Separating reflections from a single image using local features
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Abstract

When we take a picture through a window the image we ob-
tain is often a linear superposition of two images: the image
of the scene beyond the window plus the image of the scene
reflected by the window. Decomposing the single input im-
age into two images is a massively ill-posed problem: in
the absence of additional knowledge about the scene being
viewed there is an infinite number of valid decompositions.
In this paper we describe an algorithm that uses an ex-
tremely simple form of prior knowledge to perform the de-
composition. Given a single image as input, the algorithm
searches for a decomposition into two images that minimize
the total amount of edges and corners. The search is per-
formed using belief propagation on a patch representation
of the image. We show that this simple prior is surprisingly
powerful: our algorithm obtains “correct” separations on
challenging reflection scenes using only a single image.

1 Introduction

When we view a scene through transparent glass, the result-
ing image is often similar to the one shown in the top of
figure 1. The image is a linear superposition of two images:
the face and the reflection of a bookshelf. Perceptually, this
input image is decomposed into two transparent layers. Can
we get a computer vision algorithm to find this decomposi-
tion?

Mathematically, the problem can be posed as follows.
We are given an image I (z,y) and wish to find two layers
Iy, I such that:
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This problem is obviously ill-posed: there are twice as
many variables as there are equations. In the absence of
additional prior knowledge there are an infinite number of
possible decompositions. Figure 1 show a number of possi-
ble decompositions. All of them satisfy equation 1. In order
to choose the “correct” decomposition, we need additional
assumptions.

Figure 1: (a) Original input image (constructed by summing
the two images in b). (b) the correct decomposition. (c)-
(g) alternative possible decompositions. Why should the
decomposition in (b) be favored?

One source of additional assumptions is the use of mul-
tiple input images. In [3, 10] two photographs of the same
scene were taken with a different polarizing filter. The fil-
ter attenuates the reflection in different amounts and by us-
ing ICA on the two input images it possible to decompose
the images. In [12, 6, 15] a movie sequence is analyzed in
which the reflection and the non-reflected images have dif-
ferent motions. By analyzing the movie sequence, the two
layers can be recovered.

But humans can decompose this input from a single
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Figure 2: An input image and some decompositions

frame. On the related problem of separating shading and
reflectance impressive results have been obtained using a
single image [13, 4]. These approaches make use of the fact
that edges due to shading and edges due to reflectance have
different statistics (e.g. shading edges tend to be monochro-
matic). Unfortunately, in the case of reflections, the two
layers have the same statistics, so the approaches used for
shading and reflectance are not directly applicable.

One might think that in order to correctly decompose
such images, an algorithm would need to know about faces
and bookcases. The “bad” decompositions contain half a
face and half a bookcase. An algorithm that possessed such
high level knowledge would know to prefer the good de-
composition. But can the “right” decomposition be favored
without such high-level knowledge?

In this paper we present an algorithm that can decom-
pose reflections images using a single input image and with-
out any high level knowledge. The algorithm is based on a
very simple cost function: it favors decompositions which
have a small number of edges and corners. Surprisingly,
this simple cost function gives the “right” decompositions
for challenging real images.'

2 Transparency, edges and corners

To motivate the use of edges and corners, consider the sim-
ple image in figure 2(a). The input image can be decom-
posed into an infinite number of possible two layer decom-
positions. Figure 2(b-e) show some possible decomposi-
tions including the decomposition into two squares (the per-
ceptually “correct” decomposition).

! An earlier version of this work appeared in [7]

Why should the “correct” decomposition be favored?
One reason is that out of the decompositions shown in the
figure, it minimizes the total number of edges and corners.
The original image has 10 corners: 4 from each square and
two “spurious” corners caused by the superposition of the
two images. When we separate the image into two squares
we get rid of the two spurious corners and are left only with
eight corners. The decomposition shown in the third row
increases the number of corners (it has 14 corners) while
the bottom decomposition has 8 corners but increases the
number of edges.

How can we translate the preference for a small number
of edges and corners into cost function? We need to make
two decisions (1) what operators to use for edge and cor-
ner detectors and (2) what mathematical form to give the
cost. There is obviously a tremendous amount of literature
in computer vision on how to find edges and corners and
our goal in this work is not to devise sophisticated detectors.
For synthetic images, we found that very simple operators
work well: we used the gradient magnitude |VI(z,y)| as an
edge operator and a Harris-like operator ¢(x, y) as a corner
operator:
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For the cost function, we simply use the negative log
probability of these operators on natural images. Since the
histogram of these operators can be fit with a generalized
Gaussian distribution Pr(f) oc e~!7I"/# this leads to the
following cost function for a single layer:

costs (I) = Y |VI(z,9)|* +ne(e,y; 1P (3)
zy
with a = 0.7, 8 = 0.25,7 = 15. The values are obtained
from the histograms of the operators in natural images and
were shown to be critical for the successful decomposition
[7].
The cost of a two layer decomposition is simply the sum
of the costs for each layer separately:

costy (I, Iy) = cost1(I1) + costy (I2)

When we evaluate this simple cost (equation 3) on the
possible decompositions of the two squares (figure 2) we
indeed find that it favors the “correct” decomposition out
of the ones shown. These decompositions are, of course,
just a handful out of an infinite number of possible decom-
positions. We can also consider a one dimensional fam-
ily of solutions. We defined s(x,y) the image of a sin-
gle white square in the same location as the bottom right
square in figure 2(a). We considered decompositions of the
form Iy = «ys(z,y),la = I — I and evaluated the cost
for different values of . Figure 3 shows the resulting one



dimensional function. Indeed the minimum in this one di-
mensional subspace of solution is obtained at the “correct”
solution.

In real images, however, the story is more complicated.
Detecting edges by edge magnitude and corners with a sim-
ple Harris detector, gives responses in many seemingly flat
regions of the image. As a result, when we apply the simple
cost function to real images, it does not favor the “correct”
decomposition (see figure 3). The minimum is obtained at
v = 0 indicating that a one layer solution is favored over
the “correct” decomposition.

We have found, however, that a small modification can
fix this problem. Instead of measuring gradients and Har-
ris operators on the two layers, we first apply a nonlinear
smoothing separately to each layer and then apply equa-
tion 3 to the smoothed layers. The intuition for this is that
we want our edge and corner operators to return zero in re-
gions that are nearly uniform. Since anisotropic diffusion
transforms the nearly uniform regions into uniform ones, it
greatly reduces the number of spurious “edges” and “cor-
ners” found by the gradient and Harris operators.

Thus our cost function for a single layer is now:

costy(I) = Y |VI(z,9)|* +nea(z,y; 1P (4)
m’y

where T is the layer after applying anisotropic diffu-
sion [9]. The cornerness operator cz(x,y) is also slightly
modified from equation 3 and is given in the appendix.

Figure 3 shows that once we use the modified cost func-
tion (equation 4) the “correct” decomposition is indeed fa-
vored in the one dimensional subspace. Now, the minimum
is obtained with v = 1.

3 Optimization

In figure 3 we saw that the minimum of the cost func-
tion (equation 4) in a one dimensional subspace is obtained
at the “correct” decomposition. What we really want, of
course, is to find the minimum out of all possible decompo-
sitions. How can we search this huge space?

One option is to use a continuous optimization algorithm
such as gradient descent on equation 4. Note however, that
equation 4 is highly nonlinear: not only are the edge and
corner operators nonlinear but they also operate on the non-
linearly smoothed image I. We therefore use an alternative
approach whereby the problem is first discretized using a
database of natural image patches. We then use loopy belief
propagation to optimize the cost function over the discrete
possible values.
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Figure 3: Testing a one dimensional subspace of solutions.
Top: For the two squares stimulus the simple cost costy
gives a minimum at the preferred decomposition. Middle:
For the real image, the simple cost cost; gives a minimum
at a one layer solution. Bottom: For the real image, apply-
ing the cost to nonlinearly smoothed layers (costs) gives a
minimum at the preferred decomposition.

3.1 Discretization using a natural images
database

Instead of optimizing over the infinite space of possible de-
compositions we discretized the problem by dividing the
image into small 7 x 7 overlapping patches and restrict the
search to 20 possible decompositions for each patch. The
use of a patch representation was motivated by the suc-
cess of this approach in a number of recent vision applica-
tions [5, 2]. These 20 decompositions are defined by search-
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Figure 4: Optimization by discretization into patches. For
each input patch we search a database of photographs for
pairs of similar patches and use these to define a discrete
optimization problem.

ing a database of natural images for pairs of patches that
approximately sum to the input patch (see figure 4). The
database of patches are simply all patches contained in two
family photographs. This gives roughly 10° patches.

The use of such a large database of patches raises serious
computational issues. For every patch in the image p we
need to find a pair of patches (p;, p2) such that p = p; +ps.
Actually, to reduce the effects of patch contrast we search
for a pair of patches p =~ ap; + Bp2 + 7y (that is, we allow
each patch to change its contrast and ignore the overall DC).
A naive way of performing this search is to search all 105 x
105 possible pairs of patches but this will be incredibly slow.

To speed up the search we make use of the sparsity of
derivative filters on natural images [11, 16]. We represent
each patch in the database by the output of derivative filters
on that patch. Since derivative filters tend to be sparse, we
would expect high filter outputs in p; to still be present in
p = p1+p2 (because most likely, p, will not have high filter
outputs in exactly the same location). Using this insight, we
can find candidates p; by searching only 10° patches and
then py by performing a second search of 105 patches for
p—p1. Thus the search now requires O(2 x 105) operations
rather than O(10° x 10°).

We use this technique to find the 10 best candidates
for p; and this yields a set of 10 possible decompositions
{(pi,p})} for the input patch. p ~ pi + pb, i = 1,...,10.
Where pj- = a; * qj- + b; and q;'. is a patch in the database.
Figure 5 shows some typical decompositions.

The problem with the list of 10 decompositions obtained
above is that it will very rarely include “one layer” decom-
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Figure 5: Local patches decomposition: (a) input image re-
gion. (b), (c) a possible two patches decomposition.

positions: i.e. decompositions of the form p = p + 0. This
is due to two reasons. First, a single patch similar to p may
not be found in the database if p contains complex structure
(e.g. the “T” junction in the middle of figure 5). Second,
even when a similar patch is in the database, one can always
obtain a better fit with two patches rather than one (e.g. the
edge in the bottom of figure 5).

Therefore, for each of the 10 decompositions p & pt +pi
obtained from the database, we also consider the decompo-
sition p ~ Pt + pi such that i = pi + pi and 5 = Ois a
zero patch. This yields 20 possible decompositions for each
input patch. Finally for each decomposition (p1, p2) we add
the symmetric decomposition (p2, p1) to obtain 40 possible
decompositions for each input patch.



cost=7,470

cost=8,573
(b)

cost=8,611 cost=8,113
© (d)

Figure 6: Testing different decompositions within the
patches search space. (a) The patch from the database most
similar to the original layer is chosen in each layer. (b) The
patch from the data most similar to the input (sum) image is
chosen in layer 1, and a zero patch in layer 2. (c¢) The most
similar patch is chosen, but along the shelves edge, the lay-
ers where flipped. (d) The most similar patch is chosen, but
along the vertical shelves edge, the layers where flipped.

3.2 Belief Propagation on Patches

By using the patch discretization we reduced the space
of possible decompositions but we still have a huge num-
ber (40") of possible decompositions. Figure 6 shows
a number of these decompositions along with their costs.
While the “correct” decomposition indeed has minimal cost
among the ones shown, we need an algorithm that can find
it.

In order to find the most probable decomposition, we
follow [5] and use max-product belief propagation on the
patch representation. We define a two dimensional grid in
which each node corresponds to a patch in the image and is
connected to four other nodes corresponding to neighboring
patches. To use BP we maximize a “probability” which is
inversely related to the cost:

o e*,ﬁcostz(Il,Ig)
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Where (p1(r),p2(r)) denotes the two patches chosen at lo-
cation r.

Since the cost can be simplified into a sum of local costs,
the “probability” is a product of local “probabilities”. We
use this to rewrite the probability as:

Pr({p1(r), p2(r)}r21) = )
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The local potential ¥,.(p1 (1), p2(r)) is defined by:

W, (p1(r), p2(r)) = exp (—Picosta(pi(r)) — Bicosta(pa(r)))
(6)
with costa(p) given by equation 4.

Similar to previous uses of BP using a patch represen-
tation [5] we use pairwise potentials between patches that
require neighboring patches to agree on the pixels in the
overlap region.

Since equation 6 is completely symmetric in {p'} and
{p*} we break the symmetry by choosing a single location
and requiring that p; in that location be the zero patch. We
choose this location automatically by finding a patch in the
input image that is similar to a straight edge.

We found that max product BP when applied to the
full image often failed to converge. In order to find an
update order for which the algorithm converged, we ran-
domly divided the input image into a list of ordered subim-
ages and ran BP for a fixed number of iterations within the
first subimage. We then fixed the messages within the first
subimage and proceeded to run BP on the second subim-
age. We continues this process until BP had been run on all
subimages. We repeated this process for 100 different divi-
sions of the image into subimages and chose as the output
of the algorithm, the result that had the lowest cost.

4 Results

The belief propagation algorithm outputs two patches
p1(r), p2(r) for every patch in the input image that is most
“probable” given equation 6. In order to piece these patches
together into two output images we need to take into ac-
count the fact that each patch is only defined up to an ar-
bitrary DC level. To reconstruct layer 1 we take from each
patch p; (r) its gradients and build a gradient field for layer
1. We then search for an image I; whose gradients min-
imize the L; norm from the gradient field. We repeat the
process for layer 2. For a location  for which BP indicated
that p;(r) = 0 we set the gradients of layer 1 to be zero
and the gradients of layer 2 to be the gradients of the input
image. As we discuss below, by copying gradients of layer
2 from the original image, we are able to output textured
layers even though the cost is calculated on anisotropically
smoothed layers.

Figure 7 shows the output of our algorithm on a number
of input images. For the purpose of testing our model, the
top image was generated synthetically by summing two real
images. The bottom three images are photographs of scenes
with transparency. The same parameters were used for all
the images. The algorithm received as input a single im-
age. Even though the algorithm knows nothing about faces,
bookcases, dolls or computers, it finds the “correct” decom-
positions by minimizing the number of edges and corners.
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Figure 7: Results of our algorithm. The algorithm receives a single image as input and outputs two layers as output by mini-
mizing the total number of edges and corners. Even though it has no high level knowledge and is searching an exponentially
large number of possible decompositions, it finds a “perceptually correct” decomposition.
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Figure 8: Images without transparency are not separated by
the algorithm, even though all the parameters are the same.
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Figure 9: Importance of minimizing edges and corners to
obtain the correct results. Decomposition results when local
potentials are ignored.

Since the cost is calculated on anisotropically smoothed
layers it ignores small gradients that are due to texture. In
other words, small texture gradients can be assigned to any
layer without any change in the cost. Our reconstruction
process, however, prefers to put all small gradients in a
patch in a single layer. Thus in the picture of the man’s
back seen through a window, both the back and the reflec-
tion contained small gradients but in the output of our algo-
rithm all the small gradients were assigned to the reflection
layer and the man’s back appears artificially smooth.

Figure 8 shows the output on an image without reflec-
tions. There are still many possible decompositions of this
image, and even though the same parameters are used, the
algorithm decided not to break the image into two layers,
since a lower cost is obtained with a one layer solution.

How important is the cost function costs in getting these
results? When we set the local potentials to be uniform in
the graphical model (i.e. we completely ignore the mini-
mization of edges and corners) and run BP as before, the
result is determined by the pairwise agreement between
patches. Without the minimization of edges and corners, BP
always finds one layer solutions: apparently these have the
highest agreement in the overlap between patches. When
we artificially remove the one layer decompositions from
the range of possible decompositions (by removing the 20
candidate patches that correspond to one layer decomposi-
tions from the discretization) we still obtain solutions that
are quite wrong (see figure 9). Thus it really is the min-
imization of edges and corners that allow us to obtain the
“correct” decompositions as shown in figure 7.
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Figure 10: Failure of our decomposition algorithm. (a,b)
two images for which our algorithm prefers a one layer de-
composition. (c¢) a synthetic image formed by summing two
real images. Our algorithm outputs the wrong decomposi-
tion in (d,e) even though the cost prefers the right decompo-
sition. (f) Zooming into a x-junction on the forehead and its
expected decomposition (g). (h) The 10 candidate decom-
position found by database search. None of them seem to
be “good”.

5 Discussion

The problem of separating reflections from a single image
is massively ill-posed: we are given one image as input and
need to generate two images as output. One might think
that very high level prior knowledge is needed to perform
this task. In this paper we have shown that very simple low-
level knowledge: that edges and corners are rare, can give
surprisingly good decompositions on many real images.

Our current approach is only a first step towards sepa-
rating arbitrary reflection images from a single image. Our
algorithm often fails to separate reflections correctly, even
when the correct decomposition is perceptually obvious (e.g
for the input images in figures 10(a-b), our algorithm prefers
a one layer decomposition).

To gain understanding into the sources of these failures
we constructed the synthetic image in figure 10(c) by sum-
ming two real images. We examined a one dimensional
family of solutions and found that the correct decomposi-



tion is indeed favored by our cost. Nevertheless, when we
run our algorithm on this input image, we obtain the de-
composition shown in figure 10(d-e). This decomposition
has worse cost compared to the correct one.

Why does our optimization algorithm fail? In this case,
the discretization seems to be at fault. FigurelO shows an
“x” junction on the forehead and the desired decomposition.
The candidates found by our database search do not include
the decomposition. In future work we will experiment with
other ways to find candidate decompositions, perhaps simi-
lar to the approach used in [14]. Even when correct candi-
dates exist, the discrete optimization is so difficult that BP
may fail to find the best one. In future work we will explore
alternative optimization techniques such as graph cuts [1].

We were surprised with the power of the simple low-
level prior we are using. We are optimistic that more so-
phisticated local features may enable separating reflections
from arbitrary images.

6 Appendix: implementation details

For the anisotropic diffusion we used Malik and Perona’s
algorithm with o = 0.06 (image gray levels were in [0, 1]).
We measured cornerness by dividing the determinant of the
Harris matrix (equation 3) by its trace. The gradients used
in the Harris matrix had magnitude based on the gradients
of the anisotropically smoothed layers but their orientations
were determined by anisotropically smoothing the orienta-
tions of the original image and not the orientation of the
gradients in the diffused layers.

To find candidate patches p ~ p; + p2 we searched the
database for the patches ¢ minimizing >, |fi xp — fi* ¢ -
s||fi * q - s| where f; is a collection of directional filters
at different locations, orientations and phases [8]%. For any
candidate patch ¢ the optimal contrast s was found by min-
imizing this expression.

The pairwise potentials in the graphical model to enforce
consistency was set to zero if the average L, distance (after
accounting for DC differences) between the two patches in
the overlap region was greater than 4.6 gray values and it
was set to 1 if the two patches agreed completely. For inter-
mediate levels of agreement the potentials varied smoothly.
We increased the threshold so that for any two neighboring
locations, at least 20% of the pairs have nonzero potentials.
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