
Program Extrapolation with Jennisys

K. Rustan M. Leino
Microsoft Research

Redmond, WA, USA
leino@microsoft.com

Aleksandar Milicevic
Massachusetts Institute of Technology (MIT)

Cambridge, MA, USA
aleks@csail.mit.edu

Abstract
The desired behavior of a program can be described using
an abstract model. Compiling such a model into executable
code requires advanced compilation techniques known as
synthesis. This paper presents an object-based language,
called Jennisys, where programming is done by introducing
an abstract model, defining a concrete data representation
for the model, and then being aided by automatic synthesis
to produce executable code. The paper also presents a syn-
thesis technique for the language. The technique is built on
an automatic program verifier that, via an underlying SMT
solver, is capable of providing concrete models to failed
verifications. The technique proceeds by obtaining sample
input/output values from concrete models and then extrapo-
lating programs from the sample points. The synthesis aims
to produce code with assignments, branching structure, and
possibly recursive calls. It is the first to synthesize code that
creates and uses objects in dynamic data structures or ag-
gregate objects. A prototype of the language and synthesis
technique has been implemented.

Categories and Subject Descriptors D.1.2 [PROGRAM-
MING TECHNIQUES]: Automatic Programming

General Terms program synthesis, programming language
design, program verification

Keywords abstract specifications, concrete representations,
coupling invariants, preconditions, Jennisys, Dafny

0. Introduction
One important approach to ensuring program correctness is
to raise the level of abstraction provided by programming
languages. If a language lends itself to clean descriptions of
solutions in the problem domain, then a programmer may be
more likely to get programs correct. Two desiderata in this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

approach, which may seem to be at odds with each other,
are (D0) allowing higher-level descriptions of programs in
a general-purpose programming language and (D1) allow-
ing efficient run-time representations of programs [22]. In
this paper, we present a language framework that combines
these two. The language is called Jennisys, and because it al-
lows program designs to be recorded ahead of their concrete
implementations, the language slogan is “This is where pro-
grams begin”.

Most programming languages provide some delineation
between the public specification of a procedure, type, or
module and the private implementation thereof. In some
cases, a public specification consists of just a type signature;
in other cases, it may include a behavioral contract [5, 18].
Jennisys takes the delineation a step further, dividing every
program component (or class, if you will) into three parts,
which allows a separation between data-structure definitions
and code.

The first part of a Jennisys component is the public in-
terface (cf. Fig. 0, the interface declaration). It defines an
abstract model of the component, given in terms of vari-
ables whose types are often mathematical structures, like
sets and sequences. The public interface also defines the
component’s operations and the behavioral effects of these,
typically given in terms of simple code snippets that act on
the model variables. The model variables and the code act-
ing on these describe the component, but are not compiled
as part of the run-time manifestation of the program.

The second part describes the data structure used to rep-
resent the component at run time (cf. Fig. 1, the datamodel

declaration). More specifically, it declares concrete variables
(object fields, if you will) that are part of each instance of
the component, gives an account of which other compo-
nent instances are part of the representation (this is called
the frame), and specifies an invariant that both constrains
the concrete variables and frame and couples these with the
model variables in the public interface.

The third part of a Jennisys component is responsible for
the executable code that will implement the component op-
erations (e.g. code IntSet{}). The vision is for the language
to provide the programmer with a variety of ways to pro-
duce the code, including automatic code synthesis (which

411

interface IntSet {

var elems: set[int]

constructor Singleton(x: int)
elems := {x}

constructor Dupleton(x: int, y: int)
requires x 6= y

elems := {x y}

method Find(x: int) returns (ret: bool)
ret := x ∈ elems

}

Figure 0. A Jennisys public interface IntSet that abstractly
defines an integer set data structure.

datamodel IntSet {

var data: int
var left: IntSet
var right: IntSet

frame left * right

invariant
elems = {data} +

(left 6= null ? left.elems : {}) +

(right 6= null ? right.elems : {})

left 6= null =⇒
(∀ e • e ∈ left.elems =⇒ e < data)

right 6= null =⇒
(∀ e • e ∈ right.elems =⇒ data < e)

}

Figure 1. A concrete data structure, namely a binary tree
for the IntSet interface. Model variable elems is used to
describe the behavior of the operations, but is itself not
compiled into executable code.

is our focus in this paper), code-generation hints, program
sketches [28], and, as a last resort, old-fashioned manual
coding.

Jennisys is general purpose, addressing (D0). Its public
interfaces let programmers write clean descriptions whose
correctness can more easily be ascertained by human scrutiny.
The variety of ways to obtain code aims to speed up code
production and maintenance. The data-structure description
addresses (D1) by letting programmers use their insights
into defining good data structures.

Jennisys is still a prototype. In this paper, we focus on the
automatic code synthesis. In particular, we contribute a tech-
nique that from abstract variables, abstract code, concrete
variables, and a coupling invariant (in other words, from the
interface and datamodel of a component) synthesizes loop-
less structured programs, where each “if” branch contains

assignments to modifiable fields (one assignment per field)
and possibly some method calls. The synthesis technique is
most readily applicable to constructors, but its class of appli-
cations extends beyond that; for example, we show we can
synthesize code for some recursive methods for traversing or
computing some properties of complex data structures.

In a nutshell, our technique uses a program verifier to ob-
tain sample input/output values that satisfy the given speci-
fications. The sample values are then extrapolated into code
for all input values. Frequently, the synthesized code will
contain necessary branching structure, will allocate new in-
stances of other components, and will call methods on those
components in order to change their state. As far as we know,
this is the first code synthesizer to reason about pointers to
objects, let alone synthesize code that allocates and uses ob-
jects in data structures.

1. Examples
In this section, we give examples that illustrate the use of
Jennisys and the code it synthesizes.

Figure 0 shows the public interface of a Jennisys compo-
nent that we will use as a running example, IntSet.0 Ab-
stractly, an IntSet is an integer set, which we define by
model variable elems. The constructors create a set of size 1
or 2, respectively, and method Find returns whether or not a
given integer is part of the set. An operation can define a pre-
condition (keyword requires), which obligates callers to in-
voke the operation only when the condition is met. The effect
of an operation is given by assignments (as in Fig. 0) or re-
lations (constraints) on the pre- and post-states (see Fig. 16).

A concrete data structure for IntSet is described us-
ing the datamodel declaration. It contains three kinds of
declarations—var, frame, and invariant—which we explain
next.

The variable declarations (e.g. var data: int) introduce
the familiar fields of a binary-tree node. Unlike the model
variables in the public interface, these concrete variables will
be present in the run-time representation of IntSet compo-
nents.

The frame declaration says that the memory locations
used to represent an IntSet include not just the IntSet ob-
ject itself, but also those memory locations that are used to
represent the IntSet components left and right. The star,
inspired by the notation of separation logic [21], says that
the sets of memory locations used by left and right are dis-
joint. The frame declaration is necessary for the verification
of candidate synthesized programs and tells the synthesis en-
gine which parts of the underlying state a method may mu-
tate.

0 In this paper, we sometimes stray from the concrete syntax of our Jennisys
prototype in order to make programs easier to read. Most notably, we
replace the ASCII syntax of some operators by common mathematical
notation. The actual Jennisys programs are available online in the Jennisys
distribution.

412

The invariant declaration defines a relation between the
model variables and the concrete variables, as in a coupling
invariant (aka an abstraction invariant or retrieve relation,
see, e.g., [1, 2, 14]). It also constrains the values of the
concrete representation, as in a class invariant [18].

From Figs. 0 and 1, Jennisys automatically synthesizes
code for the three operations. We give an excerpt of that
code in Fig. 2. The target language is Dafny [16], which
for us has the advantage that we can use the Dafny verifier
to double check the correctness of the synthesized code. We
also use Dafny during the synthesis itself. Dafny compiles to
the .NET virtual machine, so there is in principle no reason
why Jennisys could not compile to any Java-like language.

Some interesting things to note about the synthesized
code are the if statements in Dupleton and Find. Also,
note the dynamic allocation of objects on line 50, the call
of another constructor on line 51 (to respect the abstraction
boundary of the non-this object gensym85), the use of ghost
variables on lines 2, 46, 53, 56, . . . (these are needed only
during verification, not at run time), and the recursive calls
to Find on lines 83, 84, 88, and 92.

Note, although the operations in the public IntSet inter-
face in Fig. 0 can only construct sets with cardinality 1 or
2 (because our Jennisys prototype is currently not up to the
task of synthesizing code for a Union method), the data rep-
resentation we define in Fig. 1 allows arbitrarily large sets.
Indeed, the synthesized code for Find will work for any con-
crete data structure satisfying the invariant.

2. Dynamic Synthesis
This section focuses on the algorithm for program synthe-
sis behind Jennisys. We call this algorithm dynamic synthe-
sis, because it combines ideas from both concrete and sym-
bolic execution, in a way that is similar to what concolic test-
ing [6, 25, 31] does. In contrast to concolic testing, however,
declarative specifications are being executed, rather than tra-
ditional imperative code.

We first describe how Dafny [16], a program verifier for
functional correctness, can be used to execute first-order
declarative specifications of Jennisys. Dafny is implemented
on top of Boogie [4], an intermediate verification language,
which via an SMT solver, namely Z3 [7], attempts to auto-
matically discharge verification conditions.

Executing a specification gives only a single valid in-
put/output pair, that is, a pair of concrete instances of the
program heap (one for pre-state and one for post-state) for
which the specification holds. In order to synthesize a pro-
gram that is correct for all possible cases (i.e. all possible
pre-states) this is clearly not enough. To this end, we next
present an algorithm for systematic state exploration and
program extrapolation from concrete instances. Since the
problem of synthesis is undecidable, the algorithm does not
always succeed, but when it does, the synthesized program is
provably correct (it can be automatically verified against the

1 class IntSet {

2 ghost var Repr: set<object>;
3 ghost var elems: set<int>;
4 var data: int, left: IntSet, right: IntSet;

27 function Valid(): bool

(omitted, is defined to return true when the invari-
ants of all reachable objects hold)

43 method Dupleton(x: int, y: int)
44 modifies this;
45 requires x 6= y;

46 ensures Valid() ∧ fresh(Repr - {this});
47 ensures elems = {x, y};

48 {

49 if (x < y) {

50 var gensym85 := new IntSet;

51 gensym85.Singleton(y);

52 this.data := x;

53 this.elems := {x, y};

54 this.left := null;
55 this.right := gensym85;

56 this.Repr := {this} + this.right.Repr;
57 assert gensym85.Valid();

58 } else {

(the other case is symmetric)

74 } }

75

76 method Find(x: int) returns (ret: bool)
77 requires Valid();

78 ensures Valid() ∧ fresh(Repr - old(Repr));
79 ensures ret = (x ∈ elems);

80 decreases Repr;

81 {

82 if (this.left 6= null ∧ this.right 6= null) {

83 var x_27 := this.left.Find(x);
84 var x_28 := this.right.Find(x);
85 ret := (x = this.data ∨ x_27) ∨ x_28;

86 } else {

87 if (this.left 6= null) {

88 var x_29 := this.left.Find(x);
89 ret := x = this.data ∨ x_29;

90 } else {

91 if (this.right 6= null) {

92 var x_30 := this.right.Find(x);
93 ret := x = this.data ∨ x_30;

94 } else {

95 ret := x = this.data;
96 } } } }

120 }

Figure 2. Excerpts of the Dafny code that Jennisys synthe-
sizes for the IntSet example. For brevity, the figure com-
bines some lines. Dafny’s ghost variables are not present
during the run-time execution of Dafny programs, but are
needed to verify the correctness of the synthesized program.

413

Figure 3. Architecture of the Jennisys tool. The Jennisys synthesizer relies on Dafny, a program verifier for functional
correctness implemented on top of Boogie/Z3, to (1) execute Jennisys specifications (i.e., obtain concrete program heaps that
satisfy such a specification), and (2) verify the correctness of programs extrapolated from those concrete heaps. This process is
done iteratively until a correct program is synthesized or the search heuristic terminates.

original specification using Dafny). The overall architecture
of the Jennisys tool is depicted in Fig. 3.

2.1 Concrete Specification Execution with Dafny
By “executing a method specification” we mean “finding
arbitrary pre- and post-states that satisfy that specifica-
tion”1. Dafny, even though designed for program verifi-
cation, is suitable for this task. The basic idea is to tell
Dafny to assume (using the assume keyword) the pre-
condition, the post-condition, and all the invariants, then
ask it to derive false from there (as in Fig. 4, which shows a
Dafny code snipped used to execute the specification of the
IntSet.Dupleton method). If Dafny succeeds, the pre- and
post-conditions are mutually inconsistent, so any attempt
to synthesize code for such a specification would be futile.
Otherwise, Dafny returns a counterexample where all the
assumed constraints hold is returned, so concrete values for
the pre- and post-states can be directly extracted from it.

2.2 Symbolic and Concrete Execution Combined
Assigning concrete values (constants) obtained by execut-
ing a specification to output variables is unlikely to result
in a program that is correct for inputs other than the one
discovered by the execution of that specification. The goal
is, therefore, to try and generalize from a concrete instance
and find symbolic assignments for output variables. Further-
more, even though more general than constants, such sym-
bolic assignments might be correct only for certain program
scenarios represented by the concrete instance used. When
that is the case, a logical condition (guard) must be inferred
to characterize those particular scenarios.

To solve the problem of finding a guard and a set of sym-
bolic assignments, the specification is first partially eval-
uated with respect to the previously obtained concrete in-
stance. This process yields a specification that is simpler and
more specific to the current instance. This simplified speci-
fication is then symbolically executed to arrive at a set of
symbolic expressions that can be used, depending on the
type, as potential guards or variable assignments.

1 Note that this is slightly different from some previous work where exe-
cuting specifications is part of the runtime system (e.g. [19, 23]). In those
systems, the pre-state is always explicitly known (it is the state of the run-
ning program before the specification is executed), so the goal there is to
find a valid post-state for a given pre-state.

class IntSet {

ghost var elems: set<int>;
var data: int;
var left: SetNode, right: SetNode;

function Valid(): bool {

-- all invariants inlined

}

method Dupleton() modifies this; {

var x: int, y: int;
assume a 6= b ∧ elems = {a, b};

assume Valid();

assert false;
}

}

Figure 4. Translation of IntSet.Dupleton into Dafny for
specification execution. Since Jennisys and Dafny share the
same language (modulo the exact syntax), this translation is
fairly straightforward.

If it can be verified that the chosen symbolic assignments
are correct given the inferred guard, one branch of the tar-
get program is successfully synthesized. To discover the rest
of the program, a new program specification is created by
adding the negation of the inferred guard as an additional
pre-condition. The synthesis process is then recursively re-
peated for the new specification to discover the ‘else’ coun-
terpart of the previously synthesized branch. This process
allows for synthesis of programs in the form of an arbitrarily
long if-then-elseif-then-elseif-...-else structure.

The question of termination immediately comes to mind;
we discuss this question in Sec. 3.6.

3. Synthesis Algorithm in Depth
3.1 Partial Specification Evaluation
Let us assume throughout this section that the initial exe-
cution of the specification of Dupleton yielded the instance
shown in Fig. 5(a).

A method specification can be unfolded for a given
concrete instance by means of inlining invariants of every

414

this x = 1
y = -2

(a) Dupleton

this x = 0
ret = false

(b) Find

Figure 5. Concrete instances automatically generated for
methods Dupleton and Find.

heap object in that instance. Unfolding the specification of
Dupleton for the instance from Fig. 5(a) gives:

x 6= y ∧ n1.elems = {x y}

n1.elems = {n1.data} +

(n1.left 6= null ? n1.left.elems : {}) +

(n1.right 6= null ? n1.right.elems : {})

n1.left 6= null =⇒
(∀ e • e in n1.left.elems =⇒ e < n1.data)

n1.right 6= null =⇒
(∀ e • e in n1.right.elems =⇒ n1.data < e)

n2.elems = {n2.data} +

(n2.left 6= null ? n2.left.elems : {}) +

(n2.right 6= null ? n2.right.elems : {})

n2.left 6= null =⇒
(∀ e • e in n2.left.elems =⇒ e < n2.data)

n2.right 6= null
(∀ e • e in n2.right.elems =⇒ n2.data < e)

This expression as a whole must evaluate to true, because
the instance was generated so that the specification holds
for it. The insight is, however, that some subexpressions
of the specification need not be relevant for the particular
instance at hand (e.g., a consequent of an implication whose
antecedent is false). For example, in this concrete instance,
n1.right, n2.left, and n2.right are all null, so with that
in mind, the previous constraint can easily be simplified to
arrive at what we will refer to as a heap expression:

x 6= y ∧ n1.elems = {x y}

n1.elems = {n1.data} + n1.left.elems

∀ e • e in n1.left.elems =⇒ e < n1.data

n2.elems = {n2.data}

We call this notion of simplification partial evaluation and
define it formally in Fig. 62. The basic idea is to drop all
disjunction terms that when fully evaluated (using the eval3

function) give false, since they are likely to be irrelevant for
the current instance.

The apply function is used to reconstruct symbolic ex-
pressions along the way. Its significance is that it additionally

2 For brevity, the instance parameter is not explicitly used in the definition
in Fig. 6; it is instead assumed to be the “current” instance.
3 The eval function, given a concrete instance evaluates an expression to a
constant. This is a well-known notion of evaluation, so we do not give a
formal definition here.

performs some well-known simplifications. Besides short-
circuiting boolean expressions, it implements several rules
specifically designed for the task of synthesis. The most in-
teresting example would be the simplification rules for op-
erations over sequences, as depicted in Fig. 7; in particu-
lar, they enable decomposition of specifications involving
sequences into smaller bits which are often simpler to syn-
thesize code from.

3.2 Symbolic Specification Execution
After obtaining a heap expression for the current instance
(by computing E(e), where e is the unfolded version of the
original specification), a database of premises is created.
All premises are boolean expressions, e.g., a = 5 or a > b,
but not a + b. The initial set of premises includes all the
conjuncts of the heap expression:

x 6= y;

n1.elems = {x y};

n1.elems = {n1.data} + n1.left.elems;

∀ e • e in n1.left.elems =⇒ e < n1.data;

n2.elems = {n2.data};

as well as v = eval(v) mappings for all variables:

this = n1;

x = 1;

y = -2;

n1.data = 1; n1.left = n2; n1.right = null
n2.data = -2; n2.left = null; n2.right = null

Using the inference rules defined in Fig. 8, new premises
are derived from existing ones and are added to the database.
This process is repeated until either a fixpoint or a predefined
maximum number of iterations is reached.

The main purpose of the inference rules from Fig. 8
is to decompose and simplify expressions over the built-
in data structures. For example, from a specification like
x ∈ e1 + e2, and a concrete instance in which x is not in
the sequence e2, x ∈ e1 can be safely derived. These rules
derive expressions specific to the current instance, and thus
help infer appropriate guards and symbolic assignments.
Some rules are independent of the concrete instance, e.g.,
x ∈ [e0, e1, · · · , en−1] ` x ∈ [e0] + [e1, · · · , en−1];
their purpose is mainly to enable rules of the previous kind
to get instantiated more often.

3.3 Choosing Correct Assignments for Output
Variables

At the end of the previous step, the database might (and typ-
ically does) contain multiple assignments for each variable.
Jennisys automatically rules some of them out, and uses a
heuristic to rank the remaining ones. In order for an assign-
ment to be considered valid, its right hand side must contain
only references to either pre-state or unmodifiable variables.
Between the valid assignments, Jennisys prefers those that
contain symbolic, rather than constant values.

415

E : Expr → Expr

rewriting rules

E(Const) ≡ Const
E(V ar) ≡ V ar
E(|e|) ≡ apply(||, E(e))
E([e0, e1, . . . , en−1]) ≡ List.map E [e0, e1, . . . , en−1]
E({e0, e1, . . . , en−1}) ≡ Set.map E {e0, e1, . . . , en−1}
E(lst[idx]) ≡ apply([], E(lst), E(idx))
E(e1 ρ e2) ≡ apply(ρ, E(e1), E(e2))

ρ − relational operator: =, 6=, <, ≤, >, ≥, ∈, /∈
E(e1 α e2) ≡ apply(α, E(e1), E(e2))

α − arithmetic operator: +, −, ∗, /, %
E(∀v • e) ≡ ∀v • e

simplification of logic expressions

E(c ? t : e) ≡ if eval(c) then E(t) else E(e)
E(e1 ∧ e2) ≡ apply(∧, E(e1), E(e2))
E(e1 ∨ e2) ≡ match eval(e1), eval(e2) with

| true, true→ apply(∨, E(e1), E(e2))
| true, false→ E(e1)
| false, true→ E(e2)
| false, false→ False

E(e1 =⇒ e2) ≡ E(¬e1 ∨ e2)
E(e1 ⇐⇒ e2) ≡ E((e1 ∧ e2) ∨ (¬e1 ∧ ¬e2))
E(¬e) ≡ apply(¬, E(e))

helper functions:
eval : Expr → Const – evaluates an expression to a constant wrt the current instance
apply : Op→ Expr list→ Expr – applies a given operator to given operands

Figure 6. Partial expression evaluation function (E): partially evaluates a given expression with respect to a concrete instance,
making it simpler and more specific to that instance.

apply : Op→ Expr list→ Expr

Simplifications for the || operator

apply(||, l1 + l2) ≡ apply(||, l1) + apply(||, l2)
apply(||, [e0, . . . , en−1]) ≡ n

Simplifications for the [] operator

apply([], [e0, . . . , ei, . . . , en−1], i) ≡ ei
apply([], [e0, . . . , ek−1] + l, i) ≡ if i < k then ei else apply([], l, i− k)

Figure 7. Simplifications of the sequence length and sequence select expressions performed by the apply function.

416

inference rules for ∈

x ∈ [] ` False (1)

x ∈ [e] ` x = e (2)

x ∈ [e0, e1, . . . , en−1] ` x ∈ [e0] + [e1, . . . , en−1] (3)

x ∈ {} ` False (4)

x ∈ {e} ` x = e (5)

x ∈ {e0, e1, . . . , en−1} ` x ∈ {e0}+ {e1, . . . , en−1} (6)

x ∈ e1 + e2
when eval(x ∈ e1) ∧ eval(x /∈ e2) ` x ∈ e1 (7)

when eval(x /∈ e1) ∧ eval(x ∈ e2) ` x ∈ e2 (8)

else ` x ∈ e1 ∨ x ∈ e2 (9)

inference rules for ∀

∀x ∈ [e0, . . . , en−1] • p ` p[x e0] ∧ . . . ∧ p[x en−1] (10)

∀x ∈ {e0, . . . , en−1} • p ` p[x e0] ∧ . . . ∧ p[x en−1] (11)

∀x ∈ e1 + e2 • p ` (∀x ∈ e1 • p) ∧ (∀x ∈ e2 • p) (12)

Figure 8. Inference rules for symbolic execution.

From the initial database for the Dupleton example, just
by applying transitivity of equality, the following candidate
solution is quickly discovered (other assignments exists in
the database, but they all contain constant values):

n1.elems := {x y}; n2.elems := {y};

n1.data := x; n2.data := y;

n1.left := n2; n2.left := null;
n1.right := null; n2.right := null;

As expected, this solution does not verify against the
original specification of the Dupleton method. Knowing the
properties of binary search trees, it is easy for us to con-
clude that the solution we just discovered is valid only for
cases where y < x holds. In the next subsection we show
how, when needed, Jennisys automatically infers such log-
ical conditions (guards).

When no guard is needed (i.e., the candidate solution
verifies at this point), the solution is simply returned to
the top-level synthesis function (see Sec. 3.5) where the
algorithm finishes, since the last ‘else’ branch of the outer
if-then-elif-...-else structure has just been found.

3.4 Inference of Guards
The main insight for successful guard inference is that an
appropriate guard is likely to be a logical property of the
current instance. Therefore, a guard is likely to consist of
one or more premises from the database.

Going back to the example, the y < x condition was in-
deed derived during the execution of the fixpoint algorithm.
Namely, from

n1.left = n2

n2.elems = n2

∀ e • e in n1.left.elems =⇒ e < n1.data

just by applying transitivity of equality the following premise
is derived:

∀ e in {n2.data} • e < n1.data

Applying rule 11 leads to n2.data < n1.data, from which
y < x immediately follows (since both n2.data = y and
n1.data = x are already in the database).

Jennisys selects a candidate guard by going through the
database and looking for expressions that involve only un-
modifiable variables and constants (expressions without con-
stants are again ranked higher). When multiple such expres-
sions exist, a conjunction of all of them is used first. If a can-
didate solution verifies under the assumption of a selected
guard, the guard is minimized by iteratively trying to remove
one clause at a time. For example, during the synthesis of
the Dupleton method, x 6= y ∧ y < x was selected as a guard
first, and was next minimized to y < x.

3.5 Top-level Algorithm
The top-level synthesis function, synth, is given in Fig. 9. At
the very beginning (line 2), it invokes synth_branch to find
a solution for the current instance only (exactly by following
the procedure described so far). If no verified solution is
found (line 4), Jennisys gives up.

If both guard and a solution were found (line 6), the
guard is negated and appended to the list of pre-conditions
to ensure that all subsequent concrete instances obtained by
executing the specification fall outside this of branch. The
whole process is then repeated to find a solution for the else
branch.

Finally, if a solution was found for which a guard was not
needed (line 5), a solution for the entire program is discov-
ered (not just the current instance!). That is true because a

417

solution is just proven unconditionally correct for the portion
of the program space not covered by the previously synthe-
sized branches. This solution represents the last else branch
of the if-then-elif-...-else structure that our approach synthe-
sizes.

0 let Solution = FlatSol | IfThenElse(Guard, FlatSol, Solution)
1 let rec synth (m: Method): Solution =
2 let guardOpt,flatSolOpt = synth_branch m
3 match flatSolOpt, guardOpt with
4 | None, _ -> None
5 | Some(flatSol), None -> Some(flatSol)
6 | Some(flatSol), Some(guard) ->
7 match synth (AddPrecondition m (not guard)) with
8 | None -> None
9 | Some(solElse) -> Some(IfThenElse(guard, flatSol, solElse))

Figure 9. Top level algorithm in pseudo F#

3.6 Termination
The synthesis algorithm terminates when one of the follow-
ing conditions is met: (0) a candidate solution is found and it
verifies without needing a guard (synthesis succeeds), (1) a
candidate solution is found, but it doesn’t verify and a guard
cannot be inferred (synthesis fails), or (2) no candidate solu-
tion is found (synthesis fails).

An important question is whether the algorithm is guar-
anteed to always terminate. The only way for the synth
function not to terminate is if it is possible to forever keep
generating new concrete instances and each time finding a
guarded solution. The way we generate new instances guar-
antees that at each step the remainder of the search space
is getting smaller, because every new instance is guaran-
teed to be outside of the previously discovered classes of
programs (characterized by previously discovered guards).
It can happen, however, that at each step the inferred guard
is over-constrained (e.g., it does not allow any instance other
than the current one). In that case, if the search space is un-
bounded (that is, there are infinitely many different instances
for the program under analysis), the algorithm potentially
never terminates. To mitigate this, Jennisys always prefers
solutions and guards with no constants so that at every step
the remainder of the search space is shrunk as much as pos-
sible. In practice, this means that the algorithm is likely to
either terminate with a solution or fail quickly.

4. Synthesizing Recursive Methods
The synthesis algorithm described so far was designed to
support constructors in the form of a single (but of arbi-
trary length) if-then-elseif-...-else structure, where the only
allowed statements are assignments to output variables. In
this section, we show how we extended the algorithm to
allow method calls (including recursion) in the assignment
statements. Allowing recursion somewhat makes up for the
lack of looping constructs.

Two modifications to the synthesis algorithm are needed:
(0) after building the initial set of premises, parameter-

ized expressions corresponding to method specifications are
added to the database; and (1) the inference engine for sym-
bolic execution is modified so that it allows matching with
unification.

Allowing parameterized expressions means allowing ex-
pressions to have placeholders (or variables, if you will),
which can be substituted by any other expressions of the
same type. Concretely, expressions corresponding to method
specifications will have such placeholders for the method pa-
rameters and the method receiver object. For example, such
an expression for the IntSet.Find method would look like:

$this.Find($x) = $x ∈ $this.elems (0)

To be able to instantiate inference rules against param-
eterized expression, a form of unification is needed. In our
prototype implementation, we used a simple syntactic unifi-
cation algorithm, which currently enables us to synthesize
only read-only methods (such as IntSet.Find). Replacing
this algorithm with a suitable form of semantic unification
would potentially enable synthesis of more complex recur-
sive methods (such as binary search tree insertion).

To illustrate this, consider the IntSet.Find method. Let
us assume that after its specification is executed for the
first time, the instance from Fig. 5(b) is discovered. The
initial set of premises looks almost the same as before (since
the instance is almost the same), with a difference of the
first line (the pre-condition from the previous example) be-
ing replaced with the post-condition of the Find method
(ret = x ∈ this.elems) and a parameterized specification
for the Find method. The derivation then goes as follows4:

ret = x ∈ this.elems

→ ret = x ∈ {this.data} + this.left.elems (1)

→ ret = x ∈ {this.data} ∨ x ∈ this.left.elems (2)

→ ret = (x = this.data) ∨ x ∈ this.left.elems (3)

→ ret = (x = this.data) ∨ this.left.Find(x) (4)

Equations 2 and 3 are derived directly by applying rules
9 and 5 (from Fig. 8) respectively. Equation 4 is next de-
rived by matching up x ∈ this.left.elems (from equation 3)
and $x ∈ $this.elems (from premise 0, i.e., the right-hand
side of the parameterized specification of the Find method).
To establish that match, the following two unifications are
needed: $this this.left and $x x. Finally, with
those two unifications and premise 0, x ∈ this.left.elems

can be replaced with this.left.Find(x), which directly de-
rives equation 4.

The remainder of the process stays the same. The guard
for this instance (this.left 6= null) is easily inferred (note
that it is okay now to use this.left in the guard, because

4 Note that the derivation would be slightly different if, for example, in the
concrete instance it happens that the set contains the input value x. In that
case, at the second step either rule 7 or 8 would be instantiated instead of
rule 9, meaning that the disjunction would be simplified so that only one
side remains, depending on where the value x is actually found.

418

this is unmodifiable in this case) and the process continues
the same way to synthesize the rest of the program. The final
program is shown in Fig. 2.

5. Boilerplate Code to Aid Verification
As noted earlier, our synthesis algorithm requires a fully au-
tomated program verifier. The algorithm described in Sec. 3
and 4, however, is verifier agnostic — any automated tool for
functional program verification (capable of generating con-
crete counterexamples) can be used.

Full functional verification of object-oriented programs
with pointers, memory allocation, and recursive calls is not
an easy task, and, in general, cannot be done automatically.
Jennisys uses the Dafny program verifier, which is fully au-
tomated, but for successful verification (of a program al-
ready correct) it often requires some extra input from the
user (in the form of extra code or constraints, but not inter-
active sessions during the verification process). Luckily, cer-
tain Dafny specification idioms are known to be helpful in
such cases. We describe here how Jennisys uses these speci-
fications idioms to aid verification.

A common idiom in Dafny is to have a ‘ghost’ field (typi-
cally named Repr) to hold the set of all the constituent objects
of this (i.e., the objects used to represent the data structure
of this, aka the footprint of this). In the IntSet example, the
Repr field holds all objects of the IntSet (that is, all nodes
reachable from the current node by following the left and
right pointers). The Repr field is then conveniently used to
specify common frame properties like: (0) all objects except
this that a constructor makes part of the footprint are newly
allocated — fresh(Repr-{this}) (e.g., Fig. 2, line 46), and
(1) all objects in a method’s post-state footprint that were
not in the method’s pre-state footprint are newly allocated —
fresh(Repr-old(Repr)) (e.g., Fig. 2, line 78). Furthermore,
we use the Repr field as a termination measure to prove ter-
mination of recursive methods; we use it idiomatically in the
form of decreases Repr (e.g., Fig. 2, line 80) since a recur-
sion is often invoked on an object with a smaller footprint.

Invariants are required to hold in the pre- and post-states
of each Jennisys method. To supply such information to
Dafny, a standard idiom is to encapsulate the definition of the
invariant in a function (in our case called Valid), and then as-
sert that it holds in both pre- and postcondition (e.g., Fig. 2,
lines 77 and 78). Generated from the Jennisys component
specification, the Valid function says that the representation
and coupling invariants defined in the Jennisys model hold,
that Repr contains all reachable objects, and that these reach-
able objects are themselves valid (by the same definition).
Since this is a recursive definition, Jennisys can be config-
ured to unroll it a given number of times, or to generate a
recursive Dafny function (using the decreases Repr trick to
prove its termination), or to do both (which, in our experi-
ence, is often useful). For an example, see how the Valid

function is generated for the singly-list example (Fig. 13).

6. Experiments and Evaluation
To evaluate our synthesis algorithm, we show that Jen-
nisys can successfully and reasonably quickly synthesize
constructors for several complex data structures, as well as
some read-only recursive methods, solely from abstract first-
order specifications. To the best of our knowledge, no other
approach generates code with such dynamic features from
declarative specifications.

We wrote abstract specifications in Jennisys for a num-
ber of constructors and methods for the following data
structures: binary search tree (IntSet), binary heap (BHeap),
singly-linked list (List), and doubly-linked list (DList). We
also specified several simple mathematical operations to
show how Jennisys is capable of handling convoluted declar-
ative specifications. Jennisys programs for these experiments
are given in Figs. 0, 10, 12, 14, and 16 respectively, and cor-
responding synthesized programs are given in Figs. 2, 11,
13, 15, and 17.

Table 0 shows the results of the experiments. For each
program, we show whether it is a constructor or a method
(type), how many branches it has (#branches), how many
times the verifier was invoked (#Dafny), and the total syn-
thesis time in seconds (time). The #Dafny column is the to-
tal number of times Dafny was run for all different purposes,
including executing a specification, verifying a synthesized
program, various auxiliary verification tasks (e.g., during the
minimization of guards), etc. All experiments were done on
an Intel R© CoreTM2 Duo CPU @ 2.40GHz computer, with
4GB of RAM, running 32-bit Windows 7.

Most of the programs were successfully synthesized
within 25 seconds. Some of the programs, whose solutions
required 4 branches, had to run the program verifier up to 23
times, and therefore the entire synthesis process took longer,
up to 65 seconds.

Jennisys was able to handle the full declarativeness of the
specifications we wrote. For example, the specification for
List.Size (Fig. 12) is simply the length of the abstract list
field used to model the contents of this data structure. Other
than the coupling invariant between the abstract and concrete
state (best programming practices would recommend this
invariant to be written anyway), no other hints about the
program structure had to be given. The synthesized code is a
recursive method (Fig. 13).

Another example of Jennisys being able to handle declar-
ative specifications are the Min methods in the Math compo-
nent (Fig. 16). The specification of Min2 (minimum of two
integers) is written in a direct, almost imperative way, using
two implications which could be translated to an imperative
language based on syntactic rules only. Writing a specifi-
cation for the Min4 method (minimum of four) in the same
style, however, would be much less convenient, and would
require explicit enumeration of possible orderings between
the four input arguments. Instead, we wrote it succinctly in a
more declarative fashion, simply saying that the result must

419

be equal to one of the four inputs, and that it must be less
than or equal to each one of them. Synthesizing code from
such a specification becomes much harder and an attempt to
translate it based on syntactic rules would likely fail.

Note how the IntSet and BHeap examples demonstrate a
key feature of a programming language supported by synthe-
sis. The data model for IntSet in Fig. 1 says that the concrete
data structure should be a binary search tree. Suppose the
IntSet developer later decides that a binary-heap representa-
tion would be a better choice. This change is accomplished
by simply replacing the invariant with the one in Fig. 10.
The necessary code changes are left for Jennisys to take care
of; in fact, Jennisys will then synthesize the code shown in
Fig. 11.

Currently, Jennisys can synthesize only constructors that
create objects of a fixed (known in advance) size. In other
words, our algorithm can, for example, synthesize code that
constructs a binary heap of 2 objects, or 3 objects, but not
of all objects in a given list (because such an operation
would require a loop). On the other hand, for a constructor
with a fixed number of input parameters, Jennisys can au-
tomatically partition the input space (which is possibly infi-
nite) into a finite number of parts, for each part synthesizing
straight-line code that implements the constructor for that
part of the input space.

7. Related Work
The idea of automatic code generation dates back to the
first Autocoder [8] systems from the 1950s which offered an
automatic translation from a high-level symbolic language
into actual (machine-level) object code. Soon thereafter, the
goal of automatic programming, i.e., automatic synthesis of
programs from even higher-level specifications, was born
and has been a dream for more than four decades. The
idea that software engineering would be a better place if
programmers could spend their time editing specifications,
rather than trying to maintain optimized programs, is argued
convincingly in a paper that tried to predict the future [3].

Pioneering efforts in the synthesis area around 1970 used
theorem provers to verify the existence of an output for ev-
ery input and then synthesized executable programs from the
ingredients of these proofs [9, 17]. More encompassing de-
velopment systems with synthesis included the 1970s PSI
program synthesis system [10] and the 1980s Programmer’s
Apprentice project [22]. These ambitious systems tried to
aid programmers by engaging in a dialog about the program
to be developed, offering advice, keeping track of details,
and synthesizing code. The systems made use of a signifi-
cant knowledge base of the domains and template scenarios
(so-called clichés) of the programs to be developed, and PSI
also included a major natural-language component. In com-
parison, the abstract models one can define in Jennisys look
much more like programs.

type #branches #Dafny t (s)

Binary Search Tree (see Figs. 0, 1 and 2)
IntSet.Singleton constr 1 2 5.4
IntSet.Dupleton constr 2 5 15.5
IntSet.Find method 4 17 64.8

Binary Heap (see Figs. 10 and 11)
BHeap.Singleton constr 1 2 5.2
BHeap.Dupleton constr 2 5 19.3
BHeap.Tripleton constr 3 13 61.6
BHeap.Find method 3 17 51.9

Singly-Linked List (see Figs. 12 and 13)
List.Singleton constr 1 2 4.9
List.Dupleton constr 1 2 5.2
List.Elems method 2 6 14.6
List.Get method 3 10 23.6
List.Find method 2 7 16.8
List.Size method 2 6 14.5

Doubly-Linked List (see Figs. 14 and 15)
DList.Singleton constr 1 2 4.8
DList.Dupleton constr 1 2 5.0
DList.Elems method 2 6 14.6
DList.Get method 3 10 23.5
DList.Find method 2 7 16.7
DList.Size method 2 6 14.4

Simple Math Functions (see Figs. 16 and 17)
Math.Min2 method 2 5 10.4
Math.Min3Sum method 3 13 26.4
Math.Min4 method 4 23 45.7
Math.Abs method 2 6 12.3

Table 0. Total synthesis time for each of the benchmarks (t),
number of branches in the synthesized program (#branches),
and the total number of times the verifier was invoked during
synthesis (#Dafny).

Developed in the late 1980s, the comprehensive KIDS
system provided a number of tools to support algorithm de-
sign and program transformations [27]. Besides major de-
sign decisions like semantically instantiating algorithm tem-
plates, the operations performed with KIDS are correctness-
preserving transformations—refinement steps—that can take
an algorithm description into an efficient program.

The Jennisys language is in many ways similar to one
step of a refinement process, where Jennisys offers syn-
thesis as one way of obtaining the refined program. Mon-
ahan has suggested defining components in three parts
(spec/abstr/impl) [20], which is also what Jennisys does.
Jennisys also shares in the vision of the language SETL [24],
which sought to provide ways to first describe programs
cleanly and then provide them with efficient data represen-
tations.

The construction of programs from examples is a power-
ful idea that has been explored from the 1970s. For example,
THESYS synthesis system generated LISP programs [30]
and QBE generated SQL queries [32]. Queries by Exam-

420

ple became a competitive feature of the Paradox relational
database system in the 1980s and 1990s, and techniques with
similar goals are being explored in the context of spread-
sheets today [12]. Jennisys also extrapolates programs from
examples, but the examples are not supplied by users but are
instead sample points from specifications supplied by users.
An advantage of having specifications is that one can then
verify the synthesized program, as opposed to just knowing
it is correct for the examples provided.

Interest in program synthesis seems to be on the rise
again, possibly in part due to the success of SMT solvers
in program verification and other applications. Kuncak et
al. are exploring features like generalized assignments in a
mainstream programming language, backed up by automatic
synthesis procedures [15]. The PINS [29] system takes a
program and a template and synthesizes an inversion of the
given program.

The technique of program sketching lets programmers
supply some ingredients of a program (i.e. a program sketch)
while a tool worries about the details to find a correct way
to combine the ingredients [28]. The notion of correctness is
taken from another correct (but presumably inefficient) im-
plementation of the same program, that has to be supplied
by the user. Storyboard programming [26] improves on that
idea by letting the users draw a series of input/output exam-
ples instead of providing an alternative correct implementa-
tion (it still requires a sketch, though). Similarly, instead of
a sketch, the Brahma tool [11, 13] takes a library of compo-
nents to be used as building blocks and either an explicit set
of input/output pairs or a specification describing the relation
between inputs and outputs, and synthesizes a loop-free pro-
gram (currently focused on bit-vector manipulations) from
the given components. In comparison, Jennisys does not re-
quire any input from the user other than a specification in the
form of pre- and post-conditions, it targets object-oriented
programs with dynamic allocation, but is unable to synthe-
size as wide a class of programs as the storyboard program-
ming.

The key advances in Jennisys are twofold. As for what
our synthesis algorithm achieves, it is able to generate pro-
grams that create dynamic data structures with pointers, and
it does this from an abstract (declarative) description of the
operations (in the form of pre- and post-conditions) and a
link to the concrete data structure. We have not seen this
kind of synthesis done before in a class-based setting. As for
how our synthesis algorithm makes a technical advance, it
uses a combination of symbolic execution and unification to
produce candidate program snippets, and then uses a detailed
counterexample-producing program verifier to determine the
applicable scope of each such snippet.

8. Conclusion
In this paper, we have contributed a language design that
promotes writing down an abstract model of each compo-

nent, gives control over the data structure used to implement
a component, and opens the door for synthesis techniques
to fill in the code. The paper also contributes a synthesis
technique for the language, which operates in the context of
an infinite state space, dynamic object allocation, and object
references. Finally, the paper contributes a prototype imple-
mentation of the language and synthesis technique. The pro-
totype is available as open source5, and experiments with it
are encouraging.

Still, much work lies ahead. We are interested in explor-
ing the limits of the approach to coding based solely on syn-
thesis from interface specifications and data-model invari-
ants. A next step in this direction is to extend our synthesis
engine to support mutating methods. Another is to explore
different domains of programs that can be automatically syn-
thesized purely from specifications. But, as we mentioned
in the introduction, our vision is also to blend the idealistic
synthesis-only approach with ways that give programmers
the ability to supply code-generation hints, like in program
sketching [28].

Acknowledgments
We would like to thank the various referees for their thought-
ful comments on drafts of this paper.

References
[1] J.-R. Abrial. Modeling in Event-B: System and Software

Engineering. Cambridge University Press, 2010.

[2] R.-J. Back and J. von Wright. Refinement Calculus: A Sys-
tematic Introduction. Graduate Texts in Computer Science.
Springer, 1998.

[3] R. Balzer, T. E. Cheatham, Jr., and C. Green. Software tech-
nology in the 1990’s: Using a new paradigm. IEEE Computer,
16(11):39–45, 1983.

[4] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and
K. R. M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. In FMCO 2005, volume 4111 of
LNCS, pages 364–387. Springer, 2006.

[5] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML
tools and applications. J. STTT, 7(3):212–232, 2005.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: automatically generating inputs of death. In
ACM Conference on Computer and Communications Security,
pages 322–335, 2006.

[7] L. de Moura and N. Bjørner. Z3: An efficient SMT solver.
In TACAS 2008, volume 4963 of LNCS, pages 337–340.
Springer, 2008.

[8] R. Goldfinger. The ibm type 705 autocoder. In Papers pre-
sented at the February 7-9, 1956, joint ACM-AIEE-IRE west-
ern computer conference, AIEE-IRE ’56 (Western), pages 49–
51, New York, NY, USA, 1956. ACM. doi: 10.1145/1455410.

5 http://boogie.codeplex.com

421

1455427. URL http://doi.acm.org/10.1145/1455410.

1455427.

[9] C. Green. Application of theorem proving to problem solving.
In IJCAI 1969, pages 219–240. William Kaufmann, 1969.

[10] C. Green. The design of the PSI program synthesis system. In
ICSE, pages 4–18. IEEE Computer Society, 1976.

[11] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis
of loop-free programs. In PLDI, PLDI ’11, pages 62–73, New
York, NY, USA, 2011. ACM.

[12] W. R. Harris and S. Gulwani. Spreadsheet table transforma-
tions from examples. In PLDI 2011, pages 317–328. ACM,
2011.

[13] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-
guided component-based program synthesis. In ICSE, ICSE
’10, pages 215–224, New York, NY, USA, 2010. ACM.

[14] C. B. Jones. Systematic Software Development using VDM.
Series in Computer Science. Prentice-Hall International, sec-
ond edition, 1990.

[15] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete
functional synthesis. In PLDI 2010, pages 316–329. ACM,
2010.

[16] K. R. M. Leino. Dafny: An automatic program verifier for
functional correctness. In LPAR-16, volume 6355 of LNCS,
pages 348–370. Springer, 2010.

[17] Z. Manna and R. J. Waldinger. Towards automatic program
synthesis. Commun. ACM, 14(3):151–165, 1971.

[18] B. Meyer. Object-oriented Software Construction. Series in
Computer Science. Prentice-Hall International, 1988.

[19] A. Milicevic, D. Rayside, K. Yessenov, and D. Jackson. Uni-
fying execution of imperative and declarative code. In ICSE,
pages 511–520, 2011.

[20] R. Monahan. Data Refinement in Object-Oriented Verifica-
tion. PhD thesis, Dublin City University, 2010.

[21] J. C. Reynolds. Separation logic: A logic for shared mutable
data structures. In LICS 2002, pages 55–74. IEEE Computer
Society, 2002.

[22] C. Rich and R. C. Waters. The Programmer’s Apprentice: A
research overview. IEEE Computer, 21(11):10–25, 1988.

[23] H. Samimi, E. D. Aung, and T. D. Millstein. Falling back on
executable specifications. In ECOOP, pages 552–576, 2010.

[24] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schon-
berg. Programming with Sets: An Introduction to SETL. Texts
and Monographs in Computer Science. Springer, 1986.

[25] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. In ESEC/SIGSOFT FSE, pages 263–272,
2005.

[26] R. Singh and A. Solar-Lezama. Synthesizing data structure
manipulations from storyboards. In ESEC/FSE 2011, pages
289–299, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0443-6.

[27] D. R. Smith. KIDS: A semi-automatic program development
system. IEEE Transactions on Software Engineering, 16(9):
1024–1043, 1990.

[28] A. Solar-Lezama, L. Tancau, R. Bodík, S. Seshia, and
V. Saraswat. Combinatorial sketching for finite programs. In
ASPLOS 2006, pages 404–415. ACM, 2006.

[29] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S. Foster. Path-
based inductive synthesis for program inversion. In PLDI
2011, pages 492–503. ACM, 2011. ISBN 978-1-4503-0663-8.

[30] P. D. Summers. A methodology for LISP program construc-
tion from examples. J. ACM, 24(1):161–175, 1977.

[31] N. Williams, B. Marre, P. Mouy, and M. Roger. PathCrawler:
Automatic generation of path tests by combining static and
dynamic analysis. In EDCC, pages 281–292, 2005.

[32] M. M. Zloof. Query by example. In AFIPS National Com-
puter Conference 1975, pages 431–438. AFIPS Press, 1975.

422

A. Code Listings for the BHeap Example

// exactly the same as the interface for IntSet

interface BHeap {

var elems: set[int]

constructor Singleton(x: int)
elems := {x}

constructor Dupleton(a: int, b: int)
requires a 6= b

elems := {a b}

constructor Tripleton(x: int, y: int, z: int)
requires x 6= y ∧ y 6= z ∧ z 6= x

elems := {x y z}

method Find(n: int) returns (ret: bool)
ret := n ∈ elems

}

datamodel BHeap {

var data: int
var left: BHeap

var right: BHeap

frame
left * right

invariant
elems = {data} + (left 6= null ? left.elems : {})

+ (right 6= null ? right.elems : {})

left 6= null =⇒ ∀ e • e in left.elems =⇒ e < data

right 6= null =⇒ ∀ e • e in right.elems =⇒ e < data

left = null =⇒ right = null
left 6= null ∧ right = null =⇒ left.elems = {left.data}

}

Figure 10. Binary heap specified abstractly (declaratively)
in Jennisys. Note that the interface specification is exactly
the same as for the binary search tree (IntSet from Fig. 0);
only the datamodel is different to impose a different concrete
representation.

class BHeap {

ghost var Repr: set<object>;
ghost var elems: set<int>;

var data: int;
var left: BHeap;

var right: BHeap;

function Valid_repr(): bool
reads *;

{

this in Repr ∧
null 6∈ Repr ∧
(left 6= null =⇒ left in Repr ∧
left.Repr ≤ Repr ∧ this 6∈ left.Repr) ∧
(right 6= null =⇒ right in Repr ∧
right.Repr ≤ Repr ∧ this 6∈ right.Repr)

}

function Valid_self(): bool
reads *;

{

Valid_repr() ∧
(elems = ({data} +

(if left 6= null then left.elems else {})) +

(if right 6= null then right.elems else {})) ∧
(left 6= null =⇒ (∀ e • e in left.elems =⇒ e < data)) ∧
(right 6= null =⇒ (∀ e • e in right.elems =⇒ e < data))

}

function Valid(): bool
reads *;

decreases Repr;

{

this.Valid_self() ∧
(left 6= null =⇒ left.Valid()) ∧
(right 6= null =⇒ right.Valid()) ∧
(left 6= null =⇒ left.Valid_self()) ∧
(right 6= null =⇒ right.Valid_self()) ∧
(left 6= null ∧
left.left 6= null =⇒ left.left.Valid_self()) ∧

(left 6= null ∧
left.right 6= null =⇒ left.right.Valid_self()) ∧

(right 6= null ∧
right.left 6= null =⇒ right.left.Valid_self()) ∧

(right 6= null ∧
right.right 6= null =⇒ right.right.Valid_self())

}

423

method Singleton(x: int)
modifies this;
ensures fresh(Repr - {this});
ensures Valid();

ensures elems = {x};

{

this.data := x;

this.elems := {x};

this.left := null;
this.right := null;
// repr stuff

this.Repr := {this};
}

method Dupleton(a: int, b: int)
modifies this;
requires a 6= b;

ensures fresh(Repr - {this});
ensures Valid();

ensures elems = {a, b};

{

if (b < a) {

var gensym71 := new BHeap;

var gensym73 := new BHeap;

this.data := a;

this.elems := {b, a};

this.left := gensym73;

this.right := gensym71;

gensym71.data := b;

gensym71.elems := {b};

gensym71.left := null;
gensym71.right := null;
gensym73.data := b;

gensym73.elems := {b};

gensym73.left := null;
gensym73.right := null;
// repr stuff

gensym71.Repr := {gensym71};

gensym73.Repr := {gensym73};

this.Repr := ({this} + {gensym73}) + {gensym71};

} else {

var gensym71 := new BHeap;

var gensym73 := new BHeap;

this.data := b;

this.elems := {a, b};

this.left := gensym73;

this.right := gensym71;

gensym71.data := a;

gensym71.elems := {a};

gensym71.left := null;
gensym71.right := null;
gensym73.data := a;

gensym73.elems := {a};

gensym73.left := null;
gensym73.right := null;
// repr stuff

gensym71.Repr := {gensym71};

gensym73.Repr := {gensym73};

this.Repr := ({this} + {gensym73}) + {gensym71};
}}

method Tripleton(x: int, y: int, z: int)
modifies this;
requires x 6= y ∧ y 6= z ∧ z 6= x;

ensures fresh(Repr - {this});
ensures Valid();

ensures elems = {x, y, z};

{

if (z < y ∧ x < y) {

var gensym75 := new BHeap;

var gensym77 := new BHeap;

this.data := y;

this.elems := {x, z, y};

this.left := gensym77;

this.right := gensym75;

gensym75.data := x;

gensym75.elems := {x};

gensym75.left := null;
gensym75.right := null;
gensym77.data := z;

gensym77.elems := {z};

gensym77.left := null;
gensym77.right := null;
// repr stuff

gensym75.Repr := {gensym75};

gensym77.Repr := {gensym77};

this.Repr := ({this} + {gensym77}) + {gensym75};

} else {

if (x < z) {

var gensym75 := new BHeap;

var gensym77 := new BHeap;

this.data := z;

this.elems := {x, y, z};

this.left := gensym77;

this.right := gensym75;

gensym75.data := x;

gensym75.elems := {x};

gensym75.left := null;
gensym75.right := null;
gensym77.data := y;

gensym77.elems := {y};

gensym77.left := null;
gensym77.right := null;
// repr stuff

gensym75.Repr := {gensym75};

gensym77.Repr := {gensym77};

this.Repr := ({this} + {gensym77}) + {gensym75};

} else {

var gensym75 := new BHeap;

var gensym77 := new BHeap;

this.data := x;

this.elems := {z, y, x};

this.left := gensym77;

this.right := gensym75;

gensym75.data := y;

gensym75.elems := {y};

gensym75.left := null;
gensym75.right := null;
gensym77.data := z;

gensym77.elems := {z};

424

gensym77.left := null;
gensym77.right := null;
// repr stuff

gensym75.Repr := {gensym75};

gensym77.Repr := {gensym77};

this.Repr := ({this} + {gensym77}) + {gensym75};

}

}

}

method Find(n: int) returns (ret: bool)
requires Valid();

ensures fresh(Repr - old(Repr));
ensures Valid();

ensures ret = (n in elems);

decreases Repr;

{

if (this.left = null) {

ret := n = this.data;
} else {

if (this.right 6= null) {

var x_10 := this.left.Find(n);
var x_11 := this.right.Find(n);
ret := (n = this.data ∨ x_10) ∨ x_11;

} else {

var x_12 := this.left.Find(n);
ret := n = this.data ∨ x_12;

}

}

}

}

Figure 11. Imperative Dafny code that Jennisys synthesizes
for the abstract BHeap program from Fig. 10.

425

B. Code Listings for the List Example

interface List[T] {

var list: seq[T]

invariant
|list| > 0

constructor Singleton(t: T)

list := [t]

constructor Dupleton(p: T, q: T)

list := [p q]

method Elems() returns (ret: seq[T])
ret := list

method Get(idx: int) returns (ret: T)

requires 0 ≤ idx ∧ idx < |list|

ret := list[idx]

method Find(n: T) returns (ret: bool)
ret := n ∈ list

method Size() returns (ret: int)
ret := |list|

}

datamodel List[T] {

var data: T

var next: List[T]

frame next

invariant
next = null =⇒ list = [data]

next 6= null =⇒ list = [data] + next.list

}

Figure 12. Singly-linked list specified abstractly (declara-
tively) in Jennisys.

class List<T> {

ghost var Repr: set<object>;
ghost var list: seq<T>;

var data: T;

var next: List<T>;

function Valid_repr(): bool
reads *;

{

this in Repr ∧
null 6∈ Repr ∧
(next 6= null =⇒ next in Repr ∧
next.Repr ≤ Repr ∧ this 6∈ next.Repr)

}

function Valid_self(): bool
reads *;

{

Valid_repr() ∧
(next = null ⇐⇒ list = [data] ∧ list[0] = data) ∧
(next 6= null =⇒ list = [data] + next.list) ∧
(|list| > 0)

}

function Valid(): bool
reads *;

decreases Repr;

{

this.Valid_self() ∧
(next 6= null =⇒ next.Valid()) ∧
(next 6= null =⇒ next.Valid_self() ∧

next.next 6= null =⇒ next.next.Valid_self())

}

method Singleton(t: T)

modifies this;
ensures fresh(Repr - {this});
ensures Valid();

ensures list = [t];

{

this.data := t;

this.list := [t];

this.next := null;
// repr stuff

this.Repr := {this};
}

426

method Dupleton(p: T, q: T)

modifies this;
ensures fresh(Repr - {this});
ensures Valid();

ensures list = [p, q];

{

var gensym71 := new Node<T>;

gensym71.data := q;

gensym71.list := [q];

gensym71.next := null;
this.data := p;

this.list := [p, q];

this.next := gensym71;

// repr stuff

gensym71.Repr := {gensym71};

this.Repr := {this} + this.next.Repr;
}

method Elems() returns (ret: seq<T>)
requires Valid();

ensures fresh(Repr - old(Repr));
ensures Valid();

ensures ret = list;

decreases Repr;

{

if (this.next = null) {

ret := [this.data];
} else {

var x_7 := this.next.Elems();
ret := [this.data] + x_7;

}

}

method Get(idx: int) returns (ret: T)

requires Valid();

requires 0 ≤ idx;

requires idx < |list|;

ensures fresh(Repr - old(Repr));
ensures Valid();

ensures ret = list[idx];

decreases Repr;

{

if (this.next = null) {

ret := this.data;
} else {

if (idx = 0) {

ret := this.data;
} else {

var x_6 := this.next.Get(idx - 1);

ret := x_6;

}

}

}

method Find(n: T) returns (ret: bool)
requires Valid();

ensures fresh(Repr - old(Repr));
ensures Valid();

ensures ret = (n in list);
decreases Repr;

{

if (this.next = null) {

ret := n = this.data;
} else {

var x_5 := this.next.Find(n);
ret := n = this.data ∨ x_5;

}

}

method Size() returns (ret: int)
requires Valid();

ensures fresh(Repr - old(Repr));
ensures Valid();

ensures ret = |list|;

decreases Repr;

{

if (this.next = null) {

ret := 1;

} else {

var x_8 := this.next.Size();
ret := 1 + x_8;

}

}

}

Figure 13. Imperative Dafny code that Jennisys synthesizes
for the abstract List program from Fig. 12.

427

C. Code Listings for the DList Example

// exactly the same as the interface for List

interface DList[T] {

var list: seq[T]

invariant
|list| > 0

constructor Init(t: T)

list := [t]

constructor Double(p: T, q: T)

list := [p q]

method Elems() returns (ret: seq[T])
ret := list

method Get(idx: int) returns (ret: T)

requires 0 ≤ idx ∧ idx < |list|

ret := list[idx]

method Find(n: T) returns (ret: bool)
ret := n ∈ list

method Size() returns (ret: int)
ret := |list|

}

datamodel DList[T] {

var data: T

var next: DList[T]

var prev: DList[T]

frame
next

invariant
next = null =⇒ list = [data]

next 6= null =⇒ (list = [data] + next.list

∧ next.prev = this)
prev 6= null =⇒ prev.next = this

}

Figure 14. Doubly-linked list specified abstractly (declar-
atively) in Jennisys. Note that the interface specification is
exactly the same as for the singly-linked list (List from
Fig. 12); only the datamodel is different to impose a different
concrete representation.

class DList<T> {

ghost var Repr: set<object>;
ghost var list: seq<T>;

var data: T;

var next: DList<T>;

var prev: DList<T>;

function Valid_repr(): bool
reads *;

{

this in Repr ∧
null 6∈ Repr ∧
(next 6= null =⇒ next in Repr

∧ next.Repr ≤ Repr

∧ this 6∈ next.Repr)

}

function Valid_self(): bool
reads *;

{

Valid_repr() ∧
(next = null =⇒ (list = [data] ∧ list[0] = data)

∧ |list| = 1) ∧
(next 6= null =⇒ list = [data] + next.list

∧ next.prev = this) ∧
(prev 6= null =⇒ prev.next = this) ∧
(|list| > 0)

}

function Valid(): bool
reads *;

decreases Repr;

{

this.Valid_self() ∧
(next 6= null =⇒ next.Valid()) ∧
(next 6= null =⇒ next.Valid_self()) ∧
(next 6= null ∧
next.next 6= null =⇒ next.next.Valid_self())

}

method Singleton(t: T)

modifies this;
ensures fresh(Repr - {this});
ensures Valid();

ensures list = [t];

ensures list[0] = t;

ensures |list| = 1;

{

this.data := t;

this.list := [t];

this.next := null;
this.prev := null;
// repr stuff

this.Repr := {this};
}

428

method Double(p: T, q: T)

modifies this;
ensures fresh(Repr - {this});
ensures Valid();

ensures list = [p, q];

ensures list[0] = p;

ensures list[1] = q;

ensures |list| = 2;

{

var gensym71 := new DList<T>;

this.data := p;

this.list := [p, q];

this.next := gensym71;

this.prev := null;
gensym71.data := q;

gensym71.list := [q];

gensym71.next := null;
gensym71.prev := this;
// repr stuff

this.Repr := {this} + {gensym71};

gensym71.Repr := {gensym71};

}

method Elems() returns (ret: seq<T>)
{

// same as List.Elems

}

method Get(idx: int) returns (ret: T)

{

// same as List.Get

}

method Find(n: T) returns (ret: bool)
{

// same as List.Find

}

method Size() returns (ret: int)
{

// same as List.Size

}

}

Figure 15. Imperative Dafny code that Jennisys synthesizes
for the abstract DList program from Fig. 14.

429

D. Code Listings for the Math Example
interface Math {

method Min2(a: int, b: int) returns (ret: int)
ensures a < b =⇒ ret = a

ensures a ≥ b =⇒ ret = b

method Min3Sum(a: int, b: int, c: int)
returns (ret: int)

ensures ret ∈ {a+b a+c b+c}

ensures ∀ x • x ∈ {a+b a+c b+c} =⇒ ret ≤ x

method Min4(a: int, b: int, c: int, d: int)
returns (ret: int)

ensures ret ∈ {a b c d}

ensures ∀ x • x ∈ {a b c d} =⇒ ret ≤ x

method Abs(a: int) returns (ret: int)
ensures ret ∈ {a (-a)} ∧ ret ≥ 0

}

datamodel Math {}

Figure 16. Several math operations specified abstractly
(declaratively) in Jennisys.

class Math {

ghost var Repr: set<object>;

function Valid_repr(): bool reads *;

{

this in Repr ∧ null 6∈ Repr

}

function Valid_self(): bool reads *;

{

Valid_repr()

}

function Valid(): bool reads *;

{

this.Valid_self()
}

method Min2(a: int, b: int) returns (ret: int)
requires Valid();

ensures fresh(Repr - old(Repr));
ensures Valid();

ensures a < b =⇒ ret = a;

ensures a ≥ b =⇒ ret = b;

{

if (a < b) {

ret := a;

} else {

ret := b;

}

}

method Min3Sum(a: int, b: int, c: int)
returns (ret: int)

requires Valid();

ensures fresh(Repr - old(Repr));
ensures Valid();

ensures ret in {a+b, a+c, b+c};

ensures ret ≤ a+b ∧ ret ≤ a+c ∧ ret ≤ b+c;

{

if (a+b ≤ a+c ∧ a+b ≤ b+c) {

ret := a+b;

} else {

if (b+c ≤ a+b ∧ b+c ≤ a+c) {

ret := b+c;

} else {

ret := a+c;

}

}

}

method Min4(a: int, b: int, c: int, d: int)
returns (ret: int)

requires Valid();

ensures fresh(Repr - old(Repr));
ensures Valid();

ensures ret in {a, b, c, d};

ensures ret ≤ a ∧ ret ≤ b ∧ ret ≤ c ∧ ret ≤ d;

{

if ((a ≤ b ∧ a ≤ c) ∧ a ≤ d) {

ret := a;

} else {

if (d ≤ b ∧ d ≤ c) {

ret := d;

} else {

if (c ≤ b) {

ret := c;

} else {

ret := b;

}

}

}

}

method Abs(a: int) returns (ret: int)
requires Valid();

ensures fresh(Repr - old(Repr));
ensures Valid();

ensures ret in {a, -a} ∧ ret ≥ 0;

{

if (-a ≥ 0) {

ret := -a;

} else {

ret := a;

}

}

}

Figure 17. Imperative Dafny code that Jennisys synthesizes
for the abstract Math program from Fig. 16.

430

