Oracles

Notation: \(M^B \) denotes the oracle TM \(M \) with oracle access to problem \(B \) (constant time solver for \(B \))

Notation: \(P^B = \{ A \mid A \text{ is poly} \text{- time decidable with an oracle for } B \} \)

Theorems

\(\exists A, B \text{ such that } P^A = NP^A \text{ and } P^B \neq NP^B \) (contradictory relativizations)

Part I: Prove that \(P^A = NP^A \) for \(A = TQBF \)

\[NP^{TQBF} \subseteq NPSPACE^{TQBF} \] because \(NP \subseteq NPSPACE \), and \(TQBF \in NPSPACE \)

Also, \(NPSPACE^{TQBF} \subseteq NPSPACE \) because a TQBF oracle is useless in NPSPACE, where you can just solve the problem.

So, \(NP^{TQBF} \subseteq NPSPACE \).

Savitch’s theorem tells us that \(NPSPACE = PSPACE \), and with a \(TQBF \) oracle in \(P \) we can solve any PSPACE problem so \(NPSPACE = PSPACE \subseteq P^{TQBF} \subseteq NP^{TQBF} \)

Thus, we have \(NP^{TQBF} \subseteq NPSPACE \subseteq P^{TQBF} \subseteq NP^{TQBF} \Rightarrow P^{TQBF} = NP^{TQBF} \)

Part II: Prove that \(P^B \neq NP^B \) for \(A = \emptyset \), because an “empty” oracle will not give much power to \(P \), assuming \(P \neq NP \) (I think more complicated proof for \(P = NP \) can be found in textbook).

\(NP \subseteq P^{SAT} \), \(coNP \subseteq P^{SAT} \)

Note that now you can just flip the answer to the \(SAT \) oracle so in effect you also have an \(UNSAT \) oracle, thus \(coNP \subseteq P^{SAT} = P^{UNSAT} \)

\(NP \subseteq P^{NP} \)

Not sure of the notation \(P^{NP} \), but if it means “\(P \) with oracle access to all languages in \(NP \)” or “with oracle access to an NP-complete language”, then it’s obvious that \(NP \subseteq P^{NP} \), since \(\forall A \in NP \) we can use the NP-complete oracle to solve it in \(P \).

Open problems

\(NP \neq NP^{NP} \) (believed)

\(coNP \neq NP^{NP} \) (believed)

\(P^{SAT} \subseteq NP \cup coNP \) is unknown because it would imply \(NP = coNP \), since \(NP \cup coNP \subseteq P^{SAT} \)

Is \(P^{SAT} \) closed under complement?

Is \(P^{SAT} = NP^{SAT} \)?