DFAs and CFGs

NFA/DFAs

Symmetric difference: \(A \Delta B = (A - B) \cup (B - A) = (A \cap B) \cup (B \cap \bar{A}) \)

\(A \Delta B \) is the red part (\(A \) is the left circle, \(B \) is the right circle)

NFA to DFA conversion can result in exponential state blow up: \(k \) NFA states \(\rightarrow 2^k \) DFA states

If a \(k \)-state NFA rejects any string, it will have to reject a string of length \(\leq 2^k \), because if you convert the NFA to a DFA and take the complement, you get a DFA for the complement of the NFA’s language. But this is a \(2^k \) state DFA, which will have to accept a string of length \(\leq 2^k \) if it ever accepts something (\(\iff \) if the NFA ever rejects something).

If a \(k_1 \)-state NFA and a \(k_2 \)-state NFA both accept some string, then the shortest such string has length \(\leq m_1 m_2 \) (because, "we can always remove a segment of the string where a repeated state occurs in both accepting computations of the two NFAs and the number of pairs of states is \(m_1 m_2 \)", Prof. Sipser).

Converting DFAs to regular expressions can kind of blow up in size exponentially. See below:

CFGs

Closure properties

\(CFG \cap \text{REG} \) (intersection with regular languages)

because you can build a PDA that keeps track of the DFA for the regular language and also continues to do the initial PDA’s work.

\(CFG_1 \cup CFG_2 \) (union)

\(CFG^R \) (reversal)

\(CFG_1 \cdot CFG_2 \) (concatenation)

\(CFG^* \) (kleene star)

CFGs are NOT closed under intersection, difference, and complement.

For intersection, consider the following counter-example:

\(A = \{0^m1^n2^n \mid n \geq 0\}, B = \{0^m1^n2^n\} \)
Then $A \cap B = \{0^n 1^n 2^n \mid n \geq 0\}$, which can be proven to be non-context free using the pumping lemma.

Chomsky normal form

Chomsky normal form grammars only have productions of the form $A \rightarrow BC \mid \text{terminal}$ and $S \rightarrow \varepsilon$. Thus, any string w in the grammar can be derived in at most $2|w| - 1$ steps.