
Packet Transactions: A Programming Model for Data-Plane Algorithms at
Hardware Speed

Anirudh Sivaraman*, Mihai Budiu†, Alvin Cheung‡, Changhoon Kim†, Steve Licking†,
George Varghese++, Hari Balakrishnan*, Mohammad Alizadeh*, Nick McKeown+

*MIT CSAIL, †Barefoot Networks, ‡University of Washington, ++Microsoft Research, +Stanford University

Abstract
Data-plane algorithms execute on every packet travers-
ing a network switch; they encompass many schemes for
congestion control, network measurement, active-queue
management, and load balancing. Because these algo-
rithms are implemented in hardware today, they can-
not be changed after being built. To address this prob-
lem, recent work has proposed designs for programmable
line-rate switches. However, the languages to program
them closely resemble the underlying hardware, render-
ing them inconvenient for this purpose.

This paper presents Domino, a C-like imperative lan-
guage to express data-plane algorithms. Domino intro-
duces the notion of a packet transaction, defined as a
sequential code block that is atomic and isolated from
other such code blocks. The Domino compiler compiles
Domino code to PISA, a family of abstract machines
based on emerging programmable switch chipsets. We
show how Domino enables several data-plane algorithms
written in C syntax to run at hardware line rates.

1 Introduction

Network switches and routers in modern datacenters, en-
terprises, and service-provider networks perform a vari-
ety of tasks in addition to standard packet forwarding.
The set of requirements for routers has only increased
with time as network operators have sought to exercise
greater control over performance and security, and to
support an evolving set of network protocols.

Performance and security may be improved using both
data-plane and control-plane mechanisms. This paper
focuses on data-plane algorithms. These algorithms pro-
cess every data packet, transforming the packet and often
also some state maintained in the switch. Examples of
such algorithms include congestion control with switch
feedback [63, 89, 61, 34], active-queue management [56,
55, 66, 71, 74], network measurement [93, 54, 53], and

load-balanced routing in the data plane [33].
Because data-plane algorithms process every packet,

an important requirement is the ability to process pack-
ets at the switch’s line rate. As a result, these algo-
rithms are typically implemented using dedicated hard-
ware. However, hardware designs are rigid and prevent
reconfigurability in the field. They make it difficult to im-
plement and deploy new algorithms without investing in
new hardware—a time-consuming and expensive propo-
sition.

This rigidity affects vendors [6, 10, 3] building net-
work switches with merchant-silicon chips [12, 13, 22],
network operators deploying switches [81, 77, 60], and
researchers developing new switch algorithms [63, 71,
92, 94, 61]. To run data-plane algorithms after a switch
has been built, researchers and companies have at-
tempted to build programmable routers for many years,
starting from efforts on active networks [90] to network
processors [79] to software routers [65, 49]. All these ef-
forts have compromised on speed to provide programma-
bility, typically running an order of magnitude (or worse)
slower than hardware line rates. Unfortunately, this re-
duction in performance has meant that these systems are
rarely deployed in production networks, if at all.

Programmable switching chips [16, 32, 39], which
are competitive with state-of-the-art fixed-function
chipsets [12, 13, 22], are a recent alternative. These
chips implement a few low-level hardware primitives
that can be configured by software into a processing
pipeline [5, 4, 87]. This approach is attractive because
it does not compromise on data rates and the area over-
head of programmability is small [39].

P4 [38, 26] is an emerging packet-processing language
for such chips. P4 allows the programmer to specify
packet parsing and processing without restricting the set
of protocol formats or the set of actions that can be ex-
ecuted when matching packet headers in a match-action
table. Data-plane tasks that require header rewriting can
be expressed naturally in P4 [83].

1

ar
X

iv
:1

51
2.

05
02

3v
1

 [
cs

.N
I]

 1
6

D
ec

 2
01

5

By contrast, many data-plane algorithms don’t rewrite
headers, but instead manipulate internal switch state in a
manner unique to each algorithm. We believe that net-
work programmers would prefer the convenience of an
imperative language such as C that directly captures the
algorithm’s intent without shoehorning algorithms into
hardware constructs such as a sequence of match-action
tables like P4 requires them to. Furthermore, this is pre-
dominantly how such algorithms are expressed in pseu-
docode [56, 88, 2, 66, 55], and implemented in sofware
routers [65, 11, 49], network processors [50, 59], and at
network endpoints [8].

This paper presents Domino, a new domain-specific
language (DSL) for data-plane algorithms. Domino is an
imperative language with C-like syntax. The key abstrac-
tion in Domino is a packet transaction (§3): a sequential
code block that is atomic and isolated from other such
code blocks. Packet transactions provide a convenient
programming model, because they allow the programmer
to focus on the operations needed for each packet without
worrying about other packets that are concurrently being
processed.

The Domino compiler (§4) compiles packet transac-
tions to a family of abstract machines called PISA (§2)
(for Protocol-Independent Switch Architecture). PISA
generalizes the Reconfigurable Match-Action Table
(RMT) [39] model and captures essential features of line-
rate programmable switches [39, 32, 16]. In addition,
PISA introduces atoms to represent atomic computations
provided natively by a PISA machine, much like load-
link/store-conditional, and packed-multiply-and-add on
x86 machines today [14]. Atoms provide hardware sup-
port for packet transactions, similar to how an atomic
test-and-set can implement an atomic increment.

To evaluate Domino, we express algorithms such as
RCP [89], CoDel [71], heavy-hitter detection [93], and
CONGA [33], as packet transactions in Domino (§5).
Expressing these algorithms involved a straightforward
translation of each algorithm’s reference code to Domino
syntax. The Domino compiler guarantees deterministic
performance for these algorithms: all packet transactions
that compile run at line rate on a PISA machine, or will
be rejected by the compiler. We use the Domino com-
piler to determine if each algorithm can run at line rate
(Table 4) on several different PISA machines that differ
in the atoms they provide.

Our results indicate that it is possible to provide a fa-
miliar programming model, resembling DSLs for soft-
ware routers and NPUs, and also achieve line-rate perfor-
mance. These findings help resolve the concerns raised
in recent work [38] that expressive languages are unsuit-
able for line-rate packet processing.

2 An abstract machine for switches

This section describes PISA (Protocol-Independent
Switch Architecture [28]), a family of abstract machines
for programmable switches that differ in the computa-
tional capabilities they provide. PISA machines serve
as compiler targets for Domino programs. PISA’s de-
sign is inspired by recent line-rate programmable switch
architectures, such as RMT [39], Intel’s FlexPipe [16],
and Cavium’s XPliant Packet Architecture [32], which
we outline briefly first.

2.1 Programmable switch architectures
Programmable switches follow the switch model shown
at the top of Figure 1. Packets arriving to the switch
are parsed by a programmable parser that turns pack-
ets into header fields. These header fields are first pro-
cessed by an ingress pipeline consisting of match-action
tables arranged in stages. Following the ingress pipeline,
the packet is queued. Once the packet is dequeued by
the switch scheduler, it is processed by a similar egress
pipeline before being transmitted from the switch.

2.2 The PISA abstract machine
PISA (the bottom half of Figure 1) models a switch
pipeline such as the ingress or egress pipeline. A pipeline
in PISA consists of a number of pipeline stages that ex-
ecute synchronously on every time step. An incoming
packet is processed by each stage and handed off to the
next, until it exits the pipeline. Each stage has one time
step of latency, where the time step is a physical quantity
determined by the hardware. The inverse of this time step
is the line rate supported by the pipeline. For instance,
the RMT architecture has a line rate of 960 Million pkts
/ sec [39].

As an abstract machine, PISA only models compo-
nents pertinent to data-plane algorithms. In particular, it
models the computation within a match-action table in a
stage (i.e., the action half of the match-action table), but
not the match semantics (e.g., direct, ternary, or longest
prefix). PISA also does not model packet parsing and
assumes that packets arriving to it are already parsed.

2.3 Atoms: PISA’s processing units
In PISA, each pipeline stage contains a vector of atoms.
All atoms in this vector execute in parallel on every time
step. Informally, an atom is an atomic unit of packet pro-
cessing, which the PISA machine supports natively in
hardware. We represent an atom as a body of sequen-
tial code. An atom completes execution of this body of
code and modifies a packet before processing the next

2

Physical
Stage 1

Packet
Headers Packet

Headers

Physical
Stage 2

Packet
Headers

StateAtom Body

StateAtom Body

StateAtom Body

Physical
Stage n

StateAtom Body

StateAtom Body

StateAtom Body

StateAtom Body

StateAtom Body

StateAtom Body

Parser

Bits Headers

Match-action table

Match

V
L
I
W

Primitives
Action Headers

Match-action table

Ingress pipeline

Headers

Queues

Match-action table

Headers

Match-action table

Egress pipeline

Headers Transmit

The architecture of a programmable switch

The PISA abstract machine

Eth

IPv4 IPv6

TCP

Figure 1: The PISA abstract machine and its relationship to programmable switch architectures.

packet. An atom may also contain internal state that
persists across packets and influences the atom’s behav-
ior from one packet to the next. For instance, a switch
counter that wraps around at 100 can be written as the
atom below.1

if (counter < 99)
counter ++;

else
counter = 0;

Similarly, a stateless operation that sets a packet field
(such as P4’s modify_field primitive [26]) can be writ-
ten as the atom below:

p.field = value;

PISA generalizes several aspects of existing pro-
grammable switch architectures. The vector of atoms
in each stage generalizes RMT’s very-large instruction-
word (VLIW) [39] that executes primitive actions on
packet fields in parallel. Internal state within an atom
models persistent switch state such as meters, counters,
and P4’s register abstraction [26] in a unified manner. We

1We use p.x to represent field x within a packet p and x to represent
a state variable x that persists across packets.

assume all state is initialized by the switch control plane,
which we don’t explicitly model in PISA.

2.4 Constraining atoms
Atoms in PISA execute on every time step, reading all
packet fields at the beginning and writing all packet fields
at the end of a time step. To prevent data races, PISA
forbids two atoms in a stage from writing to the same
packet field. To provide deterministic performance at
line rate, atoms must be suitably constrained. We impose
two such constraints that distinguish PISA from software
routers [65] and network processors [19] that sacrifice
determinism for programmability.

First, PISA machines are shared-nothing: each atom
maintains a certain number of state variables that are lo-
cal to that atom alone. Their values can be communi-
cated to atoms in subsequent stages only when the values
are copied into packet fields. This restriction reflects the
capabilities of line-rate switches: accessing shared mem-
ory from multiple switch stages is technically challeng-
ing because it requires multi-ported RAMs and routing
long wires on the chip.

Second, we constrain the complexity of atoms by

3

defining atom templates (§4.6). An atom template is a
program that always terminates and specifies how the
atom is executed. One example is an ALU with a re-
stricted set of primitive operations to choose from (Fig-
ure 12). Atom templates allow us to create different
PISA machines that support different atoms natively. In
practice, we expect such atom templates to be designed
by an ASIC engineer and exposed as part of a PISA
machine’s instruction set. As programmable switches
evolve, the capabilities of atoms will evolve as well.
However, atoms cannot be arbitrarily complex: the line
rate is inversely proportional to an atom’s execution la-
tency (§5.3).

3 Programming using packet transactions

We now illustrate programming using packet transac-
tions in Domino, using flowlet switching [82] as an ex-
ample. Flowlet switching is a load-balancing algorithm
that sends bursts of packets (called flowlets) from a TCP
flow on different paths, provided the bursts are separated
by a large enough interval in time to ensure packets do
not arrive out of order at a TCP receiver. Figure 2 shows
flowlet switching as expressed in Domino. For simplic-
ity, the example hashes only the source and destination
ports; it is easy to extend it to the full 5-tuple.

This example demonstrates the core language con-
structs in Domino. All packet processing happens in
the context of a packet transaction (the function flowlet
starting at line 17). The function’s argument pkt declares
the fields in a packet (lines 5–12)2 that can be referenced
by the function body (lines 18–32). In addition, the func-
tion body can reference state variables that represent per-
sistent state stored on the switch. These are declared
as global variables (e.g. last_time and saved_hop de-
clared on lines 14 and 15, respectively).

Conceptually, the switch invokes the packet transac-
tion function on each incoming packet sequentially. The
function modifies the passed-in packet argument until
the end of the function body, before processing the next
packet. Domino forbids return statements, and hence ex-
ecution will always end at the end of the function body.
The function may invoke intrinsics such as hash2 on
lines 23 and hash3 on line 18. Intrinsics are hardware
primitives provided by the abstract machine that are not
interpreted by Domino. The Domino compiler uses an
intrinsic’s signature to infer dependencies and supplies a
canned run-time implementation, but otherwise does not
interpret or analyze intrinsics. The overall language is a
constrained subset of C (Table 1).

As an illustration of Domino’s constraints, arrays can

2We use fields to refer to both packet headers such as source port
(sport) and destination port (dport) and packet metadata (id).

No iteration (while, for, do-while).
No switch, goto, return, break, or continue.
No pointers.
No dynamic memory allocation / heap.
Array index must be constant for every execution
of the transaction.
No access to packet data i.e. unparsed portion of
the packet.
No arrays in packet fields.

Table 1: Restrictions in Domino

be used as state variables alone but not as packet fields.
Furthermore, all accesses to a given array within one ex-
ecution of a transaction, i.e. one packet, must use the
same array index. For instance, accesses to the array
last_time use the index pkt.id, which is constant for
each packet, but changes from one packet to the next.
This restriction simplifies the treatment of arrays in the
compiler, while still allowing us to express data-plane
algorithms of practical interest. The restrictions in Ta-
ble 1 seem severe, but are required for deterministic
performance. Memory allocation, unbounded iteration
counts, and unstructured control flow cause variable per-
formance. These are precisely the restrictions in Domino
relative to software routers like Click [65] with greater
flexibility and variable performance.

When compiled to a PISA machine (§2), the Domino
compiler converts the code in Figure 2 into the atom
pipeline shown in Figure 3. The next section describes
the steps involved in this compilation.

4 The Domino compiler

The Domino compiler borrows many techniques from
the compiler literature. The PISA architecture, however,
poses unique challenges for compilation requiring a syn-
thesis of techniques that, to the best of our knowledge,
is novel. Further, as we illustrate throughout this sec-
tion, constraining Domino for deterministic performance
simplifies the Domino compiler relative to mainstream
compilers for imperative languages.

Because Domino’s syntax is a subset of C, we use
Clang’s library interface [20] to parse and implement the
passes in the compiler. The overall architecture of the
compiler is shown in Figure 4. Throughout this section,
we use flowlet switching from Figure 2 as a running ex-
ample to demonstrate compiler passes. While we have
simplified the code for readability, the code output by
the Domino compiler after each pass isn’t materially dif-
ferent from the version presented here.

4

1 #define NUM_FLOWLETS 8000
2 #define THRESHOLD 5
3 #define NUM_HOPS 10
4

5 struct Packet {
6 int sport;
7 int dport;
8 int new_hop;
9 int arrival;

10 int next_hop;
11 int id; // array index
12 };
13

14 int last_time [NUM_FLOWLETS] = {0};
15 int saved_hop [NUM_FLOWLETS] = {0};
16

17 void flowlet(struct Packet pkt) {
18 pkt.new_hop = hash3(pkt.sport ,
19 pkt.dport ,
20 pkt.arrival)
21 % NUM_HOPS;
22

23 pkt.id = hash2(pkt.sport ,
24 pkt.dport)
25 % NUM_FLOWLETS;
26

27 if (pkt.arrival - last_time[pkt.id]
28 > THRESHOLD)
29 { saved_hop[pkt.id] = pkt.new_hop; }
30

31 last_time[pkt.id] = pkt.arrival;
32 pkt.next_hop = saved_hop[pkt.id];
33 }

Figure 2: Flowlet switching written in Domino

pkt.saved_hop = saved_hop[pkt.id];

pkt.next_hop = pkt.tmp2 ?
 pkt.new_hop :
 pkt.saved_hop;

pkt.last_time = last_time[pkt.id];
last_time[pkt.id] = pkt.arrival;

pkt.tmp = pkt.arrival - pkt.last_time;

pkt.new_hop =
hash3(pkt.sport,
 pkt.dport,
 pkt.arrival)
% NUM_HOPS;

pkt.tmp2 = pkt.tmp > 5;

pkt.id =
hash2(pkt.sport,
 pkt.dport)
% NUM_FLOWLETS;

saved_hop[pkt.id] = pkt.tmp2 ?
 pkt.new_hop :
 pkt.saved_hop;

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Figure 3: Compiled 6-stage PISA pipeline im-
plementing flowlet switching. Control flows
from top to bottom. Atoms manipulating state
are shaded in blue.

If
Conversion

Domino
Code

Straight
Line
Code

Rewrite
state vars

Load/
Store
Form

Convert
into
SSA

SSA Expression
Flattening

3-address
Code

Code
Partitioning

Codelet
pipeline

Atom
Mapping

Atom
Pipeline

Domino Compiler
Atom Template

Figure 4: Passes in the Domino compiler

if (pkt.arrival - last_time[pkt.id] >
THRESHOLD) {

saved_hop[pkt.id] = pkt.new_hop;
}

=⇒
pkt.tmp = pkt.arrival - last_time[pkt.id] > THRESHOLD;
saved_hop[pkt.id] = // Rewritten

pkt.tmp ? pkt.new_hop : saved_hop[pkt.id];

Figure 5: Conversion to straight-line code

4.1 If-conversion to straight-line code

A packet transaction’s body can contain (potentially
nested) conditional statements (e.g., Lines 27 to 29 in

Figure 2, or CoDel [2]). These statements alter control
flow and complicate dependence analysis between state-
ments i.e. whether a statement should follow or precede
another. We eliminate such statements by transforming

5

pkt.id = hash2(pkt.sport ,
pkt.dport)

% NUM_FLOWLETS;
...
last_time[pkt.id] = pkt.arrival;
...

=⇒

pkt.id = hash2(pkt.sport , // Read flank
pkt.dport)

% NUM_FLOWLETS;
pkt.last_time = last_time[pkt.id]; // Read flank
...
pkt.last_time = pkt.arrival; // Rewritten
...
last_time[pkt.id] = pkt.last_time; // Write flank

Figure 6: Adding read and write flanks

pkt.id = hash2(pkt.sport ,
pkt.dport)
% NUM_FLOWLETS;

pkt.last_time = last_time[pkt.id];
...
pkt.last_time = pkt.arrival;
last_time[pkt.id] = pkt.last_time;

=⇒

pkt.id0 = hash2(pkt.sport , // Rewritten
pkt.dport)
% NUM_FLOWLETS;

pkt.last_time0 = last_time[pkt.id0]; // Rewritten
...
pkt.last_time1 = pkt.arrival; // Rewritten
last_time[pkt.id0] = pkt.last_time1; // Rewritten

Figure 7: SSA transformation. Note that all assignments are renamed as they can be preceded by reads.

1 pkt.id = hash2(pkt.sport , pkt.dport) % NUM_FLOWLETS;
2 pkt.saved_hop = saved_hop[pkt.id];
3 pkt.last_time = last_time[pkt.id];
4 pkt.new_hop = hash3(pkt.sport , pkt.dport , pkt.arrival) % NUM_HOPS;
5 pkt.tmp = pkt.arrival - pkt.last_time;
6 pkt.tmp2 = pkt.tmp > THRESHOLD;
7 pkt.next_hop = pkt.tmp2 ? pkt.new_hop : pkt.saved_hop;
8 saved_hop[pkt.id] = pkt.tmp2 ? pkt.new_hop : pkt.saved_hop;
9 last_time[pkt.id] = pkt.arrival;

Figure 8: Flowlet switching in three-address code. Lines 1 and 4 are flipped relative to Figure 2 because pkt.id is an
array index expression and is moved into the read flank.

them into the ternary conditional operator, starting from
the innermost if statements and recursing outwards (Fig-
ure 5). This procedure is known as if-conversion [36].
Unlike traditional languages, performing if-conversion
in Domino is easy as there is no unstructured control
flow. If conversion turns the body of packet transac-
tions into straight-line code, where control passes se-
quentially without branching. Straight-line code simpli-
fies the rest of the compiler, like computing the static
single-assignment form(§4.3).

4.2 Rewriting state variable operations
We next identify both array and scalar state variables
used in a packet transaction, such as last_time and
saved_hop in Figure 2. State variables are easy to iden-
tify syntactically, since all variables are either packet
fields or state variables. For each state variable, we cre-
ate a read flank to read the state variable into a temporary
packet field. For an array, we also move the index expres-

sion into the read flank, exploiting the fact that only one
array index is accessed by each packet in valid Domino
programs. Then, throughout the packet transaction, we
replace the state variable with the packet temporary, and
create a write flank to write the packet temporary back
into the state variable. Figure 6 illustrates this transfor-
mation. After this pass, the code resembles code for a
load-store architecture [21]: all state variables must be
loaded into packet variables before arithmetic can be per-
formed on them. Restricting operations on state variables
simplifies subsequent code partitioning (§4.5).

4.3 Converting to single-assignment form
We next convert the code to static single-assignment
form (SSA), as shown in Figure 7). In SSA form, ev-
ery variable is assigned exactly once. To compute the
SSA, we replace every definition of a packet variable
with a new packet variable and propagate this new vari-
able until the next definition of the same variable. State

6

variables are already in SSA: after their flanks have been
added, every state variable is written exactly once in the
write flank. While general algorithms for computing
the SSA are fairly involved [47], Domino’s SSA com-
putation is simpler because it runs after if conversion
and hence operates on straight-line code. Because every
variable is assigned exactly once, SSA removes Write-
After-Read and Write-After-Write dependencies. Only
Read-After-Write dependencies remain, simplifying de-
pendency analysis during code partitioning (§4.5). We
execute copy propagation [9] after SSA to reduce the
number of temporary packet variables.

4.4 Flattening to three-address code
The input is next converted to three-address code [31],
where all instructions are either reads / writes into state
variables or operations on packet variables of the form
pkt.f1 = pkt.f2 op pkt.f3; where op can be a con-
ditional,3 arithmetic, logical, or relational operator. We
also allow either one of pkt.f2 or pkt.f3 to be an in-
trinsic function call. All expressions that are not already
in three-address code are flattened by introducing tempo-
raries as illustrated in Figure 8. While flattening expres-
sions may result in redundant temporaries that compute
the same subexpression, we remove such temporaries us-
ing common subexpression elimination [7].

4.5 Code partitioning to codelets
At this point, the code is still sequential. Code parti-
tioning turns sequential code into a pipeline of codelets,
where each codelet is a small sequential block of three-
address code statements. Each codelet is then mapped to
an atom provide by a particular PISA machine (§4.6), or
an error is returned if it cannot be mapped.

To partition code into codelets, we carry out the fol-
lowing steps:

1. Create a node for each statement (Figure 8) in the
packet transaction after expression flattening.

2. Create a bidirectional edge between nodes N1 and
N2, where N1 is a read from a state scalar / state
array and N2 is a write into the same variable. This
step captures the constraint that state is internal to
an atom in PISA.

3. Create an edge (N1, N2) for every pair of nodes N1,
N2 where N2 reads a variable written by N1. We
only check read-after-write dependencies because
control dependencies turn into data dependencies
after if conversion, and write-after-read and write-
after-write dependencies don’t exist in SSA.

4. Generate strongly connected components (SCCs)
of the resulting graph (Figure 9) and condense the

3Ternary/Conditional operators take in 4 addresses instead of 3.

SCCs to create a directed acyclic graph (DAG) (Fig-
ure 10). This step captures the constraint that all
operations on a state variable must reside within the
same atom because state is internal to an atom.

5. Schedule the resulting DAG using critical path
scheduling [64] by creating a new pipeline stage ev-
ery time one operation needs to follow another ac-
cording to the precedence relationship established
by the DAG (Figure 10).

The resulting codelet pipeline4 shown in Figure 3 im-
plements the flowlet packet transaction. Further, the
codelets have a stylized form. Codelets that don’t manip-
ulate state contain exactly one three-address code state-
ment after expression flattening. Codelets that manip-
ulate state contain at least two statements: a read from
a state variable and a write to a state variable, with op-
tionally one or more updates to the state variable through
packet temporaries in between.

4.6 Mapping codelets to atoms
Next, we determine how codelets map one-to-one to
atoms provided by the PISA machine. We consider
codelets that do and don’t manipulate state separately.

Stateless codelets As mentioned, stateless codelets
have only one statement in three-address code form (e.g.,
any of the unshaded boxes in Figure 3). We assume
that all PISA machines support stateless atoms that cor-
respond to a single statement in three-address code. P4’s
primitives [26] and RMT’s VLIW action set [39] both
resemble this form. Under this assumption, each such
codelet is mapped to an atom provided by the PISA ma-
chine. If the PISA machine supports stateless atoms be-
yond a single three-address code statement, this is still
correct, although suboptimal. For instance, if the PISA
machine supports a multiply-and-accumulate atom [23],
our approach generates two atoms (one each for the mul-
tiply and accumulate), although one suffices.

Stateful codelets Stateful codelets have multi-line
bodies that need to execute atomically. For instance, up-
dating the state variable saved_hop in Figure 3 requires
a read followed by a conditional write. It is not appar-
ent whether such codelets can be mapped to an available
atom. We develop a new technique to determine the im-
plementability of such stateful codelets, on a PISA ma-
chine that provides a specific stateful atom template.

First, each atom template is parameterized, where the
parameters determine the actual functionality provided
by the atom. For instance, Figure 12 shows a hard-

4We refer to this both as a codelet and an atom pipeline because
codelets map one-to-one atoms (§4.6).

7

pkt.saved_hop = saved_hop[pkt.id]

pkt.last_time = last_time[pkt.id]

pkt.next_hop = pkt.tmp2 ?
 pkt.new_hop :
 pkt.saved_hop

saved_hop[pkt.id] = pkt.tmp2 ?
 pkt.new_hop :
 pkt.saved_hop

pkt.tmp = pkt.arrival - pkt.last_time last_time[pkt.id] = pkt.arrival

pkt.tmp2 = pkt.tmp > THRESHOLD

pkt.new_hop = hash3(pkt.sport,
 pkt.dport,
 pkt.arrival)
 % NUM_HOPS

pkt.id = hash2(pkt.sport,
 pkt.dport)
 %NUM_FLOWLETS

Figure 9: Dependency before condensing SCCs

pkt.next_hop = pkt.tmp2 ?
 pkt.new_hop :
 pkt.saved_hop

pkt.saved_hop = saved_hop[pkt.id];
saved_hop[pkt.id] = pkt.tmp2 ?
 pkt.new_hop :
 pkt.saved_hop;

pkt.tmp = pkt.arrival - pkt.last_time

pkt.tmp2 = pkt.tmp > THRESHOLD

pkt.new_hop = hash3(pkt.sport,
 pkt.dport,
 pkt.arrival)
 % NUM_HOPS

pkt.id = hash2(pkt.sport,
 pkt.dport)
 %NUM_FLOWLETS

pkt.last_time = last_time[pkt.id]
last_time[pkt.id] = pkt.arrival

Figure 10: Dependency graph after condensing SCCs

ware circuit that is capable of performing stateful addi-
tion or subtraction, depending on the value of the con-
stant and which output is selected from the multiplexer.
Its atom template is shown in Figure 13, where choice
and constant represent the tunable parameters. Each
codelet can be viewed as a functional specification of
the atom. With that in mind, the mapping problem is
equivalent to searching for the value of the parameters to
configure the atom such that it implements the provided
specification.

While many algorithms can be used to perform the
search, in the Domino compiler we use the SKETCH
program synthesizer [86] for this purpose, as the atom
templates can be easily expressed using SKETCH, while
SKETCH also provides efficient search algorithms and
has been used for similar purposes across different do-
mains [85, 42, 43, 76].

As an illustration, assume we want to map the codelet
x=x+1 to the atom template shown in Figure 13. The
Domino compiler feeds in the codelet and the atom
template into SKETCH (Figure 11), and SKETCH will
search for possible values of the parameters such that
the resulting atom performs the same functionality as the
codelet, for all possible input values of x. In this case

this is done by setting choice=0 and constant=1. In
contrast, if the codelet x=x*x was supplied as the speci-
fication, SKETCH will return an error as no such param-
eter value exists. To minimize search time, the range of
possible inputs and parameter values need to be specified
in the template (e.g., all 8 bit integers), and our experi-
ments show that the search finishes quickly, taking 10
secs at most.

SKETCH

SKETCH
Program
(Atom
Template)

Specification
(Codelet)

Values for parameters
(atom config.)

Figure 11: Overview of SKETCH and its application to
atom configuration

8

Adder

x constant

x

Subtractor

choice

Add Result Sub Result

2-to-1
 Mux

Figure 12: Circuit for
an atom that can add
or subtract a constant
from a state variable.

bit choice = ??;
int constant = ??;
if (choice) {

x = x + constant;
} else {

x = x - constant;
}

Figure 13: Circuit representa-
tion as an atom template.

4.7 Verifying compilations

Our testing infrastructure verifies that the compilation
is correct. By this, we mean that the externally visible
behavior of the packet transaction (Figure 2) is indistin-
guishable from its pipelined implementation (Figure 3).
We verify correctness by feeding in the same set of test
packets to both the packet transaction and its implemen-
tation and comparing the outputs from both on the set of
externally visible fields.

To create test packets, we scan the packet transaction
and generate the set of all fields read from or written to
by the transaction. We initialize each field by sampling
independently and uniformly from the space of all 32-
bit signed integers. To compare outputs from the packet
transaction and its implementation, we track renames
that occur after SSA and compare each output field in the
transactional form with its last rename in the implemen-
tation. This lets us quickly “spot check” our compila-
tions and helped us discover a few compiler bugs during
development.

4.8 Targeting real switches

Domino doesn’t yet generate code for actual hardware.
We considered compiling Domino to P4, which would
then allow Domino to target programmable switches by
leveraging ongoing work [24, 25, 62] in P4 compilation.
However, P4 currently doesn’t support sequential execu-
tion within a pipeline stage or the conditional operator
as a primitive action. Both are required to correctly exe-
cute the codelets/atoms produced by Domino (Figure 3).
We have submitted a proposal [27] for both to the P4
language consortium. The proposal has been tentatively
accepted and is likely to be included in P4 v1.1.

Atom Description
Write Write packet field/constant into single state variable.
ReadAddWrite
(RAW)

Add packet field/constant to state variable (OR) Write
packet field/constant into state variable.

Predicated
ReadAddWrite
(RAW)

Execute RAW on state variable only if a predicate is
true, else leave unchanged.

IfElse ReadAd-
dWrite
(IfElseRAW)

Execute two separate RAWs: one each for when a pred-
icate is true or false.

Subtract (Sub) Same as IfElseRAW, but also allow subtracting a packet
field/constant.

Nested Ifs
(Nested)

Same as Sub, but with an additional level of nesting that
provides 4-way predication.

Paired updates
(Pairs)

Same as Nested, but allow updates to a pair of state vari-
ables, where predicates can use both state variables.

Table 2: Atoms used in evaluation. Appendix A provides
the SKETCH code and circuit diagrams for these atoms.

Atom Circuit Element
depth

Write
pkt_1

Const
2-to-1
 Mux

x

1

ReadAddWrite
(RAW)

pkt_1

Const
Adder x

2-to-1
 Mux

x

0

2-to-1
 Mux 2

Predicated
ReadAddWrite
(PRAW)

pkt_1

Const
3-to-1
 Mux

Adder

2-to-1
 Mux

RELOP

pkt_2

pkt_1

Const
3-to-1
 Mux

pkt_2

x

x

2-to-1
 Mux

x

0

2-to-1
 Mux

x

0

3

Table 3: Element depth and propagation delay increases
with complexity of atoms.

5 Evaluation

To evaluate Domino, we expressed several data-plane al-
gorithms (Table 4) in Domino to determine if they can
be implemented on different PISA machines that provide
different types of stateful atoms (Table 2). Expressing
most of these algorithms in Domino involved little effort
beyond simply translating their imperative code/pseu-
docode to Domino—a sign that Domino’s abstractions
are convenient to use.

5.1 Experimental procedure
As mentioned in §4.6, we focus only on stateful atoms
and assume all stateless codelets are supported by a
PISA machine because they are single three-address

9

Algorithm Stateful computation Least
expressive
atom

Pipeline
depth,
width

Ingress
or
Egress
Pipeline?

Bloom filter [40]
(3 hash functions)

Set membership bit on every packet. Write 4, 3 Either
Heavy Hitters [93]
(3 hash functions) Increment Count-Min Sketch [46] on every packet. RAW 10, 9 Either

Flowlets [82] Update saved next hop if flowlet threshold is exceeded. PRAW 6, 2 Ingress

RCP [89] Accumulate RTT sum if
RTT is under maximum allowable RTT.

PRAW 3, 3 Egress
Sampled
NetFlow [30]

Sample a packet if packet count reaches N;
Reset count to 0 when it reaches N.

IfElseRAW 4, 2 Either

HULL [35] Update counter for virtual queue. Sub 7, 1 Egress
Adaptive Virtual
Queue [66] Update virtual queue size and virtual capacity Nested 7, 3 Ingress

CONGA [33]
Update best path’s utilization/id if we see a better path.
Update best path utilization alone if it changes. Pairs 4, 2 Ingress

trTCM [29] Update token counts for each token bucket Doesn’t
map

7, 3 Either

CoDel [71]

Update:
Whether we are marking or not.
Time for next mark.
Number of marks so far.
Time at which min. queuing delay will exceed target.

Doesn’t
map

15, 3 Egress

Table 4: Data-plane algorithms

code statements. For simplicity, the stateful atoms we
consider only permit state updates and forbid packet field
updates intermixed with state updates. Assuming the
ability to read a state variable5, such field updates can
be treated as stateless operations in subsequent pipeline
stages.

We also assume every PISA machine provides only
one stateful atom template, though we don’t restrict the
number of instances of this template. This is because
ASIC engineers prefer to design, implement, verify, and
physically layout one circuit, thereby amortizing design
and layout effort over multiple instances of the same cir-
cuit. Table 2 gradually increases the capability of this
single atom template. We designed the atoms in Table 2,
and hence the PISA machines providing them, to form a
containment hierarchy: each atom can express all data-
plane algorithms that its predecessor can.

We now consider every atom/PISA machine from Ta-
ble 2, and every data-plane algorithm from Table 4 to de-
termine if the algorithm is implementable on a particular
PISA machine. We say an algorithm is implementable
on a PISA machine, if every stateful codelet within the
data-plane algorithm can be mapped (§4.6) to the single
stateful atom provided by the PISA machine. Because
atoms are arranged in a containment hierarchy, we list
the least expressive atom that can be used to implement

5The inability to read a state variable renders it powerless!

a data-plane algorithm in Table 4.

5.2 Interpreting the results
Table 4 tells a network programmer the “minimal atom”
required to run a data-plane algorithm at line rate. For an
ASIC engineer, the same table describes the algorithms
that are implementable on a PISA machine with a spe-
cific stateful atom. For instance, a PISA machine with
the Pairs atom can implement the first eight algorithms,
while a machine with a simpler RAW atom can imple-
ment only the first two.

We also discuss broader lessons for designing pro-
grammable switching chips. First, atoms supporting
stateful operations on a single state variable are sufficient
for several data-plane algorithms (Bloom Filters through
Adaptive Virtual Queue in Table 4). However, there are
algorithms that need the ability to update a pair of state
variables atomically. One example is CONGA, whose
code we reproduce below:

if (p.util < best_path_util[p.src]) {
best_path_util[p.src] = p.util;
best_path[p.src] = p.path_id;

} else if (p.path_id == best_path[p.src]) {
best_path_util[p.src] = p.util;

}

Here, best_path (the path id of the best path for

10

a particular destination) is updated conditioned on
best_path_util (the utilization of the best path to that
destination)6 and vice versa. There is no way to sepa-
rate the two state variables into separate stages and still
guarantee correctness.

The Pairs atom, where the update to a state variable
is conditioned on a predicate of a pair of state variables,
allows us to implement CONGA at line rate. However,
it is still insufficient for algorithms such as CoDel [71]
and the two-rate three-color meter (trTCM) [29]. On a
positive note, however, we observed that the codelets in
both trTCM and CoDel are still restricted to a pair of
state variables. We haven’t yet encountered a triplet of
state variables all falling in the same strongly connected
component/codelet, requiring a three-way state update.

5.3 Performance vs. programmability

While powerful atoms like Pairs can implement more
data-plane algorithms, they come at a cost. A more ex-
pressive atom needs more gates in hardware and incurs
longer propagation delays. As an illustration, consider
the circuits (Table 3) for the first three atoms from Ta-
ble 2. We use the number of elements (muxes, adders,
subtractors, and relational operators) on the longest path
between input and output, the element depth, as a crude
proxy for propagation delay, and observe that it increases
with atom complexity. At some point, the propagation
delay may prevent the circuit from meeting a particular
line rate. We plan to synthesize these atoms to circuits in
a standard cell library to study this more rigorously.

The larger takeaway is that we can begin to quantify
the programmability-performance tradeoff that switch
designers intuitively understand. From a corpus of data-
plane algorithms, we can rigorously—modulo compiler
inefficiencies—determine which of them can run at a
given line rate, given the stateful atom supported at that
line rate. A lower line rate would permit larger prop-
agation delays, more expressive atoms, and more data-
plane algorithms. The end result is a programmability-
performance curve where the number of implementable
algorithms (programmability) increases as the line rate
decreases (performance).

5.4 Compilation times

The data-plane algorithms we consider are all under 100
lines of code. Time spent in the front-end is negligible;
instead, compilation time is dominated by SKETCH. To
speed up the search, we limit SKETCH to search for con-
stants (e.g., for addition) of size up to 5 bits, given that

6p.src is the address of the host originating this message, and
hence the destination for the host receiving it and executing CONGA.

the constants we observe within stateful codelets in our
algorithms are small.

Quantitatively, our longest compilation time is 10 sec-
onds when CoDel doesn’t map to a PISA machine with
the Pairs atom. This time will increase if we increase the
bit width of constants that SKETCH has to search; how-
ever, because data-plane algorithms are small, we don’t
expect compilation times to be a concern.

6 Related work

Data-Plane Algorithms Several data-plane algorithms
are now commonplace, e.g., lookup algorithms based on
longest-prefix, exact, or ternary matches. Domino fo-
cuses on data-plane algorithms that aren’t widely avail-
able because of the engineering effort required for hard-
ware implementations. Further, the growing list of new
algorithms [61, 92, 94, 71, 33] makes it hard to commit
to a hardware implementation. Domino allows network
programmers to modify these algorithms more rapidly.

Abstract machines for line-rate switches Relative to
P4’s abstract switch model [38], PISA contributes the no-
tions of atoms, sequential execution within atoms, and
state encapsulated by atoms. Closest to PISA is Ne-
tASM [80], an intermediate representation and abstract
machine for programmable data planes. PISA differs
from NetASM by explicitly targeting line-rate switches
in two ways. First, all state in PISA is internal to an atom
(and hence a stage), while NetASM’s ATM construct al-
lows access to shared state from multiple pipeline stages.
Second, PISA uses atom templates to limit the amount of
useful work that can be performed in an atom.

Programmable Data Planes Software-based data
planes such as Click [65], RouteBricks [49], and Fast-
pass [75] are flexible but lack the performance required
for deployments. Network Processors [18, 19] (NPUs)
were an attempt to bridge the gap. While NPUs are faster
than software routers, they remain an order of magnitude
slower than merchant silicon chips [39].

An alternative is to use FPGAs to improve perfor-
mance relative to software routers and NPUs; examples
include NetFPGA [68], Switchblade [37], Chimpp [78],
and [84]. These designs are slower than switching
ASICs, and are rarely used in production network equip-
ment. The Arista 7124 FX [1] is a commercial switch
with an on-board FPGA, but its capacity is limited to
160 Gbits/sec when using the on-board FPGA— 10x less
than the multi-terabit capacities of programmable switch
chips [32]. In addition, FPGAs are hard to program. Rel-
ative to FPGAs, Domino seeks to provide both the line-
rate performance of switching ASICs and a familiar pro-
gramming model.

Packet-processing languages Many programming
languages target the network control plane. Examples

11

include Frenetic [58], Pyretic [70], and Maple [91]. [57]
is a survey of such approaches. In contrast, Domino fo-
cuses on the data plane. Several DSLs explicitly target
data-plane packet processing. Click [65] uses C++ for
packet processing on software routers. Imperative lan-
guages such as NOVA [59], packetC [50], Intel’s auto-
partitioning C compiler [48], PacLang [51, 52], and Mi-
croengine C [15, 17] target network processors [18, 19].

Domino’s C-like syntax and sequential semantics are
inspired by these languages. However Domino is con-
strained relative to its predecessors: for instance, it for-
bids loops and includes no synchronization constructs
because all state is internal to an atom. These con-
straints were chosen to target line-rate switching chips
with shared-nothing memory architectures. As a re-
sult, Domino’s compiler presents a different program-
ming model: all Domino programs that compile run at
line-rate, while those that can’t run at line rate are re-
jected outright. Unlike an NPU or software router, there
is no slippery slope of degrading performance with in-
creasing program complexity.

P4 [38] is an emerging packet-processing language
that explicitly targets line-rate programmable switching
chips. However, while P4 is a natural model for many
header-manipulation tasks such as switching, ACLs,
routing, and tunnelling [83], it is ill-suited to program-
ming data-plane algorithms that rely on intricate state
manipulation.

Compiler Techniques Domino’s compiler uses three-
address codes [31], static-single assignment form [47],
and if conversion [36] from the compiler literature. How-
ever, Domino’s constrained design allows us to simplify
these techniques relative to their mainstream uses. The
use of strongly connected components is based on sim-
ilar uses in software pipelining [67] for VLIW architec-
tures. However, dependence analysis for loop-carried
dependencies in software pipelining (equivalent to state
in Domino) is more involved than the simple syntactic
checks used by Domino. The use of synthesis to map
codelets to atoms is based on Chlorophyll’s [76] use of
program synthesis for compilation to unconventional tar-
gets.

Hardware compilation Prior work [73, 41, 72] has
focused on deriving digital circuits from imperative pro-
grams. These approaches simplify hardware develop-
ment, but the performance of each program depends on
its complexity. Domino has an all-or-nothing guaran-
tee: all code that compiles can run at line rate or is re-
jected by the compiler. Mapping from codelets to atoms
is similar to technology mapping [69, 45, 44], where a
target hardware circuit (represented as a graph) is im-
plemented by tiling the circuit graph with primitive cir-
cuits from a technology library. Domino’s problem is
simpler. We only need to verify if a codelet maps to

an atom—not implement a codelet using multiple atoms.
Recent work [62] focuses on compiling P4 programs
to hardware targets such as the RMT and FlexPipe ar-
chitectures. However, their work focuses on compiling
stateless data-plane tasks such as forwarding and routing,
while Domino focuses on stateful data-plane algorithms.

7 Conclusion

This paper presented Domino, a C-like imperative
language that allows programmers to write packet-
processing code using packet transactions: sequential
code blocks that are atomic and isolated from other
such code blocks. The Domino compiler compiles
packet transactions to PISA, a family of abstract ma-
chines based on programmable line-rate switch architec-
tures [16, 32, 39]. Our results suggest that it is possible
to have both a familiar programming model and line-rate
performance—i.e. if the algorithm can indeed run at line
rate.

These results suggest that, unlike a claim posited in
recent work [38], it is possible to express data-plane al-
gorithms in a C-like language and achieve line-rate per-
formance. Domino shows that it is possible with careful
design to find a sweet spot between expressiveness and
performance, somewhere between P4 and Click. Further,
as §4 shows, careful language design simplifies the com-
piler.

Our conclusion is that packet transactions provide a
familiar programming abstraction, can achieve line-rate
performance, and result in a simple compiler. Packet-
processing languages are still in their infancy; we hope
these results prompt further work on programming ab-
stractions for packet-processing hardware.

References

[1] 7124fx application switch. https:
//www.arista.com/assets/data/pdf/7124FX/
7124FX_Data_Sheet.pdf.

[2] Appendix: Codel pseudocode. http:
//queue.acm.org/appendices/codel.html.

[3] Arista - arista 7050 series. https:
//www.arista.com/en/products/7050-series.

[4] Cavium and XPliant introduce a fully pro-
grammable switch silicon family scal-
ing to 3.2 terabits per second. http:
//www.cavium.com/newsevents-Cavium-and-
XPliant-Introduce-a-Fully-Programmable-
Switch-Silicon-Family.html.

12

https://www.arista.com/assets/data/pdf/7124FX/7124FX_Data_Sheet.pdf
https://www.arista.com/assets/data/pdf/7124FX/7124FX_Data_Sheet.pdf
https://www.arista.com/assets/data/pdf/7124FX/7124FX_Data_Sheet.pdf
http://queue.acm.org/appendices/codel.html
http://queue.acm.org/appendices/codel.html
https://www.arista.com/en/products/7050-series
https://www.arista.com/en/products/7050-series
http://www.cavium.com/newsevents-Cavium-and-XPliant-Introduce-a-Fully-Programmable-Switch-Silicon-Family.html
http://www.cavium.com/newsevents-Cavium-and-XPliant-Introduce-a-Fully-Programmable-Switch-Silicon-Family.html
http://www.cavium.com/newsevents-Cavium-and-XPliant-Introduce-a-Fully-Programmable-Switch-Silicon-Family.html
http://www.cavium.com/newsevents-Cavium-and-XPliant-Introduce-a-Fully-Programmable-Switch-Silicon-Family.html

[5] Cavium XPliant switches and Microsoft azure
networking achieve SAI routing interoperabil-
ity. http://www.cavium.com/newsevents-
Cavium-XPliant-Switches-and-Microsoft-
Azure-Networking-Achieve-SAI-Routing-
Interoperability.html.

[6] Cisco nexus family. http://
www.cisco.com/c/en/us/products/switches/
cisco_nexus_family.html.

[7] Common subexpression elimination.
https://en.wikipedia.org/wiki/
Common_subexpression_elimination.

[8] Components of Linux Traffic Control.
http://tldp.org/HOWTO/Traffic-Control-
HOWTO/components.html.

[9] Copy propagation. https://en.wikipedia.org/
wiki/Copy_propagation.

[10] Dell force10. http://
www.force10networks.com/.

[11] DPDK: Data plane development kit. http://
dpdk.org/.

[12] High Capacity StrataXGS®Trident II Ethernet
Switch Series. http://www.broadcom.com/
products/Switching/Data-Center/BCM56850-
Series.

[13] High-density 25/100 gigabit ethernet
StrataXGS tomahawk ethernet switch se-
ries. http://www.broadcom.com/products/
Switching/Data-Center/BCM56960-Series.

[14] Intel 64 and ia-32 architectures software de-
veloper’s manual. http://www.intel.com/
content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-
developer-instruction-set-reference-
manual-325383.pdf.

[15] Intel enhances network processor family with
new software tools and expanded performance.
http://www.intel.com/pressroom/archive/
releases/2001/20010220net.htm.

[16] Intel FlexPipe. http://www.intel.com/content/
dam/www/public/us/en/documents/product-
briefs/ethernet-switch-fm6000-series-
brief.pdf.

[17] Intel internet exchange architecture. http:
//www.intel.com/design/network/papers/
intelixa.pdf.

[18] Intel IXP2800 network processor. http://
www.ic72.com/pdf_file/i/587106.pdf.

[19] IXP4XX Product Line of Network Processors.
http://www.intel.com/content/www/us/en/
intelligent-systems/previous-generation/
intel-ixp4xx-intel-network-processor-
product-line.html.

[20] Libtooling. http://clang.llvm.org/docs/
LibTooling.html.

[21] Load/store architecture. https:
//en.wikipedia.org/wiki/Load/
store_architecture.

[22] Mellanox Products: SwitchX-2 Ethernet Optimized
for SDN. http://www.mellanox.com/page/
products_dyn?product_family=146&mtag=
switchx_2_en.

[23] Multiply-accumulate operation. https:
//en.wikipedia.org/wiki/Multiply-
accumulate_operation.

[24] Netronome showcases next-gen intelli-
gent server adapter delivering 20x ovs
performance at open networking summit
2015. https://netronome.com/netronome-
showcases-next-gen-intelligent-server-
adapter\-delivering-20x-ovs-performance-
at-open-networking\-summit-2015/.

[25] P4 for an FPGA target. http://schd.ws/
hosted_files/p4workshop2015/33/GordonB-
P4-Workshop-June-04-2015.pdf.

[26] P4 Specification. http://p4.org/spec/p4-
latest.pdf.

[27] P4’s action-execution semantics and conditional
operators. https://github.com/anirudhSK/p4-
semantics/raw/master/p4-semantics.pdf.

[28] Protocol-independent switch architecture. http:
//schd.ws/hosted_files/p4workshop2015/c9/
NickM-P4-Workshop-June-04-2015.pdf.

[29] RFC 2698 - a two rate three color meter. https:
//tools.ietf.org/html/rfc2698.

[30] Sampled netflow. http://www.cisco.com/c/
en/us/td/docs/ios/12_0s/feature/guide/
12s_sanf.html.

[31] Three-address code. https://en.wikipedia.org/
wiki/Three-address_code.

13

http://www.cavium.com/newsevents-Cavium-XPliant-Switches-and-Microsoft-Azure-Networking-Achieve-SAI-Routing-Interoperability.html
http://www.cavium.com/newsevents-Cavium-XPliant-Switches-and-Microsoft-Azure-Networking-Achieve-SAI-Routing-Interoperability.html
http://www.cavium.com/newsevents-Cavium-XPliant-Switches-and-Microsoft-Azure-Networking-Achieve-SAI-Routing-Interoperability.html
http://www.cavium.com/newsevents-Cavium-XPliant-Switches-and-Microsoft-Azure-Networking-Achieve-SAI-Routing-Interoperability.html
http://www.cisco.com/c/en/us/products/switches/cisco_nexus_family.html
http://www.cisco.com/c/en/us/products/switches/cisco_nexus_family.html
http://www.cisco.com/c/en/us/products/switches/cisco_nexus_family.html
https://en.wikipedia.org/wiki/Common_subexpression_elimination
https://en.wikipedia.org/wiki/Common_subexpression_elimination
http://tldp.org/HOWTO/Traffic-Control-HOWTO/components.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/components.html
https://en.wikipedia.org/wiki/Copy_propagation
https://en.wikipedia.org/wiki/Copy_propagation
http://www.force10networks.com/
http://www.force10networks.com/
http://dpdk.org/
http://dpdk.org/
http://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series
http://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series
http://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series
http://www.broadcom.com/products/Switching/Data-Center/BCM56960-Series
http://www.broadcom.com/products/Switching/Data-Center/BCM56960-Series
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com/pressroom/archive/releases/2001/20010220net.htm
http://www.intel.com/pressroom/archive/releases/2001/20010220net.htm
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/design/network/papers/intelixa.pdf
http://www.intel.com/design/network/papers/intelixa.pdf
http://www.intel.com/design/network/papers/intelixa.pdf
http://www.ic72.com/pdf_file/i/587106.pdf
http://www.ic72.com/pdf_file/i/587106.pdf
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://clang.llvm.org/docs/LibTooling.html
http://clang.llvm.org/docs/LibTooling.html
https://en.wikipedia.org/wiki/Load/store_architecture
https://en.wikipedia.org/wiki/Load/store_architecture
https://en.wikipedia.org/wiki/Load/store_architecture
http://www.mellanox.com/page/products_dyn?product_family=146&mtag=switchx_2_en
http://www.mellanox.com/page/products_dyn?product_family=146&mtag=switchx_2_en
http://www.mellanox.com/page/products_dyn?product_family=146&mtag=switchx_2_en
https://en.wikipedia.org/wiki/Multiply-accumulate_operation
https://en.wikipedia.org/wiki/Multiply-accumulate_operation
https://en.wikipedia.org/wiki/Multiply-accumulate_operation
https://netronome.com/netronome-showcases-next-gen-intelligent-server-adapter\-delivering-20x-ovs-performance-at-open-networking\-summit-2015/
https://netronome.com/netronome-showcases-next-gen-intelligent-server-adapter\-delivering-20x-ovs-performance-at-open-networking\-summit-2015/
https://netronome.com/netronome-showcases-next-gen-intelligent-server-adapter\-delivering-20x-ovs-performance-at-open-networking\-summit-2015/
https://netronome.com/netronome-showcases-next-gen-intelligent-server-adapter\-delivering-20x-ovs-performance-at-open-networking\-summit-2015/
http://schd.ws/hosted_files/p4workshop2015/33/GordonB-P4-Workshop-June-04-2015.pdf
http://schd.ws/hosted_files/p4workshop2015/33/GordonB-P4-Workshop-June-04-2015.pdf
http://schd.ws/hosted_files/p4workshop2015/33/GordonB-P4-Workshop-June-04-2015.pdf
http://p4.org/spec/p4-latest.pdf
http://p4.org/spec/p4-latest.pdf
https://github.com/anirudhSK/p4-semantics/raw/master/p4-semantics.pdf
https://github.com/anirudhSK/p4-semantics/raw/master/p4-semantics.pdf
http://schd.ws/hosted_files/p4workshop2015/c9/NickM-P4-Workshop-June-04-2015.pdf
http://schd.ws/hosted_files/p4workshop2015/c9/NickM-P4-Workshop-June-04-2015.pdf
http://schd.ws/hosted_files/p4workshop2015/c9/NickM-P4-Workshop-June-04-2015.pdf
https://tools.ietf.org/html/rfc2698
https://tools.ietf.org/html/rfc2698
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
https://en.wikipedia.org/wiki/Three-address_code
https://en.wikipedia.org/wiki/Three-address_code

[32] XPliant™Ethernet Switch Product Family.
http://www.cavium.com/XPliant-Ethernet-
Switch-Product-Family.html.

[33] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR,
S., VAIDYANATHAN, R., CHU, K., FINGERHUT,
A., LAM, V. T., MATUS, F., PAN, R., YADAV,
N., AND VARGHESE, G. CONGA: Distributed
Congestion-aware Load Balancing for Datacenters.
In SIGCOMM (2014).

[34] ALIZADEH, M., GREENBERG, A., MALTZ,
D. A., PADHYE, J., PATEL, P., PRABHAKAR, B.,
SENGUPTA, S., AND SRIDHARAN, M. Data Cen-
ter TCP (DCTCP). In SIGCOMM (2010).

[35] ALIZADEH, M., KABBANI, A., EDSALL, T.,
PRABHAKAR, B., VAHDAT, A., AND YASUDA,
M. Less is more: Trading a little bandwidth for
ultra-low latency in the data center. In Proceedings
of the 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12) (San
Jose, CA, 2012), USENIX, pp. 253–266.

[36] ALLEN, J. R., KENNEDY, K., PORTERFIELD, C.,
AND WARREN, J. Conversion of control depen-
dence to data dependence. In Proceedings of the
10th ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages (New York, NY,
USA, 1983), POPL ’83, ACM, pp. 177–189.

[37] ANWER, M. B., MOTIWALA, M., TARIQ, M. B.,
AND FEAMSTER, N. Switchblade: A platform
for rapid deployment of network protocols on pro-
grammable hardware. In SIGCOMM (2011).

[38] BOSSHART, P., DALY, D., GIBB, G., IZ-
ZARD, M., MCKEOWN, N., REXFORD, J.,
SCHLESINGER, C., TALAYCO, D., VAHDAT,
A., VARGHESE, G., AND WALKER, D. P4:
Programming Protocol-independent Packet Proces-
sors. SIGCOMM Comput. Commun. Rev. 44, 3
(July 2014), 87–95.

[39] BOSSHART, P., GIBB, G., KIM, H.-S., VARGH-
ESE, G., MCKEOWN, N., IZZARD, M., MUJICA,
F., AND HOROWITZ, M. Forwarding Metamor-
phosis: Fast Programmable Match-action Process-
ing in Hardware for SDN. In SIGCOMM (2013).

[40] BRODER, A., MITZENMACHER, M., AND
MITZENMACHER, A. B. I. M. Network applica-
tions of bloom filters: A survey. In Internet Mathe-
matics (2002), pp. 636–646.

[41] BUDIU, M., AND GOLDSTEIN, S. C. Compil-
ing application-specific hardware. In Proceed-
ings of the 12th International Conference on Field

Programmable Logic and Applications (Montpel-
lier (La Grande-Motte), France, September 2002),
pp. 853–863.

[42] CHEUNG, A., SOLAR-LEZAMA, A., AND MAD-
DEN, S. Using program synthesis for social recom-
mendations. In Proceedings of the 21st ACM In-
ternational Conference on Information and Knowl-
edge Management (New York, NY, USA, 2012),
CIKM ’12, ACM, pp. 1732–1736.

[43] CHEUNG, A., SOLAR-LEZAMA, A., AND MAD-
DEN, S. Optimizing database-backed applications
with query synthesis. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (New York, NY,
USA, 2013), PLDI ’13, ACM, pp. 3–14.

[44] CLARKE, E. M., MCMILLAN, K. L., ZHAO, X.,
FUJITA, M., AND YANG, J. Spectral transforms
for large boolean functions with applications to
technology mapping. In Design Automation, 1993.
30th Conference on (1993), IEEE, pp. 54–60.

[45] CONG, J., AND DING, Y. Flowmap: An optimal
technology mapping algorithm for delay optimiza-
tion in lookup-table based fpga designs. Computer-
Aided Design of Integrated Circuits and Systems,
IEEE Transactions on 13, 1 (1994), 1–12.

[46] CORMODE, G., AND MUTHUKRISHNAN, S. An
improved data stream summary: The count-min
sketch and its applications. J. Algorithms 55, 1
(Apr. 2005), 58–75.

[47] CYTRON, R., FERRANTE, J., ROSEN, B. K.,
WEGMAN, M. N., AND ZADECK, F. K. Ef-
ficiently computing static single assignment form
and the control dependence graph. ACM Trans-
actions on Programming Language Systems 13, 4
(1991), 451–490.

[48] DAI, J., HUANG, B., LI, L., AND HARRISON, L.
Automatically partitioning packet processing appli-
cations for pipelined architectures. In Proceedings
of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation
(New York, NY, USA, 2005), PLDI ’05, ACM,
pp. 237–248.

[49] DOBRESCU, M., EGI, N., ARGYRAKI, K.,
CHUN, B.-G., FALL, K., IANNACCONE, G.,
KNIES, A., MANESH, M., AND RATNASAMY, S.
Routebricks: Exploiting parallelism to scale soft-
ware routers. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles
(New York, NY, USA, 2009), SOSP ’09, ACM,
pp. 15–28.

14

http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html

[50] DUNCAN, R., AND JUNGCK, P. packetC Lan-
guage for High Performance Packet Processing. In
11th IEEE International Conference on High Per-
formance Computing and Communications (2009).

[51] ENNALS, R., SHARP, R., AND MYCROFT, A. Lin-
ear types for packet processing. In Programming
Languages and Systems, D. Schmidt, Ed., vol. 2986
of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2004, pp. 204–218.

[52] ENNALS, R., SHARP, R., AND MYCROFT, A.
Task partitioning for multi-core network proces-
sors. In Compiler Construction, R. Bodik, Ed.,
vol. 3443 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2005, pp. 76–90.

[53] ESTAN, C., AND VARGHESE, G. New directions
in traffic measurement and accounting: Focusing
on the elephants, ignoring the mice. ACM Trans.
Comput. Syst. 21, 3 (Aug. 2003), 270–313.

[54] ESTAN, C., VARGHESE, G., AND FISK, M.
Bitmap algorithms for counting active flows on
high-speed links. IEEE/ACM Trans. Netw. 14, 5
(Oct. 2006), 925–937.

[55] FENG, W.-C., SHIN, K. G., KANDLUR, D. D.,
AND SAHA, D. The blue active queue management
algorithms. IEEE/ACM Trans. Netw. 10, 4 (Aug.
2002), 513–528.

[56] FLOYD, S., AND JACOBSON, V. Random
early detection gateways for congestion avoidance.
IEEE/ACM Trans. Netw. 1, 4 (Aug. 1993), 397–
413.

[57] FOSTER, N., GUHA, A., REITBLATT, M., STORY,
A., FREEDMAN, M., KATTA, N., MONSANTO,
C., REICH, J., REXFORD, J., SCHLESINGER, C.,
WALKER, D., AND HARRISON, R. Languages for
software-defined networks. Communications Mag-
azine, IEEE 51, 2 (February 2013), 128–134.

[58] FOSTER, N., HARRISON, R., FREEDMAN, M. J.,
MONSANTO, C., REXFORD, J., STORY, A., AND
WALKER, D. Frenetic: A Network Programming
Language. In ICFP (2011).

[59] GEORGE, L., AND BLUME, M. Taming the ixp
network processor. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Lan-
guage Design and Implementation (New York, NY,
USA, 2003), PLDI ’03, ACM, pp. 26–37.

[60] GREENBERG, A., HAMILTON, J. R., JAIN, N.,
KANDULA, S., KIM, C., LAHIRI, P., MALTZ,

D. A., PATEL, P., AND SENGUPTA, S. Vl2: A
scalable and flexible data center network. In SIG-
COMM (2009).

[61] HONG, C.-Y., CAESAR, M., AND GODFREY,
P. B. Finishing flows quickly with preemptive
scheduling. In SIGCOMM (2012).

[62] JOSE, L., YAN, L., VARGHESE, G., AND MCKE-
OWN, N. Compiling Packet Programs to Reconfig-
urable Switches. In NSDI (2015).

[63] KATABI, D., HANDLEY, M., AND ROHRS, C.
Congestion Control for High Bandwidth-Delay
Product Networks. In SIGCOMM (2002).

[64] KELLEY JR, J. E., AND WALKER, M. R. Critical-
path planning and scheduling. In Papers presented
at the December 1-3, 1959, eastern joint IRE-
AIEE-ACM computer conference (1959), ACM,
pp. 160–173.

[65] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI,
J., AND KAASHOEK, M. F. The Click Modular
Router. ACM Trans. Comput. Syst. 18, 3 (Aug.
2000), 263–297.

[66] KUNNIYUR, S. S., AND SRIKANT, R. An adap-
tive virtual queue (avq) algorithm for active queue
management. IEEE/ACM Trans. Netw. 12, 2 (Apr.
2004), 286–299.

[67] LAM, M. Software pipelining: An effective
scheduling technique for vliw machines. In Pro-
ceedings of the ACM SIGPLAN 1988 Conference
on Programming Language Design and Implemen-
tation (New York, NY, USA, 1988), PLDI ’88,
ACM, pp. 318–328.

[68] LOCKWOOD, J. W., MCKEOWN, N., WATSON,
G., GIBB, G., HARTKE, P., NAOUS, J., RAGHU-
RAMAN, R., AND LUO, J. NetFPGA–An Open
Platform for Gigabit-Rate Network Switching and
Routing. In IEEE International Conf. on Micro-
electronic Systems Education (2007).

[69] MICHELI, G. D. Synthesis and Optimization of
Digital Circuits, 1st ed. McGraw-Hill Higher Edu-
cation, 1994.

[70] MONSANTO, C., REICH, J., FOSTER, N., REX-
FORD, J., AND WALKER, D. Composing
Software-defined Networks. In NSDI (2013).

[71] NICHOLS, K., AND JACOBSON, V. Controlling
Queue Delay. ACM Queue 10, 5 (May 2012).

15

[72] NIKHIL, R. Bluespec system verilog: efficient,
correct rtl from high level specifications. In Formal
Methods and Models for Co-Design, 2004. MEM-
OCODE ’04. Proceedings. Second ACM and IEEE
International Conference on (June 2004), pp. 69–
70.

[73] NURVITADHI, E., HOE, J., KAM, T., AND LU,
S. Automatic pipelining from transactional datap-
ath specifications. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on
30, 3 (March 2011), 441–454.

[74] PAN, R., NATARAJAN, P., PIGLIONE, C.,
PRABHU, M., SUBRAMANIAN, V., BAKER, F.,
AND VERSTEEG, B. Pie: A lightweight con-
trol scheme to address the bufferbloat problem. In
High Performance Switching and Routing (HPSR),
2013 IEEE 14th International Conference on (July
2013), pp. 148–155.

[75] PERRY, J., OUSTERHOUT, A., BALAKRISHNAN,
H., SHAH, D., AND FUGAL, H. Fastpass: A Cen-
tralized “Zero-queue” Datacenter Network. In SIG-
COMM (2014).

[76] PHOTHILIMTHANA, P. M., JELVIS, T., SHAH,
R., TOTLA, N., CHASINS, S., AND BODIK,
R. Chlorophyll: Synthesis-aided compiler for
low-power spatial architectures. In PLDI (2014),
pp. 396–407.

[77] ROY, A., ZENG, H., BAGGA, J., PORTER, G.,
AND SNOEREN, A. C. Inside the social net-
work’s (datacenter) network. In Proceedings of the
2015 ACM Conference on Special Interest Group
on Data Communication (New York, NY, USA,
2015), SIGCOMM ’15, ACM, pp. 123–137.

[78] RUBOW, E., MCGEER, R., MOGUL, J., AND
VAHDAT, A. Chimpp: A Click-based programming
and simulation environment for reconfigurable net-
working hardware. In ANCS (2010).

[79] SHAH, N. Understanding network processors.

[80] SHAHBAZ, M., AND FEAMSTER, N. The case for
an intermediate representation for programmable
data planes. In SOSR (2015), pp. 3:1–3:6.

[81] SINGH, A., ONG, J., AGARWAL, A., ANDER-
SON, G., ARMISTEAD, A., BANNON, R., BOV-
ING, S., DESAI, G., FELDERMAN, B., GER-
MANO, P., KANAGALA, A., PROVOST, J., SIM-
MONS, J., TANDA, E., WANDERER, J., HÖLZLE,
U., STUART, S., AND VAHDAT, A. Jupiter rising:

A decade of Clos topologies and centralized con-
trol in google’s datacenter network. In Proceed-
ings of the 2015 ACM Conference on Special Inter-
est Group on Data Communication (New York, NY,
USA, 2015), SIGCOMM ’15, ACM, pp. 183–197.

[82] SINHA, S., KANDULA, S., AND KATABI, D. Har-
nessing TCPs Burstiness using Flowlet Switching.
In 3rd ACM SIGCOMM Workshop on Hot Topics
in Networks (HotNets) (San Diego, CA, November
2004).

[83] SIVARAMAN, A., KIM, C., KRISHNAMOORTHY,
R., DIXIT, A., AND BUDIU, M. Dc.p4: Program-
ming the forwarding plane of a data-center switch.
In Proceedings of the 1st ACM SIGCOMM Sym-
posium on Software Defined Networking Research
(New York, NY, USA, 2015), SOSR ’15, ACM,
pp. 2:1–2:8.

[84] SIVARAMAN, A., WINSTEIN, K., SUBRAMA-
NIAN, S., AND BALAKRISHNAN, H. No silver bul-
let: Extending sdn to the data plane. In Proceedings
of the Twelfth ACM Workshop on Hot Topics in Net-
works (New York, NY, USA, 2013), HotNets-XII,
ACM, pp. 19:1–19:7.

[85] SOLAR-LEZAMA, A., RABBAH, R., BODÍK, R.,
AND EBCIOĞLU, K. Programming by sketching
for bit-streaming programs. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (New York,
NY, USA, 2005), PLDI ’05, ACM, pp. 281–294.

[86] SOLAR-LEZAMA, A., TANCAU, L., BODIK, R.,
SESHIA, S., AND SARASWAT, V. Combinatorial
sketching for finite programs. In Proceedings of
the 12th International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (New York, NY, USA, 2006), ASPLOS
XII, ACM, pp. 404–415.

[87] STANLEY, S. Roving reporter: Refer-
ence platforms for sdn and nfv. https:
//embedded.communities.intel.com/
community/en/hardware/blog/2013/06/
03/roving-reporter-reference-platforms-
for-sdn-and-nfv.

[88] STOICA, I., SHENKER, S., AND ZHANG, H. Core-
stateless fair queueing: A scalable architecture to
approximate fair bandwidth allocations in high-
speed networks. IEEE/ACM Trans. Netw. 11, 1
(Feb. 2003), 33–46.

[89] TAI, C., ZHU, J., AND DUKKIPATI, N. Making
Large Scale Deployment of RCP Practical for Real
Networks. In INFOCOM (2008).

16

https://embedded.communities.intel.com/community/en/hardware/blog/2013/06/03/roving-reporter-reference-platforms-for-sdn-and-nfv
https://embedded.communities.intel.com/community/en/hardware/blog/2013/06/03/roving-reporter-reference-platforms-for-sdn-and-nfv
https://embedded.communities.intel.com/community/en/hardware/blog/2013/06/03/roving-reporter-reference-platforms-for-sdn-and-nfv
https://embedded.communities.intel.com/community/en/hardware/blog/2013/06/03/roving-reporter-reference-platforms-for-sdn-and-nfv
https://embedded.communities.intel.com/community/en/hardware/blog/2013/06/03/roving-reporter-reference-platforms-for-sdn-and-nfv

[90] TENNENHOUSE, D. L., AND WETHERALL, D. J.
Towards an active network architecture. In DARPA
Active NEtworks Conference and Exposition, 2002.
Proceedings (2002), IEEE, pp. 2–15.

[91] VOELLMY, A., WANG, J., YANG, Y. R., FORD,
B., AND HUDAK, P. Maple: Simplifying sdn
programming using algorithmic policies. In Pro-
ceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM (New York, NY, USA, 2013), SIG-
COMM ’13, ACM, pp. 87–98.

[92] WILSON, C., BALLANI, H., KARAGIANNIS, T.,
AND ROWTRON, A. Better never than late: Meet-
ing deadlines in datacenter networks. In SIG-
COMM (2011).

[93] YU, M., JOSE, L., AND MIAO, R. Software de-
fined traffic measurement with opensketch. In Pro-
ceedings of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
13) (Lombard, IL, 2013), USENIX, pp. 29–42.

[94] ZATS, D., DAS, T., MOHAN, P., BORTHAKUR,
D., AND KATZ, R. Detail: Reducing the flow com-

pletion time tail in datacenter networks. In SIG-
COMM (2012).

A Atom templates and circuit diagrams for
atoms

The appendix provides circuit diagrams (Figures 14– 20)
and templates (Table 6) for the atoms in Table 2. Table 5
summarizes the notation we use in this section.

Construct Description

MuxN(a1, a2, . . . , aN)
N-to-1 multiplexer with enable bit.
If enabled, return one of a1, a2, . . . aN.
If disabled, return 0.

Opt(a) Return a or 0. (Equivalent to Mux1(a)).
rel_op(x, y) Return one of x < y, x > y, x! = y, x == y.
Const() Return an integer constant in the range [0, 31].a
x, y State variables
pkt_1, pkt_2 Packet fields

Table 5: Notation used in atom templates

aWe restrict constants to 5 bits because all constants within state-
ful codelets in our data-plane algorithms are under 32. Larger ranges
increase synthesis time.

17

Atom Atom template Element
depth

Write
Figure 14

x = Mux2(pkt_1 , Const ()); 1
ReadAddWrite
(RAW)
Figure 15

x = Opt(x) + Mux2(pkt_1 , Const ()); 2

Predicated
ReadAddWrite
(PRAW)
Figure 16

if (rel_op(Opt(x), Mux3(pkt_1 , pkt_2 , Const ()))) {
x = Opt(x) + Mux3(pkt_1 , pkt_2 , Const ());

}

3

If-Else
ReadAddWrite
(IfElseRAW)
Figure 17

if (rel_op(Opt(x), Mux3(pkt_1 , pkt_2 , Const ()))) {
x = Opt(x) + Mux3(pkt_1 , pkt_2 , Const ());

} else {
x = Opt(x) + Mux3(pkt_1 , pkt_2 , Const ());

}

3

Subtract (Sub)
Figure 18

if (rel_op(Opt(x), Mux3(pkt_1 , pkt_2 , Const ()))) {
x = Opt(x) + Mux3(pkt_1 , pkt_2 , Const ()) - Mux3(pkt_1 , pkt_2 , Const ());

} else {
x = Opt(x) + Mux3(pkt_1 , pkt_2 , Const ()) - Mux3(pkt_1 , pkt_2 , Const ());

}

4

Nested Ifs
(Nested)
Figure 19

if (rel_op(Opt(x) + Mux2(pkt_1 , pkt_2) - Mux2(pkt_1 , pkt_2), Const ())) {
if (rel_op(Opt(x) + Mux2(pkt_1 , pkt_2) - Mux2(pkt_1 , pkt_2), Const ())) {
x = Opt(x) + Mux3(pkt_1 , pkt_2 , Const ()) - Mux3(pkt_1 , pkt_2 , Const ());

} else {
x = Opt(x) + Mux3(pkt_1 , pkt_2 , Const ()) - Mux3(pkt_1 , pkt_2 , Const ());

}
} else {
if (rel_op(Opt(x) + Mux2(pkt_1 , pkt_2) - Mux2(pkt_1 , pkt_2), Const ())) {
x = Opt(x) + Mux3(pkt_1 , pkt_2 , Const ()) - Mux3(pkt_1 , pkt_2 , Const ());

} else {
x = Opt(x) + Mux3(pkt_1 , pkt_2 , Const ()) - Mux3(pkt_1 , pkt_2 , Const ());

}
}

6

Paired Updates
(Pairs)
Figure 20

if (rel_op(Mux2(x, y) + Mux2(pkt_1 , pkt_2) - Mux2(pkt_1 , pkt_2), Const ())) {
if (rel_op(Mux2(x, y) + Mux2(pkt_1 , pkt_2) - Mux2(pkt_1 , pkt_2), Const ())) {
x = Opt(x) + Mux3(pkt_1 , pkt_2 , Const ()) - Mux3(pkt_1 , pkt_2 , Const ());
y = Opt(y) + Mux3(pkt_1 , pkt_2 , Const ()) - Mux3(pkt_1 , pkt_2 , Const ());

} else {
x = Opt(x) + Mux3(pkt_1 , pkt_2 , Const ()) - Mux3(pkt_1 , pkt_2 , Const ());
y = Opt(y) + Mux3(pkt_1 , pkt_2 , Const ()) - Mux3(pkt_1 , pkt_2 , Const ());

}
} else if (rel_op(Mux2(x, y) + Mux2(pkt_1 , pkt_2) - Mux2(pkt_1 , pkt_2), Const ())) {
if (rel_op(Mux2(x, y) + Mux2(pkt_1 , pkt_2) - Mux2(pkt_1 , pkt_2), Const ())) {
x = Opt(x) + Mux3(pkt_1 , pkt_2 , Const ()) - Mux3(pkt_1 , pkt_2 , Const ());
y = Opt(y) + Mux3(pkt_1 , pkt_2 , Const ()) - Mux3(pkt_1 , pkt_2 , Const ());

} else {
x = Opt(x) + Mux3(pkt_1 , pkt_2 , Const ()) - Mux3(pkt_1 , pkt_2 , Const ());
y = Opt(y) + Mux3(pkt_1 , pkt_2 , Const ()) - Mux3(pkt_1 , pkt_2 , Const ());

}
}

6

Table 6: SKETCH code for atoms described in Table 2

18

pkt_1

Const
2-to-1
 Mux

x

Figure 14: Circuit for Write atom with depth 1.

pkt_1

Const
Adder x

2-to-1
 Mux

x

0

2-to-1
 Mux

Figure 15: Circuit for RAW atom with depth 2.

pkt_1

Const
3-to-1
 Mux

Adder

2-to-1
 Mux

RELOP

pkt_2

pkt_1

Const
3-to-1
 Mux

pkt_2

x

x

2-to-1
 Mux

x

0

2-to-1
 Mux

x

0

Figure 16: Circuit for PRAW atom with depth 3.

19

pkt_1

Const
3-to-1
 Mux

Adder

2-to-1
 Mux

RELOP

pkt_2

pkt_1

Const
3-to-1
 Mux

pkt_2

x

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

2-to-1
 Mux

x

0

2-to-1
 Mux

x

0

2-to-1
 Mux

x

0

Figure 17: Circuit for IfElseRAW atom with depth 3.

pkt_1

Const
3-to-1
 Mux

Adder

2-to-1
 Mux

RELOP

pkt_2

pkt_1

Const
3-to-1
 Mux

pkt_2

x

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

0

2-to-1
 Mux

x

0

2-to-1
 Mux

x

0

Figure 18: Circuit for Sub atom with depth 4.

20

2-to-1
 Mux

RELOP

Const

2-to-1
 Mux

2-to-1
 Mux

x

RELOP

Const

RELOP

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

0

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

0

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

0

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

0

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

0

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

0

Const

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

0

Figure 19: Circuit for Nested atom with depth 6.

21

2-to-1
 Mux

RELOP

Const

2-to-1
 Mux

2-to-1
 Mux

x

RELOP

Const

RELOP

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

0

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

0

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

y

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

0

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

0

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

y

Const

pkt_1

Const
3-to-1
 Mux

Adder

pkt_2

pkt_1

Const
3-to-1
 Mux

Sub

pkt_2

2-to-1
 Mux

x

y

Figure 20: One-half of the circuit for the Pairs atom with depth 6. The other half is identical, except that it updates y
instead of x, and isn’t shown for simplicity. The shaded regions denote the differences in the Pairs atom relative to the
Nested atom: the predicates can depend on both x and y in the Pairs atom.

22

	1 Introduction
	2 An abstract machine for switches
	2.1 Programmable switch architectures
	2.2 The PISA abstract machine
	2.3 Atoms: PISA's processing units
	2.4 Constraining atoms

	3 Programming using packet transactions
	4 The Domino compiler
	4.1 If-conversion to straight-line code
	4.2 Rewriting state variable operations
	4.3 Converting to single-assignment form
	4.4 Flattening to three-address code
	4.5 Code partitioning to codelets
	4.6 Mapping codelets to atoms
	4.7 Verifying compilations
	4.8 Targeting real switches

	5 Evaluation
	5.1 Experimental procedure
	5.2 Interpreting the results
	5.3 Performance vs. programmability
	5.4 Compilation times

	6 Related work
	7 Conclusion
	A Atom templates and circuit diagrams for atoms

