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Abstract. A main idea underlying bounded model checking is to limit
the length of the potential counter-examples, and then prove proper-
ties for the bounded version of the problem. In software model checking,
that means that only program traces up to a given length are consid-
ered. Additionally, the program’s input space must be made finite by
defining bounds for all input parameters. To ensure the finiteness of the
program traces, these techniques typically require that all loops are ex-
plicitly unrolled some constant number of times. Here, we show how to
avoid explicit loop unrolling by using the SMT Theory of Lists to model
feasible, potentially unbounded program traces. We argue that this ap-
proach is easier to use, and, more importantly, increases the confidence in
verification results over the typical bounded approach. To demonstrate
the feasibility of this idea, we implemented a fully automated prototype
software model checker and verified several example algorithms. We also
applied our technique to a non software model-checking problem from
biology – we used it to analyze and synthesize correct executions from
scenario-based requirements in the form of Live Sequence Charts.

1 Introduction

We present a finite-state model-checking technique, based on satisfiability solv-
ing, that does not require the user to explicitly bound the length of the search
traces. We use the SMT Theory of Lists [7] to model potentially infinite search
traces. A benefit of this approach is that it does not require providing the number
of loop unrollings. Similarly, when trying to solve a planning problem, we do not
have to specify the maximum number of steps needed to solve the problem. This
way, we can achieve most of the benefits of the unbounded case. Unfortunately,
in some cases our approach cannot prove that no counter-example exists (e.g.,
in the presence of infinite loops in the program), so it is not fully unbounded.

We use a list to model an unbounded search path. Every list element rep-
resents a single state traversed during the search. In order to find a path to an
error state, we impose the following constraints on that list: (1) the first element
is a valid initial state, (2) every two consecutive elements represent a valid state
transition; and (3) the last element corresponds to one of the states we want
to reach (error states). Having formulated the problem in this way, we can run
an SMT solver, namely Z3 [23], to search for such a list, without constraining
its length. If Z3 terminates and reports that the problem is unsatisfiable, we



have proved that the error states are unreachable; otherwise, we have found a
counter-example.

This idea is readily applicable to software model checking. In the presence of
loops, program traces become infinite. A common resort is to explicitly perform
loop unrolling, as it is the case with CBMC [10], Forge [16] and [5]. The limitation
of this approach is that the number of unrollings must be specified beforehand
by the user. Typically, the number of unrollings and the bounds for the input
space are specified independently of each other, even though they are almost
never independent in practice. For example, in order to verify the “selection
sort” algorithm for arrays of length up to N , at least N − 1 loop unrollings
are needed. If the user provides a number less than N − 1, a tool for bounded
verification will typically report that no counter-example can be found within
the given bounds, which may trick the user into believing that the algorithm
is proven to be correct for all arrays of length up to N . With our approach,
to verify the “selection sort” algorithm, the user only specifies the bound for
N . Bounds for array elements are not needed in this case, so we can prove the
algorithm correct for all integer arrays up to the given length N .

The main contributions of this paper are:

– A novel approach to model checking using SMT and the theory of lists: we
explain how lists can be used to model unbounded traces;

– Application of this idea to software model checking: we present an optimized
encoding of a program, and show that loops need not be explicitly unrolled;

– Execution of Live Sequence Charts case study: we analyzed scenario-based
models of biological systems [19], written in the language of Live Sequence
Charts (LSC) [15]. We show that declarative scenario-based specifications,
written in LSC, can be translated into the logic of SMT, and an off-the-shelf
solver can be used to automatically execute them.

2 Background

In order to check whether a safety property holds within some number of states
k, one can define k sets of variables, one set for each state, s1, s2, · · · , sk, and
then, as with any model-checking problem, assert that the following hold:

1. Initial State constraint: Θ(s1);
2. Transition constraint: ρ(s1, s2) ∧ ρ(s2, s3) ∧ · · · ∧ ρ(sk−1, sk); and
3. Safety Property constraint: P(s1) ∧ P(s2) ∧ · · · ∧ P(sk−1) ∧ ¬P(sk).

Θ encodes constraints that must hold in the initial state; ρ(si−1, si) is a
transition function which returns true if and only if the system is allowed to go
from state si−1 to state si; finally, P(si) is the safety property that we want
to prove. In order to find a counter-example, we assert that the safety property
doesn’t hold in the last state while holding in all previous states. Additionally, the
transition function must hold for every two consecutive states. The conjunction
of these three formulas is passed to an off-the-shelf solver, which either returns
a model encoding a counter-example, or proves that the formula is unsatisfiable



(meaning that the safety property is verified for the given k). This approach is
commonly referred to as bounded model checking using satisfiability solving.

We focus on how to use the theory of lists to avoid having k copies of the
state variables. The theory of lists is currently supported by many state-of-the-
art SMT solvers. A description of how other theories can be used to encode
programs and why that can be advantageous is presented in [5].

SMT lists are defined recursively: List<E> = nil | cons (head: E, tail:

List). For a given list, only two fields, head and tail are immediately acces-
sible. In addition, predicates is cons and is nil are readily available to check
whether a given list variable is cons or nil. As a consequence, it is not possible
to directly access the list element at a given position, or immediately get the
length of the list, which is inconvenient when asserting properties about lists.

3 Approach

Our approach is based on the idea of bounded model checking using satisfiability
solving, except that instead of explicitly enumerating all state variables (s1, s2,
· · · , sk), and thus bounding the length of a potential counter-example, we use
only a single variable of type List of States. Every list element is of type State,
which is a tuple of all variables needed to represent the problem state. We still
assert the same three constraints, (1) initial state, (2) transition; and (3) safety
constraint, but now in terms of a single list variable.

Expressing the initial state constraint is easy, since the first element of the
list is immediately accessible. To express the other two constraints, we use an
uninterpreted function accompanied with an axiom. More precisely, in order
to enforce the transition constraint between every two consecutive elements of
the list, we first define an uninterpreted function, named check tr, that takes a
list and returns a boolean value. Next we add an axiom (transition axiom) to
assert that check tr returns true when applied to a list if and only if every two
consecutive states of that list represent a valid state transition.

A recursive definition of the transition axiom is given in Figure 1. The only
case of importance is when the list argument, namely lst, is not nil and has
a non-nil next element (tail). This is because we only care to assert the tran-
sition property between two consecutive elements. We do that by inlining the
actual model-checking transition constraint between the current and the next
list element. In addition, we have to make sure that all subsequent consecutive
elements represent valid state transitions, so we recursively assert that the same
check tr function returns true for the tail of the given list argument.

In order to enforce the safety property on all list elements but the last one, we
could similarly define another uninterpreted function and an additional axiom.
However, since we already have an axiom that “traverses” the whole list, we
decided to include the safety property check in the existing transition axiom.
This can simply be done by checking whether the next list element (tail(lst))
corresponds to an error state (by inlining the error condition, i.e. ¬P(si)). If the
next element is in fact an error state, we have found a counter-example, so we



force the list to end right there (i.e. its next element must be nil). Otherwise,
we must keep searching, so the next element in the list must be cons.

Finally, it is important to stress the purpose of the instantiation pattern (PAT:
{check tr (lst)}) in the FORALL clause. This axiom states something about all
lists. However, it would be impossible for the SMT solver to try to prove that the
statement indeed holds for all possible lists. Instead, the common approach is to
provide an instantiation pattern to basically say in which cases the axiom should
be instantiated and therefore enforced by the solver. In our case, we simply say
that every time we apply check tr function to a list, the axiom must be enforced,
so that the evaluation of check tr indeed indicates whether the list satisfies both
transition and safety property constraints.

DEF check tr: StateList → bool

ASSERT FORALL lst: StateList

IF (is cons(lst) ∧ is cons(tail(lst))) THEN

transition condition(head(lst), head(tail(lst))) ∧
check tr(tail(lst)) ∧
IF (error condition(tail(lst)))

THEN is nil(tail(tail(lst)))

ELSE is cons(tail(tail(lst)))

:PAT {check tr(lst)}

Fig. 1: Axiom for the check tr function

DEF states: StateList

ASSERT

is cons(states) ∧
initial condition(head(states)) ∧
check tr(states)

CHECK

Fig. 2: SMT logic context

The rest of the SMT logic context is given in Figure 2. It provides a generic
template for model-checking problems. For a specific problem, the user only
needs to define: (1) the State tuple (basically enumerate all state variables), (2)
initial condition, (3) transition condition; and (4) error condition.

4 Applicability to Software Model Checking

4.1 The Idea

We observe a program as a traditional Control Flow Graph (CFG) [3]. The state
of the execution of a program consists of the current basic block (at a given
moment, the execution is exactly in a single basic block) and the evaluations
of relevant program variables. The edges between the basic blocks are called
transitions. An edge is guarded by a logic condition that specifies when the
program execution is allowed to go from one basic block to another. The goal of
model checking is to find a feasible execution trace (a path in the CFG) from
the start node to one of the error nodes.

Programs with loops have cyclic control flow graphs, which means that some
of their traces are infinite. Using unbounded lists seems like a very natural way to
model program traces. Instead of truncating loops up front, we let the satisfiabil-
ity solver simulate them, by effectively executing loops until the loop condition
becomes false. Even though some traces may be infinite, the number of basic



blocks is always finite, meaning that the transition condition (i.e. the logic ex-
pression that defines all valid transitions from a given state) is also finite and
can be expressed in a closed form.

4.2 Formal Definitions

Program Graph (PG) We formally introduce Program Graphs, which are a
variation of Control Flow Graphs.

A PG is defined over a set of typed variables V ar. We will use Eval(V ar)
to denote the set of possible evaluations of variables, Expr(V ar) to denote the
set of all expressions over V ar (e.g., constants, integer arithmetic, “select” and
“store” operations over integer arrays, and boolean expressions), and Cond(V ar)
to denote the set of all boolean expressions over V ar (Cond(V ar) ⊂ Expr(V ar)).
A PG is then defined as a tuple:

PG = (L,Act,Eff,→, l0,E)

L is a set of program locations (corresponding to basic blocks), l0 is the start
location (l0 ∈ L) and E is a set of error locations (E ⊂ L). Act is a set of actions
(program statements) and function Eff : Act×Eval(V ar) 7→ Eval(V ar) defines the
effects of actions on variable evaluations. Finally, →: L× Cond(V ar)×Act× L is
the conditional transition relation with side effects (i.e., actions assigned to it).
This definition is very similar to the one presented in [6].

The semantics of the → relation is defined by the following rule

η |= g η′ = Eff(α, η)

〈l, η〉 g:α→ 〈l′, η′〉

where the notation l
g:α→ l′ is a shorthand for (l, g, α, l′) ∈→.

4.3 Example

We introduce a simple example that will be used throughout this section to ex-
plain optimizations and the actual translation to SMT logic. The code is shown
in Figure 6, the algorithm is named simpleWhile, the corresponding CFG is
shown in Figure 3(a). Blocks with grey background are simply branch condi-
tions, and they do not modify the program state. The red block represents the
error state. All steps presented here are fully automated.

4.4 Optimizing Transformations from CFG to PG

We decided to model state changes as transitions between basic blocks, and not
between single statements. This is useful because it makes the traces explored
by the solver much shorter. While searching for a counter-example, the solver
creates a list node for every new state it explores. If every statement caused a
state transition (which is what happens in reality), then the solver would have
to add a new node to the list after every variable assignment, growing the list



i :=  0
x :=  0

[i < N]

[i % 2 != 0]

then

[x == N]

else

i := i + 1

then x := x + 2

else

return

then[x == N + 1]

else

then

AssertionError

else

(a) Original CFG

i :=  0
x :=  0

i := i + 1

c0

x := x + 2

c6

return

c7 c8

AssertionError

c9 c1

c2 c3c4c5

c0: (i < N && i % 2 != 0)
c1: (i < N && i % 2 != 0)
c2: (i < N && i % 2 == 0)
c3: (i >= N && x == N)
c4: (i >= N && x != N && x == N + 1)
c5: (i >= N && x != N && x != N + 1)
c6: (i < N && i % 2 == 0)
c7: (i >= N && x == N)
c8: (i >= N && x != N && x == N + 1) 
c9: (i >= N && x != N && x != N + 1) 

(b) Empty blocks removed

(id = 0)
i :=  0
x :=  0

(id = 1)

c0c6

(id = 2)
return

c7 c8

(id = 3)
AssertionError

c9c1 c2

c3 c4 c5

c0: (i < N && i % 2 != 0) : i := i + 1
c1: (i < N && i % 2 != 0) : i := i + 1
c2: (i < N && i % 2 == 0) : i := i + 1; x := x + 2
c3: (i >= N && x == N) 
c4: (i >= N && x != N && x == N + 1) 
c5: (i >= N && x != N && x != N + 1) 
c6: (i < N && i % 2 == 0) : i := i + 1; x := x + 2
c7: (i >= N && x == N) 
c8: (i >= N && x != N && x == N + 1) 
c9: (i >= N && x != N && x != N + 1) 

(c) Blocks without self loops eliminated

Fig. 3: Control Flow Graphs for the “SimpleWhile” example

rapidly. Instead, we accumulate the effects of all statements of a basic block (by
symbolically executing them) and use the resulting effect to define a single state
transition. That way we enable the solver to perform more computation in every
step (basically execute the entire basic block at once), thus reducing the overall
number of states it has to explore, and significantly improving the solving time.

Since the solver can thus execute an entire basic block at once, we can think
of the search process as a graph path finding problem: the solver is given a task of
finding a path from the start block to one of the error blocks in the CFG. The
search traces become sequences of basic blocks. The idea of shortening traces
explored by the solver (i.e., reducing the number of basic blocks) is the basic
idea behind our optimizations.



Symbolic Execution of Basic Blocks In order to arrive at the final expres-
sion for every variable at the end of a basic block, we must execute the entire
basic block symbolically. Since our goal is to formulate how variables are up-
dated when transitioning from one basic block to another, the final expressions
must be in terms of symbolic variables in the previous state. For example, the
effect of the following code fragment x++; y = 2*x; x--; is x := (x+1)-1; y :=

2*(x+1);. Formally, we introduce the expression update operator G, which takes
an expression e and an action α and updates variables in e according to α:

eGα =

{
e, if α = ∅
e[v1/ev1 , · · · , vk/evk ], if α = v1 := ev1 , · · · , vk := evk

In short, we start with an empty action α, we go through all the basic block
instructions of type v = e, and for each of them we add v := eGα to α (overwriting
the previous assignment, if one existed).

Optimization 1: Empty Location Removal We do not want the solver to
grow the list by exploring basic blocks that do not change the state. Therefore,
the first optimization step takes the original CFG and removes all locations
that do not have any actions that modify the program state (so-called empty
locations). For such a location lx, selected for removal, every incoming transition
is split into several new transitions so that, after the transformation, each of the
lx’s parents points to all of the lx’s successor locations. The guards of the newly
created transitions are the same as the guards of the original outgoing transitions
conjoined with the guard of the original incoming transition:

(∀lp
gp−→ lx) (∀lx

gs−→ ls) lp

gp∧gs
−→′ ls

Optimization 2: Non-looping Location Elimination Here, the idea is to
completely remove basic blocks that do not have any self-loops. We can split the
incoming transitions, similarly to what we did in the previous step. However,
we cannot simply move the actions to their parent locations, since they are not
to be executed every time the parent locations are executed. The solution is to
switch from CFG to PG, since program graphs allow us to associate actions
with transitions instead of locations, which is exactly what we need here: we will
add the actions of the location to be removed to newly created transitions.

Before this optimization step is performed, the CFG has to be converted to
its corresponding PG. This can trivially be done by moving actions associated
with states to their incoming transitions. Next, we iteratively keep eliminating
locations that do not contain any self-loops (non-looping locations) until only
locations with self-loops are left in the graph. Elimination of a non-looping lo-
cation lx involves three steps: (1) splitting the incoming transitions (similarly as
before); (2) merging their actions; and (3) updating their guards:

elim((L,Act,Eff,→, l0, E), lx) 7→ (L \ {lx}, Act,Eff,→′, l0, E)

(∀lp
g1:α1−→ lx) (∀lx

g2:α2−→ ls) lp
g◦:α◦

−→′ ls , where α◦ = α1 ◦ α2, g◦ = g1 ∧ (g2Gα1)

We have introduced another operator, the action merge operator ◦. The idea
of merging two actions α1 and α2 is to get a new action whose effect is going
to be the same as the final effect of α1 and α2 when executed in that order on



any variable evaluation η: Eff(α1 ◦α2, η) 7→ Eff(α2,Eff(α1, η)). In terms of merging
actions α1 and α2, expressions in α2 refer to the state after α1 has been executed,
therefore, it would be incorrect to simply append α2 to α1. Instead, α2 has to be
updated first (? operator in the listing below) so that for each variable assignment
v2 := e2 in α2, expression e2 is updated with respect to α1 (e2Gα1). Once α2 has
been updated, the result of the merge operation is the updated α2 appended with
variable assignments in α1 that do not already appear in it. A similar intuition
holds for updating transition conditions, it is not correct to simply conjoin g1
and g2, instead, g2 has to be updated first.

α ? β =

{
∅, if α = ∅
{v := evGβ} ∪ (α \ {v := ev}) ? β, if ∃(v := ev) ∈ α

α1 ◦ α2 = (α1 \ α2) ∪ (α2 ? α1)

Figure 3(c) shows the PG for the “Simple While” example, after all non-looping
locations have been eliminated. First, the action i:=i+1 from the state with id=1

is moved to its incoming transitions c0, c1, c2, and c6. Next, the location with
x:=x+2 action is eliminated, and as a result, edges c2 and c6 are redirected and
updated to include the x:=x+2 action.

4.5 Translation of PG to SMT

Figure 4 shows the actual translation of the PG in Figure 3(c) to initial, transi-
tion, and error conditions, needed for the template SMT context given in Fig-
ures 1 and 2. The translation is pretty straightforward. An extra field, stateId,
is first added to the state tuple to identify the current location. In this case, the
state consists of 3 variables: stateId, x, i (the variable N is constant so it is kept
outside of the state tuple). The initial condition is a direct representation of the
state in the entry block. The error condition is also easy to formulate, since all er-
ror states are explicitly known upon the CFG creation. The transition condition
contains two big nested if-then-else statements. The outer if-then-else has a case
for every non-leaf location. Inside each such case, there is an inner if-then-else
that has a case for each of the location’s outgoing transition, where it specifies
how the state is updated when that transition is taken.

Finally, we need to define the set of possible values for the input variable N
(e.g., N > 0 ∧N ≤ 10). This additional constraint is necessary because integers
are unbounded in SMT theories. Recall that this technique effectively simulates
program loops inside SMT. Since the value of N influences the number of loop
iterations, if a bound is not provided for N , the solver will try to simulate the
loop for all possible values of N , and thus never terminate.

5 Execution of Live Sequence Charts

In this section we show how this model-checking technique can be applied to
a non-trivial biological model-checking problem. We use the theory of lists to
encode Live Sequence Charts and then run Z3 to analyze and execute them.



initial condition ≡ head(statesList).stateId = 0 ∧ head(statesList).x = 0 ∧ head(statesList).i = 0

transition condition

≡ IF head(lst).stateId = 0 THEN
IF i < N ∧ i % 2 6= 0 THEN

head(tail(lst)).stateId = 1 ∧ head(tail(lst)).i = head(lst).i + 1
ELSE IF i < N ∧ i % 2 = 0 THEN

head(tail(lst)).stateId = 1 ∧ head(tail(lst)).x = head(lst).x + 2 ∧ head(tail(lst)).i = head(lst).i + 1
ELSE IF i ≥ N ∧ x = N THEN

head(tail(lst)).stateId = 2
ELSE IF i ≥ N ∧ x 6= N ∧ x = N + 1 THEN

head(tail(lst)).stateId = 2
ELSE

head(tail(lst)).stateId = 3
ELSE IF head(lst).stateId = 1 THEN

IF i < N ∧ i % 2 6= 0 THEN
head(tail(lst)).stateId = 1 ∧ head(tail(lst)).i = head(lst).i + 1

IF i < N ∧ i % 2 = 0 THEN
head(tail(lst)).stateId = 1 ∧ head(tail(lst)).x = head(lst).x + 2 ∧ head(tail(lst)).i = head(lst).i + 1

ELSE IF i ≥ N ∧ x = N THEN
head(tail(lst)).stateId = 2

ELSE IF i ≥ N ∧ x 6= N ∧ x = N + 1 THEN
head(tail(lst)).stateId = 2

ELSE
head(tail(lst)).stateId = 3

error condition ≡ head(lst).stateId = 3

Fig. 4: Translation of the CFG shown in Figure 3(c) to SMT logic

5.1 Example

We will use an example to briefly introduce LSCs and their semantics. Fig-
ure 5(a) shows the specification of the interaction between a cell phone and the
user. A single LSC consists of a number of Instances passing messages between
them. Instances either belong to the System or the Environment. Every Instance
has an associated timeline (represented as vertical bars) which is used to impose
the ordering between messages. The upper portion of the chart (bordered with
a dotted line) is called the Pre-Chart, whereas the rest of the chart is called
the chart body. Every chart is initially inactive. It becomes active when its Pre-
Chart is satisfied, i.e., when messages that appear in the Pre-Chart occur in
the specified order. The semantics of LSCs require that once a chart becomes
active, it must finish its execution according to the specification in its body,
when it becomes closed. The chart specifies only partial ordering of the message
occurrences: only messages that have a common timeline as either source or tar-
get must happen in the given ordering; messages that do not have a timeline in
common may appear in an arbitrary order.

In terms of the example in Figure 5(a), once the chart becomes active, as a
result of open occuring, there are 3 possible valid executions: (1) SetColor(Grey),
SetColor(Green), activate, (2) SetColor(Grey), activate, SetColor(Green), and
(3) activate, SetColor(Grey), SetColor(Green). Note that it is not allowed that
message SetColor(Green) appears before SetColor(Grey), that would be consid-
ered as an immediate violation of the specification. Also note that it is allowed
that some other messages, not shown in this chart are sent at any point during
the execution of this chart. The chart’s body specifies only messages that must
happen, and partial ordering between them, it does not forbid other messages.
This way, a formal contract is established saying that every time the user opens
the cover (message open is sent from User to Cover), the cell phone must respond
as specified in the chart’s body.



5.2 Motivation

Single step is defined as a single message sent by the System that does not cause
an immediate violation. Super step is a sequence of messages that drives all
active charts to their completion, without causing any violations. It is allowed
for a super step to activate some new charts along the way, but at the end of
it, no charts must be active. For example, consider another scenario given in
Figure 5(b). The message activate activates the antenna act chart. Its body
contains a single conditional element that states that the color must be Grey

after the chart is activated. Adding this additional scenario rules out the first of
the three valid executions of the “open cover” scenario given above.

We describe our solution for encoding of LSCs into the logic of SMT with
the theory of lists, which allows for using the Z3 SMT solver to automatically
find all valid super steps from a given point in the execution of the system. Here
we illustrate the applicability and usefulness of our technique to this problem;
a more detailed discussion and formal translation is not presented due to space
limitations and will be reported in a future paper.

(a) “open cover” scenario (b) “antenna activated” scenario

Fig. 5: The cell phone LSC example

5.3 Solution

We formulate the problem of finding a super step as a model-checking problem.
For every Instance, we keep an integer variable to keep track of its location (a
point on its timeline) in the current state of the execution. We also maintain
variables for object properties (e.g., Color as in the example) and a single variable
for the message sent by the system in the current step. The initial state is
explicitly given and consists of current locations of all instances and evaluation of
all properties. In the transition constraint, we let the solver non-deterministically
pick a message to be sent by the system and based on that decision we specify
how the rest of the state should be updated. We assert that the chosen message
must be enabled at the current step (i.e., that at least one Instance is at a location
where this message can be sent from) and that it must not cause any violations
in other charts. The safety property that we want the solver to prove is that
the state where all charts are closed can never be reached from the initial state.



If the solver proves this property, that means that no valid super step exists.
Otherwise, the solver will come back with a counter-example that contains a list
of state changes, which lets us decode which message is sent at each step.

Formulating this problem using the theory of lists seems very convenient,
since the number of steps needed to find a counter-example is not known in
advance. We analyzed several models of biological systems [2] and were able to
find valid super steps for systems with more than ten charts within seconds.

6 Evaluation and Results

We implemented a fully automated prototype model checker for Java programs
to evaluate the idea of using the SMT theory of lists to model program traces.
Currently, we support only a subset of Java programs. We used this tool to verify
the correctness of several algorithms. We also applied this technique to solve the
Rush Hour puzzle [1]. All experiments were conducted on a 64-bit Intel Core
Duo CPU @2.4GHz box, with 4GB of RAM, running 32-bit Windows Vista.

Verifying Simple Algorithms We used this technique to verify the “Simple-
While” algorithm, two sorting algorithms, and the integer square root algorithm
from Carroll Morgan’s book Programming with Specifications [22] (Figure 6).
We present the comparison of verification times between the optimized and non-
optimized translation for several different bounds. We compare our tool to a
representative tool from the bounded model-checking category – JForge [16,26],
and a finite model checker that doesn’t require explicit loop unrolling – Java
PathFinder [25]. The results are shown in Figure 7. The “Related Work” section
describes these tools in detail and discusses the obtained results.

Non-monotonicity of some of the graphs in Figure 7 can be explained by the
nature of satisfiability solvers. The solving time is highly dependent on internal
heuristics (e.g., [20, 24]), so it can happen that a larger problem is solved faster
simply because the heuristics worked better (for example, it happened that a
large portion of the search space was pruned early on).

Finally, this approach performs quite efficiently when a counter-example ex-
ists. For all of the presented benchmarks, our tool was able to find different
(manually introduced) bugs within seconds.

Solving the Rush Hour Puzzle RushHour is a well known puzzle where the
goal is to get the designated car (the red car in Figure 9) out of the traffic jam.
This puzzle is easily expressible as a model-checking problem: the initial state
is the given configuration of cars at the starting point, the transition function
constrains the allowed movements of the cars so that they do not crash or go
over each other, and the safety property is that the red car can never reach the
far right side of the stage. If we find a counter-example to this model-checking
problem, we have found the way to get the red car out of the jam.

We took several puzzles from [1] and compared the execution times of the two
approaches: bounded (the case when we know the optimal number of steps) and
unbounded with lists (Figure 8). SMT solvers are optimized to deal with large
flat formulas, so the fact that the bounded encoding currently performs better



void simpleWhile ( int N) {
int x = 0 , i = 0 ;
while ( i < N) {
i f ( i % 2 == 0)

x += 2 ;
i++;
}
assert x == N | | x == N + 1;
}

void s e l e c t S o r t ( int [ ] a , int N) {
for ( int j =0; j<N−1; j++) {
int min = j ;
for ( int i=j +1; i < N; i++)
i f ( a [ min ] > a [ i ] ) min = i ;

int t = a [ j ] ; a [ j ] = a [ min ] ; a [ min ] = t ;
}
for ( int j =0; j<N−1; j++)
assert a [ j ] <= a [ j +1] ;

}

void bubbleSort ( int [ ] a , int N) {
for ( int j =0; j<N−1; j++)
for ( int i =0; i<N−j−1; i++)
i f ( a [ i ] > a [ i +1]) {

int t = a [ i ] ;
a [ i ] = a [ i +1] ;
a [ i +1] = t ;

}
for ( int j =0; j<N−1; j++)
assert a [ j ] <= a [ j +1] ;

}

int intSqRoot ( int N) {
int r = 1 , q = N;
while ( r+1 < q) {

int p = ( r+q) / 2 ;
i f (N < p∗p) q = p ;
else r = p ;

}
assert r∗ r <= N && ( r+1)∗( r+1)>N;
return r ;

}

Fig. 6: Benchmark Algorithms

does not come as a surprise. However, we were able to solve the most difficult
puzzles (e.g., Jam 38-40 require more than thirty steps) within a minute.

This problem is quite different from the software model-checking problems,
because at every step, there are typically several available valid moves, so at
every step, the solver has to non-deterministically decide which move to take
in order to finally reach an error state (this never happens in software model
checking if programs are deterministic). This puzzle is a typical example of how
this technique can be used to solve planning problems without bounding the
number of steps in advance.

One limitation of our current implementation is that it is not able to prove it
if the solution does not exist. The solver gets stuck exploring the same states over
and over again (e.g., moving the red car back and forth between the neighboring
cells). However, if a solution exists, this problem is not manifested. Also note
that this does not happen in software model checking if the target program
always terminates. An obvious solution is to forbid the same states to appear
in the states list. This additional constraint is expressible in SMT logic, but in
practice it does not perform that well. Instead, we believe that the SMT solver
could be tweaked so that it internally knows that while building the states list
it should never include the same state twice in a single search path. It would be
very efficient to implement this inside the solver, because the state is represented
explicitly inside list elements, so it would be easy to compare states for equality.

7 Related Work

Model checking was originally defined as a technique for proving properties about
Finite State Machines (FSM) [12]. The pioneering tools had used an explicit rep-
resentation of the entire state graph, which led to what is known as the state
explosion problem. To mitigate that problem, Binary Decision Diagrams (BDD)
were introduced by McMillan [14] to symbolically represent a set of states with a



 0

 50

 100

 150

 200

 250

 300

 0  100  200  300  400  500  600  700  800  900

tim
e 

(s
)

N

SimpleWhile

No Opt
Opt 1
Opt 2

JForge

(a) SimpleWhile

 0

 50

 100

 150

 200

 250

 300

 0  2  4  6  8  10  12

tim
e 

(s
)

N

SelectSort

No Opt
Opt 1
Opt 2

JPF
JForge

(b) Select Sort

 0

 50

 100

 150

 200

 250

 300

 1  2  3  4  5  6  7  8  9

tim
e 

(s
)

N

BblSort

No Opt
Opt 1
Opt 2

JPF
JForge

(c) Bubble Sort

 0

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100  120  140  160

tim
e 

(s
)

N

SqRoot

No Opt
Opt 1
Opt 2

JForge

(d) Square Root

Fig. 7: Benchmark Results

single propositional logic formula. Both of these techniques used a custom search
algorithm to explore paths in the FSM. Infinite traces were supported by com-
puting a fixpoint, i.e., not visiting the same state twice on the same search path.
The growing popularity and efficiency of satisfiability solvers had influenced an-
other branch of model checking, called Bounded Model Checking [8,9,11], which
significantly improved the scalability of model checking. The idea was to bound
the traces by unrolling the FSM for some number of times k. As a result, the
whole problem could be formulated as a single propositional formula, solvable
by off-the-shelf SAT solvers. On the other side, Counter-Example Guided Ab-
straction Refinement [13] was developed to deal with infinite state machines.
In comparison, our approach lies somewhere between bounded and unbounded

B U

Jam 25 1.20s 1.88s

Jam 30 1.21s 2.17s

Jam 38 4.47s 36.6s

Jam 39 1.90s 14.66s

Jam 40 6.31s 17.89s

Fig. 8: RushHour benchmark (B –
Bounded, U – unbounded)

Fig. 9: RushHour instance



finite state model checking: in many cases, we achieve benefits of the unbounded
method, but in some, our tool cannot prove the absence of counter-examples.

JForge is a bounded software model checker that uses SAT. It requires the
user to bound the program input space by specifying the bit-width for integers, in
addition to providing the number of loop unrollings. In all benchmarks, we used
the minimal bit-width needed to represent the bound N , and an appropriate
number of loop unrollings needed to verify the code for the given input size.
JForge enumerates all integers within the given bit-width so that it has the
explicit representation of the whole universe. That turns out to be the reason
why JForge does not perform as well as our tool in these benchmarks.

Alloy [17] is a bounded model finder that can be used to search for traces
(sequences of events) that satisfy certain logic property, but it also requires that
the number of events is specified in advance.

JPF [25] is an extensible plaform for running model checkers for Java pro-
grams. The explicit-state version of JPF directly executes the program on all
possible inputs, whereas we translate the program into logic and formulate a
satisfiability problem. We present results for JPF only for the two sorting algo-
rithms. In the other two examples, JPF is a clear winner. However, the sorting
examples show the case where the ability of our tool to symbolically represent
array elements brings a significant advantage. To verify the sorting algorithms
using JPF on arrays of size exactly n, we ran the algorithm on all possible ar-
rays of size n whose elements are between 1 and n, which turned out to be very
expensive in terms of both memory and time. Symbolic JPF [4] can treat the
variables symbolically, but it currently does not support arrays.

Armando et al. [5] present a bounded software model-checking technique
(requires explicit loop unrolling) based on SMT, and report significant improve-
ment over the traditional SAT-based technique. Other techniques for unbounded
model checking with satisfiability solving (e.g., [18, 21]) iteratively invoke the
solver until they reach a fixpoint, whereas our approach translates the whole
problem into a single formula.

8 Conclusion

We have presented a novel technique for finite-state unbounded model checking
using the theory of lists and satisfiability solving. Our technique is a finite-state
technique, in the sense that it requires explicit bounds on certain parts of the
input state (e.g., those that influence the length of the state machine traces). On
the other hand, it can prove properties for infinite-state systems, as shown for
the “sorting” examples. We have shown the generic pattern for solving model-
checking problems, and also provided detailed explanation of how it can be
applied to software model checking in particular. The results of the comparison
with some of the existing tools for software model checking seem promising. The
applicability of this method to analyzing and executing scenario-based models in
the form of Live Sequence Charts seems to have a stong potential and will enable
efficiently supporting a larger subset of the LSC language including arithmetic
operations that are more natural to handle using SMT solvers.
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