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Abstract

Interactive digital matting, the process of extracting a foreground object from an image based on

limited user input, is an important task in image and video editing. From a computer vision perspective,

this task is extremely challenging because it is massively ill-posed — at each pixel we must estimate

the foreground and the background colors, as well as the foreground opacity (“alpha matte”) from a

single color measurement. Current approaches either restrict the estimation to a small part of the image,

estimating foreground and background colors based on nearby pixels where they are known, or perform

iterative nonlinear estimation by alternating foregroundand background color estimation with alpha

estimation.

In this paper we present a closed-form solution to natural image matting. We derive a cost function

from local smoothness assumptions on foreground and background colors, and show that in the resulting

expression it is possible to analytically eliminate the foreground and background colors to obtain a

quadratic cost function in alpha. This allows us to find the globally optimal alpha matte by solving

a sparse linear system of equations. Furthermore, the closed-form formula allows us to predict the

properties of the solution by analyzing the eigenvectors ofa sparse matrix, closely related to matrices

used in spectral image segmentation algorithms. We show that high quality mattes for natural images

may be obtained from a small amount of user input.

Keywords: Matting, Interactive Image Editing, Spectral Segmentation

I. INTRODUCTION

Natural image matting and compositing is of central importance in image and video editing.

Formally, image matting methods take as input an imageI, which is assumed to be a composite
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(a) (b) (c) (d) (e) (f)

Fig. 1. (a) An image with sparse constraints: white scribbles indicate foreground, black scribbles indicate background. Applying
Bayesian matting to such sparse input produces a completelyerroneous matte (b). Foreground extraction algorithms, such as
[11], [13] produce a hard segmentation (c). An automatically generated trimap from a hard segmentation may miss fine features
(d). An accurate hand-drawn trimap (e) is required in this case to produce a reasonable matte (f). (Images taken from [19])

of a foreground imageF and a background imageB. The color of thei-th pixel is assumed to

be a linear combination of the corresponding foreground andbackground colors,

Ii = αiFi + (1 − αi)Bi, (1)

whereαi is the pixel’s foreground opacity. In natural image matting, all quantities on the right

hand side of thecompositing equation(1) are unknown. Thus, for a 3 channel color image, at

each pixel there are 3 equations and 7 unknowns.

Obviously, this is a severely under-constrained problem, and user interaction is required to

extract a good matte. Most recent methods expect the user to provide atrimap as a starting point;

an example is shown in Figure 1(e). The trimap is a rough (typically hand-drawn) segmentation

of the image into three regions: foreground (shown in white), background (shown in black)

and unknown (shown in gray). Given the trimap, these methodstypically solve for F , B,

and α simultaneously. This is typically done by iterative nonlinear optimization, alternating

the estimation ofF and B with that of α. In practice, this means that for good results the

unknown regions in the trimap must be as small as possible. Asa consequence, trimap-based

approaches typically experience difficulty handling images with a significant portion of mixed

pixels or when the foreground object has many holes [19]. In such challenging cases a great deal

of experience and user interaction may be necessary to construct a trimap that would yield a

good matte. Another problem with the trimap interface is that the user cannot directly influence

the matte in the most important part of the image: the mixed pixels.

In this paper we present a new closed-form solution for extracting the alpha matte from a

natural image. We derive a cost function from local smoothness assumptions on foreground and
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background colorsF andB, and show that in the resulting expression it is possible to analytically

eliminateF and B, yielding a quadratic cost function inα. The alpha matte produced by our

method is the global optimum of this cost function, which maybe obtained by solving a sparse

linear system. Since our approach computesα directly and without requiring reliable estimates

for F andB, a modest amount of user input (such as a sparse set of scribbles) is often sufficient

for extracting a high quality matte. Furthermore, our closed-form formulation enables one to

understand and predict the properties of the solution by examining the eigenvectors of a sparse

matrix, closely related to matrices used in spectral image segmentation algorithms. In addition

to providing a solid theoretical basis for our approach, such analysis can provide useful hints to

the user regarding where in the image scribbles should be placed.

A. Previous work

Most existing methods for natural image matting require theinput image to be accompanied by

a trimap [1], [2], [5], [6], [14], [17], labeling each pixel as foreground, background, or unknown.

The goal of the method is to solve the compositing equation (1) for the unknown pixels. This

is typically done by exploiting some local regularity assumptions onF and B to predict their

values for each pixel in the unknown region. In the Corel KnockOut algorithm [2],F andB are

assumed to be smooth and the prediction is based on a weightedaverage of known foreground and

background pixels (closer pixels receive higher weight). Some algorithms [6], [14] assume that

the local foreground and background come from a relatively simple color distribution. Perhaps

the most successful of these algorithms is the Bayesian matting algorithm [6], where a mixture

of oriented Gaussians is used to learn the local distribution and thenα, F , andB are estimated

as the most probable ones given that distribution. Such methods work well when the color

distributions of the foreground and the background do not overlap, and the unknown region in

the trimap is small. As demonstrated in Figure 1(b) a sparse set of constraints could lead to

a completely erroneous matte. In contrast, while our approach also makes certain smoothness

assumptions regardingF and B, it does not involve estimating the values of these functions

until after the matte has been extracted.

The Poisson matting method [17], also expects a trimap as part of its input, and computes the

alpha matte in the mixed region by solving a Poisson equationwith the matte gradient field and

Dirichlet boundary conditions. In theglobal Poisson mattingmethod the matte gradient field is
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approximated as∇I/(F −B) by taking the gradient of the compositing equation, and neglecting

the gradients inF and B. The matte is then found by solving for a function whose gradients

are as close as possible to the approximated matte gradient field. WheneverF or B are not

sufficiently smooth inside the unknown region, the resulting matte might not be correct, and

additional local manipulations may need to be applied interactively to the matte gradient field in

order to obtain a satisfactory solution. This interactive refinement process is referred to aslocal

Poisson matting. As we shall see, our method makes weaker assumptions on the behavior ofF

andB, which generally leads to more accurate mattes.

Recently, several successful approaches for extracting a foreground object from its background

have been proposed [3], [11], [13]. Both approaches translate simple user-specified constraints

(such as scribbles, or a bounding rectangle) into a min-cut problem. Solving the min-cut problem

yields a hard binary segmentation, rather than a fractionalalpha matte (Figure 1(c)). The hard

segmentation could be transformed into a trimap by erosion,but this could still miss some fine

or fuzzy features (Figure 1(d)). Although Rother et al. [13]do perform border matting by fitting

a parametric alpha profile in a narrow strip around the hard boundary, this is more akin to

feathering than to full alpha matting, since wide fuzzy regions cannot be handled in this manner.

Our approach is closely related to the colorization method of Levin et al. [10], and the random

walk alpha matting method of Grady et al. [8]. Both of these methods propagate scribbled

constraints to the entire image by minimizing a quadratic cost function. Here we apply a similar

strategy, but our assumptions and cost function are modifiedso as to better suit the matting

problem.

A scribble-based interface for interactive matting was proposed by Wang and Cohen [19].

Starting from a few scribbles indicating a small number of background and foreground pixels,

they use belief propagation to iteratively estimate the unknowns at every pixel in the image.

While this approach has produced some impressive results, it has the disadvantage of employing

an expensive iterative non-linear optimization process, which might converge to different local

minima. Another scribble-based matting approach was recently proposed by Guan et al. [9],

augmenting the random walk approach [8] with an iterative estimation of color models.
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II. DERIVATION

For clarity of exposition we begin by deriving a closed-formsolution for alpha matting of

grayscale images. This solution will then be extended to thecase of color images in Section

II-A.

As mentioned earlier, the matting problem is severely under-constrained. Therefore, some

assumptions on the nature ofF , B and/orα are needed. To derive our solution for the grayscale

case we make the assumption that bothF andB are approximately constant over a small window

around each pixel. Note that assumingF andB are locally smooth does not mean that the input

imageI is locally smooth, since discontinuities inα can account for the discontinuities inI. This

assumption, which will be somewhat relaxed in Section II-A,allows us to rewrite (1) expressing

α as a linear function of the imageI:

αi ≈ aIi + b, ∀i ∈ w, (2)

wherea = 1
F−B

, b = − B
F−B

andw is a small image window. This linear relation is similar to

the prior used in [20], and the shape recipes of [18]. This relation suggests findingα, a and b

that minimize the cost function

J (α, a, b) =
∑

j∈I





∑

i∈wj

(αi − ajIi − bj)
2 + ǫa2

j



 , (3)

wherewj is a small window around pixelj.

The cost function above includes a regularization term ona. One reason for adding this term

is numerical stability. For example, if the image is constant in the j-th window,aj andbj cannot

be uniquely determined without a prior. Also, minimizing the norm of a biases the solution

towards smootherα mattes (sinceaj = 0 means thatα is constant over thej-th window).

In our implementation, we typically use windows of3 × 3 pixels. Since we place a window

around each pixel, the windowswj in (3) overlap. It is this property that enables the propagation

of information between neighboring pixels. The cost function is quadratic inα, a and b, with

3N unknowns for an image withN pixels. Fortunately, as we show below,a and b may be

eliminated from (3), leaving us with aquadraticcost in onlyN unknowns: the alpha values of

the pixels.
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Theorem 1:DefineJ (α) as

J (α) = min
a,b

J (α, a, b) .

Then

J(α) = αTL α, (4)

whereL is anN × N matrix, whose(i, j)-th entry is:

∑

k|(i,j)∈wk



δij −
1

|wk|



1 +
1

ǫ
|wk|

+ σ2
k

(Ii − µk)(Ij − µk)







 (5)

Here δij is the Kronecker delta,µk and σ2
k are the mean and variance of the intensities in the

window wk aroundk, and |wk| is the number of pixels in this window.

Proof: Rewriting (3) using matrix notation we obtain

J (α, a, b) =
∑

k

∥

∥

∥

∥

∥

∥

∥

Gk







ak

bk





− ᾱk

∥

∥

∥

∥

∥

∥

∥

2

, (6)

where for every windowwk, Gk is defined as a(|wk| + 1) × 2 matrix. For eachi ∈ wk, Gk

contains a row of the form[Ii, 1], and the last row ofGk is of the form [
√

ǫ, 0]. For a given

matteα we defineᾱk as a(|wk| + 1) × 1 vector, whose entries areαi for every i ∈ wk, and

whose last entry is 0. The elements inᾱk andGk are ordered correspondingly.

For a given matteα the optimal paira∗
k, b

∗
k inside each windowwk is the solution to the least

squares problem:

(a∗
k, b

∗
k) = argmin

∥

∥

∥

∥

∥

∥

∥

Gk







ak

bk





− ᾱk

∥

∥

∥

∥

∥

∥

∥

2

(7)

= (GT
k Gk)

−1GT
k ᾱk (8)

Substituting this solution into (6) and denotinḡGk = I − Gk(G
T
k Gk)

−1GT
k we obtain

J (α) =
∑

k

ᾱT
k ḠT

k Ḡkᾱk,

and some further algebraic manipulations show that the(i, j)-th element ofḠT
k Ḡk may be
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expressed as:

δij −
1

|wk|



1 +
1

ǫ
|wk|

+ σ2
k

(Ii − µk)(Ij − µk)



 .

Summing overk yields the expression in (5).

A. Color Images

A simple way to apply the cost function to color images is to apply the gray level cost to each

channel separately. Alternatively we can replace the linear model (2), with a 4D linear model:

αi ≈
∑

c

acIc
i + b, ∀i ∈ w, (9)

wherec sums over color channels. The advantage of this combined linear model is that it relaxes

our previous assumption thatF andB are constant over each window. Instead, as we show below,

it is enough to assume that in a small window each ofF andB is a linear mixture of two colors;

in other words, the valuesFi in a small window lie on a single line in the RGB color space:

Fi = βiF1 + (1− βi)F2, and the same is true for the background valuesBi. In what follows we

refer to this assumption as thecolor line model.

Such a model is useful since it captures, for example, the varying shading on a surface with

a constant albedo. Another example is a situation where the window contains an edge between

two uniformly colored regions both belonging to the background or the foreground. In Figure 2

we illustrate this concept, by plotting localRGB distributions from a real image. Furthermore,

Omer and Werman [12] demonstrated that in many natural images the pixel colors in RGB space

tend to form a relatively small number of elongated clusters. Although these clusters are not

straight lines, their skeletons are roughly linear locally.

Theorem 2:If the foreground and background colors in a window satisfy the color line model

we can express

αi =
∑

c

acIc
i + b, ∀i ∈ w.

Proof: Substituting into (1) the linear combinationsFi = βF
i F1 + (1 − βF

i )F2 and Bi =

βB
i B1 + (1 − βB

i )B2, whereF1, F2, B1, B2 are constant over a small window, we obtain:

Ic
i = αi(β

F
i F c

1 + (1 − βF
i )F c

2 ) + (1 − αi)(β
B
i Bc

1 + (1 − βB
i )Bc

2).

Let H be a3 × 3 matrix whosec-th row is [F c
2 + Bc

2, F
c
1 − F c

2 , Bc
1 − Bc

2]. Then the above may
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Fig. 2. Local patches selected from a real image and theRGB plots of their color distributions.

be rewritten as:

H













αi

αiβ
F
i

(1 − αi)β
B
i













= Ii − B2,

whereIi and B2 are 3 × 1 vectors representing 3 color channels. We denote bya1, a2, a3 the

elements in the first row ofH−1, and byb the scalar product of first row ofH−1 with the vector

B2. We then obtainαi =
∑

c acIi + b.

Using the 4D linear model (9) we define the following cost function for matting of RGB

images:

J (α, a, b) =
∑

j∈I





∑

i∈wj

(

αi −
∑

c

ac
jI

c
i − bj

)2

+ ǫ
∑

c

ac2

j



 (10)

Similarly to the grayscale case,ac and b can be eliminated from the cost function, yielding a
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quadratic cost in theα unknowns alone:

J (α) = αT L α. (11)

HereL is anN × N matrix, whose(i, j)-th element is:

∑

k|(i,j)∈wk

(

δij −
1

|wk|
(1 + (Ii − µk)(Σk +

ǫ

|wk|
I3)

−1(Ij − µk))

)

(12)

whereΣk is a 3× 3 covariance matrix,µk is a 3× 1 mean vector of the colors in a windowwk,

andI3 is the3 × 3 identity matrix.

We refer to the matrixL in equations (5) and (12) as thematting Laplacian. Note that

the elements in each row ofL sum to zero, and therefore the nullspace ofL includes the

constant vector. Ifǫ = 0 is used, the nullspace ofL also includes every color channel ofI

(as each of the color channels can be expressed as a linear function of itself, e.g., by setting

a1 = 1, a2 = a3 = b = 0).

Apart from the mathematical justification, the intuition behind our cost function is that the

matte may be represented locally as a linear combination of the image color channels, as

illustrated by the three representative examples shown in Figure 3. The first example is a

window with rather uniform foreground and background colors. In this case the alpha matte

has a strong normalized correlation with the image and it maybe generated by multiplying one

of the color channels by a scale factor and adding a constant.In the second example, the alpha

matte is constant over the entire window. Regardless of the complexity of the image texture in

this window, we can obtain the constant alpha by multiplyingthe image channels by zero and

adding a constant. This trivial case is important, as it demonstrates some of the power of the 4D

linear model. Since a typical matte is constant (0 or 1) over most image windows, the matte in

such windows may be expressed as a linear function of the image in a trivial way, regardless of

the exact color distribution, and whether the color line model holds or not. Finally, we present

a window with non-uniform alpha, where, in addition, the background contains an edge. Since

the edge contrasts in the different color channels are different, by scaling the color channels

appropriately our model is able to actually cancel the background edge.
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,
=

0 −2 +0 +1

,
= 0 +0 +0 +1

,
= −1 +2 +0 +0

Image and matte pair Expressing the matte as a linear combination of color channels

Fig. 3. Local linear relations between alpha windows and image windows.

III. CONSTRAINTS AND USER INTERFACE

In our system the user-supplied constraints on the matte maybe provided via a scribble-based

GUI, or a trimap. The user uses a background brush (black scribbles in our examples) to indicate

background pixels (α = 0) and a foreground brush (white scribbles) to indicate foreground pixels

(α = 1).

To extract an alpha matte matching the user’s constraints wesolve for

α = argmin αT L α + λ(αT − bT
S )DS (α − bS) (13)

where λ is some large number,DS is a diagonal matrix whose diagonal elements are1 for

constrained pixels and0 for all other pixels, andbS is the vector containing the specified alpha

values for the constrained pixels and 0 for all other pixels.

Since the above cost is quadratic in alpha, the global minimum may be found by differentiating

(13) and setting the derivatives to 0. This amounts to solving the following sparse linear system:

(L + λDS)α = λbS (14)

Theorem 3:Let I be an image formed fromF andB according to the compositing equation

(1), and letα∗ denote the true alpha matte. IfF and B satisfy the color line model in every

local windowwk, and if the user-specified constraintsS are consistent withα∗, thenα∗ is an

optimal solution for the system (13), whereL is constructed withǫ = 0.
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Proof: Sinceǫ = 0, if the color line model is satisfied in every windowwk, it follows from

the definition (10) thatJ (α∗, a, b) = 0, and thereforeJ (α∗) = α∗T L α∗ = 0.

We demonstrate this in Figure 4. The first image (Figure 4(a))is a synthetic example that was

created by compositing computer-simulated (monochromatic) smoke over a simple background

with several color bands, which satisfies the color line model. The black and white scribbles

show the input constraints. The matte extracted by our method (Figure 4(b)) is indeedidentical

to the ground truth matte. The second example (Figure 4(c)) is a real image, with fairly uniform

foreground and background colors. By scribbling only two black and white points, a high quality

matte was extracted (Figure 4(d)).

Note that theorem 3 states only necessary but not sufficient conditions for recovering the true

alpha matte. This is the case, since the nullspace ofL may contain multiple solutions and it is

up to the user to provide a sufficient number of constraints toensure that solving equation (13)

yields the correct alpha matte. For example, constraining the system to output the true matte in

Figure 4(a), required a setting constraint inside every connected component.

(a) (b) (c) (d)

Fig. 4. Matting examples. (a,c) Input images with sparse constraints. (b,d) Extracted mattes.

A. Additional Scribbling Brushes

To provide the user with more flexible control over the outputwe add additional types of

brushes for specifying constraints at regions containing mixed pixels. One simple constraint

may be set by explicitly specifying the values ofF andB under the scribble (by cloning them

from other locations in the image). This gives a constraint on α in the scribbled area, computable

directly from the compositing equation (1). Another constraint type is when the artist indicates

that F andB areconstant but unknownunder the scribble. This tells the system that the linear
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relationship (9) should hold for all the pixels covered by the scribble, rather than only inside

each3 × 3 window. This adds to equation (12) an additional larger window which contains all

of the pixels under the scribble. The usage of these two brushes is illustrated in Figure 5. If

only black and white scribbles are used (Figure 5(a)), thereis no way to specify background

constraints for the parts of the background partially visible through the fine gaps in the hair.

As a result these gaps are not captured by the recovered matte(Figure 5(b)). To overcome this,

the user may pick some blond and brown colors from the neighboring pixels (Figure 5(c)) and

specify them as the foreground and background colors in thatregion. The matte produced from

these constraints succeeds in capturing the partial visibility of the background. Alternatively,

the user may place a scribble (gray scribble in Figure 5(d)) indicating that this area should be

treated as a single large neighborhood, causing the brown pixels showing through the hair to be

treated the same as the brown pixels outside. In the results section we show that these additional

brushes are also useful for the challenging tasks of extracting mattes for shadows and smoke.

IV. PARAMETERS

To gain a better understanding of our method, we illustrate here the effect of the different

parameters on the alpha reconstruction.

First we demonstrate the effect ofǫ, which is the weight of the regularization term ona in

eq. (3). There are two reasons for having this term. The first reason is numerical stability. For

example, if the image is constant in thej-th window,aj and bj cannot be uniquely determined

without a prior. Also, minimizing the norm ofa biases the solution towards smootherα mattes

(sinceaj = 0 means thatα is constant over thej-th window). In Figure 6 we demonstrate the

effect of ǫ on the resulting matte. Our input image consists of two noisyareas, and was scribbled

with two vertical lines. In Figure 6 we show three different mattes that were obtained using three

different values ofǫ. We also plot the different mattes using a one-dimensional profile of one of

the rows. For comparison we also plot the profile of the input image scaled to the[0, 1] range.

We can see that whenǫ is small the sharpness of the recovered matte matches the profile of

the edge in the input image, but the matte also captures the image noise. For largeǫ values the

image noise is indeed ignored, but the recovered alpha is over-smoothed. In our implementation

we usually usedǫ = 0.17 to 0.15, since real images are normally not as noisy as the above

example.
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(a)

(b) (c) (d)

Fig. 5. Using additional scribbling brushes. (a) Input image. (b) Simple background (black) and foreground (white) scribbles.
(c) Scribbling foreground and background colors explicitly. (d) Marking wider neighborhoods.

Figure 6 demonstrates the fact thatǫ is an important parameter in our system, which controls

the amount of noise versus the amount of smoothing in the solution. While many of our

theoretical results in this paper only hold for the caseǫ = 0, it should be noted that, in practice,

asǫ approaches 0, our method will typically fail to produce a constant matte in textured or noisy

regions.

Another parameter which affects the results is the window size. We usually construct the

matting Laplacian using3 × 3 windows. Using wider windows is more stable when the color

lines model holds, but the chance of encountering windows that deviate from the color lines
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Profile of the different mattes

Fig. 6. Computing a matte using differentǫ values.

model grows when the windows are larger. This is illustratedin Figure 7. The matte of the

image was recovered using both3× 3 and5× 5 windows. The mattes are shown in Figure 7(b)

and (c), respectively. It may be seen that the matte in Figure7(c) contains some errors. The

reason is that some of the5 × 5 windows deviate from the color lines model since their areas

cover three differently colored background strips, while the3×3 windows are small enough and

never cover more then two strips. On the other hand, in Figure8 the fact that5×5 windows can

cover three different strips is useful as that helps the foreground constraint (the white scribble)
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(a) input marks (b)3 × 3 windows (c)5 × 5 windows

Fig. 7. Computing a matte using different window sizes.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Computing a matte using different window sizes. (a) Input marks. (b)3× 3 windows. (c)5× 5 windows. (d)3 × 3

windows computed at coarser resolution. (e) Simple interpolation of (d). (f) Interpolating thea, b parameters corresponding to
the matte in (d) and applying them to obtain a matte for the finer image.

to propagate to the entire striped texture region (Figure 8(c)). (Despite the fact that two blue
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pixels in different strips are not direct neighbors, they are neighbors in the induced graph due

to the fact that the window is large enough). Such propagation does not occur when using3× 3

windows, as shown in Figure 8(b).

Even in cases for which wider windows are useful, their usageincreases computation time

since the resulting system is less sparse. To overcome this,we consider the linear coefficients

in equation (9) that relate an alpha matte to an image. The coefficients obtained using wide

windows on a fine resolution image are similar to those obtained with smaller windows on a

coarser image. Therefore we can solve for the alpha matte using 3 × 3 windows on a coarse

image and compute the linear coefficients that relate it to the coarse image channels. We then

interpolate the linear coefficients and apply them to the finer resolution image. The alpha matte

obtained using this approach is similar to the one that wouldhave been obtained by solving the

matting system directly on the fine image with wider windows.To demonstrate this, Figure 8(d)

shows the alpha matte that was obtained when3 × 3 windows where used on the image of

Figure 8(a) after downsampling it by a factor of 2. If we just upsample this alpha matte by a

factor of two we get the blurred alpha matte shown in Figure 8(e). On the other hand, if we

compute thea, b values relating the small alpha (Figure 8(d)) to the image, upsample them and

apply them to the finer resolution image, we get the sharp matte in Figure 8(f), which is almost

identical to the one in Figure 8(c), obtained using5 × 5 windows.

V. SPECTRAL ANALYSIS

The matting Laplacian matrixL is a symmetric semi-definite matrix, as evident from theorem1

and its proof. This matrix may also be written asL = D − W , whereD is a diagonal matrix

D(i, i) =
∑

j W (i, j) andW is a symmetric matrix, whose off-diagonal entries are defined by

(12). Thus, the matrixL has the same form as thegraph Laplacianused in spectral methods

for segmentation, but with a novel affinity function given by(12). For comparison, the typical

way to define the affinity function (e.g., for image segmentation using normalized cuts [15]) is

to set

WG(i, j) = e−‖Ii−Ij‖2/σ2

, (15)

whereσ is a global constant (typically chosen by hand). This affinity is large for nearby pixels

with similar colors and approaches zero when the color difference is much greater thanσ. The
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random walk matting algorithm [8] uses a similar affinity function for the matting problem,

but the color distance between two pixels is taken after applying a linear transformation to

their colors. The transformation is image-dependent and isestimated using a manifold learning

technique.

In contrast, by rewriting the matting Laplacian asL = D−W , we obtain the following affinity

function, which we refer to as “the matting affinity”:

WM(i, j) =
∑

k|(i,j)∈wk

1

|wk|
(1 + (Ii − µk)(Σk +

ǫ

|wk|
I3)

−1(Ij − µk)) (16)

We note that by using the termaffinity here, we somewhat extend its conventional usage: while

standard affinities are usually non negative, the matting affinity may also assume negative values.

To compare the two affinity functionsWG and WM we examine the eigenvectors of the

corresponding Laplacians, since these eigenvectors are used by spectral segmentation algorithms

for partitioning images.

Figure 9 shows the second smallest eigenvector (the first smallest eigenvector is constant in

both cases) for both Laplacian matrices, on three example images. For the matting affinity, we

present eigenvectors with twoǫ values (ǫ = 0.17 and ǫ = 0.15). The first example is a simple

image with concentric circles of different color. In this case the boundaries between regions are

very simple, and all Laplacians capture the transitions correctly. The second example is an image

of a peacock. The globalσ eigenvector (used by standard spectral clustering algorithms) fails to

capture the complex fuzzy boundaries between the peacock’stail feathers and the background. In

contrast, the matting Laplacian’s eigenvector (constructed usingǫ = 0.15) separates the peacock

from the background very well, as this Laplacian explicitlyencodes fuzzy cluster assignments.

When the matting Laplacian is constructed usingǫ = 0.17 the eigenvector is similar to the input

image and in addition to the peacock also captures some of thevegetation in the background. The

last example is the noisy step function from Figure 6. In thiscase, the eigenvector corresponding

to ǫ = 0.17 captures all of the image noise, while using a largerǫ results in a less noisy

eigenvector. However, an appropriate choice of a globalσ yields an eigenvector with a perfect

step function. This is an excellent result if the goal is a hard segmentation, but if the goal

is a soft alpha matte, it is preferable to have an edge whose smoothness is proportional to the

smoothness of the edge in the input image, so the matting eigenvector might be more appropriate.
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Thus, designing a good matting affinity is not equivalent to designing a good affinity for hard

segmentation.

Input image Globalσ eigenvectors Matting eigenvectors, smallerǫ Matting eigenvectors, largerǫ

Fig. 9. Smallest eigenvectors of Laplacians correspondingto different affinity functions.

A. The eigenvectors as guides

While the matting problem is ill-posed without some user input, the matting Laplacian matrix

contains a lot of information on the image even before any constraints have been provided, as

demonstrated in the previous section.

This suggests that looking at some of the smallest eigenvectors of the matting Laplacian

can guide the userwhere to place scribbles. For example, the extracted matte and the smallest

eigenvectors tend to be piecewise constant over the same regions. If the values inside a segment

in the eigenvector image are coherent, a single scribble within such a segment should suffice

to propagate the desired value to the entire segment. On the other hand, areas where the

eigenvector’s values are less coherent correspond to more “difficult” regions in the image,

suggesting that more scribbling efforts might be required there. We note, however, that a basic

strategy for scribble placing is just to examine the input image and place scribbles on regions with

different colors. This is also evident by the fact that when the matting Laplacian is constructed

using ǫ = 0, the nullspace of the matting Laplacian will contain the 3 color channels.
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Figure 10 illustrates how a scribbling process may be guidedby the eigenvectors. By examining

the two smallest eigenvectors (Figure 10(a-b)) we placed a scribble inside each region exhibiting

coherent eigenvector values (Figure 10(c)). The resultingmatte is shown in Figure 10(d). Note

that the scribbles in Figure 10(c) were our first, and single attempt to place scribbles on this

image.

Stated somewhat more precisely, the alpha matte may be predicted by examining some of the

smaller eigenvectors of the matting Laplacian, since an optimal solution to (13) will be to a

large degree spanned by the smaller eigenvectors. In fact, it is possible to bound the weight of

the larger eigenvectors in the optimal solution, as a function of the ratios of the corresponding

eigenvalues.

(a) (b) (c) (d)

Fig. 10. Smallest eigenvectors (a-b) are used for guiding scribble placement (c). The resulting matte is shown in (d).

Theorem 4:Let v1, . . . , vN be the eigenvectors of the matting Laplacian (12) with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λN . Let S be the subset of scribbled pixels, with scribble valuessi, i ∈ S.

We denote byx(S) the restriction of the vectorx to the scribbled pixels (so thatx(S) is an |S|
dimensional vector). Letα be the optimal matte and supposeα is expressed with respect to the

eigenvectors basis asα =
∑N

k=1 akvk.

If the scribbles are spanned by theK smallest eigenvectorss(S) =
∑K

k=1 bkvk(S), then for

everyj > K:

a2
j ≤

∑K
k=1 b2

k

λj

≤ ‖b‖2λK

λj

Proof: Let β =
∑K

k=1 bkvk. Thenβ satisfiesβ(S) = s(S). Sinceα is the optimal solution

α = argmin αTL α, s.t. α(S) = s(S), we must have thatαT Lα ≤ βT Lβ. Since the Laplacian
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matrix L is positive semi-definite, the eigenvectorsv1, . . . , vN are orthogonal. Therefore,

αT Lα =
N
∑

k=1

a2
kλk, (17)

βTLβ =
K
∑

k=1

b2
kλk, (18)

and as a result for everyj: a2
jλj ≤

∑K
k=1 b2

k ≤ ‖b‖2λK .

Corollary 1: If the scribbles are spanned by the nullspace ofL the optimal solution will also

lie in the nullspace ofL.

Proof: Let K be the dimension of the nullspace. Using the previous theorem’s notation,

for every j > K, a2
j ≤ ‖b‖2λK = 0, and the optimal solution is spanned by theK nullspace

eigenvectors.

The above implies that the smoothness of the recovered alphamatte will tend to be similar

to that of the smallest eigenvectors ofL.

VI. OPTIMIZATION

The optimization problem defined by equation (13) is one of minimizing a quadratic cost

function subject to linear constraints, and the solution can therefore be found by solving a

sparse set of linear equations.

For the results shown here we solve the linear system using Matlab’s direct solver (the

“backslash” operator), which takes 20 seconds for a 200 by 300 image on a 2.8GHz CPU.

Processing large images using Matlab’s solver is impossible due to memory limitations. To

overcome this we use a coarse-to-fine scheme. We downsample the image and the constraints

and solve at a lower resolution. The recovered alpha matte isthen interpolated to the finer

resolution, alpha values are thresholded and pixels with alpha close to0 or 1 are clamped and

considered as constrained in the finer resolution. Constrained pixels may be eliminated from the

system, reducing the system size. For that, we note that within the constrained areas there is

no need to enforce the local linear models. Therefore, when computing the matting Laplacian

matrix (equations 5,12), we sum only windowswk that contain at least one unconstrained pixel.

Aside for efficiency, clamping alpha values to0 or 1 is also useful in avoiding over-smoothed

α-mattes, and we used such clamping to produce the results in Figure 16(d). We note, however,
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that clamping the alpha values in a coarse to fine approach hasthe negative side effect that long

thin structures, such as strains of hair, may be lost.

It should be noted that solving linear systems with this structure is a well studied problem [8],

[16]. We have also implemented a multigrid solver for matte extraction. The multigrid solver

runs in a couple of seconds even on very large images, but witha small degradation in matte

quality. Therefore, a multigrid solver enables the system to operate as an interactive tool. The

user can place constraints, examine the resulting matte andadd constraints in image areas which

require further refinement.

The eigenvectors of the matting Laplacian depend only on theinput image, and are independent

of the user’s constraints. It is not necessary to compute them, unless the user wishes to use

them for guidance in scribble placement, as described earlier. In this case, they only need to be

computed once, possibly as part of the initialization that takes place when a new image is loaded.

Recently, there has been much research of efficient methods for computation of eigenvectors

(e.g., [4]), partly in response to the growing interest in normalized cuts image segmentation and

other spectral clustering methods.

VII. RECONSTRUCTINGF AND B

Having solved forα it is also usually necessary to reconstructF , and in some cases alsoB.

One approach for reconstructingF andB is to solve equation (9) for the optimala, b given α

using least squares. However, in order to extractF andB from a, b there is an additional matting

parameter that should be recovered (β in the proof of theorem 2). For complex foreground and

background patterns such a reconstruction may produce noisy results, and therefore we solve

for F and B using the compositing equation, introducing some explicitsmoothness priors on

F and B. The smoothness priors are stronger in the presence of matteedges. Specifically, we

minimize a system of the form:

min

∑

i∈I

∑

c

(αiF
c

i
+ (1 − αi)B

c

i
− I

c

i
)2 (19)

+ |αix
|
(

(F c

ix
)2 + (Bc

ix
)2
)

+ |αiy
|
(

(F c

iy
)2 + (Bc

iy
)2
)

whereF c
ix, F c

iy , Bc
ix , and Bc

iy are thex and y derivatives ofF c and Bc, andαix , αiy are the

matte derivatives. We note that for a fixedα the cost (19) is quadratic and its minimum may be

found by solving a sparse set of linear equations. Given the solution of F andB theα solution
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can be further refined, but in practice we have observed this is not required. Figure 11 shows

an α-matte andF andB images recovered in this way.

(a) (b) (c) (d) (e)

Fig. 11. Foreground and background reconstruction: (a) input (b) α-matte (c) foreground reconstruction (d) background
reconstruction (e)F composited over a novel background.

VIII. R ESULTS

In all examples presented in this section the scribbles usedin our algorithm are presented in the

following format: black and white scribbles are used to indicate the first type of hard constraints

onα. Red scribbles represent places in which foreground and background colors where explicitly

specified. Finally, gray scribbles are used to represent thethird type of constraint — requiring

a and b to be constant (without specifying their exact value) within the scribbled area.

A. Visual Comparisons

Figure 12 presents matting results on images from the Bayesian matting work [6]. Our results

appear visually comparable to those produced by Bayesian matting. While the Bayesian matting

results use a trimap, each of our results was obtained using asparse set of scribbles.

In Figure 13 we extract mattes from a few of the more challenging examples presented in the

Poisson matting paper [17]. For comparison, the Poisson andBayesian matting results provided

in [17] are also shown1.

Figure 14 shows the mattes extracted using our technique on two challenging images used

in [19] and compares our results to several other recent algorithms. It can be seen that our results

on these examples are comparable in terms of visual quality to those of [19], even though we

use a far simpler algorithm. Global Poisson matting cannot extract a good matte from a sparse

1We thank Leo Jia for providing us with the images and results
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(a) (b) (c) (d) (e)

Fig. 12. Comparison with Bayesian matting [6]. (a) input image (b) trimap (c) Bayesian matting result (obtained from the
Bayesian Matting webpage) (d) scribbles (e) our result.

(a) (b) (c) (d) (e)

Fig. 13. Result on Poisson matting examples. (a) input image(b) Bayesian matting (obtained from the Poisson matting paper)
(c) Poisson matting (obtained from the Poisson matting paper) (d) our result (e) scribbles

set of scribbles although its performance with a trimap is quite good. The random walk matting

algorithm [8] also minimizes a Laplacian but uses an affinityfunction with a global scaling

parameter and hence has a particular difficulty with the peacock image.

Figure 15 presents compositing examples using our algorithm for some images from the

previous experiments. We show compositing both over a constant background and over natural
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(a) Peacock scribbles (b) Poisson from scribbles (c) Wang-Cohen (d) Our result

(e) Peacock trimap (f) Poisson from trimap (g) Bayesian (h) Random walk

(i) Fire scribbles (j) Poisson from scribbles (k) Wang-Cohen (l) Our result

(m) Fire trimap (n) Poisson from trimap (o) Bayesian (p) Random walk

Fig. 14. A comparison of alpha mattes extracted by differentalgorithms. Images (a,c,e,g,i,k,m,o) are taken from [19].The
remaining images were generated by our own implementation of the respective methods.

images.

Figure 16 shows an example (from [19]), where Wang and Cohen’s method fails to extract

a good matte from sparse scribbles due to color ambiguity between the foreground and the

background. The same method, however, is able to produce an acceptable matte when supplied

with a trimap. Our method produces a cleaner, but also imperfect matte from the same set of

scribbles, but adding a small number of additional scribbles results in a better matte. (To produce

this result, we applied clamping of alpha values as described in section VI.)

Figure 17 shows another example (a closeup of the Koala imagefrom [17]), where there’s an

ambiguity between foreground and background colors. In this case the matte produced by our

method is clearly better than the one produced by the Wang-Cohen method. To better understand

why this is the case, we show an RGB histogram of representative pixels from theF and B

scribbles. Some pixels in the background fit the foreground color model much better then the
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Fig. 15. Some compositing examples usingα, F and B extracted by our algorithm. Left: compositing with a constant
background. Right: compositing over natural images.

background one (one such pixel is marked red in 17(b) and indicated by an arrow in 17(d)). As

a result such pixels are classified as foreground with a high degree of certainty in the first stage.
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(a) (b) (c) (d)

Fig. 16. An example (from [19]) with color ambiguity betweenforeground and background. (a) scribbles and matte by [19];
(b) [19] results using a trimap; (c) our result with scribbles similar to those in (a); (d) our results with a few additional scribbles.

Once this error has been made it only reinforces further erroneous decisions in the vicinity of

that pixel, resulting in a white clump in the alpha matte.

Since our method does not make use of global color models forF and B it can handle

ambiguous situations such as that in Figure 17. However, there are also cases where our method

fails to produce an accurate matte for the very same reason. Figure 18 shows an actress in

front of a background with two colors. Even though the blackB scribbles cover both colors

the generated matte includes parts of the background (between the hair and the shoulder on the

left). In such cases, the user would have to add anotherB scribble in that area.

To demonstrate the limitations of our approach in the presence of insufficient user input,

consider the examples in Figure 19. Only three dots of constraints were provided, and the

resulting matte is some interpolation from black to white, adapting to the image texture. The

source of the problem is demonstrated by the synthetic example in the second row of Figure 19.

In this example the input image consists of three regions, only two of which are constrained.

DRAFT



27

(a) Scribbles (b) Wang-Cohen (c) Our result
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(d) RGB histogram ofF (red) andB (blue) pixels.

Fig. 17. An example with ambiguity betweenF andB.

Fig. 18. Failure due to lack of a color model.

The system is then free to assign the middle unconstrained region any average non-opaque gray

value. The core of this problem is that while our quadratic cost places strong assumptions on the

foreground and background distributions, it imposes no restrictions onα. Thus, it searches for

continuoussolutions without taking into account that, for a mostly opaque foreground object,
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the matte should be strictly zero or one over most of the image.

Input Constraints Matte

Fig. 19. Limitations in the lack of sufficient user input
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Background source image Errors (smoke matte) Errors (circle matte)

Fig. 20. A quantitative comparison using two ground truth mattes. The errors are plotted as a function of average gradient
strength of the background, binned into 10 bins. To produce these results we used our own implementation of the respective
methods, using the parameter values specified in the original papers.
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B. Quantitative Comparisons

To obtain a quantitative comparison between the algorithms, we performed an experiment with

synthetic composites for which we have the ground truth alpha matte. We randomly extracted

2000 subimages from the image shown in Figure 20. We used eachsubimage as a background

and composited over it a uniform foreground image using two different alpha mattes: the first

matte is computer simulated smoke, most of which is partially transparent; the other matte is a

part of a disk, mostly opaque with a feathered boundary. The mattes are shown in Figure 20.

Consequently, we obtained 4000 composite images, two of which are shown in Figure 20. On this

set of images we compared the performance of four matting algorithms: Wang and Cohen, global

Poisson matting, random walk matting, and our own (using3×3 windows with no pyramid). All

algorithms were provided a trimap as input. Examples of the trimaps and the results produced

by the different methods are shown in Figure 20. For each algorithm, we measured the summed

absolute error between the extracted matte and the ground truth. Figure 20 plots the average

error of the four algorithms as a function of the smoothness of the background (specifically we

measured the average gradient strength, binned into 10 bins). When the background is smooth,

all algorithms perform well with both mattes. When the background contains strong gradients,

global Poisson matting performs poorly (recall that it assumes that background and foreground

gradients are negligible). Of the remaining algorithms, our algorithm consistently produced the

most accurate results.

C. Shadow Matting

Figure 21 presents additional applications of our technique. In particular, the red marks

specifying the foreground and background color, may be usedto extract shadow and smoke.

In the top row, the red scribbles on the shadow specify that the foreground color is black.

In the bottom row, the red scribble on the smoke indicates theforeground color is white (in

both cases the background color for the red scribbles was selected from neighboring, uncovered

pixels). These sparse constraints onα were then propagated to achieve the final matte. Note that

shadow matting can not be directly achieved with matting algorithms which initialize foreground

colors using neighboring pixels, since no neighboring black pixels are present. Note also that the

shadow area captures a significant amount of the image area and it’s not clear how to specify
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(a) (b) (c) (d) (e)

Fig. 21. Additional examples. Our technique applied for shadow and smoke extraction. (a) input image (b) scribbles (c)
extracted mattes (d-e) composites.

(a) (b) (c) (d) (e)

Fig. 22. Shadow compositing with the shadow composition equation [7]. (a) marked input image (b) extractedα-matte (c)
extracted background with marked shadow (d)β shadow matte. (e) compositing foreground and shadow with a novel background.

a good trimap in this case. The smoke example was processed also in [5], but in their case a

background model was calculated using multiple frames.

An alternative approach for shadow extraction is to use the shadow composition equation

proposed by [7]

I = βL + (1 − β)S

WhereI is the input image,L the lit image, S theshadow imageandβ theshadow density matte.

We consider the image in Figure 22. We first place black and white scribbles on the man and

extract him from the background. We are then left with the background image in Figure 22(c)

from which we would like to extract the shadow. This enables us to place black scribbles inside
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the shadow area and white scribbles outside. Those scribbles are used for computing the shadow

maskβ in Figure 22(d). We can use the two mattes (Figure 22(b,d)) topaste both the man and

his shadow over a novel background, as shown in Figure 22(e).The double compositing follows

the following formula:

Inew = αF + (1 − α)(1 − s + sβBnew)

wheres is some scalar0 < s < 1 controlling the shadow strength. To the best of our knowledge,

this is the first attempt to address shadow matting using an interactive interface.

IX. D ISCUSSION

Matting and compositing are tasks of central importance in image and video editing and

pose a significant challenge for computer vision. While thisprocess by definition requires user

interaction, the performance of most existing algorithms deteriorates rapidly as the amount of

user input decreases. In this paper, we have introduced a cost function based on the assumption

that foreground and background colors vary smoothly and showed how to analytically eliminate

the foreground and background colors to obtain a quadratic cost function in alpha. The resulting

cost function is similar to cost functions obtained in spectral methods to image segmentation but

with a novel affinity function that is derived from the formulation of the matting problem. The

global minimum of our cost function may be found efficiently by solving a sparse system of

linear equations. Our experiments on real and synthetic images show that our algorithm clearly

outperforms other algorithms that use quadratic cost functions, which are not derived from the

matting equations. Furthermore, our results are competitive with those obtained by much more

complicated, nonlinear, cost functions. However, compared to previous nonlinear approaches, we

can obtain solutions in a few seconds, and we can analytically prove properties of our solution

and provide guidance to the user by analyzing the eigenvectors of our operator.

While our approach assumes smoothness in foreground and background colors, it does not

assume a global color distribution for each segment. Our experiments have demonstrated that our

local smoothness assumption often holds for natural images. Nevertheless, it would be interesting

to extend our formulation to include additional assumptions on the two segments (e.g., global

models, local texture models, etc.). The goal is to incorporate more sophisticated models of

foreground and background but still obtain high quality results using simple numerical linear
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algebra.

Finally, the implementation of our matting algorithm and all examples presented in this paper

are available for public usage at:

http://people.csail.mit.edu/alevin/matting.tar.gz
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