
Alin Tomescu, http://people.csail.mit.edu/~alinush 
6.867 Machine learning | Prof. Tommi Jaakkola | Week 10, Tuesday, November 5th, 2013| Lecture 17 

Page | 1 
 

Lecture 17: More Gaussian Mixture Models 

Gaussian mixture models 

𝑃(𝑥; 𝜃) = ∑ 𝑃𝑦𝑁(𝑥; 𝜇𝑦, Σ𝑦)

𝑘

𝑦=1

 

𝑃𝑦 are called the mixing proportions. 

 

Understand importance of initialization and how it could lead to a local optimum: 

 

How can we avoid getting a local optimum? 

- Regularize the covariance matrix and don’t let the Gaussian get too wide 

o We want all covariance matrices to be the same, so we can regularize by simply enforcing all of the 

matrices to be 𝜎2𝐼. 

- Run the EM algorithm multiple times 

Bayesian information criterion (BIC) 
How can we figure out how many clusters we have in the data set? How do we determine 𝑘? 
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Every time you add a component you are increasing the complexity of your model, so you will fit better and get a higher 

likelihood. 

You have to balance the increase in the likelihood you would expect to get by adding a new cluster/Gaussian with a 

penalty that penalizes the complexity of the model.  

BIC assigns a score for a model given the data: 

𝑙(𝐷; 𝜃𝑀𝐿) = log ∏ 𝑃(𝑥(𝑖), 𝜃𝑀𝐿)

𝑛

𝑖−1

 

Assuming you found the best solution for that number of clusters. But as you increase 𝑘, 𝑙(𝐷; 𝜃𝑀𝐿) will go up. 

𝐵𝐼𝐶score = 𝑙(𝐷; 𝜃𝑀𝐿) −
# parameters

2
log 𝑛 

where 𝑛 = # of data points 

If I add one component (probability distribution, Gaussian, etc.) to the mixture, how much higher than the BIC does 

𝑙(𝐷; 𝜃𝑀𝐿) have to become for me to select this new component? 

The gap that I need to achieve in terms of likelihood is the number of additional parameters that I’m adding with that 

𝑘 + 1 component. 

Each component has parmeters 𝜇𝑦 (𝑑 dimensions), Σ𝑦 (
𝑑(𝑑+1)

2
 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠) , 𝑃𝑦 (𝑘 such probabilities, but once we 

have 𝑘 − 1 of them we can compute the last one). 

# param in mixture = k (𝑑 +
𝑑(𝑑 + 1)

2
+ 1) − 1 

E-step: 𝑞[𝑚](𝑦|𝑖) = 𝑃(𝑦|𝑥(𝑖); 𝜃[𝑚]) 

Hard-margin EM 
In many cases we can’t even enumerate the values of 𝑦 (might be combinatorially high), so we have a few alternatives 

for the E-step:  

This means that we cannot compute 𝑃(𝑦|𝑥(𝑖); 𝜃[𝑚]) and as a result we cannot compute all the 𝑞[𝑚](𝑦|𝑖). 

Give example where you cannot enumerate the values of y: 

Example: We want to predict the body state of a person in an image as either “standing” or “sitting.” Build a classifier 

for such a dataset of images. 

log 𝑃(body state 𝑝 | image) = ∑ ( ∑ log 𝑃(𝑙𝑖 | image)

location 𝑙𝑖 of body part 𝑖

)

index 𝑖 of body part

log 𝑃(𝑝 | 𝑙1, … , 𝑙𝑛) 
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But the 𝑖𝑡ℎ body part along with its location and the (𝑖 + 1)𝑡ℎ body part along with its location are not independent of 

each other, since once you picked an 𝑙𝑖 for 𝑖 = head the position of the waist, for instance, will be constrained (i.e., it 

has to probably be below the head, not to the right of it) 

In the independent case: 

𝑃(𝑙1, 𝑙2, … , 𝑙𝑘  | 𝑖𝑚𝑎𝑔𝑒) = ∏ 𝑃(𝑙𝑖  | image)

𝑖

 

log 𝑃(body state 𝑝 | image) = ∑ ( ∑ log 𝑃(𝑙𝑖 | image)

location 𝑙𝑖 of body part 𝑖

)

index 𝑖 of body part

log 𝑃(𝑝 | 𝑙1, … , 𝑙𝑛) 

In the (dependent) tree case: 

𝑃(𝑙1, 𝑙2, … , 𝑙𝑘  | 𝑖𝑚𝑎𝑔𝑒) = ∏ 𝑃(𝑙𝑖  | 𝑙𝜋(𝑖), image)

𝑖

, 𝜋(𝑖) = parent of body part 𝑖 

𝑃(body state 𝑝 | 𝑖𝑚𝑎𝑔𝑒) = ∑ 𝑃(𝑙 | image)𝑃(𝑝 | 𝑙, image)

𝑙∈{𝑙1,…,𝑙𝑘}

 

And as a result you now have an exponential number of subsets to consider: 𝑙 ∈ {𝑙1, … , 𝑙𝑘} 

Hard-margin EM  

For every data point we do this: 

�̂�(𝑖) = argmax
y

𝑃(𝑦|𝑥(𝑖); 𝜃[𝑚]) 

This is easier because it’s a maximization problem, not a counting problem like 𝑃(𝑦|𝑥(𝑖); 𝜃[𝑚]). 

Sample from the posterior 

�̂�(𝑖)~𝑃(𝑦|𝑥(𝑖); 𝜃[𝑚]) 

If you consider the body part example, sampling locations for body parts is much easier than computing the probabilities 

of all the possible permutations of body parts locations. This is because once you sample a position for the head, the 

other things fall into place easier, since they are restricted in where they can be. 

M-step becomes ML estimation using completed data (𝑥(𝑖), 𝑦(𝑖)), 𝑖 = 1, … , 𝑛 

Topic models: models over documents 
Modeling documents that are just sequences of words 𝑑 = {𝑤1, … , 𝑤𝑛}. 

The probability of a word would be: 

𝑃(𝑤; β) = 𝛽𝑤 , 𝛽𝑤 ≥ 0, ∑ 𝛽𝑤

𝑤∈𝒲

= 1 
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Probability simplex: triangle in 3D, line in 2D 

The probability of a document 𝑑 = {𝑤1, … , 𝑤𝑛} becomes: 

𝑃(𝑑; 𝛽) = ∏ 𝑃(𝑤)

𝑤∈𝑑

= ∏ 𝛽𝑤𝑖

𝑛

𝑖=1

= ∏ 𝛽𝑤
𝑛(𝑤)

𝑤∈𝒲

, 

where 𝑛(𝑤) is the number of times the word 𝑤 appears in the document 𝑑 

This assumes words are independent of each other, which they are not (for instance “are” is rarely or never followed by 

another “are”). 

Document generation model 
For 𝑖 = 1, … , 𝑛 do: 

𝑤𝑖~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝛽1, … , 𝛽|𝒲|) 

Graphically this type of model would look as follows: 

 

Let’s try to decompose these and introduce topics. 

Document topics 
Idea: A news article and it can have a certain topic, so there should be a probability distribution over words for that 

topic. We want to define 𝑃(𝑤 | topic). 
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The topic can be 𝑧 = 1, … , 𝑘 

𝑃(𝑤|𝑧; 𝛽) = 𝛽𝑤|𝑧, 𝛽𝑤|𝑧 ≥ 0, 

for a fixed 𝑧, ∑ 𝛽𝑤|𝑧

𝑤∈𝒲

= 1 

 

Mixture 1 
These are mixing proportions. 𝜃𝑧 is the mixing proportion. 𝜃𝑧 is the distribution over topics in the document 𝒹. 

𝜃𝑧 ≥ 0, ∑ 𝜃𝑧

𝑘

𝑧=1

= 1 

𝑃(𝒹; 𝜃, 𝛽) = ∑ 𝑃(𝑧) ∏ 𝑃(𝑤|𝑧)

𝑤∈𝑑 with topic z𝑧∈topics

= ∑ 𝜃𝑧 (∏ 𝐵𝑤𝑖|𝑧

𝑛

𝑖=1

)

𝑘

𝑧=1

 

Again, we are assuming the words are independent and the document has a single topic. 

 

In order to generate the document, I sample 𝑧 from a multinomial: 

𝑧~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃1, … , 𝜃𝑘) 

For 𝑖 = 1, … , 𝑛 do: 

𝑤𝑖~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝛽1|𝑧, … , 𝛽|𝒲| | 𝑧) 

The assumption here is that each document has exactly one topic. 

Mixture 2 
We put a probability distribution on every topic. Now we consider the case where words in the document can have 

multiple documents. 
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𝑃(𝒹; 𝜃, 𝛽) = ∏ ∑ 𝑃(𝑤|𝑧)𝑃(𝑧)

𝑧∈topics (for word 𝑤)𝑤∈𝑑

= ∏ (∑ 𝛽𝑤𝑖 | 𝑧𝑖

𝑘

𝑧=1

𝜃𝑧)

𝑛

𝑖=1

 

𝜃𝑧 = 𝑃(topic 𝑧 in document) 

𝑧𝑖 = word 𝑖 has topic 𝑧 

 

  

For 𝑖 = 1, … , 𝑛 do: 

𝑧𝑖~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃1, … , 𝜃𝑘) 

𝑤𝑖 = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝛽1|𝑧𝑖
, … , 𝛽|𝒲| | 𝑧𝑖

) 

This mixture entertains one 𝜃. Thee next one will entertain all 𝜃’s in the simplex. 

Mixture 3 (Latent Dirichlet Allocation) 
Now we entertain all possible distributions on topics (out of a family of distributions I think). 

𝑃(𝒹; 𝛼, 𝛽) = ∫ 𝑃(𝜃; 𝛼) ∏ ∑ 𝛽𝑤𝑖 | 𝑧𝑖
𝜃𝑧𝑖

𝑘

𝑧𝑖=1

𝑛

𝑖=1

𝑑𝜃
𝐾−𝑠𝑖𝑚𝑝𝑙𝑒𝑥

 

 

How we sample: 

𝜃~𝑃(𝜃; 𝛼) 

For 𝑖 = 1, … , 𝑛 do: 

𝑧𝑖~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃1, … , 𝜃𝑘) 
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𝑤𝑖 = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝛽1|𝑧𝑖
, … , 𝛽|𝒲| | 𝑧𝑖

) 

ML estimation: 

Given 𝑑1, … , 𝑑𝑇, maximize: 

∑ log 𝑃(𝑑𝑡; 𝛼, 𝛽)

𝑇

𝑡=1

 

We will see what 𝑃(𝜃; 𝛼) looks like. It will actually be a Dirichlet distribution. 
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