
Alin Tomescu
6.867 Machine learning | Week 6, Tuesday, October 8th, 2013| Lecture 10

Lecture 10

Last time we talked about ensembles.

Ensembles were defined as:

ℎ𝑚(𝑥) = 𝛼1ℎ(𝑥; 𝜃1) + ⋯ 𝛼𝑚ℎ(𝑥; 𝜃𝑚)

Every classifier 𝛼𝑖ℎ(𝑥; 𝜃𝑖) is applied for every example. So they will all contribute to the classification of the example.

The ℎ(𝑥; 𝜃𝑖) is a weak learner, easy to estimate individually, and adding them together creates a much stronger

classifier, which will over-fit. However, poor optimization will lead to good results.

See Figure 1:

ℎ(�⃗�; 𝜃) = sign (𝑠(𝑥𝑗 − 𝑡)) , 𝜃 = {𝑗, 𝑠, 𝑡}

How to train
We want to find an ensemble ℎ𝑚(𝑥) that minimizes the training error:

∑ 𝐿𝑜𝑠𝑠 (𝑦(𝑖)ℎ𝑚(𝑥(𝑖)))

𝑛

𝑖=1

= ∑ 𝑒
−(𝑦(𝑖)ℎ𝑚(𝑥(𝑖)))

𝑛

𝑖=1

𝑦(𝑖)ℎ𝑚(𝑥(𝑖)) is positive when you agree and predict correctly, thus the loss 𝑒−𝑦(𝑖)ℎ𝑚(𝑥(𝑖)) will be small.

∑[[𝑦(𝑖) ≠ ℎ𝑚(𝑥(𝑖))]]

𝑛

𝑖=1

≤ ∑ 𝐿𝑜𝑠𝑠 (𝑦(𝑖)ℎ𝑚(𝑥(𝑖)))

𝑛

𝑖=1

See Figure 3 for graph

Simple way of training (forward fitting)
This corresponds to adding one term at a time.

(0) ℎ0(𝑥) = 0

(1) Fix ℎ̂𝑚−1(𝑥), find �̂�𝑚, 𝜃𝑚 that minimizes 𝐽(𝛼𝑚, 𝜃𝑚) = ∑ 𝐿𝑜𝑠𝑠 (𝑦(𝑖)ℎ̂𝑚−1(𝑥(𝑖)) + 𝑦(𝑖)𝛼𝑚ℎ(𝑥(𝑖); 𝜃𝑚))𝑛
𝑖=1

a. 𝑦(𝑖)ℎ̂𝑚(𝑥(𝑖)) = 𝑦(𝑖)ℎ̂𝑚−1(𝑥(𝑖)) + 𝑦(𝑖)𝛼𝑚ℎ(𝑥(𝑖); 𝜃𝑚)

Unfortunately this is too hard of a problem.

ℎ̂𝑚−1 = [
ℎ̂𝑚−1(𝑥(1))

⋮
ℎ̂𝑚−1(𝑥(𝑛))

] , where

ℎ̂𝑚−1(�⃗�) = ∑ 𝛼𝑖ℎ(𝑥; 𝜃𝑖)

𝑚−1

𝑖=1

Alin Tomescu
6.867 Machine learning | Week 6, Tuesday, October 8th, 2013| Lecture 10

ℎ𝜃 = [

ℎ(𝑥(1), 𝜃)

⋮
ℎ(𝑥(𝑛), 𝜃)

] , where

ℎ(�⃗�; 𝜃) = sign (𝑠(𝑥𝑗 − 𝑡)) , 𝜃 = {𝑗, 𝑠, 𝑡}

‖ℎ𝜃‖2 = 𝑛, since the values are ± 1

How can we choose ℎ𝜃𝑚
 at step 𝑚? We want to find one that minimizes:

𝐽(𝛼𝑚, 𝜃𝑚) = ∑ 𝑦(𝑖)ℎ𝑚−1(𝑥(𝑖)) + 𝑦(𝑖)𝛼𝑚ℎ(𝑥(𝑖); 𝜃𝑚)

𝑛

𝑖=1

𝜕

𝜕𝛼𝑚
𝐽(𝛼𝑚, 𝜃𝑚) | 𝛼𝑚

= 0

= ∑ [
𝜕

𝜕𝑧
𝐿𝑜𝑠𝑠(𝑧)

 | 𝑧=𝑦(𝑖)ℎ̂𝑚−1(𝑥(𝑖))]

𝑛

𝑖=1

𝑦(𝑖)ℎ(𝑥(𝑖); 𝜃𝑚)

𝑊𝑚−1(𝑖) = 𝑒−𝑦(𝑖)ℎ̂𝑚−1(𝑥(𝑖))

𝜕

𝜕𝛼𝑚
𝐽(𝛼𝑚, 𝜃𝑚) | 𝛼𝑚=0 = ∑ 𝑊𝑚−1(𝑖) (−𝑦(𝑖)ℎ(𝑥(𝑖); 𝜃𝑚))

𝑛

𝑖=1

? ? =? ? ∑ 𝑊𝑚−1(𝑖) 𝑧[[𝑦(𝑖) ≠ ℎ(𝑥(𝑖); 𝜃𝑚)]]

𝑛

𝑖=1

− 1

Boosting algorithm

(0) ℎ0(𝑥) = 0, 𝑤𝑖 =
1

𝑛

(1) Fix ℎ̂𝑚−1(𝑥), find a stump 𝜃𝑚 that minimizes the weighted error: ∑ 𝑤𝑖 (−𝑦(𝑖)ℎ(𝑥(𝑖); 𝜃𝑚))𝑛
𝑖=1

(2) Find how much to rely on that stump �̂�𝑚 that minimizes 𝐽(𝛼𝑚, 𝜃𝑚)

(3) Update 𝑤𝑖 = [−
𝜕

𝜕𝑧
𝐿𝑜𝑠𝑠(𝑧)|𝑧 = 𝑦(𝑖)ℎ̂𝑚−1(𝑥(𝑖)) + 𝑦(𝑖)�̂�𝑚ℎ(𝑥(𝑖); 𝜃𝑚)]

When using the exponential loss, this is called AdaBoosting

See Figure 4

If we select the same stump after step 𝑚, it does not add any value, because we’ve already optimized as much as we can

in that direction.

How well can we generalize?

Assume training examples (𝑥(𝑖), 𝑦((𝑖))) ~ 𝑝∗, 𝑓𝑖𝑥𝑒𝑑 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑗𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

The test examples are also drawn at random from 𝑝∗

Training error (empirical risk): 𝑅𝑛(ℎ) = ∑ 𝐿𝑜𝑠𝑠0,1 (𝑦(𝑖)ℎ(𝑥(𝑖)))𝑛
𝑖=1

Test error/risk: 𝐸(𝑥,𝑦)~𝑝∗{𝐿𝑜𝑠𝑠0,1(𝑦ℎ(𝑥))}

Alin Tomescu
6.867 Machine learning | Week 6, Tuesday, October 8th, 2013| Lecture 10
How are these two types of error related?

Hypothesis class (set of classifiers) ℋ1 ⊆ ℋ2 ⊆ ⋯ ℋ𝑘

We select ℋ𝑘 , then we find ℎ̂𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ∈ℋ𝑘
 {𝑅𝑛(ℎ)}. How well would this generalize?

𝑅𝑛(ℎ̂𝑘) = random variable

ℎ̂𝑘 = random variable

𝑅(ℎ̂𝑘) = gen. error = random variable

𝑅(ℎ̂𝑘) − 𝑅𝑛(ℎ̂𝑘) = 휀

휀 = 휀(𝑛, ℋ𝑘 , 𝛿), 𝛿 = confidence ? ?

We are looking for results with probability at least 1 − 𝛿, the generalization error is bounded by the training error plus 휀:

𝑅(ℎ̂𝑘) ≤ 𝑅𝑛(ℎ̂𝑘) + 휀

