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Abstract

Interactive digital matting, the process of extracting ee§wound object from an image based on
limited user input, is an important task in image and videibirggl From a computer vision perspective,
this task is extremely challenging because it is massivkjyosed — at each pixel we must estimate
the foreground and the background colors, as well as theyfoosed opacity (“alpha matte”) from a
single color measurement. Current approaches eitheiataste estimation to a small part of the image,
estimating foreground and background colors based on neaxbls where they are known, or perform
iterative nonlinear estimation by alternating foregrowam background color estimation with alpha
estimation.

In this paper we present a closed-form solution to naturagenmatting. We derive a cost function
from local smoothness assumptions on foreground and bagkdrcolors, and show that in the resulting
expression it is possible to analytically eliminate theeffnound and background colors to obtain a
guadratic cost function in alpha. This allows us to find thebglly optimal alpha matte by solving
a sparse linear system of equations. Furthermore, the czfose formula allows us to predict the
properties of the solution by analyzing the eigenvectora sparse matrix, closely related to matrices
used in spectral image segmentation algorithms. We showhigh quality mattes for natural images
may be obtained from a small amount of user input.

Keywords: Matting, Interactive Image Editing, Spectral Segmentation

I. INTRODUCTION

Natural image matting and compositing is of central impactain image and video editing.

Formally, image matting methods take as input an imAgehich is assumed to be a composite
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Fig. 1. (a) Animage with sparse constraints: white scriblielicate foreground, black scribbles indicate backgdoépplying
Bayesian matting to such sparse input produces a completatyeous matte (b). Foreground extraction algorithmeh ss
[11], [13] produce a hard segmentation (c). An automaticgéinerated trimap from a hard segmentation may miss finarfsat
(d). An accurate hand-drawn trimap (e) is required in thisectd produce a reasonable matte (f). (Images taken from [19]

of a foreground imagé" and a background imagB. The color of thei-th pixel is assumed to

be a linear combination of the corresponding foreground tzacckground colors,
I = i Fi + (1 — oy) By, 1)

whereq; is the pixel's foreground opacity. In natural image mattiafji quantities on the right
hand side of theompositing equatiofl) are unknown. Thus, for a 3 channel color image, at
each pixel there are 3 equations and 7 unknowns.

Obviously, this is a severely under-constrained problend aser interaction is required to
extract a good matte. Most recent methods expect the useovap atrimap as a starting point;
an example is shown in Figure 1(e). The trimap is a rough ¢bipyi hand-drawn) segmentation
of the image into three regions: foreground (shown in whitegckground (shown in black)
and unknown (shown in gray). Given the trimap, these methgdially solve for F', B,
and o simultaneously. This is typically done by iterative noelm optimization, alternating
the estimation ofF" and B with that of a. In practice, this means that for good results the
unknown regions in the trimap must be as small as possiblea Asnsequence, trimap-based
approaches typically experience difficulty handling immagéth a significant portion of mixed
pixels or when the foreground object has many holes [19]ubh<hallenging cases a great deal
of experience and user interaction may be necessary toraohst trimap that would yield a
good matte. Another problem with the trimap interface id tha user cannot directly influence
the matte in the most important part of the image: the mixeelpi

In this paper we present a new closed-form solution for ektrg the alpha matte from a

natural image. We derive a cost function from local smoossressumptions on foreground and
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background color$” and B, and show that in the resulting expression it is possibletdydically
eliminate F' and B, yielding a quadratic cost function in. The alpha matte produced by our
method is the global optimum of this cost function, which niegyobtained by solving a sparse
linear system. Since our approach computedirectly and without requiring reliable estimates
for F' and B, a modest amount of user input (such as a sparse set of gjhbloften sufficient
for extracting a high quality matte. Furthermore, our ctbfarm formulation enables one to
understand and predict the properties of the solution bynexag the eigenvectors of a sparse
matrix, closely related to matrices used in spectral imaggrentation algorithms. In addition
to providing a solid theoretical basis for our approach hsaicalysis can provide useful hints to

the user regarding where in the image scribbles should leegla

A. Previous work

Most existing methods for natural image matting requireitipeit image to be accompanied by
atrimap[1], [2], [5], [6], [14], [17], labeling each pixel as foregund, background, or unknown.
The goal of the method is to solve the compositing equatigrfdiithe unknown pixels. This
is typically done by exploiting some local regularity asgiions on/’ and B to predict their
values for each pixel in the unknown region. In the Corel Ke@at algorithm [2],F and B are
assumed to be smooth and the prediction is based on a wemdgeatje of known foreground and
background pixels (closer pixels receive higher weightym8 algorithms [6], [14] assume that
the local foreground and background come from a relativetyke color distribution. Perhaps
the most successful of these algorithms is the Bayesianngadtgorithm [6], where a mixture
of oriented Gaussians is used to learn the local distributiod theny, F', and B are estimated
as the most probable ones given that distribution. Such edstlwork well when the color
distributions of the foreground and the background do nefrlap, and the unknown region in
the trimap is small. As demonstrated in Figure 1(b) a spaeseokconstraints could lead to
a completely erroneous matte. In contrast, while our agpradso makes certain smoothness
assumptions regarding' and B, it does not involve estimating the values of these funation
until after the matte has been extracted.

The Poisson matting method [17], also expects a trimap dpés input, and computes the
alpha matte in the mixed region by solving a Poisson equatitinthe matte gradient field and

Dirichlet boundary conditions. In thglobal Poisson mattingnethod the matte gradient field is
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approximated a¥ I /(F — B) by taking the gradient of the compositing equation, and exrtiglg
the gradients inF" and B. The matte is then found by solving for a function whose grath
are as close as possible to the approximated matte gradataht ¥WheneverF' or B are not
sufficiently smooth inside the unknown region, the resgltmatte might not be correct, and
additional local manipulations may need to be applied adively to the matte gradient field in
order to obtain a satisfactory solution. This interactigBnement process is referred tolasal
Poisson mattingAs we shall see, our method makes weaker assumptions oretfaibr of F’
and B, which generally leads to more accurate mattes.

Recently, several successful approaches for extractiogegifound object from its background
have been proposed [3], [11], [13]. Both approaches trémsimnple user-specified constraints
(such as scribbles, or a bounding rectangle) into a min4@ilpm. Solving the min-cut problem
yields a hard binary segmentation, rather than a fractiai@ia matte (Figure 1(c)). The hard
segmentation could be transformed into a trimap by erodianhthis could still miss some fine
or fuzzy features (Figure 1(d)). Although Rother et al. [@8] perform border matting by fitting
a parametric alpha profile in a narrow strip around the hardntary, this is more akin to
feathering than to full alpha matting, since wide fuzzy oegi cannot be handled in this manner.

Our approach is closely related to the colorization methddewin et al. [10], and the random
walk alpha matting method of Grady et al. [8]. Both of thesethnds propagate scribbled
constraints to the entire image by minimizing a quadratst ¢donction. Here we apply a similar
strategy, but our assumptions and cost function are moddteds to better suit the matting
problem.

A scribble-based interface for interactive matting wasppsed by Wang and Cohen [19].
Starting from a few scribbles indicating a small number ofkggound and foreground pixels,
they use belief propagation to iteratively estimate thenamkns at every pixel in the image.
While this approach has produced some impressive resuttasithe disadvantage of employing
an expensive iterative non-linear optimization processictv might converge to different local
minima. Another scribble-based matting approach was tgc@noposed by Guan et al. [9],

augmenting the random walk approach [8] with an iterativ@restion of color models.
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1. DERIVATION

For clarity of exposition we begin by deriving a closed-fosolution for alpha matting of
grayscale images. This solution will then be extended tocdme of color images in Section
lI-A.

As mentioned earlier, the matting problem is severely wodestrained. Therefore, some
assumptions on the nature bf B and/ora are needed. To derive our solution for the grayscale
case we make the assumption that bbtand B are approximately constant over a small window
around each pixel. Note that assumiRgand B are locally smooth does not mean that the input
imagel! is locally smooth, since discontinuities ancan account for the discontinuities in This
assumption, which will be somewhat relaxed in Section lbAows us to rewrite (1) expressing

« as a linear function of the image

o, = al; +b, Yiew, (2)

1

wherea = +—,

b= —% and w is a small image window. This linear relation is similar to
the prior used in [20], and the shape recipes of [18]. Thiati@h suggests finding, a andb
that minimize the cost function
J(a,a,b) = Z (Z (o —ajl; — bj)2 + ea?) , (3)
jeI \icw;
wherew; is a small window around pixel.

The cost function above includes a regularization termu.00@ne reason for adding this term
is numerical stability. For example, if the image is constarthe j-th window,a; andb; cannot
be uniquely determined without a prior. Also, minimizingethorm of e biases the solution
towards smoother mattes (since:; = 0 means thatv is constant over thg-th window).

In our implementation, we typically use windows ®fx 3 pixels. Since we place a window
around each pixel, the windows; in (3) overlap. It is this property that enables the propagat
of information between neighboring pixels. The cost fumetis quadratic iny, a and b, with
3N unknowns for an image withVv pixels. Fortunately, as we show below,and b may be
eliminated from (3), leaving us with quadraticcost in only N unknowns: the alpha values of

the pixels.
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Theorem 1:Define J («) as

J(a) =min J(a,a,b).

a,b

Then
J(a)=a'L a, (4)

whereL is an N x N matrix, whose(i, j)-th entry is:

> (51-' - ﬁ (1 + %%a,%(li — ) (I; — Mk))) (5)

Here ;; is the Kronecker deltay, ando; are the mean and variance of the intensities in the
window wy, aroundk, and|wy| is the number of pixels in this window.
Proof: Rewriting (3) using matrix notation we obtain

2
ag

G — ay,

J(a,a,b)zz

k

, (6)

by,
where for every windowwy, Gy, is defined as d|wy| + 1) x 2 matrix. For eachi € wy, G
contains a row of the fornj/;, 1], and the last row of7, is of the form[,/¢, 0]. For a given
matte « we definea, as a(|wi| + 1) x 1 vector, whose entries arg; for everyi € wy, and
whose last entry is 0. The elementsdp and G, are ordered correspondingly.

For a given mattev the optimal paira;, b, inside each windowuy, is the solution to the least
squares problem:

G (7)

(ay,by) = argmin

= (GLGy)'Gra (8)
Substituting this solution into (6) and denotitg = I — G1(GEG)'GT we obtain
L](QO ZZZE:(igéigéik@k,
k

and some further algebraic manipulations show that (thg)-th element ofGI G, may be
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expressed as:
1 1
0ji — — | 1 4+ ——(I; — I — )
I ( U= mll m)

Summing overk yields the expression in (5)]

A. Color Images

A simple way to apply the cost function to color images is tplgphe gray level cost to each

channel separately. Alternatively we can replace the timneadel (2), with a 4D linear model:
o =Y a’lf +b, View, 9)

wherec sums over color channels. The advantage of this combinedrlimodel is that it relaxes
our previous assumption thAtand B are constant over each window. Instead, as we show below,
it is enough to assume that in a small window eacli'atnd B is a linear mixture of two colors;
in other words, the values; in a small window lie on a single line in the RGB color space:
F; = 6;F1 + (1 — 3;) F», and the same is true for the background valBesln what follows we
refer to this assumption as tlelor line model

Such a model is useful since it captures, for example, thgngushading on a surface with
a constant albedo. Another example is a situation where thdow contains an edge between
two uniformly colored regions both belonging to the backg or the foreground. In Figure 2
we illustrate this concept, by plotting localG B distributions from a real image. Furthermore,
Omer and Werman [12] demonstrated that in many natural isydgepixel colors in RGB space
tend to form a relatively small number of elongated clustéithough these clusters are not
straight lines, their skeletons are roughly linear locally

Theorem 2:1f the foreground and background colors in a window satib/ ¢olor line model
we can express

o =Y a’l{ +b, View.
Proof: Substituting into (1) the Iicnear combinatiods = 3 F, + (1 — BF)F, and B; =

BEB, + (1 — 3P)B,, whereFy, F», By, B, are constant over a small window, we obtain:
If = i(BT FY + (1= ) F) + (1 — ) (87 Bf + (1 — 57)Bs).

Let H be a3 x 3 matrix whosec-th row is [Fy + BS, F{ — Fs, B{ — BS]. Then the above may
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Fig. 2. Local patches selected from a real image andR6&3 plots of their color distributions.

be rewritten as:
Q5

H a; 87 = I; — By,
(1- Oéi)ﬁiB

where I; and B, are 3 x 1 vectors representing 3 color channels. We denote'by?, a® the
elements in the first row off !, and byb the scalar product of first row off ~! with the vector
B,. We then obtainy, = Y. a°l; +0.[]

Using the 4D linear model (9) we define the following cost fiime for matting of RGB

images:

J (o a,b) = (Z (ai - aSly — bj) +€Za§2) (10)

Jjel \icw;

Similarly to the grayscale case¢ andb can be eliminated from the cost function, yielding a
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guadratic cost in the: unknowns alone:
J(a)=a"L a. (11)

Here L is an N x N matrix, whose(i, j)-th element is:

€

Kl(ig)€w |wi] |wy ]

whereX; is a3 x 3 covariance matrix;, is a3 x 1 mean vector of the colors in a windowy,,
and /5 is the 3 x 3 identity matrix.

We refer to the matrixL in equations (5) and (12) as thmatting Laplacian Note that
the elements in each row af sum to zero, and therefore the nullspace Iofincludes the
constant vector. Il = 0 is used, the nullspace df also includes every color channel &f
(as each of the color channels can be expressed as a linediofunf itself, e.g., by setting
at =1,a*> =a®=b=0).

Apart from the mathematical justification, the intuitionhiied our cost function is that the
matte may be represented locally as a linear combinatiorhefimage color channels, as
illustrated by the three representative examples shownigar& 3. The first example is a
window with rather uniform foreground and background celdn this case the alpha matte
has a strong normalized correlation with the image and it beagenerated by multiplying one
of the color channels by a scale factor and adding a condtatite second example, the alpha
matte is constant over the entire window. Regardless of tmeptexity of the image texture in
this window, we can obtain the constant alpha by multiplyiihg image channels by zero and
adding a constant. This trivial case is important, as it destrates some of the power of the 4D
linear model. Since a typical matte is constanb( 1) over most image windows, the matte in
such windows may be expressed as a linear function of thearrag trivial way, regardless of
the exact color distribution, and whether the color line eldiblds or not. Finally, we present
a window with non-uniform alpha, where, in addition, the ksgound contains an edge. Since
the edge contrasts in the different color channels arerdiite by scaling the color channels

appropriately our model is able to actually cancel the bemkgd edge.
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Image and matte pair Expressing the matte as a linear cotryinat color channels

Fig. 3. Local linear relations between alpha windows andgenaindows.

IIl. CONSTRAINTS ANDUSERINTERFACE

In our system the user-supplied constraints on the mattebeayrovided via a scribble-based
GUI, or a trimap. The user uses a background brush (blacklges in our examples) to indicate
background pixelsd{ = 0) and a foreground brush (white scribbles) to indicate foyagd pixels
(x=1).

To extract an alpha matte matching the user’s constraintsole for

a = argmin o’ L a + Aa” —b5)Dg (o — bg) (13)

where )\ is some large numbel)s is a diagonal matrix whose diagonal elements arfor
constrained pixels and for all other pixels, andys is the vector containing the specified alpha
values for the constrained pixels and 0 for all other pixels.

Since the above cost is quadratic in alpha, the global minimmay be found by differentiating

(13) and setting the derivatives to 0. This amounts to sglime following sparse linear system:
(L4 ADg)a = Xbg (14)

Theorem 3:Let I be an image formed fromd" and B according to the compositing equation
(1), and leta* denote the true alpha matte. i and B satisfy the color line model in every
local windowwy,, and if the user-specified constrairfisare consistent witln*, thena* is an

optimal solution for the system (13), whefeis constructed withke = 0.
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Proof: Sincee = 0, if the color line model is satisfied in every windawy,, it follows from
the definition (10) that/ (a*,a,b) = 0, and therefore/ (a*) = o*' L o* = 0. []

We demonstrate this in Figure 4. The first image (Figure 46a3) synthetic example that was
created by compositing computer-simulated (monochrarhatnoke over a simple background
with several color bands, which satisfies the color line nhodlke black and white scribbles
show the input constraints. The matte extracted by our ndethimure 4(b)) is indeedlentical
to the ground truth matte. The second example (Figure 4@)real image, with fairly uniform
foreground and background colors. By scribbling only twadil and white points, a high quality
matte was extracted (Figure 4(d)).

Note that theorem 3 states only necessary but not sufficamittons for recovering the true
alpha matte. This is the case, since the nullspacé ofay contain multiple solutions and it is
up to the user to provide a sufficient number of constraintsnsure that solving equation (13)
yields the correct alpha matte. For example, constrairfiegsyystem to output the true matte in

Figure 4(a), required a setting constraint inside everynected component.

(@) (b)

Fig. 4. Matting examples. (a,c) Input images with sparsestamts. (b,d) Extracted mattes.

(d)

A. Additional Scribbling Brushes

To provide the user with more flexible control over the outpug add additional types of
brushes for specifying constraints at regions containingeth pixels. One simple constraint
may be set by explicitly specifying the values Bfand B under the scribble (by cloning them
from other locations in the image). This gives a constrami.on the scribbled area, computable
directly from the compositing equation (1). Another coastt type is when the artist indicates

that F and B are constant but unknowander the scribble. This tells the system that the linear
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relationship (9) should hold for all the pixels covered by tcribble, rather than only inside
each3 x 3 window. This adds to equation (12) an additional larger wimdvhich contains all
of the pixels under the scribble. The usage of these two brughillustrated in Figure 5. If
only black and white scribbles are used (Figure 5(a)), tlenmeo way to specify background
constraints for the parts of the background partially Vesithrough the fine gaps in the hair.
As a result these gaps are not captured by the recovered (Ragtee 5(b)). To overcome this,
the user may pick some blond and brown colors from the neighfpgixels (Figure 5(c)) and
specify them as the foreground and background colors inrdgabn. The matte produced from
these constraints succeeds in capturing the partial irigilwf the background. Alternatively,
the user may place a scribble (gray scribble in Figure 5jjcating that this area should be
treated as a single large neighborhood, causing the broxatspghowing through the hair to be
treated the same as the brown pixels outside. In the resmdt®a we show that these additional

brushes are also useful for the challenging tasks of extigachattes for shadows and smoke.

IV. PARAMETERS

To gain a better understanding of our method, we illustratee Hthe effect of the different
parameters on the alpha reconstruction.

First we demonstrate the effect af which is the weight of the regularization term ann
ed. (3). There are two reasons for having this term. The f@aswon is numerical stability. For
example, if the image is constant in thi¢h window, a; andb; cannot be uniquely determined
without a prior. Also, minimizing the norm af biases the solution towards smoothemattes
(sincea; = 0 means thatv is constant over thg-th window). In Figure 6 we demonstrate the
effect ofe on the resulting matte. Our input image consists of two nargas, and was scribbled
with two vertical lines. In Figure 6 we show three differerdittes that were obtained using three
different values ot. We also plot the different mattes using a one-dimensiordile of one of
the rows. For comparison we also plot the profile of the inpuide scaled to th@, 1] range.
We can see that whenis small the sharpness of the recovered matte matches tffite pyb
the edge in the input image, but the matte also captures thgamoise. For large values the
image noise is indeed ignored, but the recovered alpha issmreothed. In our implementation
we usually used = 0.17 to 0.1°, since real images are normally not as noisy as the above

example.
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(b) (d)

Fig. 5. Using additional scribbling brushes. (a) Input imatp) Simple background (black) and foreground (whitejbtdes.
(c) Scribbling foreground and background colors explci(tl) Marking wider neighborhoods.

Figure 6 demonstrates the fact thas an important parameter in our system, which controls
the amount of noise versus the amount of smoothing in thetisnluWhile many of our
theoretical results in this paper only hold for the case 0, it should be noted that, in practice,
ase approaches 0, our method will typically fail to produce astant matte in textured or noisy
regions.

Another parameter which affects the results is the windare.sWe usually construct the
matting Laplacian using x 3 windows. Using wider windows is more stable when the color

lines model holds, but the chance of encountering windowas deviate from the color lines
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input e=0.17 e=0.13 e=0.12
I I
E B Einput image
1. - -
8 eps=0.17
16} eps:O.l3 H
— eps:O.l2
14 .
1.2 b

0.8

0.6

0.2 ! ! ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40 45 50

Profile of the different mattes

Fig. 6. Computing a matte using differenatvalues.

model grows when the windows are larger. This is illustratedrigure 7. The matte of the
image was recovered using bdihkx 3 and5 x 5 windows. The mattes are shown in Figure 7(b)
and (c), respectively. It may be seen that the matte in Fig{cg contains some errors. The
reason is that some of thHex 5 windows deviate from the color lines model since their areas
cover three differently colored background strips, while 3 x 3 windows are small enough and
never cover more then two strips. On the other hand, in Figufres fact thab x 5 windows can

cover three different strips is useful as that helps thegianend constraint (the white scribble)
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ElE

(a) input marks (bB x 3 windows (c)5 x 5 windows

Fig. 7. Computing a matte using different window sizes.

¥ L]
LILIL

Fig. 8. Computing a matte using different window sizes. (guk marks. (b)3 x 3 windows. (c)5 x 5 windows. (d)3 x 3
windows computed at coarser resolution. (e) Simple intatfmm of (d). (f) Interpolating thez, b parameters corresponding to
the matte in (d) and applying them to obtain a matte for ther fimage.

to propagate to the entire striped texture region (Figu®)3(Despite the fact that two blue
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pixels in different strips are not direct neighbors, theg aeighbors in the induced graph due
to the fact that the window is large enough). Such propagatiaes not occur when usirigx 3
windows, as shown in Figure 8(b).

Even in cases for which wider windows are useful, their usageesases computation time
since the resulting system is less sparse. To overcomewRisonsider the linear coefficients
in equation (9) that relate an alpha matte to an image. Th#ideats obtained using wide
windows on a fine resolution image are similar to those obthiwith smaller windows on a
coarser image. Therefore we can solve for the alpha mattey sk 3 windows on a coarse
image and compute the linear coefficients that relate it éodbarse image channels. We then
interpolate the linear coefficients and apply them to therfieeolution image. The alpha matte
obtained using this approach is similar to the one that wbalk been obtained by solving the
matting system directly on the fine image with wider windoWws.demonstrate this, Figure 8(d)
shows the alpha matte that was obtained whBexn 3 windows where used on the image of
Figure 8(a) after downsampling it by a factor of 2. If we jugisample this alpha matte by a
factor of two we get the blurred alpha matte shown in Figue).80n the other hand, if we
compute the:, b values relating the small alpha (Figure 8(d)) to the imagsample them and
apply them to the finer resolution image, we get the sharpematEigure 8(f), which is almost

identical to the one in Figure 8(c), obtained using 5 windows.

V. SPECTRAL ANALYSIS

The matting Laplacian matrik is a symmetric semi-definite matrix, as evident from theotem
and its proof. This matrix may also be written A&s= D — W, where D is a diagonal matrix
D(i,i) = >; W(i,j) and W is a symmetric matrix, whose off-diagonal entries are deffing
(12). Thus, the matrix. has the same form as tlyggaph Laplacianused in spectral methods
for segmentation, but with a novel affinity function given @2). For comparison, the typical
way to define the affinity function (e.g., for image segmeatatising normalized cuts [15]) is
to set

We(i, ) = e~ ITi=1L;l*/o* (15)

whereo is a global constant (typically chosen by hand). This affimstlarge for nearby pixels

with similar colors and approaches zero when the color iiffee is much greater than The
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random walk matting algorithm [8] uses a similar affinity étion for the matting problem,
but the color distance between two pixels is taken afteryapgla linear transformation to
their colors. The transformation is image-dependent arestsnated using a manifold learning
technique.

In contrast, by rewriting the matting Laplacian as= D — 1V, we obtain the following affinity
function, which we refer to as “the matting affinity”:

Wi )= Y — (L (L= ) (S + ——1) (I — ) (16)

By ew, |0H] ||

We note that by using the teraffinity here, we somewhat extend its conventional usage: while
standard affinities are usually non negative, the mattifigisf may also assume negative values.

To compare the two affinity functionsl, and W,, we examine the eigenvectors of the
corresponding Laplacians, since these eigenvectors atthysspectral segmentation algorithms
for partitioning images.

Figure 9 shows the second smallest eigenvector (the firsieshaigenvector is constant in
both cases) for both Laplacian matrices, on three exampdges For the matting affinity, we
present eigenvectors with twovalues ¢ = 0.17 ande = 0.1°). The first example is a simple
image with concentric circles of different color. In thisseathe boundaries between regions are
very simple, and all Laplacians capture the transitionseotly. The second example is an image
of a peacock. The global eigenvector (used by standard spectral clustering algosj fails to
capture the complex fuzzy boundaries between the peactatkfeathers and the background. In
contrast, the matting Laplacian’s eigenvector (constdictsinge = 0.1°) separates the peacock
from the background very well, as this Laplacian explicélycodes fuzzy cluster assignments.
When the matting Laplacian is constructed using 0.17 the eigenvector is similar to the input
image and in addition to the peacock also captures some okttietation in the background. The
last example is the noisy step function from Figure 6. In taise, the eigenvector corresponding
to ¢ = 0.17 captures all of the image noise, while using a largetresults in a less noisy
eigenvector. However, an appropriate choice of a glebgields an eigenvector with a perfect
step function. This is an excellent result if the goal is adhaegmentation, but if the goal
is a soft alpha matte, it is preferable to have an edge whos®thimess is proportional to the

smoothness of the edge in the input image, so the mattingwgtor might be more appropriate.
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Thus, designing a good matting affinity is not equivalent ésigning a good affinity for hard

segmentation.

Input image Globab eigenvectors  Matting eigenvectors, smaler Matting eigenvectors, larger

Fig. 9. Smallest eigenvectors of Laplacians correspontbndifferent affinity functions.

A. The eigenvectors as guides

While the matting problem is ill-posed without some usemwipphe matting Laplacian matrix
contains a lot of information on the image even before anystramts have been provided, as
demonstrated in the previous section.

This suggests that looking at some of the smallest eigeorgedf the matting Laplacian
can guide the usewhere to place scribbleg-or example, the extracted matte and the smallest
eigenvectors tend to be piecewise constant over the sanmnsedf the values inside a segment
in the eigenvector image are coherent, a single scribbleinvduch a segment should suffice
to propagate the desired value to the entire segment. On ttiey dand, areas where the
eigenvector's values are less coherent correspond to nulifgcdlt” regions in the image,
suggesting that more scribbling efforts might be requiteete. We note, however, that a basic
strategy for scribble placing is just to examine the inpudg® and place scribbles on regions with
different colors. This is also evident by the fact that whiea matting Laplacian is constructed

usinge = 0, the nullspace of the matting Laplacian will contain the Bocehannels.
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Figure 10 illustrates how a scribbling process may be guiyettie eigenvectors. By examining
the two smallest eigenvectors (Figure 10(a-b)) we placeatiblde inside each region exhibiting
coherent eigenvector values (Figure 10(c)). The resultiadte is shown in Figure 10(d). Note
that the scribbles in Figure 10(c) were our first, and singtenapt to place scribbles on this
image.

Stated somewhat more precisely, the alpha matte may becprddy examining some of the
smaller eigenvectors of the matting Laplacian, since amn@tsolution to (13) will be to a
large degree spanned by the smaller eigenvectors. In fastpossible to bound the weight of
the larger eigenvectors in the optimal solution, as a fmctf the ratios of the corresponding

eigenvalues.

Fig. 10. Smallest eigenvectors (a-b) are used for guidimidplde placement (c). The resulting matte is shown in (d).

Theorem 4:Let vy, ..., vy be the eigenvectors of the matting Laplacian (12) with ergkres
A1 < Ay < --- < Ay. Let S be the subset of scribbled pixels, with scribble valygs i € S.
We denote byz(S) the restriction of the vectar to the scribbled pixels (so that.S) is an|.S]|
dimensional vector). Letv be the optimal matte and suppasas expressed with respect to the
eigenvectors basis as= Y1, a,vy.

If the scribbles are spanned by ti#é smallest eigenvectors(S) = S5, byvi(S), then for

everyj > K:
S0 _ bk
Ai TN
Proof: Let 3 = YK | b,v,. Then 3 satisfies3(S) = s(S). Sincea is the optimal solution

2
a;

VAN

a = argmin o’ L «, s.t.a(S) = s(S), we must have that” La < 37L3. Since the Laplacian
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matrix L is positive semi-definite, the eigenvectoss. .., vy are orthogonal. Therefore,

N

oLa = Y aii, (17)
k=1
K

BYLE = Y bk, (18)
k=1

and as a result for every a?\; < i, b2 < [|b]|*Ak. []
Corollary 1: If the scribbles are spanned by the nullspacé.dhe optimal solution will also
lie in the nullspace of..

Proof: Let K be the dimension of the nullspace. Using the previous tmesraotation,
for everyj > K, a; < [|b]*Ax = 0, and the optimal solution is spanned by tRenullspace
eigenvectors] |

The above implies that the smoothness of the recovered afaltie will tend to be similar

to that of the smallest eigenvectors bf

VI. OPTIMIZATION

The optimization problem defined by equation (13) is one ofimizing a quadratic cost
function subject to linear constraints, and the solution tzerefore be found by solving a
sparse set of linear equations.

For the results shown here we solve the linear system usintjabk direct solver (the
“backslash” operator), which takes 20 seconds for a 200 Wy iBtage on a 2.8GHz CPU.
Processing large images using Matlab’s solver is impossille to memory limitations. To
overcome this we use a coarse-to-fine scheme. We downsahglenage and the constraints
and solve at a lower resolution. The recovered alpha mattaes interpolated to the finer
resolution, alpha values are thresholded and pixels withaaltlose td) or 1 are clamped and
considered as constrained in the finer resolution. Com&dapixels may be eliminated from the
system, reducing the system size. For that, we note thainnilie constrained areas there is
no need to enforce the local linear models. Therefore, wlenpating the matting Laplacian
matrix (equations 5,12), we sum only windowg that contain at least one unconstrained pixel.
Aside for efficiency, clamping alpha values @oor 1 is also useful in avoiding over-smoothed

a-mattes, and we used such clamping to produce the resuligimeF16(d). We note, however,
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that clamping the alpha values in a coarse to fine approacthbasegative side effect that long
thin structures, such as strains of hair, may be lost.

It should be noted that solving linear systems with thiscttrre is a well studied problem [8],
[16]. We have also implemented a multigrid solver for matt&raetion. The multigrid solver
runs in a couple of seconds even on very large images, butavémall degradation in matte
quality. Therefore, a multigrid solver enables the systenoperate as an interactive tool. The
user can place constraints, examine the resulting matt@deaadonstraints in image areas which
require further refinement.

The eigenvectors of the matting Laplacian depend only omihét image, and are independent
of the user’s constraints. It is not necessary to computethenless the user wishes to use
them for guidance in scribble placement, as describedeealti this case, they only need to be
computed once, possibly as part of the initialization th&es place when a new image is loaded.
Recently, there has been much research of efficient metlaydsomputation of eigenvectors
(e.g., [4]), partly in response to the growing interest immalized cuts image segmentation and

other spectral clustering methods.

VII. RECONSTRUCTINGF AND B

Having solved fora it is also usually necessary to reconstréGtand in some cases algd
One approach for reconstructing and B is to solve equation (9) for the optimal b given «
using least squares. However, in order to extfaend B from a, b there is an additional matting
parameter that should be recoveredirg the proof of theorem 2). For complex foreground and
background patterns such a reconstruction may produce messilts, and therefore we solve
for F' and B using the compositing equation, introducing some expBaoioothness priors on
F and B. The smoothness priors are stronger in the presence of edgies. Specifically, we
minimize a system of the form:

minz Z (i Ff + (1 — o) BS — If)? (19)

i€l ¢

Ty

| ((F2)? + (B2)?) + law, | (B + (BE,)?)

where F, Iy, Bf , and B} are thex andy derivatives of/“ and B, and o, o;, are the
matte derivatives. We note that for a fixadhe cost (19) is quadratic and its minimum may be

found by solving a sparse set of linear equations. Given eh&ien of /' and B the « solution
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can be further refined, but in practice we have observed shist required. Figure 11 shows

an a-matte andf’ and B images recovered in this way.

e |

P o= Y g et W 3
PN =\l [ Bl

(@) (b) © (@) ©)

Fig. 11. Foreground and background reconstruction: (atirfp) a-matte (c) foreground reconstruction (d) background
reconstruction (e’ composited over a novel background.

VIIl. RESULTS

In all examples presented in this section the scribbles usedr algorithm are presented in the
following format: black and white scribbles are used to aadie the first type of hard constraints
on «a. Red scribbles represent places in which foreground ankbibagnd colors where explicitly
specified. Finally, gray scribbles are used to representhing type of constraint — requiring

a andb to be constant (without specifying their exact value) witttie scribbled area.

A. Visual Comparisons

Figure 12 presents matting results on images from the Bayesatting work [6]. Our results
appear visually comparable to those produced by Bayesidmga/NVhile the Bayesian matting
results use a trimap, each of our results was obtained usgpgise set of scribbles.

In Figure 13 we extract mattes from a few of the more challeggxamples presented in the
Poisson matting paper [17]. For comparison, the PoissorBaryésian matting results provided
in [17] are also shown

Figure 14 shows the mattes extracted using our techniquevorchallenging images used
in [19] and compares our results to several other recentiéigas. It can be seen that our results
on these examples are comparable in terms of visual qualithdse of [19], even though we

use a far simpler algorithm. Global Poisson matting canrbtet a good matte from a sparse

We thank Leo Jia for providing us with the images and results
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(d) (€)

Fig. 12. Comparison with Bayesian matting [6]. (a) input geab) trimap (c) Bayesian matting result (obtained from the
Bayesian Matting webpage) (d) scribbles (e) our result.

(€)

Fig. 13. Result on Poisson matting examples. (a) input infay@ayesian matting (obtained from the Poisson mattingepap
(c) Poisson matting (obtained from the Poisson matting p&jog our result (e) scribbles

set of scribbles although its performance with a trimap igegqgood. The random walk matting
algorithm [8] also minimizes a Laplacian but uses an affifiitgction with a global scaling
parameter and hence has a particular difficulty with the pela@mage.

Figure 15 presents compositing examples using our algoriitr some images from the

previous experiments. We show compositing both over a eobh&tackground and over natural
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(a) Peacock scribbles (b) Poisson from scribbles (d) Our result

(e) Peacock trimap
-

(f) Poisson from trimap

(|) Fire scribbles (j) Poisson from scribbles (k) Wang-Cohe () Our result
v /

Siatdd

(m) Fire trimap (n) Poisson from trimap (o) Bayesian (p) Ramdwalk

(9) Bayesian (Aihdom walk

Fig. 14. A comparison of alpha mattes extracted by diffemgbrithms. Images (a,c,e,g,i,k,m,0) are taken from [1%ie
remaining images were generated by our own implementatigheorespective methods.

images.

Figure 16 shows an example (from [19]), where Wang and Csher@thod fails to extract
a good matte from sparse scribbles due to color ambiguitwdest the foreground and the
background. The same method, however, is able to producecaptable matte when supplied
with a trimap. Our method produces a cleaner, but also ireperhatte from the same set of
scribbles, but adding a small number of additional scribbésults in a better matte. (To produce
this result, we applied clamping of alpha values as desgnbesection VI.)

Figure 17 shows another example (a closeup of the Koala iffrage[17]), where there’s an
ambiguity between foreground and background colors. Ia thise the matte produced by our
method is clearly better than the one produced by the Warng&method. To better understand
why this is the case, we show an RGB histogram of represeatatkels from theF’ and B

scribbles. Some pixels in the background fit the foregrousldrcmodel much better then the
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Fig. 15. Some compositing examples usiag F' and B extracted by our algorithm. Left: compositing with a comsta
background. Right: compositing over natural images.

background one (one such pixel is marked red in 17(b) andateld by an arrow in 17(d)). As

a result such pixels are classified as foreground with a hegjte of certainty in the first stage.
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() (d)

Fig. 16. An example (from [19]) with color ambiguity betweéareground and background. (a) scribbles and matte by [19];
(b) [19] results using a trimap; (c) our result with scrildbkmilar to those in (a); (d) our results with a few additioseribbles.

Once this error has been made it only reinforces furthemewas decisions in the vicinity of
that pixel, resulting in a white clump in the alpha matte.

Since our method does not make use of global color modelsFf@and B it can handle
ambiguous situations such as that in Figure 17. Howevere thee also cases where our method
fails to produce an accurate matte for the very same reasgare=18 shows an actress in
front of a background with two colors. Even though the blagkscribbles cover both colors
the generated matte includes parts of the background (battt® hair and the shoulder on the
left). In such cases, the user would have to add anathscribble in that area.

To demonstrate the limitations of our approach in the presesf insufficient user input,
consider the examples in Figure 19. Only three dots of caimdr were provided, and the
resulting matte is some interpolation from black to whitdapting to the image texture. The
source of the problem is demonstrated by the synthetic ebeaimphe second row of Figure 19.

In this example the input image consists of three region; two of which are constrained.
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(b) Wang-Cohen (c) Our result

(d) RGB histogram off" (red) andB (blue) pixels.

Fig. 17. An example with ambiguity betwedn and B.

Fig. 18. Failure due to lack of a color model.

The system is then free to assign the middle unconstrairggdir@ny average non-opaque gray
value. The core of this problem is that while our quadratistgaces strong assumptions on the
foreground and background distributions, it imposes néricti®ns ona. Thus, it searches for

continuoussolutions without taking into account that, for a mostly gpa foreground object,
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the matte should be strictly zero or one over most of the image

Input Constraints Matte

Fig. 19. Limitations in the lack of sufficient user input

R 3
N N

Rl 3
9§ N

R.

Composite  Trimap Ground Wang- Poisson Random Our result
truth Cohen walk
ﬁﬁWang&Cohen JiWang&Cohen
[MPoisson 0 T [MPoisson
[CJRandom Walk| 10 n  |[CJRandom walk
Ml Ours - lours
B = U|J“4 L HNLREL l lm-[-[- JI Jl i J Jl !
Background source image Errors (smoke matte) Errors écirctte)

Fig. 20. A quantitative comparison using two ground truthttesa The errors are plotted as a function of average gradien
strength of the background, binned into 10 bins. To prodhesé results we used our own implementation of the respectiv
methods, using the parameter values specified in the ofrigayers.
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B. Quantitative Comparisons

To obtain a quantitative comparison between the algorithvegperformed an experiment with
synthetic composites for which we have the ground truth alptatte. We randomly extracted
2000 subimages from the image shown in Figure 20. We used sdimage as a background
and composited over it a uniform foreground image using twier@nt alpha mattes: the first
matte is computer simulated smoke, most of which is paytialinsparent; the other matte is a
part of a disk, mostly opaque with a feathered boundary. Théaws are shown in Figure 20.
Consequently, we obtained 4000 composite images, two aflwdrie shown in Figure 20. On this
set of images we compared the performance of four mattingyighgns: Wang and Cohen, global
Poisson matting, random walk matting, and our own (using windows with no pyramid). All
algorithms were provided a trimap as input. Examples of timeaps and the results produced
by the different methods are shown in Figure 20. For eachriihgo, we measured the summed
absolute error between the extracted matte and the groutid figure 20 plots the average
error of the four algorithms as a function of the smoothndsfi® background (specifically we
measured the average gradient strength, binned into 10. Mfieen the background is smooth,
all algorithms perform well with both mattes. When the backmd contains strong gradients,
global Poisson matting performs poorly (recall that it ases that background and foreground
gradients are negligible). Of the remaining algorithmg; algorithm consistently produced the

most accurate results.

C. Shadow Matting

Figure 21 presents additional applications of our techmigm particular, the red marks
specifying the foreground and background color, may be ueeeitract shadow and smoke.
In the top row, the red scribbles on the shadow specify thatftimeground color is black.

In the bottom row, the red scribble on the smoke indicatesféineground color is white (in
both cases the background color for the red scribbles wastsel from neighboring, uncovered
pixels). These sparse constraintscomwere then propagated to achieve the final matte. Note that
shadow matting can not be directly achieved with mattingillgms which initialize foreground
colors using neighboring pixels, since no neighboring blaizels are present. Note also that the

shadow area captures a significant amount of the image ack@’amot clear how to specify

DRAFT



30

(©) (d)
Fig. 21. Additional examples. Our technique applied fordslva and smoke extraction. (a) input image (b) scribbles (c)
extracted mattes (d-e) composites.

(b) (c) (d)
Fig. 22. Shadow compositing with the shadow compositionaéqo [7]. (@) marked input image (b) extractedmatte (c)
extracted background with marked shadowgdjhadow matte. (e) compositing foreground and shadow withvelbackground.

a good trimap in this case. The smoke example was processednal5], but in their case a
background model was calculated using multiple frames.
An alternative approach for shadow extraction is to use th@dgw composition equation
proposed by [7]
I=p3L+(1-75)S

Wherel! is the input imagel thelit image, S theshadow imagand theshadow density matte
We consider the image in Figure 22. We first place black andemribbles on the man and
extract him from the background. We are then left with thekbgaaund image in Figure 22(c)

from which we would like to extract the shadow. This enablesaiplace black scribbles inside
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the shadow area and white scribbles outside. Those scsibbdeused for computing the shadow
mask( in Figure 22(d). We can use the two mattes (Figure 22(b,dpassie both the man and
his shadow over a novel background, as shown in Figure 22(&) double compositing follows
the following formula:

TInew = aF 4+ (1 —a)(1 — s + s8Bpew)

wheres is some scalab < s < 1 controlling the shadow strength. To the best of our knowdgdg

this is the first attempt to address shadow matting using temaictive interface.

IX. DISCUSSION

Matting and compositing are tasks of central importanceniiage and video editing and
pose a significant challenge for computer vision. While fimigcess by definition requires user
interaction, the performance of most existing algorithretedorates rapidly as the amount of
user input decreases. In this paper, we have introducedtduwuadion based on the assumption
that foreground and background colors vary smoothly anevetdhow to analytically eliminate
the foreground and background colors to obtain a quadrastfanction in alpha. The resulting
cost function is similar to cost functions obtained in spganethods to image segmentation but
with a novel affinity function that is derived from the fornation of the matting problem. The
global minimum of our cost function may be found efficiently olving a sparse system of
linear equations. Our experiments on real and synthetig@mahow that our algorithm clearly
outperforms other algorithms that use quadratic cost fanst which are not derived from the
matting equations. Furthermore, our results are competith those obtained by much more
complicated, nonlinear, cost functions. However, comgh@oeprevious nonlinear approaches, we
can obtain solutions in a few seconds, and we can analytipative properties of our solution
and provide guidance to the user by analyzing the eigensgecfoour operator.

While our approach assumes smoothness in foreground andjroaad colors, it does not
assume a global color distribution for each segment. Ouerxy@nts have demonstrated that our
local smoothness assumption often holds for natural imdgegertheless, it would be interesting
to extend our formulation to include additional assumgiom the two segments (e.g., global
models, local texture models, etc.). The goal is to incafmore sophisticated models of

foreground and background but still obtain high qualityuitss using simple numerical linear
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algebra.

Finally, the implementation of our matting algorithm antledamples presented in this paper

are available for public usage at:

http://people.csail.mt.edu/alevin/matting.tar.gz
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