
Alin Tomescu 
6.867 Machine learning | Week 8, Thursday, October 24th, 2013| Lecture 14 

Page | 1 
 

Lecture 14 

Linear classifiers and margin 
𝑆𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛}, ℋ = set of linear classifiers characterized by 𝜃, 𝜃0 

ℎ(𝑥; 𝜃, 𝜃0) = sign(𝜃𝑥 + 𝜃0) 

ℎ1 ∈ ℋ predicts +  − ⋯ + 

ℎ2 ∈ ℋ predicts −  − ⋯ + 

The problem here is that there is no notion of margin incorporated in these. 

We’d like to incorporate margin and say that the only valid labeling is the one with a certain margin. The larger the 

margin, the simpler the set of classifiers becomes, because I will have fewer classifier that would be able to satisfy the 

margin constraints, and so the set becomes smaller. 

The basic intuition is that if we can classify 𝑛 training examples with a large margin 𝛾, then the classification task is 

somehow simple. 

Definition: When we label with margin 𝛾, we say that 𝑦1 … 𝑦𝑛 is a valid labeling only if 𝑦𝑖
𝜃𝑥𝑖+𝜃0

‖𝜃‖
≥ 𝛾, ∀𝑖 ≥ 1 

Important note: The notion of margin only makes sense if we specify the margin and restrict how large the examples can 

be. It is the ratio between the two that matters. 

Otherwise, consider if someone tells you that they can separate a training set with margin 𝛾, you will not know what 

that means (see circle drawings). Is it a good or poor result? You need to know how big the circle that encompasses the 

examples is, in order to tell if a good margin was achieved. 

 

Thus, when dealing with margin, we have to know what 𝑅 is: 

𝑅 = max
i

‖𝑥(𝑖)‖ 
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This way, we only consider training examples: ‖𝑥‖ ≤ 𝑅, 𝑥 ∈ 𝒳. 

Question: What is the minimum number of possible (not necessarily correct) labelings that the set of linear classifiers 

can generate over the set of training examples when that has to be done with margin 𝛾? 

 

Answer: 𝒩ℋ(𝑆𝑛; 𝛾) is always at least one, or even better, always at least two: all points will be + or -. Why isn’t the 

number 2𝑛? Can’t we pick anything? Oh, because a line will either classify everything as + or - 

𝒩ℋ(𝑛; 𝛾) = max
𝑥1…𝑥𝑛

‖𝑥𝑖‖≤𝑅

𝒩ℋ(𝑆𝑛; 𝛾) 

𝑑𝑉𝐶(𝛾) = max{𝑛: 𝒩ℋ(𝑛; 𝛾) = 2𝑛} ≤ min {
𝑅2

𝛾2
, 𝑑} + 1 

Radial basis kernel margin 
Let’s look at a radial basis kernel, with 𝛽 > 0 large. 

𝐾(𝑥, 𝑥′) = 𝑒−𝛽
‖𝑥−𝑥′‖

2

2  

What is the margin that I can attain over an arbitrary labeled set of points as 𝛽 → ∞? (What is 𝛾?) 
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Explanation: If 𝛽 is large, then only when 𝑥𝑖 “agrees”with 𝑥𝑗, we get 𝐾(𝑥𝑖, 𝑥𝑗) equal to 1. 

𝛾𝑖 = 𝑦𝑖

ℎ(𝑥𝑖; 𝜃)

‖𝜃‖
= 𝑦𝑖

∑ 𝛼𝑗𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)𝑗

√∑ ∑ 𝛼𝑘𝛼𝑗𝑦𝑘𝑦𝑗𝐾(𝑥𝑘 , 𝑥𝑗)𝑗𝑘

= (large 𝛽) =
𝛼𝑖

√∑ 𝛼𝑗
2𝑦𝑗

2𝐾(𝑥𝑗, 𝑥𝑗)𝑗

=
𝛼𝑖

√∑ 𝛼𝑗
2

𝑗

 

= (𝑌𝐾𝑌 is 𝐼𝑛, see HW2, prob. 1, part e) =
1

√𝑛
 

What is 𝑅 in this case? 𝑅 = 1 because all feature vectors have norm 1 when using an RBF (they appear in the surface of 

this infinite dimensional hypersphere). 𝑅2 = ‖𝜙(𝑥)‖2 = 𝐾(𝑥, 𝑥) = 1. 

 

Generalization bounds that depend on margin 
In the previous lecture, we showed that for all classifiers the following holds with probability at least 1 − 𝛿: 

∀ℎ ∈ ℋ, 𝑅(ℎ) = 𝑅𝑛(ℎ) +
√

𝑑𝑉𝐶 (1 + log (
2𝑛
𝑑𝑉𝐶

)) + log (
4
𝛿

)

𝑛
 

Note: Not really important to understand how this came to be, but more important to understand how margin and 

generalization interplay. 

large margin ↑ ⇒ smaller generalization error ↓ 

How do we change this such that we can incorporate the margin? 

𝑑𝑉𝐶 ≤ min {
𝑅2

𝛾2
, 𝑑} + 1 

𝑅𝑛(ℎ; 𝛾) = 𝑅𝑛(𝜃, 𝜃0; 𝛾) = ∑[[
𝑦𝑖(𝜃𝑥𝑖 + 𝜃0)

‖𝛾‖
< 𝛾]]

𝑖

 

(This was not covered in class but was expanded upon in HW6, as can be seen below) 
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For linear classifiers in a feature space, where ‖𝜙(𝑥)‖ ≤ 1 we have 𝑑𝑉𝐶 ≤
1

𝛾2, we can replace 𝑑𝑉𝐶  by its upper bound 

and obtain the following: 

∀𝜃, 𝑅(𝜃) ≤ 𝑅𝑛(𝜃; 𝛾) +
√

1 + log(2𝑛𝛾2)
𝛾2 + log (

4
𝛿

)

𝑛
 

Note: We are skipping the part about generalizations on distributions of classifiers. 

Reconstructing the underlying distribution of the training data 
So far, we’ve talked about discriminative methods. We never explicitly reconstructed the underlying distribution of the 

training examples. 

 Supervised learning case (simple) 

o Reconstruct 𝑝∗(𝑥, 𝑦) = 𝑝∗(𝑥|𝑦)𝑝∗(𝑦) from (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, … , 𝑛 

 Unsupervised learning case (harder) 

o Reconstruct 𝑝∗(𝑥, 𝑦) = 𝑝∗(𝑥|𝑦)𝑝∗(𝑦) from 𝑥𝑖~𝑝𝑥
∗ , 𝑖 = 1, … , 𝑛 

 Semi-supervised learning case  

o Reconstruct 𝑝∗(𝑥, 𝑦) = 𝑝∗(𝑥|𝑦)𝑝∗(𝑦) from 𝑥𝑖~𝑝𝑥
∗   and (𝑥𝑗, 𝑦𝑗) 

Supervised learning case (simple) 
We are given 𝑆𝑛 = {(𝑥𝑖, 𝑦𝑖), 1 ≤ 𝑖 ≤ 𝑛} and we want to put two Gaussians on points: one on the plus points and one on 

the minus points. 

What is the first step? What is the first task we have to define? We need to assume some underlying set of possible 

distributions. 

1) Parameterize 𝑃(𝑥, 𝑦; 𝜃), 𝜃 ∈ Θ 

2) Estimate these probabilities (ML, MAP, Bayesian) 

Let’s look at how we can do this with Gaussian distributions. 

Reminder: Gaussian looks like this: 
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𝑝(𝑥|𝑦; 𝜃) = 𝒩(𝑥; 𝜇𝑦, 𝜎2𝐼), 𝜎 is same for each 𝑦 = ±1 

𝑝(𝑦; 𝜃) = 𝑝𝑦, 𝑝1 + 𝑝−1 = 1 

The parameters will be: 

𝜃 = [𝜇1, 𝜇−1, 𝜎2, 𝑝1, 𝑝−1] 

 

Note: Variance is shared between 𝑝(𝑥|1; 𝜃) and 𝑝(𝑥| − 1; 𝜃), so for the particular example above, variance would be 

larger than it should be on the + cluster and smaller than it should be on the − cluster. 

How to estimate Gaussian? 

𝐷 = {𝑥(𝑖), 𝑖 = 1, … , 𝑛} maximum likelihood (ML) estimation 

We look at the log-likelihood of 𝑃(𝑥|𝑦): 

𝑙(𝜇, 𝜎2; 𝐷) = ∑ log 𝒩(𝑥(𝑖); 𝜇, 𝜎2𝐼)

𝑛

𝑖=1

= ∑ [−
1

2𝜋𝜎2 ‖𝑥𝑖 − 𝜇‖
2

+
𝑑

2
log(2𝜋𝜎2)]

𝑛

𝑖=1

 

Note: Remember we are dealing with a multivariate Gaussian, so there’s a covariance matrix (𝜎2𝐼) determinant 

somewhere in there that gives us the 
𝑑

2
log(2𝜋𝜎2) 

𝜕

𝜕𝜇
𝑙(𝜇, 𝜎2; 𝐷) ⇒ �̂� =

1

𝑛
∑ 𝑥(𝑖)

𝑛

𝑖=1

 

𝜕

𝜕𝜎2
𝑙(𝜇, 𝜎2; 𝐷) ⇒ 𝜎2̂ =

1

𝑛𝑑
∑‖𝑥(𝑖) − �̂�‖

2
𝑛

𝑖=1
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𝜎2̂ =
1

𝑛𝑑
∑‖𝑥(𝑖) − �̂�‖

2
𝑛

𝑖=1

= 𝜎2̂ =
1

𝑛𝑑
( ∑ ‖𝑥(𝑖) − 𝜇1̂‖

2
𝑛

𝑖:𝑦(𝑖)=1

+ ∑ ‖𝑥(𝑖) − 𝜇−1̂‖
2

𝑛

𝑖:𝑦(𝑖)=−1

) 


