
Stability Analysis of QCN: The Averaging Principle

Mohammad Alizadeh, Abdul Kabbani, Berk Atikoglu, and Balaji Prabhakar

Department of Electrical Engineering, Stanford University

{alizade, akabbani, atikoglu, balaji}@stanford.edu

ABSTRACT

Data Center Networks have recently caused much excite-
ment in the industry and in the research community. They
represent the convergence of networking, storage, comput-
ing and virtualization. This paper is concerned with the
Quantized Congestion Notification (QCN) algorithm, devel-
oped for Layer 2 congestion management. QCN has recently
been standardized as the IEEE 802.1Qau Ethernet Conges-
tion Notification standard.
We provide a stability analysis of QCN, especially in terms

of its ability to utilize high capacity links in the shallow-
buffered data center network environment. After a brief de-
scription of the QCN algorithm, we develop a delay-differential
equation model for mathematically characterizing it. We an-
alyze the model using a linearized approximation, obtaining
stability margins as a function of algorithm parameters and
network operating conditions. A second contribution of the
paper is the articulation and analysis of the Averaging Prin-
ciple (AP)—a new method for stabilizing control loops when
lags increase. The AP is distinct from other well-known
methods of feedback stabilization such as higher-order state
feedback and lag-dependent gain adjustment. It turns out
that the QCN and the BIC-TCP (and CUBIC) algorithms
use the AP; we show that this enables them to be stable un-
der large lags. The AP is also of independent interest since
it applies to general control systems, not just congestion
control systems.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms

Algorithms, Performance, Theory

Keywords

Data center, Layer 2 congestion control, Ethernet, QCN

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’11, June 7–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0262-3/11/06 ...$10.00.

1. INTRODUCTION

Data centers pose interesting challenges in the areas of
computing, storage and networking, and have caused the
convergence of these disparate industries. Cloud computing
platforms [14, 21, 3] need switching fabrics that simultane-
ously support latency sensitive high performance comput-
ing traffic, loss and latency sensitive storage traffic, and
throughput intensive bulk data transfers. Similarly, the
FCoE (Fiber Channel over Ethernet) standard [9] enables
storage traffic to be carried over Ethernet. In order to facil-
itate this convergence, the IEEE 802.1 standards body has
introduced several enhancements to classical Ethernet, no-
tably the IEEE 802.1Qbb [24] and the IEEE 802.1Qau [23]
standards. This work was undertaken by the Data Center
Bridging Task Group [7].

The 802.1Qbb standard allows an Ethernet switch to pause
transmission at its upstream neighbor switch on a per pri-
ority basis. This ensures that packets are not dropped, a
feature that is critical for Fiber Channel traffic. However,
since this can cause congestion to spread upstream and intro-
duce spurious bottlenecks, the 802.1Qau standard enables an
Ethernet switch to directly signal congestion to an Ethernet
source in a manner similar to congestion control algorithms
in the Internet.

This paper concerns the QCN (Quantized Congestion No-
tification) algorithm, which the authors have helped to de-
velop as the IEEE 802.1Qau standard. The QCN algorithm
has been described in previous work [2]; here, we are in-
terested in analyzing the stability properties of the QCN
feedback control loop.

There is an extensive literature on the design and anal-
ysis of congestion control algorithms in the Internet, espe-
cially for the high bandwidth–delay product regime [10, 18,
8, 27, 19, 28, 13]. In this regime, buffer occupancies become
oscillatory (or the congestion control loop becomes “unsta-
ble”), causing link underutilization [20, 25]. The data cen-
ter environment poses similar challenges, making it impera-
tive that QCN ensure stable buffer occupancies. Specifically,
data center Ethernet switches typically have buffers which
are very small relative to the bandwidth-delay product and,
hence, they can easily underflow or overflow. Furthermore,
the number of flows which are simultaneously active on a
link in a data center network is very small, typically fewer
than 10. This makes it difficult to benefit from statistical
multiplexing to reduce buffering requirements [4].1

1We revisit buffer sizing in Section 4 and refer to [2] for more
discussion about the operating conditions in a data center.



The following are our main contributions:
(i) We obtain a delay-differential equation fluid model de-
scription of the QCN feedback control system. This model
differs from conventional fluid models in that a QCN source
needs two variables to describe its evolution as opposed to
just one variable. We analyze this model using standard
techniques and obtain the stability margins of the algorithm
as a function of its design parameters and network conditions
like link speeds, number of flows and round-trip time. These
results complement the extensive investigation of QCN via
simulation and experimentation conducted during the stan-
dardization process [23].
(ii) We describe the Averaging Principle (AP) which is a
simple method for improving the stability of a control loop
in the presence of increasing feedback delay. The QCN (and
the BIC-TCP [28]) algorithm employs the AP, and we show
that the AP is the underlying reason for the good stability
properties of QCN. We also demonstrate the generality of
the AP by applying it to various other feedback systems.
(iii) Finally, we analyze the AP and find that for linear con-
trol systems, it is algebraically equivalent to a PD (proportional-
derivative) controller; that is, the AP controller and the
PD controller are input-output equivalent. Since the PD
controller is well-known to stabilize control loops when lags
increase [11], this equivalence provides a precise character-
ization of the stability properties of the AP. This result is
very useful in practice because the PD controller requires
the switch to provide an additional derivative of the state—
something difficult to achieve in practice since switches im-
plement QCN functionality in hardware. The AP shows
how an equivalent effect can be achieved without modifying
switches.

Related literature on congestion control. Control the-
ory prescribes two methods of feedback compensation and
these have both been used to design stable congestion con-
trol algorithms as lags (round-trip times) increase. In one
approach, an estimate of the RTT is used to find the cor-
rect “gains” for the loop to be stable. For example, this is
the approach taken by FAST [27], XCP [18], RCP [8] and
HSTCP [10].2 The second approach improves stability by
increasing the order of the feedback by sending higher or-
der derivatives of the queue size. For instance, the active
queue management schemes REM [5], and PI [15] compute
a weighted sum of the queue size and its derivative (which
equals input rate less output rate) as the congestion signal.
This is also used in XCP and RCP.
On the other hand, BIC-TCP [28] operates stably in high

bandwidth–delay product networks, even though it neither
changes loop gains based on RTT nor uses higher order feed-
back. But it operates in the self-clocked universe of Internet
congestion control schemes, where window size changes are
made once every RTT. So there is the possibility that it im-
plicitly exploits a knowledge of RTTs to derive stability. As
we shall see, the QCN algorithm has no notion of RTTs.
This and the similarity of operation of the BIC-TCP and
QCN algorithms suggest there may be a more fundamental
reason for their good stability. Our attempt to understand
this reason has led us to the Averaging Principle.

2HSTCP does not explicitly use RTT estimates to adjust
gains. Rather, it varies gains based on current window size,
which implicitly depends on the RTT—the larger the RTT,
the larger the current window.

Figure 1: A generic sampled control system.

Figure 2: Plant input signal generated by (a) stan-
dard and (b) AP controller.

The Averaging Principle (AP). We explain the AP in
the context of a generic control system such as the one shown
in Fig. 1. The output of the system, y(t), tracks a ref-
erence signal, r(t), which is often a constant. The error,
e(t) = r(t)− y(t), is sampled with period T and fed back to
the controller with some delay. The controller incrementally
adjusts the input to the plant as follows:

u((n+ 1)T ) = u(nT ) +K e(nT ), (1)

where K is the controller gain. The input is held constant
between sampling times; i.e., u(t) = u(nT ) for nT ≤ t <
(n + 1)T . Fig. 2(a) illustrates the action of the controller
just described. To translate this to the congestion control
setting, the source (the controller) chooses a packet sending
rate (i.e., the input u(t)). The output y(t) is the queue size
and rate information at a router or a switch. The error e(t)
is a deviation of the current queue size and rate from target
values. The sampling period T is a function of the packet
arrival rate, since most congestion control algorithms sample
packets.

Fig. 2(b) shows the AP controller. This controller re-
acts to feedback messages it receives from the plant ex-
actly as in (1), at times which are labelled“feedback-induced
changes” in the figure. Note that feedback-induced changes
occur every T units of time. At any time, let IC (for current
input) denote the value of the input, and let IT (for target
input) denote the value of the input before the last feedback
induced change.

Precisely T/2 time units after every feedback-induced change,
the AP controller performs an“averaging change”, where the
controller changes IC as follows:

IC ←
IC + IT

2
.



Figure 3: Unit step responses of the standard and
AP controllers: (a) zero delay and (b) 8 secs delay.
AP stabilizes the system.

The term “averaging” comes from the above equation: IC
moves to the average of its values before and after the last
feedback-induced change. The BIC-TCP and the QCN al-
gorithms perform averaging several times after receiving a
congestion signal and we shall see that this results in their
more stable operation.
To illustrate the effectiveness of the AP, let us consider an

example linear, zero-delay stable control system with plant
transfer function

P (s) =
s+ 1

s3 + 1.6s2 + 0.8s+ 0.6
,

controller gain K = 1/8, and sampling period T = 1s. We
use a unit step function as the reference signal, and compare
the stability of the control loop with and without AP as the
delay increases. As shown in Fig. 3(a), when there is no
delay, both schemes are stable. However, the AP controller
induces less oscillations and settles faster. As the delay in-
creases to τ = 8s, the standard controller becomes unstable.
However, the AP controller is more robust and continues to
be stable. In fact, in this example, AP remains stable for
delays up to τ = 15s.
Organization of the paper. We briefly describe the salient
features of the QCN algorithm and present the correspond-
ing mathematical model (delay-differential equations) in Sec-
tions 2.1 and 2.2 respectively. We analyze a linearized ap-
proximation of this model in Section 2.3 to find the stability
margins of the algorithm. We compare the stability of the
linearized model with and without AP in Section 2.4 and
find that the AP increases the stability margin. We ana-
lyze the AP in Section 3.1 and prove that, for linear control
systems, it is algebraically equivalent to a PD (proportional-
derivative) controller. We apply the AP to another conges-
tion control algorithm, RCP [8], in Section 3.2 as an illus-
tration of its wide applicability. We revisit the discussion in
[4] in Section 4 and show that the AP reduces the buffering
requirements at network switchs by reducing the variance in
the sending rate of a source. We conclude in Section 5.

2. QCN
We begin with a brief overview of the QCN algorithm,

focusing on those aspects which are relevant for the mathe-
matical model.

!"#$%&'()*+#,)-'$"*.&/0

! !"#

!$%%

Figure 4: Congestion detection in QCN CP.

2.1 The QCN Algorithm
The QCN algorithm has two components: (i) the switch,

or Congestion Point (CP) mechanism, and (ii) the source,
or Reaction Point (RP) mechanism. The CP mechanism is
concerned with measuring the extent of congestion at the
switch buffer, and signaling this information back to the
source(s). The RP mechanism is concerned with the actions
that need to be taken when a congestion signal is received,
and how sources must probe for available bandwidth when
there is no congestion.

The CP Algorithm
The CP buffer is shown in Fig. 4. The goal of the CP is to
maintain the buffer occupancy at a desired operating point,
Qeq. The CP computes a congestion measure Fb (defined
below). With a probability ps (1% by default), it randomly
samples3 an incoming packet and sends the value of Fb in a
feedback message to the source of the sampled packet.

Let Q denote the instantaneous queue-size and Qold de-
note the queue-size when the last packet was sampled. Let
Qoff = Q − Qeq and Qδ = Q − Qold. Then Fb is given by
the formula:

Fb = Qoff + wQδ,

where w is a positive constant (set to 2 by default).
The interpretation is that Fb captures a combination of

queue-size excess (Qoff ) and rate excess (Qδ). Thus, when
Fb > 0, either the buffer or the link or both are oversub-
scribed. A feedback message containing Fb, quantized to 6
bits, is sent to the source of the sampled packet only when
Fb > 0; nothing is signaled when Fb ≤ 0.

The RP Algorithm
The basic RP behavior is shown in Fig. 5. The RP algorithm
maintains the following quantities:

• Current Rate (RC): The sending rate at any time.

• Target Rate (RT ): The sending rate just before the
arrival of the last feedback message.

Rate decrease. This occurs only when a feedback message
is received, in which case RC and RT are updated as follows:

RT ← RC , (2)

RC ← RC(1−GdFb), (3)

where the constant Gd is chosen so that GdFbmax = 1
2
; i.e.

the sending rate can decrease by at most 50 %.
Rate increase. Since the RP is not given positive rate-
increase signals by the network, it needs a mechanism for

3In the actual implementation, the sampling probability
varies between 1-10% depending on the severity of conges-
tion. We neglect this feature in this paper to keep the model
tractable; refer to [2] and [17] for details.



!"#$%

&
'
($
%

)*++$,(%&'($%

)-,.$/0-,%#$//'.$%+$12%

3%

345%

346%
347%

!'+.$(%&'($%&)%

&!%

8109$%:,1+$'/$%

;'/(%&$1-9$+<%

&8:%

Figure 5: QCN RP operation.

increasing its sending rate on its own. This is achieved by
using a Byte Counter, which counts the number of bytes
transmitted by the RP.4 Rate increase occurs in two phases:
Fast Recovery and Active Increase.
Fast Recovery (FR). Immediately following a rate decrease
episode, the Byte Counter is reset, and the RP enters the
FR state. FR consists of 5 cycles; in each cycle 150 KBytes
(100 packets, each 1500 Bytes long) of data are transmitted,
as counted by the Byte Counter. At the end of each cycle,
RT remains unchanged while RC is updated as follows:

RC ←
1

2
(RC +RT ).

Active Increase (AI ). After 5 cycles of FR have completed,
the RP enters the AI state where it probes for extra band-
width on the path. In this phase, the RP increases its send-
ing rate by updating RT and RC at the end of each cycle as
follows:

RT ← RT +RAI ,

RC ←
1

2
(RC +RT ),

where RAI is a constant (5 Mbps by default).

Remark 1. Note that during the FR phase QCN performs
averaging. The BIC-TCP algorithm is the first to use aver-
aging. Indeed, the motives that led to BIC-TCP and QCN
employing averaging are quite different and instructive to
understand. As stated in [28], the additive increase portion
of the TCP algorithm can be viewed as determining the cor-
rect window size through a linear search process, whereas the
BIC-TCP (for Binary Increase TCP) algorithm performs the
more efficient binary search. QCN takes a control-theoretic
angle: a congestion control algorithm is zero-delay stable
if the amount of rate increase after a drop is less than the
amount of decrease during the drop. The rate before the last
drop is check-pointed as the RT . Since averaging ensures
that RC < RT throughout the FR phase, QCN is zero-delay
stable (Section 2.3). In fact, Section 2.4 shows that aver-
aging (or binary increase) is much more stable than simple
additive increase in the face of large feedback delays.
Remark 2. The duration of Byte Counter cycles mea-
sured in seconds depends on the current sending rate, and
can therefore become unacceptably large when RC is small,
jeopardizing the speed of bandwidth recovery (or respon-

4Recall that due to the absence of ACKs in Ethernet, packet
transmission isn’t self-clocked like in TCP.

siveness). Therefore, a Timer is also included in the stan-
dards implementation of QCN. The Byte Counter and Timer
jointly determine rate increase times. The Timer is primar-
ily used during transience, and since we are mainly inter-
ested in the steady state stability properties of QCN in this
paper, we do not consider the Timer.

2.2 QCN Fluid Model
The fluid model presented below corresponds with the

simplified version of QCN from the previous section. The
derivation of the equations, for the most part, is part of the
research literature [25]. The main difference is in our use
of two variables, RC and RT , to represent source behav-
ior. This is a necessary step, since although RC and RT are
inter-dependent variables, neither can be derived from the
other.

Consider a “dumb-bell topology” with N sources sharing
a single link of capacity C. The RTT is assumed to be the
same for all sources, equal to τ seconds. The source variables
evolve according to the following differential equations:

dRC

dt
= −GdFb(t− τ)RC(t)RC(t− τ)pr(t− τ)

+

(
RT (t)−RC(t)

2

)
RC(t− τ)pr(t− τ)

(1− pr(t− τ))−100 − 1
, (4)

dRT

dt
= − (RT (t)−RC(t))RC(t− τ)pr(t− τ)

+RAIRC(t− τ)
(1− pr(t− τ))500pr(t− τ)

(1− pr(t− τ))−100 − 1
, (5)

where pr(t) is the “reflection”—not sampling, see equation
(8)—probability at the switch, and Fb(t) is the congestion
measure. These quantities are related to the queue size,
Q(·), at the switch and evolve as follows:

dQ

dt
=

{
NRC(t)− C if q(t) > 0,

max (NRC(t)− C, 0) if q(t) = 0,
(6)

Fb(t) = Q(t)−Qeq +
w

Cps
(NRC(t)− C), (7)

pr(t) = ps1[Fb(t)>0], (8)

where ps is the sampling probability.
Equations (4) and (5) each consist of a negative (rate de-

crease) term, and a positive (rate increase) term. Let us first
consider the simpler negative terms. These terms model the
decrease in RT and RC due to negative feedback signals,
corresponding to (2) and (3). Observing that feedback sig-
nals to each source arrive at rate RC(t−τ)pr(t−τ) explains
the negative terms.

Now consider the positive term in (4). A rate increase
occurs each time 100 packets are sent and no negative feed-
back message is received.5 The change in RC(t) at each such
event is given by:

∆RC(t) =
RC(t) +RT (t)

2
−RC(t)

=
RT (t)−RC(t)

2
. (9)

5The actual algorithm sets increases to occur every 50 pack-
ets in the Active Increase phase. For simplicity we use the
100 packet increment in both the FR and AI phases in the
model.



!"#$%!"#$% !"#$%

!%#$%
#$%

#$%

!&&%''%&% !% (%

Figure 6: Markov chain corresponding to RC rate
increases.

To compute the rate at which such events occur, we con-
sider the Markov Chain shown in Fig. 6. It is easy to see
that if each packet is reflected with probability pr, then the
average number of packets that must be sent before an in-
crease event occurs precisely equals the expected number of
steps it takes to hit state 100 starting from state 0. This is
easily computed:

E0(T100) =
(1− pr)

−100 − 1

pr
.

Therefore, because packets from a source arrive at the switch
with rate RC(t − τ) at time t, the average time between
increase events is:

∆T =
(1− pr(t− τ))−100 − 1

RC(t− τ)pr(t− τ)
. (10)

Dividing (9) by (10), we obtain the positive term in (4). The
positive term in (5) is derived similarly.
Equations (6) and (7) are self-explanatory. Equation (8)

captures the fact that sampled packets result in a reflected
feedback message only when Fb > 0.6

Model validation. We have verified the fidelity of the
model against packet-level simulations using the ns2 simu-
lator [22]. An example run is shown in Fig. 7. As can be
seen, the model and simulations match quite well.

2.3 Stability Analysis of Linearized Model
We now use the fluid model to analyze the stability of the

QCN control loop in the presence of feedback delay. Define:

η(ps) ,
ps

(1− ps)−100 − 1
, ζ(ps) ,

(1− ps)
500ps

(1− ps)−100 − 1
.

It is easily verified that the fluid model (4)–(8) has the
following unique fixed point:

R∗

C =
C

N
,

R∗

T =
C

N
+

ζ(ps)RAI

ps
,

Q∗ = Qeq +
η(ps)ζ(ps)NRAI

2p2sGdC
.

We are interested in understanding if, and under what con-
ditions, is this fixed point locally stable. The standard ap-
proach we undertake is to linearize the system around the
fixed point, and use tools from linear control theory to study
its stability.

6It must be noted that when pr = 0, the positive increase
terms in (4) and (5) are to be interpreted as the resulting
limits as pr → 0.

Figure 7: Comparison of QCN fluid model and ns2
simulation

The linearization of the differential equations is straight-
forward. Omitting the algebra, the linearized system de-
scribing the evolution of δRC(t) , RC(t) − R∗

C , δRT (t) ,

RT (t)−R∗

T , and δQ(t) , Q(t)−Q∗ is given by:

dδRC

dt
= −a1δRC(t) + a2δRT (t)− a3δRC(t− τ)− a4δQ(t− τ),

(11)

dδRT

dt
= bδRC(t)− bδRT (t), (12)

dδQ

dt
= NδRC(t), (13)

where:

a1 =
η(ps)

2
R∗

C +
η(ps)ζ(ps)

2ps
RAI ,

a2 =
η(ps)

2
R∗

C , a3 = GdwR∗

C , a4 = psGdR
∗

C
2
,

b = psR
∗

C .

We have obtained a linear time-delayed system and can now
study its stability through its characteristic equation whose
roots constitute the poles of the system. The characteristic
equation of (11)–(13), derived in Appendix A, is given by:

1 +G(s) = 0, (14)

where

G(s) = e−sτ a3(s+ b)(s+ γ)

s(s2 + βs+ α)
, (15)

with γ = Cp/w, β = b+ a1, and α = b(a1 − a2).

Theorem 1. Let

τ∗ =
1

ω∗

(
arctan(

ω∗

b
)− arctan(

ω∗

β
) + arctan(

ω∗

γ
)

)
, (16)

where

ω∗ =

√
a2
3

2
+

√
a4
3

4
+ γ2a2

3. (17)

Then τ∗ > 0, and the system (11)–(13) is stable for all

τ ≤ τ∗.

Proof. Using β > b, we have:

arctan(
ω∗

β
) < arctan(

ω∗

b
),



which implies τ∗ > 0. The proof of stability follows by
applying the Bode stability criterion [11] to G(s). Define

r(ω) = |G(jω)|, θ(ω) = −∠G(jω),

so that G(jω) = r(ω)e−jθ(ω). We upper bound r(ω) as
follows:

r(ω)2 =
a2
3(ω

2 + b2)(ω2 + γ2)

ω2((ω2 − α)2 + β2ω2)
,

<
a2
3(ω

2 + b2)(ω2 + γ2)

ω4(ω2 + β2 − 2α)
,

<
a2
3(ω

2 + γ2)

ω4
. (18)

The last inequality holds because β2−2α > b2, which is eas-
ily checked by plugging in β = b+ a1, α = b(a1 − a2). Now
with ω∗ given by (17), the bound (18) implies r(ω∗) < 1.
In particular, the 0-dB crossover frequency, ωc, at which
r(ωc) = 1 occurs for some ωc < ω∗. Hence, the Bode stabil-
ity criterion implies that if θ(ω) < π for all 0 ≤ ω < ω∗, the
system is stable. But for 0 ≤ ω < ω∗, using α > 0 we have:

θ(ω) = π + ωτ + arctan(
ω2 − α

βω
)− arctan(

ω

b
)− arctan(

ω

γ
),

< π + ωτ + arctan(
ω

β
)− arctan(

ω

b
)− arctan(

ω

γ
),

= π + ωτ − arctan

(
(β − b)ω

βb+ ω2

)
− arctan(

ω

γ
),

≤ π + ωτ − arctan

(
(β − b)ω

βb+ ω∗2

)
− arctan(

ω

γ
), (19)

where in the last inequality, we use the fact that arctan(.)
is an increasing function. Now let

Ψ(ω) = π + ωτ − arctan

(
(β − b)ω

βb+ ω∗2

)
− arctan(

ω

γ
).

Note that Ψ(0) = π and for τ ≤ τ∗, Ψ(ω∗) ≤ π. Moreover,
since arctan(x) is concave for x ≥ 0, Ψ(ω) is convex on
ω ∈ [0, ω∗]. Therefore Ψ(ω) ≤ π for all 0 ≤ ω ≤ ω∗, and
(19) implies θ(ω) < π, completing the proof.

Corollary 1 (Zero-Delay Stabilty). If τ = 0, sys-
tem (11)–(13) is stable .

Proof. This follows because τ∗ > 0 in Theorem 1.

Corollary 1 confirms the intuitive argument given for zero-
delay stability of QCN in Remark 1 of Section 2.1.

2.4 Averaging in QCN
As we have seen, the QCN Reaction Point averages RC

and RT during the Fast Recovery phase. We now use fluid
models to show that this averaging improves the robustness
of QCN to increasing lags in the control loop.
Consider a modified QCN RP algorithm, henceforth called

QCN-AIMD, where Active Increase begins immediately fol-
lowing a rate decrease, i.e. there is no Fast Recovery (see Fig
8 for an illustration). In Active Increase, the QCN-AIMD
RP increases its sending rate each time the Byte Counter
counts out 100 packets:

RC ← RC +RAI .

Figure 8: Rate evolutions for (a) QCN (b) QCN-
AIMD

The CP algorithm remains the same as QCN.7

A fluid model for QCN-AIMD can be derived similarly as
for QCN. In fact, since QCN-AIMD has no RT variable, we
only need to change the RC equation (4) to the following:

dRC

dt
= −GdFb(t− τ)RC(t)RC(t− τ)pr(t− τ)

+RAI
RC(t− τ)pr(t− τ)

(1− pr(t− τ))−100 − 1
. (20)

This, along with (6)–(8) constitute the QCN-AIMD fluid
model. We can now linearize the QCN-AIMD model around
its fixed point, and analyze its stability. This is done in
Appendix B, where the following Theorem is proven:

Theorem 2. Let

τ̂ =
1

ω̂

(
arctan(

ω̂

γ
) + arctan(

â

ω̂
)

)
, (21)

where

ω̂ =

√
a2
3 − â2

2
+

√
(a2

3 − â2)2

4
+ γ2a2

3. (22)

Here a3 and γ are the same constants found in the QCN

model, and â = η(ps)RAI . The linearized QCN-AIMD model

(35)–(36) is stable if and only if τ < τ̂ .

Theorems 1 and 2 provide the largest feedback delay for
which the linear models of QCN and QCN-AIMD control
loops retain stability. The following theorem compares these
two and proves that under mild conditions, the QCN system—
with its use of averaging—remains stable for larger lags.

Theorem 3. Let τ∗ and τ̂ be given by (16) and (21) re-

spectively. If

RAI

C
max

(
η(ps)

2/ps
Gd

,
2η(ps) + 4ps

Gd

,
η(ps)w

ps

)
< 0.1, (23)

NRAI

C
< 0.2, (24)

then τ∗ > τ̂ .

Proof. See Appendix C.

7QCN-AIMD and QCN are analogous to TCP and BIC-
TCP respectively. However, an important distinction is that
QCN-AIMD and QCN get multi-bit feedback from the net-
work, allowing them to cut their rates by different factors
corresponding to the amount of congestion.



Figure 9: Queue size for QCN and AIMD-QCN with
RTT of (a) 50µs (b) 200µs (c) 350µs. N = 10 sources
share a single 10Gbps bottleneck. The desired op-
erating point at the switch buffer, Qeq, is set to 22
packets.

Remark 3. The required conditions of Theorem 3 are easily
satisfied in practice. For instance, for the baseline QCN pa-
rameters C = 10Gbps, RAI = 5Mbps, Gd = 1/128, w = 2,
ps = 0.01, (23) is satisfied and (24) is equivalent to N < 400,
which is far more than the number of sources typically active
on each path in the data center [2].

2.5 Simulations
We have verified the theoretical predictions of the pre-

vious sections using ns2 simulations. We briefly present a
representative example.
We compare the stability of QCN-AIMD and QCN as

RTT increases. Fig. 9 shows the queue size for the two
schemes when 10 sources share a single 10Gbps bottleneck
link. Note that according to (16) and (21), the linearized

QCN and QCN-AIMD control loops are stable for RTTs
less than τ∗ = 249µs and τ̂ = 189µs respectively.
As shown, when the RTT is small (50µs), both schemes

are able to keep the queue stable around Qeq. But when
RTT is increased to 200µs, QCN-AIMD can no longer con-
trol the oscillations and the queue underflows, while the
queue size for QCN continues to be stable as predicted. Even
with RTT equal to 350µs, which is beyond the stability mar-

Figure 10: Equivalent PD control scheme to Aver-
aging Principle.

gin, τ∗, of the linearized model, QCN continues to gracefully
keep the queue occupancy closely hovering around 22 pack-
ets (albeit with an increase in the amplitude of oscillations).
It is only after the RTT increases beyond 500µs that the
queue size with QCN begins to underflow.

In the next section, we formally define the Averaging Prin-
ciple for a generic sampled control system, and show that
averaging improves the robustness of control loops to in-
creasing lags in much more general settings.

3. THE AVERAGING PRINCIPLE

3.1 Analysis
Recall the sampled control system in Fig. 1, and the ba-

sic form of AP (see Fig. 2) composed of periodic feedback-

induced changes given by:

IT ← IC ,

IC ← IC +Ke(nT ),

and averaging changes at the midpoints of the sampling pe-
riods:

IC ←
IC + IT

2
.

Note: In the generic setting of Fig. 2, the feedback sig-
nal can take both positive and negative values. However,
in some cases of interest, the feedback might be restricted
to negative values only; QCN is such an example. The
definition of AP is the same in either case: following ev-
ery feedback-induced change, make (one or more) averaging
changes.

We now address the question: Why does the AP im-
prove the stability of the basic controller? To anticipate
the answer, we find the AP controller behaves like a PD
controller—which is well-known to improve the stability of
control loops [11]—without explicitly computing a deriva-
tive. This last feature is very important since it avoids the
switch having to compute derivatives, which can be very
cumbersome to do in hardware.

Before proving the claimed equivalence of the AP and PD
controllers, we demonstrate it using our example. Consider
the PD control scheme of Fig. 10. Here the error samples
are not directly fed back. Instead, the feedback samples are
computed as:

w(nT ) =
1

2
e(nT ) +

1

4
(e(nT )− e((n− 1)T )),

≈ 1

2
e(nT ) +

T

4

d

dt
e(nT ).

Here, w(nT ) is a weighted sum of two terms: a propor-

tional term, and a (discrete) derivative term. Hence this



Figure 11: Step response for AP and PD controllers,
with (a) zero delay (b) τ = 8s delay.

is discrete-time PD control. The step response of this con-
trol loop is compared to the output of the AP controller in
Fig. 11. As shown in the figure, the outputs of the AP and
PD controllers are essentially identical.
Formally, consider the two controllers shown in Fig. 12.

Both controllers map a sequence of error samples to an input
signal driving the plant. Controller 1 is the AP controller,
and Controller 2 is (essentially) the PD controller. The
input-output relationships of the two controllers are given
by the following equations:

Controller 1:

u1(nT ) = u2((n− 1)T ) +Ke(nT )

u2(nT ) =
u1(nT ) + u2((n− 1)T )

2

u(t) =

{
u1(nT ) nT ≤ t < nT+T

2

u2(nT ) nT+T
2
≤ t < nT+T

Controller 2:

ũm(nT ) = ũm((n− 1)T ) +Kw̃(nT ) (25)

w̃(nT ) =
1

2
ẽ(nT ) +

1

4
(ẽ(nT )− ẽ((n− 1)T )) (26)

ũd(t) =

{
K
4
ẽ(nT ) nT ≤ t < nT+T

2

−K
4
ẽ(nT ) nT+T

2
≤ t < nT+T

(27)

ũ(t) = ũm(t) + ũd(t) (28)

It should be noted ũm(t) = ũm([ t
T
]T ) in (28). For simplic-

ity, we will not explicitly point out this conversion between
discrete and continuous time signals each time.

Theorem 4. Controllers 1 and 2 are algebraically equiv-

alent; i.e., if they are given the same input sequences e(nT ) =
ẽ(nT ) for all n ≥ 0, and have the same initial condition

u(0) = ũ(0), then u(t) = ũ(t) for all t ≥ 0.

Proof. For n ≥ 0, let um(nT ) = (u1(nT ) + u2(nT ))/2.
From the definition of Controller 1, we get that

um(nT ) = u2((n− 1)T ) +
3K

4
e(nT ), (29)

Figure 12: Two equivalent controllers.

and, in turn, that

u1(nT ) = um(nT ) +
K

4
e(nT ), (30)

u2(nT ) = um(nT )− K

4
e(nT ). (31)

Comparing (30) and (31) with (27) and (28), it suffices to
establish: um(nT ) = ũm(nT ) for all n ≥ 0. We do this by
showing that um(·) and ũm(·) satisfy the same recursion.

Equations (29) and (31) give

um(nT ) = um((n− 1)T )− K

4
e((n− 1)T ) +

3K

4
e(nT )

= um((n− 1)T ) +Kw(nT ), (32)

where

w(nT ) =
1

2
e(nT ) +

1

4
(e(nT )− e((n− 1)T )). (33)

The recursion defined by (32) and (33) for um(·) in terms
of e(·), is identical to the recursion defined by (25) and (26)
for ũm(·) in terms of ẽ(·). But, by hypothesis, e(nT ) =
ẽ(nT ) for all n ≥ 0 and um(0) = ũm(0), and the proof is
complete.

Theorem 4 states that the AP controller is exactly equiv-
alent to Controller 2. Since the effect of ũd(t) is typically
negligible (see below), we conclude that the AP controller is
essentially equivalent to the top path of Controller 2. But,
this is the same as the PD controller in Fig. 10.

The effect of ũd(t) is negligible if the sampling time T is
small compared to the rise time of the plant.8 Intuitively,
such a plant only reacts to the mean value of the input and
not to the detailed variations of the input within a sam-
pling interval. Since the mean of ũd(t) in a sampling inter-
val is zero, it doesn’t affect the output of the plant. Thus,
the AP and PD controllers are essentially identical, as seen
in Fig. 11.
Remark 4. Extensions of the basic AP scheme are possible
and are amenable to a complete theoretical analysis. These

8This is a fairly standard design criterion in digital control
systems. For example, a simple rule of thumb is that the
sampling time should be smaller than 10 % of the dominant
time constant.



!"#$

!%#$

!&#$

 0.96

 1.20

 1.44

 1.68

 1.92

 2.16

 2.4

 2.64

 2.88

 3.12

 0  5  10  15  20  25  30

T
o
ta
l 
R
at
e 
(G
b
p
s)

Simulation Time

RCP

AP-RCP

AP2-RCP

 0.72

 0.96

 1.2

 1.44

 1.68

 1.92

 2.16

 2.4

 2.64

 2.88

 3.12

 0  5  10  15  20  25  30

T
o
ta
l 
R
at
e 
(G
b
p
s)

Simulation Time

RCP

AP-RCP

AP2-RCP

 0

 0.48

 0.96

 1.44

 1.92

 2.4

 2.88

 0  5  10  15  20  25  30

T
o
ta
l 
R
at
e 
(G
b
p
s)

Simulation Time

AP2-RCP

 0

 0.48

 0.96

 1.44

 1.92

 2.4

 2.88

 0  5  10  15  20  25  30

T
o
ta
l 
R
at
e 
(G
b
p
s)

Simulation Time

AP2-RCP

 0

 0.48

 0.96

 1.44

 1.92

 2.4

 2.88

 0  5  10  15  20  25  30

T
o
ta
l 
R
at
e 
(G
b
p
s)

Simulation Time

AP-RCP

AP2-RCP

 0

 0.48

 0.96

 1.44

 1.92

 2.4

 2.88

 0  5  10  15  20  25  30

T
o
ta
l 
R
at
e 
(G
b
p
s)

Simulation Time

AP-RCP

AP2-RCP

!'#$

!(#$

!)#$

Figure 13: Total sending rate for RCP, AP-RCP
and AP2-RCP with RTT of (a) 110ms (b) 115ms
(c) 240ms (d) 250ms (e) 480ms (f) 490ms.

include: averaging by factors other than 1/2, for example

IC ← (1− α)IC + αIT (for 0 < α < 1),

applying the averaging changes at points other than the mid-
point, applying averaging more than once, etc.
Remark 5. The common tradeoff between stability and
responsiveness exists with the AP as well: an AP-enhanced
control scheme is more stable than the original, but it is also
more sluggish. In practice, various techniques are used to
improve the transient behavior of a system. Typically, these
take the form of a temporary deviation from the normal con-
troller behavior during times of transience. Some examples
of this are BIC-TCP’s Fast Convergence [28] and QCN’s
Timer, Extra Fast Recovery, and Target Rate Reduction [2].

3.2 The AP applied to another congestion con-
trol algorithm: RCP

As mentioned, the AP is a general technique and can be
applied to any control loop. We now apply it to the conges-
tion control scheme RCP [8]. In RCP, each router offers a
rate, R(t), to each flow passing through it. R(t) is updated
every T seconds:

R(t) = R(t− T )(1 +
T

d0
Fb(t)), (34)

where d0 is a moving average of the RTT measured across
all packets, and:

Fb(t) =
α(C − y(t))− β q(t)

d0

C
≈
−αq̇(t)− β q(t)

d0

C
.

!"#$ !%#$

 0

 0.48

 0.96

 1.44

 1.92

 2.4

 2.88

 0  5  10  15  20  25  30

T
o
ta
l 
R
at
e 
(G
b
p
s)

Simulation Time

AP-RCP

PD-RCP

 0

 0.48

 0.96

 1.44

 1.92

 2.4

 2.88

 0  5  10  15  20  25  30

T
o
ta
l 
R
at
e 
(G
b
p
s)

Simulation Time

AP-RCP

PD-RCP

Figure 14: Comparison of AP-RCP and PD-RCP
for (a) RTT = 240ms (b) 250ms.

Here y(t) is the measured input traffic rate during the last
update interval, q(t) is the instantaneous buffer size, C is
the link capacity, and α and β are non-negative constants.
We refer the reader to [8] for details of RCP.

As seen in (34), RCP automatically adjusts the loop gain,
d0, based on the average RTT in the control loop. This
automatic gain adjustment stabilizes RCP as RTT varies.
To demonstrate the effect of the AP on RCP’s stability, we
disable the automatic gain adjustment of RCP; i.e., we con-
sider the case where d0 is held constant at the router while
the actual RTT increases.9

In what follows, we compare RCP with two AP-enhanced
versions of the algorithm: AP-RCP and AP2-RCP. AP-RCP
is just the application of the basic form of AP to RCP. AP2-
TCP makes two averaging changes within each update in-
terval: at T/3 and 2T/3 after the start of interval.
Stability. Using ns2 [22], we simulate RCP controlling 10
long-lived flows passing through a 2.4Gbps link. The RCP
parameters are set to α = 0.1, β = 1, the sampling period
T = 50ms, and d0 is fixed at 20ms.

The RTT is varied and the results are shown in Fig. 13.
When the RTT is smaller than 110ms, both RCP and its
AP modifications are stable. RCP becomes unstable when
the RTT increases to 115ms, but AP-RCP and AP2-RCP
both continue to be stable for RTTs up to 240ms. AP-
RCP becomes unstable at an RTT of 250ms, but AP2-RCP
remains stable even when the RTT equals 480 ms.
PD Equivalence to AP. We now apply a PD controller
to RCP (PD-RCP), and compare it with AP-RCP. The rate
update equation for PD-RCP is given by:

R(t) = R(t−T )
(
1 +

T

d0

(
1

2
Fb(t) +

1

4
(Fb(t)− Fb(t− T ))

))
.

Fig. 14 shows that AP-RCP and PD-RCP are both closely
matched: both are stable at RTT = 240ms, unstable at
RTT = 250ms, and exhibit very similar queue/rate oscilla-
tions.

4. BUFFER SIZING
The performance of congestion control algorithms cru-

cially depends on the size of buffers at switches: if the
buffers are small relative to the bandwidth–delay product
of the flows they support, buffer occupancies will oscillate
and can cause under-utilization of links. The TCP buffer

9It must be noted that this is only intended as a demon-
stration of how the AP can improve stability without gain
adjustments; we are not suggesting a change to the RCP
algorithm.



Figure 15: TCP vs. QCN utilization and queue occupancy as RTT increases. Switch buffer is 100 packets
deep.

sizing “rule of thumb” states that a single TCP flow requires
a bandwidth-delay product (C × RTT ) amount of buffer-
ing to fully utilize a link of capacity C [26]. For example,
a 10Gbps network with a 500µs round-trip time (RTT) ne-
cessitates that switches have 625 Kbytes of buffering per
priority per port.
On the other hand, the amount of buffering that can be

provided in a data center switch is limited by cost (at 10Gbps
line rates the low access time allowed per packet necessitate
that expensive SRAMs be used to build switch buffers) and
latency (having shallow buffers bounds the worst-case la-
tency of a packet through a switch and, hence, end-to-end).
Moreover, since these buffers are usually placed on-chip (to
ensure low-latency), they will consume a large die area and
dissipate a lot of heat. Thus, data center Ethernet switches
typically have small buffers, usually around 2-10MB for 24-
48 ports.
The above discussion illustrates there can be a mismatch

in data centers between the amount of buffering that is
needed and that which can be provided, and this is only
likely to worsen as link speeds increase. (The Ethernet in-
dustry road map calls for the deployment of 40Gbps switched
Ethernet in the near future.)
One way the buffering requirement at a switch can be

smaller is if several flows are simultaneously traversing it:
The paper by Appenzeller et. al. [4] shows that when N
flows share the link, the required buffer size for TCP goes
down by a factor of

√
N (C×RTT/

√
N). Essentially, as [4]

explains, the variance of the total flow arrival rate is reduced
due to statistical multiplexing, and this leads to a reduc-
tion in the required queue size. More precisely, if N flows
are multiplexed, the variance of their aggregate sending rate
equals

V ar(
N∑

i=1

Ri) =
V ar(R̃)√

N
,

where V ar(R̃) is the variance in the sending rate when only
1 flow traverses the link. Note that the mean value of each
Ri is C/N , but the mean value of R̃ equals C.
However, the number of simultaneously active flows at a

link in a data center network is very small, typically fewer
than 10. Indeed, great pains are taken to ensure that flows
are load balanced onto multiple paths so that they may fully
utilize network bandwidth [16, 1, 12]. Therefore, it is hard

to obtain the benefit of statistical multiplexing in the data
center environment and it appears that large buffers will be
required.

Perhaps not. The amount of buffering a single source
needs to occupy the link is dependent on the variance of
the sending rate which, in turn, depends on the congestion
control algorithm. Table 1 shows that over a 10Gbps link
the standard deviation in the sending rate of a QCN source
is significantly smaller than that of a TCP source as the
RTT increases. QCN reduces the variance of the sending
rate in two ways: (i) using a multi-bit feedback allows QCN
sources to cut their sending rates by factors smaller than
1/2 (as small as 1/128), and (ii) employing the AP reduces
the sending rate variance via averaging changes. Note that
BIC-TCP also derives the benefit of (ii) (see also [6]), but
is constrained to cut window sizes by a constant factor of
0.125 during congestion. So its variance, while smaller than
TCP’s, will be larger than QCN’s.

Fig. 15 compares the throughput and queue occupancy of
a TCP and a QCN flow traversing a 10Gbps link. The buffer
size at the bottleneck switch is 150KBytes, which exactly
equals the BDP for an RTT of 120µs. Hence, as seen in
part (a), both algorithms fully utilize the link. At higher
RTTs (250µs in part (b) and 500µs in part (c)), large queue
oscillations cause TCP to lose throughput, whereas QCN
remains stable.

Table 1: Standard deviation of sending rate

RTT 120µs 250µs 500 µs

TCP 265 Mbps 783 Mbps 1250 Mbps

QCN 14 Mbps 33 Mbps 95 Mbps

5. CONCLUSION
Data center networks present new opportunities and chal-

lenges for developing new networking technology. In this
paper we studied one such technology: the L2 congestion
control algorithm, QCN, developed for the IEEE 802.1Qau
standard. We described the salient features of QCN and de-
veloped a high-fidelity fluid model corresponding to it. We
determined the stability margins of the QCN algorithm us-
ing a linearization of the fluid model. We articulated the
Averaging Principle (AP), and showed that it is the under-
lying reason for QCN’s good stability properties. The AP



applies to general control systems, not just congestion con-
trol systems. This aspect is worth pursuing further. The
AP controller was analyzed from a control-theoretic point-
of-view and found to be equivalent to a PD controller in a
strong algebraic sense. Finally, we showed that QCN’s use
of the AP and of a multi-bit feedback signal allows it to use
much smaller buffers when compared to TCP.

Acknowledgments

Mohammad Alizadeh is supported by a Caroline and Fabian
Pease Stanford Graduate Fellowship. We thank our shep-
herd Yuliy Baryshnikov and the anonymous reviewers whose
comments helped us improve the paper.

6. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,

commodity data center network architecture. In
SIGCOMM ’08: Proceedings of the ACM SIGCOMM 2008
conference on Data communication, pages 63–74, New
York, NY, USA, 2008. ACM.

[2] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha,
R. Pan, B. Prabhakar, and M. Seaman. Data center
transport mechanisms: Congestion control theory and
IEEE standardization. In Allerton, 2008.

[3] Amazon Web Services. http://aws.amazon.com.

[4] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router
buffers. SIGCOMM Comput. Commun. Rev.,
34(4):281–292, 2004.

[5] S. Athuraliya, S. Low, V. Li, and Q. Yin. REM: active
queue management. Network, IEEE, 15(3):48 –53, May
2001.

[6] H. Cai, D. Y. Eun, S. Ha, I. Rhee, and L. Xu. Stochastic
Ordering for Internet Congestion Control and its
Applications. In INFOCOM, May 2007.

[7] Data Center Bridging Task Group.
http://www.ieee802.org/1/pages/dcbridges.html.

[8] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and
N. McKeown. Processor sharing flows in the internet. In
IWQoS, pages 271–285, 2005.

[9] Fiber Channel standard.
http://www.t11.org/ftp/t11/pub/fc/bb-5/09-056v5.pdf.

[10] S. Floyd. HighSpeed TCP for Large Congestion Windows,
2003.

[11] G. F. Franklin, D. J. Powell, and A. Emami-Naeini.
Feedback Control of Dynamic Systems. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2001.

[12] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta.
VL2: a scalable and flexible data center network. In
SIGCOMM ’09: Proceedings of the ACM SIGCOMM 2009
conference on Data communication, pages 51–62, New
York, NY, USA, 2009. ACM.

[13] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly
high-speed TCP variant. SIGOPS Oper. Syst. Rev.,
42(5):64–74, 2008.

[14] B. Hayes. Cloud computing. Commun. ACM, 51(7):9–11,
2008.

[15] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong. On
designing improved controllers for AQM routers supporting
TCP flows. In INFOCOM 2001, volume 3, pages 1726
–1734 vol.3, 2001.

[16] C. Hopps. Analysis of an Equal-Cost Multi-Path
Algorithm, 2000.

[17] QCN pseudo code.
http://www.ieee802.org/1/files/public/docs2008/
au-rong-qcn-serial-hai-pseudo-code\%20rev2.0.pdf.

[18] D. Katabi, M. Handley, and C. Rohrs. Congestion control
for high bandwidth-delay product networks. In SIGCOMM
’02: Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer

communications, pages 89–102, New York, NY, USA, 2002.
ACM.

[19] T. Kelly. Scalable TCP: improving performance in
highspeed wide area networks. SIGCOMM Comput.
Commun. Rev., 33(2):83–91, 2003.

[20] S. H. Low, F. Paganini, J. Wang, S. Adlakha, and J. C.
Doyle. Dynamics of TCP/RED and a Scalable Control. In
IN PROCEEDINGS OF IEEE INFOCOM 2002, pages
239–248, 2002.

[21] Microsoft Corporation. An Overview of Windows Azure.
http://www.microsoft.com/downloads/en/details.
aspx?displaylang=en&FamilyID=96d08ded-bbb9-450b-
b180-b9d1f04c3b7f.

[22] The Network Simulator NS-2.
http://www.isi.edu/nsnam/ns/.

[23] IEEE 802.1Qau.
http://www.ieee802.org/1/pages/802.1au.html.

[24] IEEE 802.1Qbb.
http://www.ieee802.org/1/pages/802.1bb.html.

[25] R. Srikant. The Mathematics of Internet Congestion
Control (Systems and Control: Foundations and
Applications). SpringerVerlag, 2004.

[26] C. Villamizar and C. Song. High performance TCP in
ANSNET. SIGCOMM Comput. Commun. Rev.,
24(5):45–60, 1994.

[27] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. FAST TCP:
motivation, architecture, algorithms, performance.
IEEE/ACM Trans. Netw., 14(6):1246–1259, 2006.

[28] L. Xu, K. Harfoush, and I. Rhee. Binary Increase
Congestion Control (BIC) for Fast Long-Distance
Networks. In INFOCOM, 2004.

APPENDIX

A. CHARACTERISTIC EQUATION OF LIN-

EARIZED QCN FLUID MODEL
Taking the Laplace transform of (11)–(13), we have:

sRC(s)− δRC(0) = −a1RC(s) + a2RT (s)

− e−sτ (a3RC(s) + a4Q(s)) ,

sRT (s)− δRT (0) = bRC(s)− bRT (s),

sQ(s)− δQ0 = NRC(s).

Solving for Q(s) and RT (s) in terms of RC(s) and plugging
into the first equation, we have:

(
s+ a1−

a2b

s+ b
+ e−sτ (a3 +

Na4

s
)
)
RC(s)

= δRC(0) +
a2δRT (0)

s+ b
− e−sτ a4δQ0

s
.

Multiplying both sides by s(s+ b), we see that the poles of
the system are the given by the roots of:

s2 + βs+ α+ e−sτa3(s+ b)(s+ γ) = 0,

where β = b + a1, and α = b(a1 − a2), and γ = Na4/a3 =
Cp/w, which can equivalently be written as (14), (15).

B. STABILITY ANALYSIS OF THE QCN-

AIMD FLUID MODEL
Recall the QCN-AIMD fluid model given by (20) and (6)–

(8). We linearize the system around it unique fixed point:

R̂C =
C

N
, Q̂ = Qeq +

η(ps)NRAI

psGdC
.



This leads to the following linear time-delay system:

dδRC

dt
= −âδRC(t)− a3δRC(t− τ)− a4δQ(t− τ), (35)

dδQ

dt
= NδRC(t). (36)

The constants a3 = GdwR̂C , a4 = psGdR̂C

2
, are the same as

in the QCN linear model, and â = η(ps)RAI . After taking
the Laplace transform and rearranging, the characteristic
equation of (35)–(36) is found to be:

1 + Ĝ(s) = 0,

where

Ĝ(s) = e−sτ a3(s+ γ)

s(s+ â)
.

To prove Theorem 2, we proceed by applying the Bode
stability criterion to Ĝ(s). Let Ĝ(jω) = r̂(ω) exp(−jθ̂(ω)).
The 0-dB crossover frequency is found by solving the equa-
tion:

r̂(ω) =
a3

√
ω2 + γ2

ω
√
ω2 + â2

= 1.

After squaring both sides, we have a quadratic equation in
ω2 which is easily solved, and we find that ω̂, given by (22), is

the 0-dB crossover frequency. Therefore, we require θ̂(ω̂) <
π for the system to be stable. But:

θ̂(ω) =
π

2
+ ωτ + arctan(

ω

â
)− arctan(

ω

γ
),

= π + ωτ − arctan(
â

ω
)− arctan(

ω

γ
).

Therefore, θ̂(ω̂) < π is equivalent to τ < τ̂ , completing the
proof.

C. PROOF OF THEOREM 3
To prove τ∗ > τ , we need to show:

ω̂

(
arctan(

ω∗

b
)− arctan(

ω∗

β
) + arctan(

ω∗

γ
)

)

> ω∗

(
arctan(

ω̂

γ
) + arctan(

â

ω̂
)

)
, (37)

where ω∗ and ω̂ are given by (17) and (22) respectively. We
begin with two simple Lemmas.

Lemma 1. If (23) and (24) are satisfied, then:

max

(
â

γ
,
2âbβ

γa3a1

)
< 0.1, (38)

â

a1
< 0.4, (39)

â2

γa3
< 0.02. (40)

Proof. By direct substitution for â, γ, a3, b, β, and using
a1 > η(ps)C/(2N), it is easy to verify that (38) results from
(23), and (39) results from (24). For (40), note that:

â2

γa3
=

NRAI

C
× η(ps)

2RAI

psGdC
< 0.2× 0.1 = 0.02

Lemma 2. Let ω∗ and ω̂ be given by (17) and (22) re-

spectively. If (23) and (24) are satisfied, then:

1 <
ω∗

ω̂
< 1 + ǫ,

where

ǫ =
3â2

4ω̂2
< 0.015.

Proof. From (22) we have:

ω̂2 =
a2
3 − â2

2
+

√
a2
3

4
+ γ2a2

3 +
â4 − 2â2a2

3

4
,

>
a2
3 − â2

2
+

√
a4
3

4
+ γ2a2

3

√
1− 2â2a2

3

a4
3 + 4γ2a2

3

.

Therefore, using
√
1− x > 1− x for 0 < x < 1, we have:

ω̂2 >
a2
3 − â2

2
+

√
a4
3

4
+ γ2a2

3

(
1− 2â2a2

3

a4
3 + 4γ2a2

3

)
,

=
a2
3

2
+

√
a4
3

4
+ γ2a2

3 −
â2a2

3√
a4
3 + 4γ2a2

3

− â2

2
,

> ω∗2 − 3â2

2
.

Therefore, using
√
1 + x < 1 + x/2:

ω∗

ω̂
<

√
1 +

3â2

2ω̂2
< 1 +

3â2

4ω̂2
.

Let ǫ , 3â2/(4ω̂2). Since ω̂2 > γa3, using (40), we have
ǫ < 0.015.

We are now ready to prove (37). Using Lemma (2), it is
enough to show:

arctan(
ω∗

b
)− arctan(

ω∗

β
) + arctan(

ω∗

γ
)

> (1 + ǫ)

(
arctan(

ω̂

γ
) + arctan(

â

ω̂
)

)
,

and since ω∗ > ω̂, it is enough to show:

arctan(
ω∗

b
)− arctan(

ω∗

β
) > ǫ arctan(

ω̂

γ
) + (1 + ǫ) arctan(

â

ω̂
).

However, using arctan(x) ≤ x for x ≥ 0 and (38):

ǫ arctan(
ω̂

γ
) <

â2

ω̂2

(
ω̂

γ

)
< 0.1

(
â

ω̂

)
< 0.2 arctan(

â

ω̂
),

where the last inequality uses the fact: x ≤ 2 arctan(x) for
0 ≤ x ≤ 1. Therefore, it is enough to show:

arctan(
ω∗

b
)− arctan(

ω∗

β
) > 2 arctan(

â

ω̂
).

After applying tan(·) to both sides of this inequality and
simplifying using ω∗ > ω, we are left with:

a1ω̂
2 − 2âω∗2 > a1â

2 + 2âbβ,

which can be further simplified using ω∗ < (1 + ǫ)ω̂, and
ω̂ > γa3 to arrive at:

1 >
â2

γa3
+

2âbβ

γa3a1
+

2â

a1
(1 + ǫ)2.

This inequality holds because of (38)–(40) and ǫ < 0.015.


