server to multiple web servers simply by adding more nodes
or deploying the application on a cluster of servers. The main reason for that is the cen-
tralized data model, which assumes a single central database server, and the sequential
semantics of event execution, which requires that all events are executed atomically and
in complete isolation from each other. To partially overcome these issues, a distributed
database could be used instead, and SUNNY events could be implemented using an appro-
priate transaction mechanism supported by the database.

130

1 Rooms = new Meteor.Collection("rooms");
2

3 if (Meteor.isClient) {
4 // Create Room
5 Template.irc.events({
6 ’click input.createRoom’: function () {
7 var roomName = $("#roomName").val();
8 var userName = $("#userName").val();
9 // Ignore empty names

10 if (roomName) {
11 var room = Rooms.findOne({name: roomName});
12 if (room == undefined) {
13 Rooms.insert({name: roomName, creator: userName,
14 members: [userName], messages: []});
15 Session.set("userName", userName);
16 Session.set("user_id", userName);
17 }
18 }
19 }
20 });
21

22 // Join Room
23 Template.irc.events({
24 ’click input.joinRoom’ : function () {
25 var roomName = $("#roomName").val();
26 var userName = $("#userName").val();
27 // Check if room exist
28 var room = Rooms.findOne({name: roomName});
29 if (room != undefined) {
30 // Check if name is taken
31 var userRoom = Rooms.findOne({
32 members: { $in: [userName] }});
33 if (userRoom == undefined) {
34 Rooms.update({_id: room._id},
35 {$push: {members: userName}});
36 Session.set("userName", userName);
37 }
38 }
39 }
40 });
41

42 // Send a Message
43 Template.irc.events({
44 ’click input.send’: function () {
45 var userName = Session.get("userName");
46 // Create a message to be sent
47 var message = Session.get("userName") + ": " +
48 $("#message").val() + "\n";
49 var room = Rooms.findOne({
50 members: { $in: [Session.get("userName")] }});
51 Rooms.update({_id: room._id},
52 {$push: {messages: message}});
53 }
54 });

Listing 14: Implementation of the IRC example in Meteor

The current SUNNY server-side implementation additionally suffers from sequentially
reacting to data changes to propagate data updates to all connected clients. This step can
be expensive because it involves checking all applicable policies. An improved implemen-
tation, whoever, can easily mitigate this problem by checking policies and updating clients
in parallel, because policy code is always read only.

131

Inefficient Queries

SUNNY uses an object-oriented data model, and intentionally hides the underlying database
query language. This mindset often leads to writing code that first loads a large set of
objects from the database, only to next apply the standard map and filter functions over it.
This approach can be significantly less efficient than using the database-supported SELECT

and WHERE clauses.
Mitigation techniques include implementing a richer object-oriented API which matches

the expressive power of the underlying database query language. Alternatively, the existing
SUNNY API function could be implemented lazily, so that they collect as many calls as pos-
sible before translating them into a single database query. Finally, Cheung et al. show how
program synthesis can be used to automatically synthesize database queries from object-
oriented code using traditional object-relational mapping libraries [33, 34].

Drawbacks of Declarative Policies

While the declarative nature of SUNNY policies makes it possible to separate them cleanly
from the application code, it does not prevent unexpected interactions between different
policies. Assume the chat application and the “find” policy for hiding busy users from
Listing 11, as well as that a User record Bob whose status is “busy” exists in the database.
If at that point a new client connects and attempts to log in using Bob’s credentials (i.e., ex-
ecute client.user = User.find(user: "Bob", password: "123")), the operation will fail,
because the “find” policy will prevent any client without a logged in user from seeing any
“busy” user records (including Bob’s). While executing policies in the same client con-
text (which the default behavior in SUNNY) is often desirable and typically prevents un-
intentional information leaks, in this particular case the only workaround is to execute the
User.find operation in the privileged context (for which SUNNY provides special language
constructs).

5.9 Related Work

5.9.1 Event-Driven Programming

There are two main styles of building distributed systems: (1) asynchronous or event-
driven, and (2) using threads and locks. There has been a lot of debate over whether one is
superior to the other. Dabek et al. [39] convincingly argue that event-driven systems lead
to more robust software, offer better performance, and can be easily programmed given an
appropriate framework or library.

There exist many frameworks or libraries designed to support the event-driven pro-
gramming paradigm. They are all similar to ours in that they provide an easy, event-driven
way of writing distributed applications. Meteor, previously discussed, is one such library;
another popular one is Node.js [157]. They eliminate the need to manually manage threads
and event queues, but typically do not provide an abstract model of the system, amenable
to formal analysis.

132

Approaches like TinyGALS [32] and ESP∗ [152], which focus on programming embed-
ded systems, also provide special support for events. The TinyGALS framework addition-
ally offers a structured model of the whole system and also implements global scheduling
and event handling. It uses code generation to translate models into an executable form,
unlike ESP∗ which embeds the Statechart [71] concepts in a high-level general-purpose
(Java-like) language. ESP∗ mainly focuses on correctly implementing the Statechart se-
mantics.

Tasks [57] provides language support for complex tasks, which may consist of multiple
asynchronous calls, to be written as a single sequential unit (procedure), without having to
explicitly register callback functions. This is achieved by a translation of such sequential
procedures to a continuation-passing style code. Tasks is not concerned with specifying the
top-level event model of the system, and is orthogonal to our framework.

The implicit invocation mechanism [61] provides a formal way of specifying and de-
signing event-driven systems. Events and the bindings of events to methods (handlers) are
decoupled and specified independently (so that the handler can be invoked “implicitly” by
the runtime system). This provides maximum flexibility but can make systems difficult to
understand and analyze. In our framework, we decided to take the middle ground by re-
quiring that one event handler (the most essential one, the one that implements the business
logic of the system by updating the core data model) is explicitly bound to an event.

Functional Reactive Programming [51] is a programming paradigm for working with
mutable values in a functional programming language. Its best known application is in fully
functional, declarative programming of graphical user interfaces that automatically react to
changing values, both continuous (like time, position, velocity) and discrete (also called
events). Implementations of this paradigm include Ur/Web [35] (a domain-specific, stat-
ically typed functional programming language, design for single-tier web development),
Elm [38] (a standalone language that compiles to HTML, CSS and JavaScript) and Flap-
jax [107] (an implementation embedded in JavaScript, designed specifically to work with
Ajax). Our approach to self-updating GUI can also be seen as a specific application of
functional reactive programming.

5.9.2 Data-Centric Programming
Another, increasingly popular, method for specifying distributed data management is us-
ing Datalog-style declarative rules and has been applied in the domain of networking (e.g.,
Declarative Networking [101], Overlog [102]), distributed computing (e.g., the BOOM
project [19], Netlog [68]), and also web applications (e.g., Webdamlog [11], Reactors [55],
Hilda [167], Active XML [10]). The declarative nature of Datalog rules makes this method
particularly suitable for implementing intrinsically complicated network protocols (or other
algorithms that have to maintain complex invariants); manually writing an imperative pro-
cedure that correctly implements the specification and respects the invariants is a lot more
difficult in this case.

By contrast, we focus on applications that boil down to simple data manipulation in
a distributed environment (which constitutes a large portion of today’s web applications),
and one of our goals is to provide a programming environment that is easy to use by even
non-expert programmers who are already familiar with the object-oriented paradigm.

133

5.9.3 Code Generation and Program Synthesis
The idea of using increasingly higher-level abstractions for application programming has
been a common trend since the 1950s and the first Autocoder [66] systems which offered
an automatic translation from a high-level symbolic language into actual (machine-level)
object code. The main argument is that software engineering would be easier if program-
mers could spend their time editing high-level code and specifications, rather than trying
to maintain optimized programs [22]. Our approach is well aligned with this idea, with a
strong emphasis on a particular and widely used domain of web application programming.

Executable UML [106] (xUML) also aims to enable programming at a high level of
abstraction by providing a formal semantics to various models in the UML family. Model-
driven development approaches based on xUML (e.g., [108, 109]) translate the UML dia-
grams by generating code for the target language, and then ensure that the diagrams and
the code are kept in sync. Our system is conceptually similar, and it also follows the
model-driven development idea, but instead of using code generation to translate models
(diagrams) to code, we want to make models first-class citizens and to have an extensive
framework that implements the desired semantics by essentially interpreting the models
at runtime (an actual implementation may generate and evaluate some code on the fly to
achieve that). Minimizing the amount of auto-generated code makes the development pro-
cess more convenient, as there is no need to regenerate the code every time the model
changes.

Similar to code generation, the main goal of program synthesis is also to translate code
from a high-level (often abstract, declarative) form to a low-level executable language.
Unlike code generation, however, a simple translation algorithm is often not sufficient;
instead, more advanced (but typically less efficient) techniques (e.g., search algorithms,
constraint solving, etc.) have to be used. The state of the art in program synthesis focuses
on synthesizing programs from various descriptions, e.g,. sketches [150], functional spec-
ifications [93], input-output pairs [72], graphical input-output heaps [148], or first-order
declarative pre- and post-conditions [99].

The core of our framework is a little further from the traditional program synthesis
techniques; although it does aim to provide a high-level surface language for specifying/-
modeling various aspects of the system (events, privacy policies, GUI templates), it does
not perform any complex search-based procedure to synthesize a piece of code. Given
the declarative and formal nature of our models, however, program synthesis is still rele-
vant to this work, as it might be applied to implement some advanced extensions, e.g., to
synthesize higher-level operations from basic events (as briefly discussed in Section 5.6).

5.9.4 Declarative Privacy Policies
In their most general form, policies are used to map each user (subject), resource(object)
and action to a decision, and are consulted every time an action is performed on a resource
by a user [95]. In our framework, resources correspond to fields, actions correspond to field
accesses4, and the user is the entity executing the action.

4Our policy language currently does not allow differentiating between reads and writes, but it could; we
will consider adding that extension if we encounter examples where that distinction proves to be necessary.

134

Systems for checking and ensuring privacy policies are typically based either on Access
Control Lists (ACL) or Information Flow (IF). ACLs attach a list of permissions to concrete
objects, whereas IF specifies which flows (e.g., data flowing from variable x to variable y)
are allowed in the system. In both cases, when a violation is detected, the operation is
forbidden, for example by raising an exception.

Our security model is more in the style of access control lists, in the sense that we at-
tach policies to statically defined fields (as opposed to arbitrary pieces of data), but it has a
flavor of information flow as well, since we automatically check all data flowing to all dif-
ferent machines and ensure that no sensitive information is ever sent to a machine that does
not have required permissions (which, in our system, means that there is no policy that ex-
plicitly restricts that access). Similar to the access modifiers in traditional object-oriented
languages (e.g., private, protected, public, etc.), our model also focuses on specifying
access permissions for various fields. However, the difference is that our permission poli-
cies are a lot more expressive and more flexible than static modifiers, and can also depend
on the dynamic state of the program. In addition, they are completely decoupled from the
data model, so the policies can be designed and developed independently.

Information flow systems either rely on sophisticated static analysis to statically verify
that no violating flows can exist (e.g., Jif [126, 127]), or dynamically labeling sensitive
data and tracking where it is flowing (e.g., RESIN [171] or Dytan [36]). Unlike most other
information flow systems, Jeeves [168] allows policies that are specified declaratively and
separately from the rest of the system, and instead of halting the execution when a violation
is detected, it relies on a runtime environment to dynamically compute values of sensitive
data before it is disclosed so that all policies are satisfied. This approach is similar to our
serialization technique when we automatically hide the sensitive field values before the data
is sent to a client.

Margrave [47, 59, 131] implements a system for analyzing policies. Similar to our sys-
tem, Margrave policies are declarative and independent of the rest of the system (which
they call “dynamic environment”). Their main goal, however, is to statically analyze poli-
cies against a given relational representation of the environment, and to check if a policy
can be violated in any possible (feasible) scenario, whereas we are only interested in check-
ing field accesses at runtime. To enable efficient analysis, the Margrave policy language is
based on Datalog and is more restrictive than the first-order logic constraints that we allow
in our policies.

Attribute-based access control (ABAC) adds attributes (𝑛𝑎𝑚𝑒 → 𝑣𝑎𝑙𝑢𝑒 pairs) to any
entity in the system (e.g., user, resource, subject, object, etc.) so that policies can be ex-
pressed in terms of those attributes rather than concrete entities. Our system can be viewed
as an instantiation of this model: our fields can be seen as attributes, machines as subjects,
and records as resources; both records and machines can have fields, and policies are free
to query field values. Many other ABAC systems have been designed and implemented
(e.g., [125, 164, 172]), each, however, using somewhat different model from the other. Jin
et al. [84] recently proposed a formal ABAC model to serve as a standard, and used it to
express the three classical access control models (discretionary [144], mandatory [142],
and role-based [143]).

135

5.9.5 GUI Builders

Our dynamic template engine for building graphical user interfaces, combines two existing
techniques: data binding and templating.

Data binding allows select GUI widget properties to be bound to concrete object fields
from the domain data model, so that whenever the value of the field changes, the widget
automatically updates its property. Changes can optionally be propagated in the other di-
rection as well, that is, when the property is changed by the user, the corresponding field
value gets updated simultaneously.

Templating, on the other hand, takes a free-form text input containing a number of
special syntactic constructs supported by the engine which, at the time of rendering, get
dynamically evaluated against the domain data model and get inlined as strings in the final
output. Such constructs can include embedded expressions (formulas), control flow direc-
tives (if, for loops, etc.), or, in a general case, arbitrary code in the target programming
language. This adds extra flexibility, as it allows generic programming features to be used
in conjunction with static text, enabling widgets with dynamic layouts to be defined.

Even though existing data binding implementations (e.g., WPF and their textual UI
layout language XAML [128] for .NET, UI binder [134] for Android, JFace [70] for Java,
Backbone [133] for JavaScript) allow for textual widget templates, those templates are typ-
ically allowed to contain only simple embedded expressions (e.g., a path to an object’s
field), only at certain positions in the template (to provide bindings only for select widget
properties). No control structures are allowed, which makes it difficult to design a widget
that chooses from two different layouts depending on the state of the application. Con-
versely, existing template engines (e.g., ASP [103] for .NET, Haml [2] and ERB [7] for
Ruby, FreeMarker [165] for Java) provide all that extra flexibility, but do not preserve data
bindings, making it difficult to push changes to the client when the model changes.

In this work, we combine these two techniques, to achieve the flexibility of generic
template engines and still have the luxury of pushing the changes to the clients and auto-
matically re-rendering the UI. The main reason why that makes the problem more difficult
than the sum of its parts is the fact that formulas in the template can evaluate to arbitrary
elements of the target language (e.g., HTML), including language keywords, special sym-
bols, tag names, etc. This is unlike the existing UI frameworks with data-bindings, where
all bindings are assigned to (syntactically strictly defined) widget properties.

5.10 Conclusion

Advances in web frameworks have made it much easier to develop attractive, featureful
web applications. Most of those efforts are, however, mainly concerned with programming
servers and their clients in isolation, providing only a set of basic primitives for inter-
communication between the two sides, thus imposing a clear boundary. We believe that
there is an entire class of web applications, and distributed programs in general, for which
that boundary can be successfully erased and removed from the conceptual programming
model the programmer has to bear in mind. SUNNY is a generic programming platform for
developing programs that fall into that class.

136

The main contribution of SUNNY lies in its architecture that enables the clear separation
between four main concerns of any web applications: data, reactive GUI, events, and secu-
rity. In traditional web frameworks these concerns are often cross-cutting, and thus difficult
to implement independently from each other. The programmer, therefore, must ensure that
the implementation of each one of them fulfills the requirements of every one of them (as
opposed to implementing them in complete isolation). As an example, every GUI rendering
piece of code must ensure that no sensitive information will be revealed to unauthorized
clients (as opposed to globally defining rules for hiding sensitive data). Furthermore, to
achieve fully reactive clients in the presence of dynamic policies for hiding sensitive data,
the reactive GUI component must be aware of policies, per client policy dependencies on
persisted data elements, and data updates.

To the best of our knowledge, SUNNY is the first framework that achieves fully reactive
clients in the presence of dynamic policies for hiding sensitive data. Other tools either
automatically enforce privacy policies (e.g., [63, 154, 168]), or implement reactive clients
(e.g., [4, 35, 38, 107]). Putting these two features together creates non-trivial challenges.
SUNNY achieves this by tracking per-client dynamic dependencies between policies and
persisted data elements, so that when those data elements change, corresponding policies
can be re-evaluated and, subsequently, the associated clients updated accordingly. This,
in turn, demands certain implementation strategies be used. If pure information-flow is
used to enforce policies, where labels are attached to concrete data values, it might not be
possible to always associate those concrete values back to their persisted origins. If, on the
other side, pure functional reactive programming is used, aside from the well-known issues
with merging data updates from different sources into a single stream, it is not clear how
one would implement SUNNY’s find policies which can hide entire records from clients.
For example, our policy for hiding users whose status is “busy” from Listing 11 must
create a dependency between Alice’s client and Bob’s status field, in spite of Alice’s
client (Figure 5-8(b)) not having a single reactive GUI element referring to Bob’s status
at the time). In SUNNY, we show how this can be achieved when policies are defined
for fields and checked at field accesses, and reactive clients implemented by having on
each client a database replica from which all client-specific sensitive data has been first
filtered out by the server. We believe that the combination of reactive programming while
automatically enforcing policies is important, especially when viewed through the lens of
declarative programming, because it neither compromises desired features of modern web
applications, nor does it increase the programmer’s burden to achieve the same.

137

138

Chapter 6

Conclusion

Increasing the level of abstraction of general-purpose languages, both programming and
specification, has been a research challenge for a long time. As computers grow in power,
new approaches, previously considered hopelessly intractable, find application, and be-
come everyday tools in a variety of computer science domains. To maintain this trend, it
is important that the cutting-edge technologies, usually developed for highly specialized
purposes, are being generalized and made available to as wide audience as possible. While
primarily focusing on advancing the state of declarative programming, this thesis was also
driven by this goal.

First, this thesis presented Alloy*, the first general-purpose constraint solver capable of
automatically and efficiently solving higher-order constraints over bounded relational do-
mains. We have demonstrated how a variety of complex algorithms, typically implemented
in an ad hoc fashion, can elegantly be recast as higher-order constraint solving problems,
and efficiently solved in our general-purpose framework. Just the same first-order solvers
have evolved as standalone components, while at the same time growing in popularity to
become ubiquitously used a black boxes in a wide variety of systems, we believe the main
value of our generalization rests on the potential for future development of tools that exploit
it.

Second, to promote future development of tools that exploit higher-order constraint
solving capabilities of Alloy*, this thesis presented 𝛼Rby, a deep embedding of Alloy (the
specification language of Alloy*) into Ruby. The Alloy language has found its uses within
both the modeling community (for specifying and analyzing abstract domains), and the de-
veloper community (for translating various problems into Alloy and building tools on top
of it). Unlike other approaches, 𝛼Rby, by language design, aims to bring benefits to both
of these communities, allowing the modelers to use the scripting features of Ruby and the
developers to use the constraint solving features of Alloy*. More broadly, the hope is that
the main idea behind 𝛼Rby, namely unifying an implementation and a specification lan-
guage into one, will lead to rethinking the traditional approach to specification languages,
discovering new ways of integrating them with mainstream programming languages, and
thus making them available and more accessible to a wider audience of programmers.

Third, SUNNY demonstrates how development of reactive web applications, a task often
reserved for experienced developers, can be abstracted into a much simpler model-based
paradigm, and thus made accessible to beginner programmers. Beyond this point, SUNNY

139

shows how declarative ideas can successfully be applied to web programming, allowing
for a clean separation of concerns (such as data, events, security policies, and GUI) known
to be badly intertwined in a typical web development setting. This thesis offers a formal
semantics of the SUNNY paradigm, two proof-of-concept implementations, and a broad
discussion of benefits. Much research still lies ahead. An ongoing project is focusing on
improving scalability of the SUNNY platform by reimplementing it on top of the Actor
model; another project is aiming to translate SUNNY models into Alloy so that SUNNY

applications can be automatically formally analyzed for bugs and security violations (by
examining all possible event interleavings); finally, powerful GUI builders are needed to
replace writing GUI templates by hand. We believe that the increasing demand for web ap-
plications targeting relatively small user groups justifies our choice of somewhat sacrificing
scalability to achieve a clean separation of concerns and a simple sequential semantics, sig-
nificantly reducing the burden of developing such applications from scratch.

Overall, the hope is that this thesis offered convincing arguments in favor of declarative
programming, be it (1) in the traditional setting of directly executing logic-based speci-
fications in the context complex data structures, replacing manually implementing high-
complexity algorithms, or (2) in a completely novel, domain-specific environment, where
a model-based paradigm can be used to disentangle the world of web programming.

140

Bibliography

[1] Alloy* Home Page. http://alloy.mit.edu/alloy/hola.

[2] Haml template engine for Ruby. http://haml.info.

[3] Jeeves Home Page. http://projects.csail.mit.edu/jeeves.

[4] Meteor - Pure JavaScript web framework. http://meteor.com.

[5] MongoDB home page. http://www.mongodb.org/.

[6] Ruby on Rails web framework. http://rubyonrails.org/.

[7] Ruby’s native templating system. http://ruby-doc.org/stdlib-1.9.3/libdoc/
erb/rdoc/ERB.html.

[8] SyGuS github repository. https://github.com/rishabhs/sygus-comp14.git.

[9] Template engine for web applications. http://en.wikipedia.org/wiki/

Template_engine_%28web%29.

[10] S. Abiteboul, O. Benjelloun, and T. Milo. Positive active XML. In Proceedings of
the Symposium on Principles of Database Systems, pages 35–45, 2004.

[11] S. Abiteboul, M. Bienvenu, A. Galland, and E. Antoine. A rule-based language for
Web data management. In Proceedings of the Symposium on Principles of Database
Systems, pages 293–304, 2011.

[12] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and rea-
soning in Event-B. STTT, 12(6), 2010.

[13] J.R. Abrial and A. Hoare. The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 2005.

[14] Martin Aigner and Günter M Ziegler. Turán’s graph theorem. In Proofs from THE
BOOK, pages 183–187. Springer, 2001.

[15] How to think about an Alloy model: 3 levels. http://alloy.mit.edu/alloy/

tutorials/online/sidenote-levels-of-understanding.html.

141

http://alloy.mit.edu/alloy/hola
http://haml.info
http://projects.csail.mit.edu/jeeves
http://meteor.com
http://www.mongodb.org/
http://rubyonrails.org/
http://ruby-doc.org/stdlib-1.9.3/libdoc/erb/rdoc/ERB.html
http://ruby-doc.org/stdlib-1.9.3/libdoc/erb/rdoc/ERB.html
https://github.com/rishabhs/sygus-comp14.git
http://en.wikipedia.org/wiki/Template_engine_%28web%29
http://en.wikipedia.org/wiki/Template_engine_%28web%29
http://alloy.mit.edu/alloy/tutorials/online/sidenote-levels-of-understanding.html
http://alloy.mit.edu/alloy/tutorials/online/sidenote-levels-of-understanding.html

[16] Alloy: A language and tool for relational models. http://alloy.mit.edu/alloy.

[17] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. Syntax-guided synthesis. In FMCAD, pages 1–17.
IEEE, 2013.

[18] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. Syntax-guided synthesis competition report, 2014.
http://sygus.seas.upenn.edu/files/sygus_extended.pdf.

[19] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J.M. Hellerstein, and R. Sears.
Boom analytics: exploring data-centric, declarative programming for the cloud. In
Proceedings of the European Conference on Computer Systems, pages 223–236,
2010.

[20] R.D. Arthan and Lovelace Road. Undefinedness in Z: Issues for Specification and
Proof. In CADE-13 Workshop on Mechanization of Partial Functions. Springer,
1996.

[21] Ralph-Johan Back. On the Correctness of Refinement Steps in Program Develop-
ment. PhD thesis, University of Helsinki, 1978. Report A–1978–4.

[22] Robert Balzer, Thomas E. Cheatham, Jr., and Cordell Green. Software technology
in the 1990’s: Using a new paradigm. IEEE Computer, 16(11):39–45, 1983.

[23] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M.
Leino. Boogie: A modular reusable verifier for object-oriented programs. In FMCO
2005, volume 4111 of lncs, pages 364–387. Springer, 2006.

[24] Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the cooper-
ating validity checker. In Proceedings of the International Conference on Computer
Aided Verification, pages 515–518, 2004.

[25] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanović, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In Computer
aided verification, pages 171–177. Springer, 2011.

[26] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version
2.0. Technical report, Department of Computer Science, The University of Iowa,
2010.

[27] Kent Beck. Extreme Programming Explained. Addison-Wesley, 1999.

[28] Kent Beck. Test-Driven Development. Addison-Wesley, 2003.

[29] Armin Biere. Lingeling, plingeling, picosat and precosat at sat race 2010. FMV
Report Series Technical Report, 10(1), 2010.

142

http://alloy.mit.edu/alloy
http://sygus.seas.upenn.edu/files/sygus_extended.pdf

[30] Nikolaj Bjørner, Ken McMillan, and Andrey Rybalchenko. Program verification as
satisfiability modulo theories. In SMT Workshop at IJCAR, volume 20, 2012.

[31] Frederick P. Brooks, Jr. The mythical man-month (anniversary ed.). Addison-
Wesley, 1995.

[32] Elaine Cheong, Judy Liebman, Jie Liu, and Feng Zhao. TinyGALS: a programming
model for event-driven embedded systems. In Proceedings of the Symposium on
Applied Computing, pages 698–704, 2003.

[33] Alvin Cheung, Samuel Madden, and Armando Solar-Lezama. Sloth: Being lazy is a
virtue (when issuing database queries). In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’14, pages 931–942,
New York, NY, USA, 2014. ACM.

[34] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Optimizing database-
backed applications with query synthesis. In Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’13, pages 3–14, New York, NY, USA, 2013. ACM.

[35] Adam Chlipala. Ur/web: A simple model for programming the web. In Proceedings
of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’15, pages 153–165, New York, NY, USA, 2015. ACM.

[36] James Clause, Wanchun Li, and Alessandro Orso. Dytan: A generic dynamic taint
analysis framework. In Proceedings of the International Symposium on Software
Testing and Analysis, pages 196–206, 2007.

[37] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[38] Evan Czaplicki. Elm: Concurrent FRP for functional GUIs. 2012.

[39] Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, David Mazières, and Robert
Morris. Event-driven programming for robust software. In Proceedings of the
SIGOPS European Workshop, pages 186–189, 2002.

[40] Leonardo De Moura and Nikolaj Bjørner. Efficient e-matching for smt solvers. In
Automated Deduction–CADE-21, pages 183–198. Springer, 2007.

[41] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS
2008, volume 4963 of lncs, pages 337–340. Springer, 2008.

[42] Greg Dennis. A Relational Framework for Bounded Program Verification. PhD
thesis, MIT, 2009.

[43] Greg Dennis, Kuat Yessenov, and Daniel Jackson. Bounded verification of vot-
ing software. In Verified Software: Theories, Tools, Experiments, pages 130–145.
Springer, 2008.

143

[44] Gregory David Dennis. A relational framework for bounded program verification.
PhD thesis, Massachusetts Institute of Technology, 2009.

[45] Edsgar W. Dijkstra. A constructive approach to the problem of program correctness.
BIT Numerical Mathematics, 8(3):174–186, September 1968.

[46] Edsgar W. Dijkstra. Notes on structured programming. In O.-J. Dahl, C.A.R. Hoare,
and E.W. Dijkstra, editors, Structured Programming. Academic Press, New York,
1972.

[47] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Specifying and rea-
soning about dynamic access-control policies. In Proceedings of the International
Joint Conference on Automated Reasoning, pages 632–646, 2006.

[48] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Proceedings of the International Conference on Computer Aided Veri-
fication, pages 81–94, 2006.

[49] Jonathan Edwards. Coherent reaction. In Conference Companion on Object Ori-
ented Programming Systems Languages and Applications, pages 925–932, 2009.

[50] Niklas Een and Niklas Sörensson. Minisat: A sat solver with conflict-clause mini-
mization. Sat, 5, 2005.

[51] Conal Elliott and Paul Hudak. Functional reactive animation. In Proceedings of the
International Conference on Functional Programming, pages 263–273, 1997.

[52] Paul Erdos and Alfred Renyi. On the evolution of random graphs. Mathematical
Institute of the Hungarian Academy of Sciences, 5: 17-61, 1960.

[53] William M. Farmer. Reasoning about partial functions with the aid of a computer.
Erkenntnis, 43, 1995.

[54] Joao F Ferreira, Alexandra Mendes, Alcino Cunha, Carlos Baquero, Paulo Silva,
Luís Soares Barbosa, and José Nuno Oliveira. Logic training through algorithmic
problem solving. In Tools for Teaching Logic, pages 62–69. Springer, 2011.

[55] J. Field, M.C. Marinescu, and C. Stefansen. Reactors: A data-oriented syn-
chronous/asynchronous programming model for distributed applications. Theoreti-
cal Computer Science, 410(2):168–201, 2009.

[56] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Kr-
ishnamurthi, Paul Steckler, and Matthias Felleisen. Drscheme: A programming en-
vironment for scheme. Journal of functional programming, 12(02):159–182, 2002.

[57] Jeffrey Fischer, Rupak Majumdar, and Todd Millstein. Tasks: Language support for
event-driven programming. In Proceedings of the Workshop on Partial Evaluation
and Program Manipulation, pages 134–143, 2007.

144

[58] Kathi Fisler, Shriram Krishnamurthi, Leo A Meyerovich, and Michael Carl
Tschantz. Verification and change-impact analysis of access-control policies. In
Proceedings of the 27th ICSE, pages 196–205. ACM, 2005.

[59] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl
Tschantz. Verification and change-impact analysis of access-control policies. In
Proceedings of the International Conference on Software Engineering, pages 196–
205, 2005.

[60] Juan Pablo Galeotti, Nicolás Rosner, Carlos Gustavo López Pombo, and
Marcelo Fabian Frias. Analysis of invariants for efficient bounded verification. In
ISSTA, pages 25–36. ACM, 2010.

[61] D. Garlan and D. Notkin. Formalizing design spaces: Implicit invocation mecha-
nisms. In Proceedings of the Formal Software Development Methods, pages 31–44,
1991.

[62] Yeting Ge and Leonardo De Moura. Complete instantiation for quantified formulas
in satisfiabiliby modulo theories. In Computer Aided Verification, pages 306–320.
Springer, 2009.

[63] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John C.
Mitchell, and Alejandro Russo. Hails: Protecting data privacy in untrusted web ap-
plications. In Presented as part of the 10th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 12), pages 47–60, Hollywood, CA, 2012.
USENIX.

[64] Milos Gligoric and Rupak Majumdar. Model checking database applications. In
Proceedings of the International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 549–564, 2013.

[65] Milos Gligoric, Peter C. Mehlitz, and Darko Marinov. X10X: Model checking a
new programming language with an "old" model checker. In Proceedings of the
International Conference on Software Testing, Verification and Validation, pages
11–20, 2012.

[66] Roy Goldfinger. The IBM type 705 autocoder. In Papers presented at the Joint
ACM-AIEE-IRE Western Computer Conference, pages 49–51, 1956.

[67] D. Gries and F.B. Schneider. A logical approach to discrete math. Texts and mono-
graphs in computer science. Springer-Verlag, 1993.

[68] S. Grumbach and F. Wang. Netlog, a rule-based language for distributed program-
ming. Proceedings of the International Conference on Practical Aspects of Declar-
ative Languages, pages 88–103, 2010.

[69] Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data manipula-
tion using examples. Commun. ACM, 55(8):97–105, 2012.

145

[70] J.L. Guojie. Professional Java Native Interfaces with SWT/JFace. Wiley, 2006.

[71] D. Harel. Statecharts: A visual formalism for complex systems. Science of computer
programming, 8(3):231–274, 1987.

[72] William R. Harris and Sumit Gulwani. Spreadsheet table transformations from ex-
amples. In Proceedings of the Conference on Programming Language Design and
Implementation, pages 317–328, 2011.

[73] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv. Data
representation synthesis. In ACM SIGPLAN Notices, volume 46. ACM, 2011.

[74] Ian Hayes and Cliff B. Jones. Specifications are not (necessarily) executable. Soft-
ware Engineering Journal, 4(6):330–338, 1989.

[75] C. A. R. Hoare. An Overview of Some Formal Methods for Program Design. IEEE
Computer, 20(9):85–91, 1987.

[76] Graham Hughes and Tevfik Bultan. Automated verification of access control policies
using a sat solver. STTT, 10(6):503–520, 2008.

[77] Daniel Jackson. Micromodels of software: Lightweight modelling and analysis with
alloy, 2002.

[78] Daniel Jackson. Software Abstractions: Logic, language, and analysis. MIT Press,
2006.

[79] Daniel Jackson, Martyn Thomas, Lynette I Millett, et al. Software for Dependable
Systems: Sufficient Evidence? National Academies Press, 2007.

[80] Daniel Jackson and Jeanette Wing. Lightweight formal methods. IEEE Computer,
pages 21–22, April 1996.

[81] Jean-Yves and Girard. Linear logic. Theoretical Computer Science, 50(1), 1987.

[82] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided
component-based program synthesis. In ICSE, ICSE ’10, pages 215–224, New York,
NY, USA, 2010. ACM.

[83] Ranjit Jhala, Rupak Majumdar, and Andrey Rybalchenko. Hmc: Verifying func-
tional programs using abstract interpreters. In Computer Aided Verification, pages
470–485. Springer, 2011.

[84] Xin Jin, Ram Krishnan, and Ravi Sandhu. A unified attribute-based access control
model covering DAC, MAC and RBAC. In Proceedings of the Data and Applica-
tions Security and Privacy, pages 41–55. 2012.

[85] Cliff B. Jones. Systematic software development using VDM (2nd ed.). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1990.

146

[86] Cliff B. Jones. Reasoning about partial functions in the formal development of pro-
grams. Electron. Notes Theor. Comput. Sci., 145, January 2006.

[87] Cliff B. Jones and Matthew J. Lovert. Semantic Models for a Logic of Partial Func-
tions. Int. J. Software and Informatics, 5(1-2), 2011.

[88] Eunsuk Kang and Daniel Jackson. Formal Modeling and Analysis of a Flash Filesys-
tem in Alloy. In Proceedings of the 1st international conference on Abstract State
Machines, B and Z, ABZ ’08, Berlin, Heidelberg, 2008. Springer-Verlag.

[89] James C. King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, 1976.

[90] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. Constraints as control. ACM
SIGPLAN Notices, 2012.

[91] Viktor Kuncak and Daniel Jackson. Relational analysis of algebraic datatypes. In
ACM SIGSOFT Software Engineering Notes, volume 30, pages 207–216. ACM,
2005.

[92] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Comfusy: A tool
for complete functional synthesis. In CAV, pages 430–433, 2010.

[93] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Complete func-
tional synthesis. In Proceedings of the Conference on Programming Language De-
sign and Implementation, pages 316–329, 2010.

[94] Darya Kurilova and Derek Rayside. On the simplicity of synthesizing linked data
structure operations. In Proceedings of the 12th international conference on Gener-
ative programming: concepts & experiences, pages 155–158. ACM, 2013.

[95] Butler W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8(1):18–24, 1974.

[96] Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul A. Agha. A framework
for state-space exploration of Java-based actor programs. In Proceedings of the In-
ternational Conference on Automated Software Engineering, pages 468–479, 2009.

[97] Daniel Le Berre, Anne Parrain, M Baron, J Bourgeois, Y Irrilo, F Fontaine, F Lai-
hem, O Roussel, and L Sais. Sat4j-a satisfiability library for java, 2006.

[98] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correct-
ness. In LPAR-16, volume 6355 of lncs, pages 348–370. Springer, 2010.

[99] K. Rustan M. Leino and Aleksandar Milicevic. Program extrapolation with Jennisys.
In Proceedings of the International Conference on Object Oriented Programming
Systems Languages and Applications, pages 411–430, 2012.

[100] K Rustan M Leino and Michał Moskal. Co-induction simply: Automatic co-
inductive proofs in a program verifier. Technical report, Technical Report MSR-
TR-2013-49, Microsoft Research, 2013.

147

[101] B.T. Loo, T. Condie, M. Garofalakis, D.E. Gay, J.M. Hellerstein, P. Maniatis, R. Ra-
makrishnan, T. Roscoe, and I. Stoica. Declarative networking. Communications of
the ACM, 52(11):87–95, 2009.

[102] B.T. Loo, T. Condie, J.M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica. Im-
plementing declarative overlays. In Operating Systems Review, volume 39, pages
75–90, 2005.

[103] M. MacDonald. Beginning ASP.NET 4.5 in C#. Apressus Series. Apress, 2012.

[104] Darko Marinov and Sarfraz Khurshid. Testera: A novel framework for automated
testing of java programs. In Automated Software Engineering, 2001., pages 22–31.
IEEE, 2001.

[105] Yukio Matsumoto and K Ishituka. Ruby programming language, 2002.

[106] S.J. Mellor and M.J. Balcer. Executable UML: A Foundation for Model-Driven
Architecture. Addison-Wesley Object Technology Series. Addison-Wesley, 2002.

[107] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Green-
berg, Aleks Bromfield, and Shriram Krishnamurthi. Flapjax: A programming lan-
guage for Ajax applications. In Proceedings of the Conference on Object Oriented
Programming Systems Languages and Applications, pages 1–20, 2009.

[108] D. Milicev. Model-Driven Development with Executable UML. Wrox Programmer
to Programmer. Wiley, 2009.

[109] D. Milićev. Towards understanding of classes versus data types in conceptual mod-
eling and UML. Computer Science and Information Systems, 9(2):505–539, 2012.

[110] Aleksandar Milicevic. Red github repository. https://github.com/aleksandar.
milicevic/red.

[111] Aleksandar Milicevic. Sunny.js github repository. https://github.com/

aleksandar.milicevic/sunny.js.

[112] Aleksandar Milicevic, Ido Efrati, and Daniel Jackson. 𝛼Rby—An Embedding of
Alloy in Ruby. In Abstract State Machines, Alloy, B, TLA, VDM, and Z, pages 56–
71. Springer, 2014.

[113] Aleksandar Milicevic and Daniel Jackson. Preventing arithmetic overflows in al-
loy. In John Derrick, John Fitzgerald, Stefania Gnesi, Sarfraz Khurshid, Michael
Leuschel, Steve Reeves, and Elvinia Riccobene, editors, Abstract State Machines,
Alloy, B, VDM, and Z, volume 7316 of Lecture Notes in Computer Science, pages
108–121. Springer Berlin Heidelberg, 2012.

[114] Aleksandar Milicevic and Daniel Jackson. Preventing arithmetic overflows in alloy.
Science of Computer Programming, 94:203–216, 2014.

148

https://github.com/aleksandar.milicevic/red
https://github.com/aleksandar.milicevic/red
https://github.com/aleksandar.milicevic/sunny.js
https://github.com/aleksandar.milicevic/sunny.js

[115] Aleksandar Milicevic, Daniel Jackson, Milos Gligoric, and Darko Marinov. Model-
based, event-driven programming paradigm for interactive web applications. In Pro-
ceedings of the 2013 ACM international symposium on New ideas, new paradigms,
and reflections on programming & software, pages 17–36. ACM, 2013.

[116] Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang, and Daniel Jackson. Alloy*:
A Higher-Order Relational Constraint Solver. Technical report, MIT-CSAIL-TR-
2014-018, Massachusetts Institute of Technology, 2014.

[117] Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang, and Daniel Jackson. Alloy*:
A Higher-Order Relational Constraint Solver. In Proceedings of the International
Conference on Software Engineering, ICSE, 2015.

[118] Aleksandar Milicevic, Derek Rayside, Kuat Yessenov, and Daniel Jackson. Unifying
execution of imperative and declarative code. In ICSE, pages 511–520, 2011.

[119] Aleksandar Milicevic, Derek Rayside, Kuat Yessenov, and Daniel Jackson. Unifying
execution of imperative and declarative code. In Proceedings of the International
Conference on Software Engineering, pages 511–520, 2011.

[120] Vajih Montaghami and Derek Rayside. Extending Alloy with Partial Instances. In
Abstract State Machines, Alloy, B, VDM, and Z, pages 122–135. Springer, 2012.

[121] Vajih Montaghami and Derek Rayside. Staged evaluation of partial instances in a
relational model finder. In Abstract State Machines, Alloy, B, TLA, VDM, and Z,
pages 318–323. Springer, 2014.

[122] Carroll Morgan. The specification statement. ACM Transactions on Programming
Languages and Systems, 10(3), 1988.

[123] Carroll Morgan. Programming from Specifications. Prentice-Hall, Inc., 2nd edition,
1998. First edition 1990.

[124] J. Morris. A theoretical basis for stepwise refinement and the programming calculus.
Science of Computer Programming, 9(3), December 1987.

[125] Tim Moses et al. Extensible access control markup language (XACML) version 2.0.
Oasis Standard, 2005.

[126] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In Pro-
ceedings of the Symposium on Principles of Programming Languages, pages 228–
241, 1999.

[127] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized
label model. ACM Trans. Softw. Eng. Methodol., 9(4):410–442, 2000.

[128] A. Nathan. WPF 4: Unleashed. Sams, 2010.

149

[129] Joseph P Near and Daniel Jackson. Rubicon: bounded verification of web applica-
tions. In Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, page 60. ACM, 2012.

[130] Tim Nelson, Salman Saghafi, Daniel J Dougherty, Kathi Fisler, and Shriram Krish-
namurthi. Aluminum: principled scenario exploration through minimality. In ICSE,
pages 232–241. IEEE Press, 2013.

[131] Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler, and Shri-
ram Krishnamurthi. The Margrave tool for firewall analysis. In Proceedings of the
International Conference on Large Installation System Administration, pages 1–8,
2010.

[132] Martin Odersky, Lex Spoon, and Bill Venners. Programming in scala. Artima Inc,
2008.

[133] A. Osmani. Developing Backbone.js Applications. Oreilly and Associate Series.
O’Reilly Media, Incorporated, 2013.

[134] J. Ostrander. Android UI Fundamentals: Develop & Design. Pearson Education,
2012.

[135] D. L. Parnas. Predicate logic for software engineering. IEEE Trans. Softw. Eng., 19,
September 1993.

[136] Derek Rayside, Aleksandar Milicevic, Kuat Yessenov, Greg Dennis, and Daniel
Jackson. Agile specifications. In Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems languages and applications,
pages 999–1006. ACM, 2009.

[137] Derek Rayside, Vajihollah Montaghami, Francesca Leung, Albert Yuen, Kevin Xu,
and Daniel Jackson. Synthesizing iterators from abstraction functions. In Proceed-
ings of the International Conference on Generative Programming and Component
Engineering, pages 31–40, 2012.

[138] Ruby Java Bridge. http://rjb.rubyforge.org/.

[139] Patrick M Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In ACM SIG-
PLAN Notices, volume 43, pages 159–169. ACM, 2008.

[140] Nicolás Rosner, Juan Galeotti, Santiago Bermúdez, Guido Marucci Blas, Santi-
ago Perez De Rosso, Lucas Pizzagalli, Luciano Zemín, and Marcelo F Frias. Parallel
bounded analysis in code with rich invariants by refinement of field bounds. In IS-
STA, pages 23–33. ACM, 2013.

[141] Hesam Samimi, Ei Darli Aung, and Todd D. Millstein. Falling back on executable
specifications. In ECOOP, pages 552–576, 2010.

[142] Ravi S. Sandhu. Lattice-based access control models. Computer, 26(11):9–19, 1993.

150

http://rjb.rubyforge.org/

[143] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. Role-
based access control models. Computer, 29(2):38–47, 1996.

[144] Ravi S Sandhu and Pierangela Samarati. Access control: principle and practice.
Communications Magazine, IEEE, 32(9):40–48, 1994.

[145] Andreas Schaad and Jonathan D. Moffett. A lightweight approach to specification
and analysis of role-based access control extensions. In SACMAT, pages 13–22,
2002.

[146] Egbert Schlungbaum. Model-based user interface software tools current state of
declarative models. Technical report, Graphics, visualization and usability center,
Georgia institute of technology, GVU tech report, 1996.

[147] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback
generation for introductory programming assignments. In Proceedings of the 34th
PLDI, pages 15–26. ACM, 2013.

[148] Rishabh Singh and Armando Solar-Lezama. Synthesizing data structure manipu-
lations from storyboards. In Proceedings of the Symposium on the Foundations of
Software Engineering, pages 289–299, 2011.

[149] Jeffrey Mark Siskind and David Allen McAllester. Screamer: A portable efficient
implementation of nondeterministic common lisp. IRCS Technical Reports Series,
1993.

[150] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. Combinatorial sketching for finite programs. In Proceedings of the In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, pages 404–415, 2006.

[151] J.M. Spivey. Understanding Z: a specification language and its formal seman-
tics. Cambridge tracts in theoretical computer science. Cambridge University Press,
1988.

[152] Vugranam C. Sreedhar and Maria-Cristina Marinescu. From statecharts to ESP: Pro-
gramming with events, states and predicates for embedded systems. In Proceedings
of the International Conference on Embedded Software, pages 48–51, 2005.

[153] Saurabh Srivastava, Sumit Gulwani, Swarat Chaudhuri, and Jeffrey S. Foster. Path-
based inductive synthesis for program inversion. In PLDI 2011, pages 492–503.
ACM, 2011.

[154] Deian Stefan, Alejandro Russo, John C Mitchell, and David Mazières. Flexible
dynamic information flow control in Haskell, volume 46. ACM, 2011.

[155] Bill Stoddart, Steve Dunne, and Andy Galloway. Undefined Expressions and Logic
in Z and B. Formal Methods in System Design, 15, 1999.

151

[156] Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel Legay, Darko Mari-
nov, and Gul Agha. TransDPOR: A novel dynamic partial-order reduction technique
for testing actor programs. In Proceedings of the International Conference on For-
mal Techniques for Distributed Systems, pages 219–234, 2012.

[157] S. Tilkov and S. Vinoski. Node.js: Using JavaScript to build high-performance
network programs. Internet Computing, IEEE, 14(6):80 –83, 2010.

[158] Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, and Manuel Fahndrich.
Touchdevelop: programming cloud-connected mobile devices via touchscreen. In
Proceedings of the 10th SIGPLAN symposium on New ideas, new paradigms, and
reflections on programming and software, pages 49–60. ACM, 2011.

[159] Nikolai Tillmann, Michal Moskal, Jonathan De Halleux, Manuel Fahndrich, and
Sebastian Burckhardt. Touchdevelop: app development on mobile devices. In Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, page 39. ACM, 2012.

[160] Emina Torlak. A Constraint Solver for Software Engineering: Finding Models and
Cores of Large Relational Specifications. PhD thesis, MIT, 2008.

[161] Emina Torlak and Rastislav Bodik. Growing solver-aided languages with rosette.
In Proceedings of the 2013 ACM international symposium on New ideas, new
paradigms, and reflections on programming & software, pages 135–152. ACM,
2013.

[162] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Orna
Grumberg and Michael Huth, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 4424 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2007.

[163] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 632–647. Springer,
2007.

[164] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia. A logic-based framework
for attribute based access control. In Proceedings of the Workshop on Formal Meth-
ods in Security Engineering, pages 45–55, 2004.

[165] N. Willy. Freemarker. Culp Press, 2012.

[166] Xusheng Xiao, Tao Xie, Nikolai Tillmann, and Jonathan de Halleux. Precise identifi-
cation of problems for structural test generation. In Proceedings of the International
Conference on Software Engineering, pages 611–620, 2011.

[167] F. Yang, J. Shanmugasundaram, M. Riedewald, and J. Gehrke. Hilda: A high-level
language for data-driven web applications. In Proceedings of the International Con-
ference on Data Engineering, pages 32–32, 2006.

152

[168] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for automati-
cally enforcing privacy policies. In Proceedings of the Symposium on Principles of
Programming Languages, pages 85–96, 2012.

[169] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for automati-
cally enforcing privacy policies. ACM SIGPLAN Notices, 2012.

[170] Kuat Yessenov. A Light-weight Specification Language for Bounded Program Veri-
fication. Master’s thesis, MIT, 2009.

[171] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Improving
application security with data flow assertions. In Proceedings of the Symposium on
Operating Systems Principles, pages 291–304, 2009.

[172] Eric Yuan and Jin Tong. Attributed based access control (ABAC) for web services.
In IEEE International Conference on Web Services, 2005.

153

	Introduction
	I Empowering the Solver
	Alloy*: General-Purpose Higher-Order Constraint Solving
	Example: Classical Graph Algorithms
	Example: Policy Synthesis
	Background and Key Ideas
	Skolemization
	CEGIS
	CEGIS for a general purpose solver

	Semantics
	Translation of Formulas into Proc Objects
	Satisfiability Solving
	Treatment of Bounds

	Implementation
	Case Study: Program Synthesis
	Optimizations
	Quantifier Domain Constraints
	Strictly First-Order Increments

	Evaluation
	Micro Benchmarks
	Program Synthesis
	Benefits of the Alloy* Optimizations
	Distribution of Solving Time over Individual Candidates
	Discussion

	Related Work
	Conclusion

	Preventing Arithmetic Overflows in Alloy*
	Prototypical Overflow Anomalies
	Motivating Example
	Approach
	User-Level Semantics
	Implementation-Level Semantics
	Correspondence Between the Two Semantics
	The Law of the Excluded Middle

	Implementation in Circuits
	Evaluation
	Exhaustive Testing of the New Translation Scheme
	Effects on Models with Integer Arithmetic

	Related Work
	Conclusion

	II Unifying Specification and Implementation Languages
	Rby: An Embedding of Alloy in Ruby
	Why an Imperative Shell Around a Modeling Language
	Examples of Motivating Use Cases
	Rby for Alloy Users
	Beyond Standard Analysis
	The Rby Language
	Syntax
	Semantics
	Implementation Considerations

	Discussion
	Related Work
	Discussion
	Conclusion

	III Declarative Programming for the Web
	Sunny: Model-Based Paradigm for Programming Reactive Web Applications
	Motivation
	Example
	What is Different About Sunny
	The Java Approach
	The Rails Approach
	The Meteor Approach

	The Sunny Approach
	Sample Execution
	Domain-Specific Programming Language
	Runtime Environment
	Online Code Generator
	Dynamic Template-Based Rendering Engine

	Semantics
	Policy Checking
	Reactivity
	Concurrency Model

	Automated Reasoning and Analysis
	Testing
	Model Checking
	Verification and Program Synthesis

	Discussion
	Evaluation
	Gallery of Sunny.js Applications
	Comparison with a Web Application in Meteor
	Limitations

	Related Work
	Event-Driven Programming
	Data-Centric Programming
	Code Generation and Program Synthesis
	Declarative Privacy Policies
	GUI Builders

	Conclusion

	Conclusion

