
SUNNY:
From Models to Interactive Web Apps

for (almost) free

Aleksandar Milicevic Milos Gligoric
Daniel Jackson Darko Marinov
{aleks,dnj}@csail.mit.edu {gliga,marinov}@illinois.edu

Onward! 2013
Indianapolis, IN

1

A simple web app: SUNNY IRC

custom-tailored internet chat relay app

2

A simple web app: SUNNY IRC

custom-tailored internet chat relay app

2

A simple web app: SUNNY IRC

custom-tailored internet chat relay app

2

Conceptually simple, but in practice...

distributed system
→ concurrency issues
→ keeping everyone updated

heterogeneous environment
→ rails + javascript + ajax + jquery + ...
→ html + erb + css + sass + scss + bootstrap + ...
→ db + schema + server config + routes + ...

abstraction gap
→ high-level problem domain
→ low-level implementation level

3

Conceptually simple, but in practice...

distributed system
→ concurrency issues
→ keeping everyone updated

heterogeneous environment
→ rails + javascript + ajax + jquery + ...
→ html + erb + css + sass + scss + bootstrap + ...
→ db + schema + server config + routes + ...

abstraction gap
→ high-level problem domain
→ low-level implementation level

3

Conceptually simple, but in practice...

distributed system
→ concurrency issues
→ keeping everyone updated

heterogeneous environment
→ rails + javascript + ajax + jquery + ...
→ html + erb + css + sass + scss + bootstrap + ...
→ db + schema + server config + routes + ...

abstraction gap
→ high-level problem domain
→ low-level implementation level

3

Conceptually simple, but in practice...

distributed system
→ concurrency issues
→ keeping everyone updated

heterogeneous environment
→ rails + javascript + ajax + jquery + ...
→ html + erb + css + sass + scss + bootstrap + ...
→ db + schema + server config + routes + ...

abstraction gap
→ high-level problem domain
→ low-level implementation level

3

Conceptually simple, but in practice...

distributed system
→ concurrency issues
→ keeping everyone updated

heterogeneous environment
→ rails + javascript + ajax + jquery + ...
→ html + erb + css + sass + scss + bootstrap + ...
→ db + schema + server config + routes + ...

abstraction gap
→ high-level problem domain
→ low-level implementation level

3

MDD: how far can it get us?

exercise:
sketch out a model (design, spec)

for the Sunny IRC application

4

Sunny IRC: data model

record User < WebUser do
inherited fields
name: String,
email: String,
pswd_hash: String,

end

record Msg do
refs text: Text,

sender: User
end

record ChatRoom do
refs name: String,

members: (set User)
owns messages: (set Msg)

end

record-like data structures with typed fields
automatically persisted

5

Sunny IRC: machine model

machine Client < WebClient do
inherited fields
auth_token: String
refs user: User

end

machine Server < WebServer do
inherited fields
online_clients: (set WebClient)
owns rooms: (set ChatRoom)

end

generic network architecture
machines are records too (Ô⇒ persisted, have fields)
assumes certain (standard) properties of web severs and clients

6

Sunny IRC: event model

event JoinRoom do
from client: Client
to serv: Server
params room: ChatRoom

requires { !room.members.include?(client.user) }
ensures { room.members << client.user }
success_note { "#{client.user.name} joined ’#{room.name}’ room" }

end

core functionality of the system

other IRC events: CreateRoom, SendMsg
included library events: CRUD operations, user Auth events

7

Sunny IRC: event model

event JoinRoom do
from client: Client
to serv: Server
params room: ChatRoom

requires { !room.members.include?(client.user) }
ensures { room.members << client.user }
success_note { "#{client.user.name} joined ’#{room.name}’ room" }

end

core functionality of the system
other IRC events: CreateRoom, SendMsg
included library events: CRUD operations, user Auth events

7

Modeling done. What next?

challenge
how to make the most of this model?

goal
make the model executable as much as possible!

8

Modeling done. What next?

challenge
how to make the most of this model?

goal
make the model executable as much as possible!

8

Traditional MVC Approach

in SUNNY:

boilerplate:
→ write a matching DB schema
→ turn each record into a resource (model class)
→ turn each event into a controller and implement the CRUD

operations
→ configure URL routes for each resource

aesthetics:
→ design and implement a nice looking GUI

to make it interactive:
→ decide how to implement server push
→ keep track of who’s viewing what
→ monitor resource accesses
→ push changes to clients when resources are modified
→ implement client-side Javascript to accept pushed changes and

dynamically update the DOM

9

Traditional MVC Approach

in SUNNY:

boilerplate:
→ write a matching DB schema
→ turn each record into a resource (model class)
→ turn each event into a controller and implement the CRUD

operations
→ configure URL routes for each resource

aesthetics:
→ design and implement a nice looking GUI

to make it interactive:
→ decide how to implement server push
→ keep track of who’s viewing what
→ monitor resource accesses
→ push changes to clients when resources are modified
→ implement client-side Javascript to accept pushed changes and

dynamically update the DOM

9

Traditional MVC Approach

in SUNNY:

boilerplate:
→ write a matching DB schema
→ turn each record into a resource (model class)
→ turn each event into a controller and implement the CRUD

operations
→ configure URL routes for each resource

aesthetics:
→ design and implement a nice looking GUI

to make it interactive:
→ decide how to implement server push
→ keep track of who’s viewing what
→ monitor resource accesses
→ push changes to clients when resources are modified
→ implement client-side Javascript to accept pushed changes and

dynamically update the DOM

9

Traditional MVC Approach

in SUNNY:

boilerplate:
→ write a matching DB schema
→ turn each record into a resource (model class)
→ turn each event into a controller and implement the CRUD

operations
→ configure URL routes for each resource

aesthetics:
→ design and implement a nice looking GUI

to make it interactive:
→ decide how to implement server push
→ keep track of who’s viewing what
→ monitor resource accesses
→ push changes to clients when resources are modified
→ implement client-side Javascript to accept pushed changes and

dynamically update the DOM

9

Traditional MVC Approach

in SUNNY:

boilerplate:
→ write a matching DB schema
→ turn each record into a resource (model class)
→ turn each event into a controller and implement the CRUD

operations
→ configure URL routes for each resource

aesthetics:
→ design and implement a nice looking GUI

to make it interactive:
→ decide how to implement server push
→ keep track of who’s viewing what
→ monitor resource accesses
→ push changes to clients when resources are modified
→ implement client-side Javascript to accept pushed changes and

dynamically update the DOM

9

GUIs in SUNNY: dynamic templates

like standard templating engine (ERB) with data bindings
automatically re-rendered when the model changes

online_users.html.erb

<div class="list-group">
<% server.online_clients.user.each do |user| %>

<%= img_tag_for user %>
<div class="... <%= (user == client.user) ? ’me’ : ’’ %>">
<h4 class="..."><%= user.name %></h4>

</div>
<% end %>
</div>

10

GUIs in SUNNY: dynamic templates

like standard templating engine (ERB) with data bindings
automatically re-rendered when the model changes

online_users.html.erb

<div class="list-group">
<% server.online_clients.user.each do |user| %>
<%= img_tag_for user %>
<div class="... <%= (user == client.user) ? ’me’ : ’’ %>">
<h4 class="..."><%= user.name %></h4>

</div>
<% end %>
</div>

10

GUIs in SUNNY: dynamic templates

like standard templating engine (ERB) with data bindings
automatically re-rendered when the model changes

online_users.html.erb

<div class="list-group">
<% server.online_clients.user.each do |user| %>
<%= img_tag_for user %>
<div class="... <%= (user == client.user) ? ’me’ : ’’ %>">
<h4 class="..."><%= user.name %></h4>

</div>
<% end %>
</div>

10

GUIs in SUNNY: binding to events

room_members.html.erb

<% unless chat_room.members.member?(client.user) %>
<button class="..." type="button"

data-trigger-event="JoinRoom"
data-param-room="${new ChatRoom(<%= chat_room.id %>)}">...</button>

<% end %>

html5 data attributes specify event type and parameters
dynamically discovered and triggered asynchronously
no need to handle the Ajax response
→ the data-binding mechanism will automatically kick in if the event makes any

changes

demo
responsive GUI without messing with javascript

11

GUIs in SUNNY: binding to events

room_members.html.erb

<% unless chat_room.members.member?(client.user) %>
<button class="..." type="button"

data-trigger-event="JoinRoom"
data-param-room="${new ChatRoom(<%= chat_room.id %>)}">...</button>

<% end %>

html5 data attributes specify event type and parameters
dynamically discovered and triggered asynchronously
no need to handle the Ajax response
→ the data-binding mechanism will automatically kick in if the event makes any

changes

demo
responsive GUI without messing with javascript

11

GUIs in SUNNY: binding to events

room_members.html.erb

<% unless chat_room.members.member?(client.user) %>
<button class="..." type="button"

data-trigger-event="JoinRoom"
data-param-room="${new ChatRoom(<%= chat_room.id %>)}">...</button>

<% end %>

html5 data attributes specify event type and parameters
dynamically discovered and triggered asynchronously
no need to handle the Ajax response
→ the data-binding mechanism will automatically kick in if the event makes any

changes

demo
responsive GUI without messing with javascript

11

GUIs in SUNNY: binding to events

room_members.html.erb

<% unless chat_room.members.member?(client.user) %>
<button class="..." type="button"

data-trigger-event="JoinRoom"
data-param-room="${new ChatRoom(<%= chat_room.id %>)}">...</button>

<% end %>

html5 data attributes specify event type and parameters
dynamically discovered and triggered asynchronously
no need to handle the Ajax response
→ the data-binding mechanism will automatically kick in if the event makes any

changes

demo
responsive GUI without messing with javascript

11

Adding New Features: adding a field

implement user status messages

all it takes:

record User < WebUser do
refs status: String

end

<%= autosave_fld user,
:status,
:default => "...statusless..." %>

demo

12

Adding New Features: adding a field

implement user status messages

all it takes:

record User < WebUser do
refs status: String

end

<%= autosave_fld user,
:status,
:default => "...statusless..." %>

demo

12

Adding New Features: adding a field

implement user status messages

all it takes:

record User < WebUser do
refs status: String

end

<%= autosave_fld user,
:status,
:default => "...statusless..." %>

demo

12

Adding New Features: adding a ’write’ policy

forbid changing other people’s data
by default, all fields are public
policies used to specify access restrictions

policy EditUserData do
principal client: Client

@desc = "Can’t edit other people’s data"
write User.*.when do |user| client.user == user end

end

declarative and independent from the rest of the system
automatically checked by the system at each field access

13

Adding New Features: adding a ’write’ policy

forbid changing other people’s data
by default, all fields are public
policies used to specify access restrictions

policy EditUserData do
principal client: Client

@desc = "Can’t edit other people’s data"
write User.*.when do |user| client.user == user end

end

declarative and independent from the rest of the system
automatically checked by the system at each field access

13

Adding New Features: adding a ’write’ policy

forbid changing other people’s data
by default, all fields are public
policies used to specify access restrictions

policy EditUserData do
principal client: Client

@desc = "Can’t edit other people’s data"
write User.*.when do |user| client.user == user end

end

declarative and independent from the rest of the system
automatically checked by the system at each field access

13

Adding New Features: adding ’read’ policies

hide status messages in certain cases
show only if the two users share a room

@desc = "Must share a room to see user’s status message"
read User.status.when do |user|

client.user == user ||
server.rooms.some?{|room| room.members.contains?([user, client.user])}

end

invisible users
hide users whose status is “busy”

@desc = "Hide ’busy’ users"
restrict Client.user.when do |c|

c != client && c.user.status == "busy"
end

no GUI templates need to change!

14

Adding New Features: adding ’read’ policies

hide status messages in certain cases
show only if the two users share a room

@desc = "Must share a room to see user’s status message"
read User.status.when do |user|
client.user == user ||
server.rooms.some?{|room| room.members.contains?([user, client.user])}

end

invisible users
hide users whose status is “busy”

@desc = "Hide ’busy’ users"
restrict Client.user.when do |c|

c != client && c.user.status == "busy"
end

no GUI templates need to change!

14

Adding New Features: adding ’read’ policies

hide status messages in certain cases
show only if the two users share a room

@desc = "Must share a room to see user’s status message"
read User.status.when do |user|
client.user == user ||
server.rooms.some?{|room| room.members.contains?([user, client.user])}

end

invisible users
hide users whose status is “busy”

@desc = "Hide ’busy’ users"
restrict Client.user.when do |c|

c != client && c.user.status == "busy"
end

no GUI templates need to change!

14

Adding New Features: adding ’read’ policies

hide status messages in certain cases
show only if the two users share a room

@desc = "Must share a room to see user’s status message"
read User.status.when do |user|
client.user == user ||
server.rooms.some?{|room| room.members.contains?([user, client.user])}

end

invisible users
hide users whose status is “busy”

@desc = "Hide ’busy’ users"
restrict Client.user.when do |c|
c != client && c.user.status == "busy"

end

no GUI templates need to change!

14

Adding New Features: adding ’read’ policies

hide status messages in certain cases
show only if the two users share a room

@desc = "Must share a room to see user’s status message"
read User.status.when do |user|
client.user == user ||
server.rooms.some?{|room| room.members.contains?([user, client.user])}

end

invisible users
hide users whose status is “busy”

@desc = "Hide ’busy’ users"
restrict Client.user.when do |c|
c != client && c.user.status == "busy"

end

no GUI templates need to change!

14

Demo: defining access policies independently

15

More cool policy examples

private messages: message text starts with @username

@desc = "filter out messages that start with ’@’ but not ’@#{client.user.name} ’"
filter ChatRoom.messages.reject do |room, msg|
msg.sender != client.user &&
msg.text.starts_with?("@") &&
!msg.text.starts_with?("@#{client.user.name} ")

end

private rooms: if room name starts with "private", show messages to
members only

@desc = "if room name starts with ’#private’, show messages only to members"
restrict ChatRoom.messages.when do |room|

!room.members.include?(client.user) &&
room.name.starts_with?("#private")

end

16

More cool policy examples

private messages: message text starts with @username

@desc = "filter out messages that start with ’@’ but not ’@#{client.user.name} ’"
filter ChatRoom.messages.reject do |room, msg|
msg.sender != client.user &&
msg.text.starts_with?("@") &&
!msg.text.starts_with?("@#{client.user.name} ")

end

private rooms: if room name starts with "private", show messages to
members only

@desc = "if room name starts with ’#private’, show messages only to members"
restrict ChatRoom.messages.when do |room|
!room.members.include?(client.user) &&
room.name.starts_with?("#private")

end

16

SUNNY IRC: what was hard?

HTML & CSS for GUI templates
least fun, most tedious

future work: the SUNNY approach lends itself to MBUI builders

17

SUNNY IRC: what was hard?

HTML & CSS for GUI templates
least fun, most tedious
future work: the SUNNY approach lends itself to MBUI builders

17

Related Model-Driven Technologies

scaffolding (as in Rails)
uses transient models for one-off code generation
→ beneficial mostly for the first prototype application

in SUNNY

→ permanent models, fundamental part of the running system

traditional MDD
permanent models, but external to the running system
→ code generation used to generate an implementation
→ roundtrips possible, but limited and discouraged

in SUNNY

→ first-class models, interpreted at runtime
→ the SUNNY modeling language is embedded in standard Ruby
→ no code generation needed beforehand
→ the models are the running code (reduces the paradigm gap)

18

Related Model-Driven Technologies

scaffolding (as in Rails)
uses transient models for one-off code generation
→ beneficial mostly for the first prototype application

in SUNNY

→ permanent models, fundamental part of the running system

traditional MDD
permanent models, but external to the running system
→ code generation used to generate an implementation
→ roundtrips possible, but limited and discouraged

in SUNNY

→ first-class models, interpreted at runtime
→ the SUNNY modeling language is embedded in standard Ruby
→ no code generation needed beforehand
→ the models are the running code (reduces the paradigm gap)

18

Related Model-Driven Technologies

scaffolding (as in Rails)
uses transient models for one-off code generation
→ beneficial mostly for the first prototype application

in SUNNY

→ permanent models, fundamental part of the running system

traditional MDD
permanent models, but external to the running system
→ code generation used to generate an implementation
→ roundtrips possible, but limited and discouraged

in SUNNY

→ first-class models, interpreted at runtime
→ the SUNNY modeling language is embedded in standard Ruby
→ no code generation needed beforehand
→ the models are the running code (reduces the paradigm gap)

18

Related Model-Driven Technologies

scaffolding (as in Rails)
uses transient models for one-off code generation
→ beneficial mostly for the first prototype application

in SUNNY

→ permanent models, fundamental part of the running system

traditional MDD
permanent models, but external to the running system
→ code generation used to generate an implementation
→ roundtrips possible, but limited and discouraged

in SUNNY

→ first-class models, interpreted at runtime
→ the SUNNY modeling language is embedded in standard Ruby
→ no code generation needed beforehand
→ the models are the running code (reduces the paradigm gap)

18

Related “Web 3.0” Technologies

Meteor
low-level mechanism for automatic data propagation
all javascript framework
no explicit system model, no type information
→ doesn’t get many of the MDD benefits

SUNNY
→ strives to provide a higher-level programming paradigm

addresses software design questions
imposes a more structured (model-based) approach
aims to bridge the gap between formal specification and executable
implementation

→ another implementation of SUNNY could be built on top of Meteor

19

Related “Web 3.0” Technologies

Meteor
low-level mechanism for automatic data propagation
all javascript framework
no explicit system model, no type information
→ doesn’t get many of the MDD benefits

SUNNY
→ strives to provide a higher-level programming paradigm

addresses software design questions
imposes a more structured (model-based) approach
aims to bridge the gap between formal specification and executable
implementation

→ another implementation of SUNNY could be built on top of Meteor

19

Related “Web 3.0” Technologies

Meteor
low-level mechanism for automatic data propagation
all javascript framework
no explicit system model, no type information
→ doesn’t get many of the MDD benefits

SUNNY
→ strives to provide a higher-level programming paradigm

addresses software design questions
imposes a more structured (model-based) approach
aims to bridge the gap between formal specification and executable
implementation

→ another implementation of SUNNY could be built on top of Meteor

19

SUNNY: the big picture

centralized unified model of the system
formal, analyzable modeling language (inspired by Alloy)
fully executable

goal: maximize benefits of model-driven development
automatic data persistence and ORM
sequential semantics of a distributed system
automatic data propagation
automatic policy checking
generic model-based UI builder
formal analysis, verification, model checking, model-based testing

applications: event-driven distributed systems, web apps, robots

Thank You!
SUNNY: coming for holidays 2013

20

SUNNY: the big picture

centralized unified model of the system
formal, analyzable modeling language (inspired by Alloy)
fully executable

goal: maximize benefits of model-driven development
automatic data persistence and ORM
sequential semantics of a distributed system
automatic data propagation
automatic policy checking
generic model-based UI builder
formal analysis, verification, model checking, model-based testing

applications: event-driven distributed systems, web apps, robots

Thank You!
SUNNY: coming for holidays 2013

20

SUNNY: the big picture

centralized unified model of the system
formal, analyzable modeling language (inspired by Alloy)
fully executable

goal: maximize benefits of model-driven development
automatic data persistence and ORM
sequential semantics of a distributed system
automatic data propagation
automatic policy checking
generic model-based UI builder
formal analysis, verification, model checking, model-based testing

applications: event-driven distributed systems, web apps, robots

Thank You!
SUNNY: coming for holidays 2013

20

SUNNY: the big picture

centralized unified model of the system
formal, analyzable modeling language (inspired by Alloy)
fully executable

goal: maximize benefits of model-driven development
automatic data persistence and ORM
sequential semantics of a distributed system
automatic data propagation
automatic policy checking
generic model-based UI builder
formal analysis, verification, model checking, model-based testing

applications: event-driven distributed systems, web apps, robots

Thank You!
SUNNY: coming for holidays 2013

20

SUNNY: the big picture

centralized unified model of the system
formal, analyzable modeling language (inspired by Alloy)
fully executable

goal: maximize benefits of model-driven development
automatic data persistence and ORM
sequential semantics of a distributed system
automatic data propagation
automatic policy checking
generic model-based UI builder
formal analysis, verification, model checking, model-based testing

applications: event-driven distributed systems, web apps, robots

Thank You!
SUNNY: coming for holidays 2013

20

