How to prove Turing decidability of languages

Language hierarchy

Recognizability

Reduce to A_{TM}: R is T-recog if it is reducible to A_{TM} ($R \leq_m A_{TM}$)

Reduce to recognizable language: If $R \leq_m R'$ and R' is T-recog, then R is T-recog

Give enumerator: R is T-recog \iff \exists an enumerator E such that $L(E) = R$

Give recognizer: R is T-recog \iff \exists a Turing machine T such that $L(T) = R$ (by existence of TM recognizer)

- WARNING: Be careful when saying stuff like “I can recognize if this happens by simulating M on all inputs and checking if it accepts”. If you do something like this for, let’s say, \overline{E}_{TM}, then you have to make sure you use dovetailing so as to not get stuck in an infinite loop on a particular input.

R is T-recog \iff \exists a language D, such that $R = \{ x \mid \exists y ((x, y) \in D) \}$ (by projection of decidable language)

Decidability

Give lexicographic-order enumerator: A is T-decidable \iff \exists an enumerator E such that E prints all of the strings in A in lexicographic order.

Show language and its complement are both recognizable: If A is T-recog and \overline{A} is T-recog then A is T-decidable.

- I can take both recognizers and run them in parallel, simulating a step on each one, eventually one will accept, allowing me to decide A. It is important that you run them step-by-step in parallel, as opposed to first running the A recognizer and then running the \overline{A} recognizer. What if the first recognizer never halts?

Reduce to decidable language: If $D \leq_m D'$ and D' is decidable, then D is T-decidable (by mapping-reducibility to decidable language)

- Because I can map D to D', solve the D' instance, and I will have solved the D instance.

Undecidability

Reduce from A_{TM}: U is undecidable if A_{TM} is reducible to U (by reduction from A_{TM})

Reduce from undecidable problem: If $U' \leq_m U$ and U' is undecidable, then U is undecidable (by mapping-reducibility from undecidable language)
Turing-unrecognizability

If $A \leq_m B$ and A is not T-recognizable, then B is not Turing-recognizable (by mapping-reducibility to unrecognizable language).

If A is not decidable, then A or \overline{A} is not Turing-recognizable.

If J is undecidable and $J \leq_m \overline{J}$, then both J and \overline{J} are not Turing-recognizable.

Examples

Decidable: $A_{DFA}, E_{DFA}, EQ_{DFA}, A_{CFG}, E_{PDA}, A_{LBA}$

Undecidable: $A_{TM}, HALT_{TM}, ALL_{PDA}, EQ_{CFG}, E_{LBA}, PCP$. Also ALL_{TM}.

Unrecognizable: $\overline{A_{TM}}, E_{TM}, EQ_{TM}, EQ_{TM}$