
Cliffhanger: Scaling Performance Cliffs in Web
Memory Caches

Asaf Cidon1, Assaf Eisenman1, Mohammad Alizadeh2, and Sachin Katti1

1Stanford University
2MIT CSAIL

ABSTRACT
Web-scale applications are heavily reliant on memory
cache systems such as Memcached to improve through-
put and reduce user latency. Small performance improve-
ments in these systems can result in large end-to-end
gains. For example, a marginal increase in hit rate of
1% can reduce the application layer latency by over 35%.
However, existing web cache resource allocation policies
are workload oblivious and first-come-first-serve. By an-
alyzing measurements from a widely used caching ser-
vice, Memcachier, we demonstrate that existing cache
allocation techniques leave significant room for improve-
ment. We develop Cliffhanger, a lightweight iterative
algorithm that runs on memory cache servers, which
incrementally optimizes the resource allocations across
and within applications based on dynamically changing
workloads. It has been shown that cache allocation algo-
rithms underperform when there are performance cliffs,
in which minor changes in cache allocation cause large
changes in the hit rate. We design a novel technique
for dealing with performance cliffs incrementally and
locally. We demonstrate that for the Memcachier ap-
plications, on average, Cliffhanger increases the overall
hit rate 1.2%, reduces the total number of cache misses
by 36.7% and achieves the same hit rate with 45% less
memory capacity.

1. INTRODUCTION
Memory caches like Memcached [13], Redis [4] and

Tao [8] have become a vital component of cloud infras-
tructure. Major web service providers such as Facebook,
Twitter, Pinterest and Airbnb have large deployments
of Memcached, while smaller providers utilize caching-
as-a-service solutions like Amazon ElastiCache [1] and
Memcachier [3]. These applications rely heavily on
caching to reduce web request latency, reduce load on
backend databases and lower operating costs.

Even modest improvements to the cache hit rate im-
pact performance in web applications, because reading
from a disk or Flash-based database (like MySQL) is

much slower than a memory cache. For instance, the hit
rate of one of Facebook’s Memcached pools is 98.2% [5].
Assuming the average read latency from the cache and
MySQL is 200µs and 10ms, respectively, increasing the
hit rate by just 1% would reduce the read latency by over
35% (from 376µs at 98.2% hit rate to 278µs at 99.2%
hit rate). The end-to-end speedup is even greater for user
queries, which often wait on hundreds of reads [26].

Web caching systems are generally simple: they have
a key-value API, and are essentially an in-memory hash-
table spread across multiple servers. The servers do not
have any centralized control and coordination. In partic-
ular, memory caches are oblivious to application request
patterns and requirements. Memory allocation across
slab classes1 and across different applications sharing a
cache server is based on fixed policies like first-come-
first-serve or static reservations. The eviction policy,
Least-Recently-Used (LRU), is also fixed.

By analyzing a week-long trace of a popular caching
service, Memcachier, we show that existing first-come-
first-serve cache allocation techniques can be greatly im-
proved by applying workload aware resource policies.
We show that for certain applications, the number of
misses can be reduced by 99%.

We propose Cliffhanger, a lightweight iterative algo-
rithm that runs on memory cache servers. Cliffhanger
runs across multiple eviction queues. For each eviction
queue, it determines the gradient of the hit rate curve at
the current working point of the queue. It then incremen-
tally allocates memory to the queues that would benefit
the most from increased memory, and removes memory
from the queues that would benefit the least.

Cliffhanger determines the hit rate curve gradient of
each queue by leveraging shadow queues. Shadow
queues are an extension of the eviction queue that only
contain the keys of the requests, without the values. We
show that the rate of hits in the shadow queue approxi-

1To avoid memory fragmentation, Memcached divides its
memory into several slabs. Each slab stores items with size
in a specific range (e.g., < 128B, 128-256B, etc.) [2]

1

mates the hit rate curve gradient. Cliffhanger differs from
previous cache allocation schemes in that it does not re-
quire an estimation of the entire hit rate curves, which
is expensive to estimate accurately. We also prove that
although Cliffhanger is incremental and relies only on
local knowledge of the hit rate curve, it performs as well
as a system has knowledge of the entire hit rate curve.

Prior work has shown that existing cache allocation
algorithms underperform when there are performance
cliffs [6, 29, 35]. Performance cliffs occur when a small
increase in memory creates an unexpectedly large change
in hit rate. In other words, performance cliffs are re-
gions in the hit rate curve where increasing the amount
of memory for the queue accelerates the increase in hit
rate. Memcachier’s traces demonstrate that performance
cliffs are common in web applications.

We propose a novel technique that deals with perfor-
mance cliffs without having to estimate the entire hit rate
curve. The technique utilizes a pair of small shadow
queues, which allow Cliffhanger to locally search for
where the performance cliff begins and ends. With this
knowledge, Cliffhanger can overcome the performance
cliff and increase the hit rate of the queue, by splitting
the eviction queue into two and dividing the traffic across
the two smaller queues [6]. We demonstrate that this al-
gorithm removes performance cliffs in real time.

Cliffhanger runs on each memory cache server and it-
eratively allocates memory to different queues and re-
moves performance cliffs in parallel. We show that the
performance increase resulting from both algorithms is
cumulative. Cliffhanger supports any eviction policy, in-
cluding LRU, LFU or hybrid policies such as ARC [25].

We have built a prototype implementation of
Cliffhanger in C for Memcached. We demonstrate that
Cliffhanger can achieve the same hit rate as Mem-
cached’s default cache allocation using on average only
55% of the memory. Our micro-benchmark evalua-
tion based on measurements at Facebook [5] shows that
Cliffhanger incurs a negligible overhead in terms of la-
tency and throughput. Since Cliffhanger uses fixed-sized
shadow queues, its memory overhead is minimal: less
than 500KB for each application. Applications typically
use 50MB or more on each server.

2. BACKGROUND
Multi-tenant web caches need to allocate memory

across multiple applications and across requests within
applications. Typically individual applications are stati-
cally assigned a fixed amount of memory across multiple
servers. Within each application, each request occupies
a position in the queue based on its order. To avoid mem-
ory fragmentation, Memcached divides its memory into
several slabs. Each slab stores items with size in a spe-
cific range (e.g., < 128B, 128-256B, etc.) [2]. Each slab

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Number of Items in LRU Queue

H
it
ra

te

Application 3, Slab Class 9

Figure 1: Hit rate curve for Application 3, Slab Class 9.

has its own LRU queue. Once the memory cache is full,
when a new request arrives, Memcached evicts the last
item from its corresponding slab’s LRU queue.

There are several problems with this first-come-first-
serve approach. First, slab memory is divided greedily,
without taking into account the slab sizes. Therefore,
in many applications, the large requests will take up too
much space at the expense of smaller requests. Second,
when applications change their request distribution, cer-
tain slab classes may not have enough memory and their
queues will be too short. Some Memcached implemen-
tations have tried to solve the second problem by peri-
odically evicting a page of a slab class, and reassigning
it to the corresponding slab class of new incoming re-
quests [26, 30]. However, even these improved slab class
allocation may suffer from sub-optimal slab class allo-
cation, and they still treat large and small items equally.
Third, if one slab class suffers from a very high rate of
compulsory misses (i.e., many items never get accessed
more than once), the web cache operator may prefer to
shift its resources to a different slab class that can achieve
a higher hit rate with the same amount of memory.

These problem are not specific to slab-based memory
allocation like Memcached. They also occur in systems
like RAMCloud [28, 31] that assign memory contigu-
ously in a log (i.e., in a global LRU queue). Regardless
of the memory allocation approach, memory is assigned
to requests greedily: when new requests reach the cache
server they are allocated memory on a first-come-first-
serve basis, without consideration for the request size or
the requirements of the requesting application.

2.1 The Cache Allocation Problem
As a motivating example, we describe how to optimize

resource allocation across slab classes for a single appli-
cation in Memcached, where the goal is to maximize the
overall hit rate. The same technique can also be applied
to prioritize items of different sizes in a log-structured
cache and to optimize memory across applications. The
problem can be expressed as an optimization:

2

maximize
m

s∑
i=1

wifihi(mi)

subject to
s∑

i=1

mi ≤M
(1)

Where s is the number of slab classes, fi is the fre-
quency of GETs for each slab class, hi(mi) is the hit
rate of each slab class as a function of the its available
memory (mi), and M is the amount of memory reserved
by the application on the Memcached server. In case
different queues have different priorities, we can assign
weights (wi) to the different queues. For simplicity’s
sake, throughout the paper we assume that the weights
of all queues are always equal to 1.

To accurately solve this optimization problem, we
need to compute hi(mi), or the hit rate curve for each
slab class. Stack distances [24] enable the computation
of the hit rate curve beyond the allocated memory size.
The stack distance of a requested item is its rank in the
cache, counted from the top of the eviction queue. For
example, if the requested item is at the top of the evic-
tion queue, its stack distance is equal to 1. If an item has
never been requested before, its stack distance would be
infinite. Figure 1 depicts the stack distances for a par-
ticular slab class in Memcachier, where the X axis is the
size of the LRU queue required to achieve a certain hit
rate. In Dynacache [10] we demonstrated how to solve
Equation 1 by estimating stack distances and using a sim-
ple convex solver. Equation 1 can be extended to maxi-
mize the hit rate across applications, or to assign different
weights to different request sizes and applications.

Estimating stack distances for each application and
running a convex solver is expensive and complex. Com-
puting the stack distances directly is O(N), where N
is the number of requests. Instead, we estimated the
stack distances using the bucket algorithm presented in

Mimir [32]. This technique is O(
N

B
), where B is the

number of buckets (we used 100 buckets). However, this
technique is not accurate when estimating stack distance
curves with tens of thousands of items or more. In addi-
tion, since application workloads change over time, the
solver would need to run frequently, typically on a differ-
ent node than the cache server. Furthermore, each server
would need to keep track of the stack distances of multi-
ple applications. This introduces significant complexity
to the simple design of web caches like Memcached.

3. TRACE ANALYSIS
In this section, we analyze the performance of Mem-

cached’s default resource allocation. We show that there
is great potential to improve the hit rate of Memcached
by optimizing memory across different request sizes

App Slab
Class

% GETs Original
% Misses

Dynacache
% Misses

4 0 9% 0% 7.4%
4 1 91% 100% 92.6%

6 0 1% 0.1% 2%
6 2 70% 92.6% 0%
6 5 29% 0.1% 0.2%

Table 1: Misses in two applications compared by slab class. Applica-
tion 4’s misses were reduced by 6.3% and Application 6’s were reduced
by 91.7%.

within each application. We then investigate and char-
acterize performance cliffs.

Our analysis is based on a week-long trace of the
top 20 applications (sorted by number of requests) run-
ning for a week on a server in Memcachier, a multi-
tenant Memcached service. In Memcachier, each appli-
cation reserves a certain amount of memory in advance,
which is uniformly allocated across multiple Memcached
servers comprising the Memcachier cache.

3.1 Resource Allocation in Memcachier
Figure 2 shows the hit rates and the number of misses

that are reduced in Memcachier if we replace the default
policy with the cache allocation using the Dynacache
solver presented in Equation 1. We ran the solver on the
week-long stack distances of each slab class. The results
show that some applications benefit from a optimizing
their memory across slab classes, and some do not. For
example, the hit rate of Application 18 and 19 with full
memory allocation is lower with the solver than the de-
fault algorithm. On the other hand, for some applications
like Application 6, 14, 16 and 17, the number of misses
is reduced by over 65%.

The solver’s allocation is not optimal. This is due to
several reasons. First, it assumes that all the hit rate
curves are concave. We will explore this assumption
later in the paper. Note that in Figure 2, the applica-
tions marked with asterisks are those that are not con-
cave. Second, it requires that there be enough stack dis-
tance data points to accurately estimate the hit rate curve.
If the requests for a slab class are too sparse, it will not
be able to estimate its hit rate curve. Third, we ran the
solver based on the trace of the entire week. If during
that period the hit rate curves fluctuated considerably, the
solver will not provide the ideal amount of memory for
each slab class at any point in time. Due to these rea-
sons, as we will show later, a heuristic dynamic cache
allocation scheme can beat the solver.

3.2 Variance in Request Sizes
Table 1 demonstrates that the default scheme may as-

sign too much memory to large slab classes, as evident

3

1* 2 3 4 5 6 7* 8 9 10* 11* 12 13 14 15 16 17 18* 19* 20

Memcachier Application

H
it

R
at

e
(%

)

Default Dynacache Solver

1* 2 3 4 5 6 7* 8 9 10* 11* 12 13 14 15 16 17 18* 19* 20

0

0.5

1

Memcachier Application

M
is

s
R

ed
uc

tio
n

(%
)

Misses Reduced by Dynacache Solver

Figure 2: Hit rates and the number of misses reduced in Memcachier trace. Application 18 and 19’s misses were increased by 13.6 and 51.5 times
respectively. The applications that have an asterisk have performance cliffs.

Application Original
Hitrate

Log-
structured
Hitrate

Dynacache
Solver Hitrate

3 97.7% 99.5% 98.8%
4 97.4% 97.8% 97.6%
5 98.4% 98.6% 99.4%

Table 2: Hit rates under log-structured memory and Dynacache solver.

in the case of applications 4 and 6. In application 6 this
problem is much more severe, which is why the number
of misses were reduced much more significantly by the
Dynacache solver. The applications in the trace that did
not see a significant hit rate improvement did not have
much variance in terms of request size or were over-
allocated memory.

The greedy nature of first-come-first-serve is not spe-
cific to Memcached’s slab allocation scheme, it also
occurs in contiguous Log Structured Memory (LSM).
LSM [31] stores memory in a continuous log, rather than
splitting it into slab classes, and it requires a log cleaner
to run continuously to clear out stale items from the log
and compact it. In memory caches, the benefit of LSM
compared to slab classes would be the ability to run a

global LRU queue, rather than having an LRU queue per
slab class. To demonstrate this, we ran applications in
three modes: with the default allocation of Memcached,
the Dynacache solver allocation, and with a global LRU
queue that simulates LSM. The global LRU simulates
LSM with 100% memory utilization (such a scheme does
not exist in practice). The results are displayed in Ta-
ble 2. The results show that while LSM outperforms the
Memcached slab allocator, in the case of application 5,
even LSM running at 100% memory utilization may not
perform as well as the optimized hit rate running on slab
classes. The reason is that even in a global LRU queue
large items may take space at the expense of small items.

3.3 Cross-application Performance
The Dynacache solver can be applied across appli-

cations running on the same memory cache server. To
demonstrate the potential benefits of cross-application
memory optimization, we applied the Dynacache solver
to the top 5 applications in the trace. The results are dis-
played in Table 3. Note that in this example, we assigned
each application the same weight. System operators can
also assign different applications different weights in the
optimization, for example, if certain applications belong

4

App Original
Memory
Allocation
%

Dynacache
Solver
Memory
Allocation
%

Original
Hitrate

Dynacache
Solver Hi-
trate

1 81% 69% 67.7% 67%
2 4% 13% 27.5% 38.6%
3 1% 1% 97.6% 97.6%
4 6% 8% 97.6% 98.1%
5 8% 9% 98.4% 98.5%

Table 3: Hit rates of the top 5 applications in the trace after we optimize
their memory to maximize overall hit rate.

to production systems and others do not.

3.4 Climbing Concave Hills
In order to solve Equation 1 we relied on estimating

the entire hit rate curve. This requires a large number of
stack distance data points and does not adapt to chang-
ing workloads. Instead, the same problem can be solved
incrementally. If the gradient of each hit rate curve is
known, we can incrementally add memory to the queue
with the highest gradient (the one with the steepest hit
rate curve), and remove memory from the queue with
the lowest gradient. This process can be continued until
shifting resources from one curve to the other will not
result in overall hit rate improvement. This approach is
called hill climbing.

The potential benefits of local hill climbing are that it
can be conducted locally on each web-cache server, and
that the algorithm is responsive to workload changes. If
the hit rate curves change over time, the hill climbing
algorithm incrementally responds. This leads us to ask:
how can we measure the hit rate curve gradient locally
without estimating the entire hit rate curve?

Our main insight is that the local hit rate curve can be
measured using shadow queues. A shadow queue is an
extension of an eviction queue that does not store the val-
ues of the items, only the keys. Items are evicted from the
eviction queue into the shadow queue. For example, with
an eviction queue of 1000 objects and a shadow queue of
1000 objects, when a request misses the eviction queue
but hits the shadow queue, it means that if the eviction
queue was allocated space for another 1000 objects, the
request would have been a hit. The rate of hits in the
shadow queue provides an approximation of the queue’s
local hit rate gradient.

3.5 Performance Cliffs
Hill climbing works well as long as the hit rate curves

behave concavely and do not experience performance
cliffs. This is true for some, but not for many web ap-
plications. Performance cliffs occur frequently in web
applications: 6 out of the 20 top applications in our traces

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Items in LRU Queue

H
it
ra

te

Application 11, Slab Class 6

Figure 3: Examples of performance cliff in Memcachier traces.

have performance cliffs. The applications in Figure 2 that
have an asterisk are the ones with performance cliffs.

Figure 3 depicts the hit rate curve of a queue from the
trace. Performance cliffs are thresholds where the hit rate
suddenly changes as data fits in the cache. Cliffs occur,
for example, with sequential accesses under LRU. Con-
sider a web application that sequentially scans a 10 MB
database. With less than 10 MB of cache, LRU will al-
ways evict items before they hit. However, with 10 MB
of cache, the array suddenly fits and every access will be
a hit. Therefore, increasing the cache size from 9 MB
to 10 MB will increase the hit rate from 0% to 100%.
Performance cliffs may hurt the hill climbing algorithm,
because the algorithm will underestimate the gradient be-
fore a cliff, since it does not have knowledge of the en-
tire hit rate curve. In the example of the queue in Fig-
ure 3, the algorithm can get stuck when the LRU queue
has 10000 items.

Performance cliffs do not just hurt local-search based
algorithms like hill climbing. They cause even bigger
problems for solving optimization problems like the one
described in Equation 1, since solvers assume that the hit
rate curves do not have performance cliffs. For exam-
ple, in application 19, due to the performance cliff, the
solver approximates the hit rate curve to be lower than
it is. This is why it fails to find the correct allocation
for application 19, and significantly reduces its hit rate
from 99.5% to 74.7%. In fact, optimal allocation is NP-
complete without concave hit rate curves [6, 29, 35].

Resource allocation algorithms like Talus [6] and
LookAhead [29] provide techniques to overcome perfor-
mance cliffs for a single hit rate curve, but they require
estimating the entire hit rate curve with stack distances.
Since estimating stack distances introduces significant
complexity and cost to web based storage systems, this
leads us to ask: how can we overcome performance cliffs
without estimating the entire hit rate curve?

4. DESIGN
In this section, we present the design of Cliffhanger, a

hill-climbing resource allocation algorithm that runs on

5

Algorithm 1 Hill Climbing Algorithm
1: if request ∈ shadowQueue(i) then
2: queue(i).size = queue(i).size + credit
3: chosenQueue = pickRandom({queues} - {queue(i)})
4: chosenQueue.size = chosenQueue.size - credit
5: end if

each memory cache server and can scale performance
cliffs. First, we describe the design of the hill climb-
ing algorithm and show that it approximates the solution
to the memory optimization problem. Second, we show
how to overcome performance cliffs. Finally, we show
how Cliffhanger climbs concave hit rate curves while
navigating performance cliffs in parallel.

4.1 Hill Climbing Using Shadow Queues
The key mechanism we leverage to design our hill-

climbing algorithm is shadow queues. Algorithm 1 de-
picts the hill-climbing algorithm, where request is a new
request coming into the cache server, ShadowQueue(i)
is the shadow queue of a particular queue (it can be the
queue of a slab or a queue of an entire application),
pickRandom is a function that randomly picks one of
the queues out the list of queues that we are optimizing.
The algorithm is simple. Queue sizes are initialized so
their capacity sums to the total available memory. When
one of the shadow queues gets a hit, we increase its size
by a constant credit, and randomly pick a different queue
and decrease its size by the same constant credit. Once a
queue reaches a certain amount of credits, it is allocated
additional memory at the expense of another queue.

The intuition behind this algorithm is that the fre-
quency of hits in the shadow queue is a function of the
gradient of the local hit rate curve. In fact, we can
prove that Algorithm 1 approximates the optimization
described in Equation 1. Like before, we use the example
of optimized memory across slab classes.

maximize
m

s∑
i=1

fihi(mi)

subject to
s∑

i=1

mi ≤M

As a reminder, s is the number of slab classes, fi is the
frequency of GETs, hi(mi) is the hit rate as a function
of the slab’s memory, and M is the application’s total
amount of memory. Assume that hi(mi) are increasing
and concave. The Lagrangian for this problem is:

L(m, γ) =
s∑

i=1

fihi(mi)− γ(
s∑

i=1

mi −M)

The optimality condition is:

fih
′
i(mi) = γ for 1 ≤ i ≤ s

s∑
i=1

mi =M
(2)

Therefore, fih′i(mi) is a constant (for any i), at the
optimal solution. We show that with this algorithm,
fih

′
i(mi) is roughly constant in equilibrium for any i.

To see why, consider the rate at which the credits for slab
class i increase with a hit in its shadow queue:

fi(hi(mi + δ)− hi(mi)) · ε ≈ fih′i(mi) · δ · ε

Here δ is the shadow queue size, and ε is the amount
of credits we add to each queue when there is a hit in the
shadow queue. The reason this approximation holds is
that fi(hi(mi + δ) − hi(mi)) is the rate of hits that fall
in the shadow queue. At the same time, the rate of credit
decreases for class i is:

s∑
j=1

fj(hj(mj + δ)− hj(mj)) · ε

s
≈

s∑
j=1

fjh
′
j(mj) · δ · ε

s
The reason this approximation holds is because when

there is a hit in the shadow queue of any slab class j,

we remove credits slab class i with probability
1

s
. In

equilibrium the rate of credit increase and decrease have
to be the same for every slab class. Therefore:

fih
′
i(mi) =

s∑
j=1

fjh
′
j(mj) · δ · ε

s
= γ

Since the right-hand side of the above equation does
not depend on i, in equilibrium the gradients of each
queue (normalized by the number of requests) are equal.
This guarantees optimality (assuming concave hit rate
curves) as shown in Equation 2.

4.2 Scaling Cliffs Using Shadow Queues
The hill climbing algorithm can get stuck in a sub-

optimal allocation if the hit rates exhibit performance
cliffs. We present for incrementally scaling performance
cliffs. Our algorithm is inspired by Talus [6]. Talus in-
troduced a queue partitioning scheme that scales perfor-
mance cliffs, as long as the shape of the hit rate curve
is known. Talus partitions a given queue to two smaller
queues. By carefully choosing the ratio of requests it
assigns to each queue and the size of the queues, Talus
achieves the concave hull of the hit rate curve.

6

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Items in LRU Queue

H
itr

a
te

Concave Hull
Application 19, Slab 0

Shadow	 Queues	
Le-	 Queue	

Shadow	 Queues	
Right	 Queue	 Queue	 Size	

Left	 Physical	 Queue
957	 items

Right	 Physical	 Queue
7043	 items

Simulates	 queue	 of	 2000	 items

Simulates	 queue	 of	 13500	 items
48%	 of	 requests

52%	 of	 requests

Left	 shadow	 queue

Right	 shadow	 queue

Left	 shadow	 queue

Right	 shadow	 queue

Figure 4: Visualization of shadow queues on Application 19, Slab
Class 0.

We demonstrate how Talus works with the hit rate
curve of the smallest slab class of Application 19. Fig-
ure 4 depicts the concave hull of the hit rate curve. Sup-
pose the slab class is currently allocated 8000 items.
Talus allows us to achieve a hit rate that is a linear in-
terpolation between any two points in the hit rate curve,
by simulating two queues of different sizes. For exam-
ple, if we select the points that correspond to 2000 and
13500 items, Talus can trace the linear curve between
these two points on the hit rate curve graph. It does so,
by simulating a queue of size 2000 and a queue of size
13500. The key insight is that since each of the smaller
queues get a fraction of the requests, it causes them to
behave as if they were larger queues. In this example,
if we split an 8000 item queue into a queue of 957 items
and a queue of 7043 items, and split the requests between
the two queues using a ratio of 0.48% and 0.52% respec-
tively, the first queue will simulate a queue of 2000 items
(957 items seeing a ratio of 0.48% of the requests), and
the second queue will be of a simulated size of 13500
items (7043 items with a ratio of 52% of the requests).
By partitioning the requests into these two queues, the
application can achieve the hit rate of the concave hull.
For more information, see Talus [6].

However, in our setting we do not know the entire hit
rate curve. Therefore, to apply the Talus partitioning,
we need to dynamically determine whether the current
operating point is on a performance cliff of the hit rate
curve, or in other words, whether it is in a convex section
of the curve. We also need to find the two points in the
curve that will provide anchors for the concave hull.

The key insight to determining whether a certain
queue is in a convex section of the graph, is to approx-

Par$$oned	

Original	 Queue	

Par$$oned	
Queues	

Track	 le4	 of	 pointer	

Track	 le4	 of	 pointer	

Track	 right	 of	 pointer	
Track	 right	 of	 pointer	

Track	 hill	 climbing	

Track	 hill	 climbing	

Figure 5: Illustration of Cliffhanger implementation. The darkly-
colored sections represent the physical queue, which stores both the
keys and the values of items, and the light sections are shadow queues.

imate its second derivative. If the second derivative is
positive, then the queue is currently in a convex area,
a performance cliff. Similar to the hill-climbing algo-
rithm, which locally approximates the first gradient with
a shadow queue, to approximate the second derivative we
use two shadow queues.

Each queue is split into two: a left and right phys-
ical queue. As long as the second derivative is nega-
tive (the function is concave), the left and right physical
queues are the same size, and each receive half of the re-
quests. Two evenly split queues behave exactly the same
as one longer queue, since the frequency of the requests
is halved for each queue, and the average stack distances
of each request are also halved. Each one of the physi-
cal queues has its own shadow queue. The goal of these
shadow queues is to find the points in the graph where
the convex region ends. In the example of Application
19, these shadow queues are trying to locate points 2000
and 13500. In order to find the convexity region, each
one of these shadow queues is in turn also split in half
(right half and left half). The algorithm tracks whether
each of the shadow queues receive hits in its right half or
left half.
Algorithm 2 describes the cliff scaling algorithm. We

initialize the algorithm by splitting the queue into half: a
left and right physical queue, each with its own shadow
queue, split in turn into two parts (the right and left half).
The algorithm uses two pointers (right and left), which
track the size of the simulated queues. The goal of the
algorithm is to move the left and right pointers to the
place in the hit rate curve where it starts and stops being
convex. We initialize both of these pointers to the current
size of the physical queue.

If the graph is in a convex point, the right pointer needs
to be moved to the right, and the left pointer to the left,
until it stops being convex. If each of the pointers are in a
convex region of the graph, the rate of hits to the right of
the pointer will be greater than to its left. When a request
arrives to the server, we check if it hits the right or left
shadow queue. If it hits the right half of the right shadow
queue, we move the right pointer to the right. If it hits
the left half, we move it to the left. Therefore, if the right
pointer is in a convex region, the right pointer will move
towards the top of the cliff. The left pointer moves in

7

Algorithm 2 Update Pointers
1: function INIT
2: ratio = 1/2
3: rightPointer = leftPointer = queue.size
4: UPDATEPHYSICALQUEUES(ratio)
5: end function
1: function UPDATEPOINTERS(request)
2: if request ∈ rightShadowQueue then
3: if request ∈ rightShadowQueue.rightHalf then
4: rightPointer = rightPointer + credit
5: end if
6: if request ∈ rightShadowQueue.leftHalf AND

rightShadowQueue.size > queue.size then
7: rightPointer = rightPointer - credit
8: end if
9: end if

10: if request ∈ leftShadowQueue then
11: if request ∈ leftShadowQueue.rightHalf then
12: leftPointer = leftPointer - credit
13: end if
14: if request ∈ leftShadowQueue.leftHalf AND

leftShadowQueue.size < queue.size then
15: leftPointer = leftPointer + credit
16: end if
17: ratio = COMPUTERATIO(queue.size,

rightPointer, leftPointer)
18: UPDATEPHYSICALQUEUES(ratio)
19: end if
20: end function

Algorithm 3 Compute Ratios
1: function COMPUTERATIO(queue.size, rightPointer, leftPointer)
2: distanceRight = rightPointer - queue.size
3: distanceLeft = queue.size - leftPointer
4: if distanceRight > 0 AND distanceLeft > 0 then
5: requestRatio = distanceRight /

(distanceRight + distanceLeft)
6: else
7: requestRatio = 0.5
8: end if
9: end function
1: function UPDATEPHYSICALQUEUES(ratio)
2: rightPhysicalQueue.size = rightPointer · (1 - ratio)
3: leftPhysicalQueue.size = leftPointer · ratio
4: end function

the opposite direction. If it gets a hit to the right shadow
queue, it moves left, and vice versa.

After adjusting the left and right pointers, Algorithm 3
updates the ratio of requests going to each physical
queue, and their size. If the ratio is more than 0.5, more
requests will be diverted to the left queue, and if the ratio
is smaller than 0.5, more requests will be diverted to the
right queue. As shown in Talus [6], the ratio is inverse to
the distance of the position of the left and right shadow
queues from the current operating point on the hit rate
graph. In addition, the sizes of the right and left queues
will also be updated based on this ratio. Their sum adds
up to the current operating point (the queue size).

If Algorithm 2 does not see a performance cliff (i.e.,
a fully concave hit rate curve), the right and left point-
ers will not move from their starting points, because

there will be more hits on the left halves of both queues
than the right halves, since the hit rate curve is concave.
Therefore, the physical queue will be split in half and
each half will receive half of the requests, which will re-
sult in the same hit rate of the original queue.

Note that Algorithm 2 can only efficiently scale a sin-
gle cliff. If there are multiple cliffs in the hit rate curve
graph, the algorithm will either scale only one of them, or
the right and left shadow queue positions will scale mul-
tiple cliffs. In any case, even if multiple cliffs are scaled,
the resulting concave hull will be at a higher hit rate than
at the original hit rate curve, since the cliffs are convex.
In the Memcachier traces, we did not find an example of
multiple performance cliffs in any of the hit rate curves.

4.3 Combining the Algorithms
So far, we’ve introduced two algorithms: first, the gra-

dient approximation (hill climbing) algorithm allows us
to iteratively optimize the resource allocation across mul-
tiple queues, and works well as long as they do not have
performance cliffs. Second, the second derivative ap-
proximation (cliff scaling) algorithm allows us to "flat-
ten" performance cliffs to their concave hulls.

Cliffhanger combines both algorithms by utilizing two
shadow queues: a small shadow queue to approximate
the second derivative and detect and mitigate perfor-
mance cliffs, and a longer shadow queue appended to
the shorter shadow queue to approximate the first gra-
dient and perform hill-climbing. When we get a hit in
the larger shadow queue, we assign credits to the entire
slab class. When we get a hit at the end of the physical
queue or in the small shadow queue, we adjust the two
pointers and update the ratio and the split between the
left and right queue. Cliffhanger runs on each memory
cache server and does not require any coordination be-
tween different servers. In addition, it can support any
eviction policy, including LRU, LFU and other hybrid
schemes.

5. EVALUATION
In this section we present the implementation and eval-

uation of Cliffhanger on the Memcachier traces and a set
of micro benchmarks.

5.1 Implementation
We implemented Cliffhanger on Memcached in C. The

shadow queues were implemented on a separate hash and
queue data structures. In order to measure the end-to-end
performance improvement across the Memcachier appli-
cations, we re-ran the Memcachier traces and simulated
the hit rate achieved by Cliffhanger. In order to stress
the implementation, we ran our micro benchmarks on
an Intel Xeon E5-2670 system with 32 GB of RAM and
an SSD drive, using a micro bench mark workload gen-

8

1* 2 3 4 5 6 7* 8 9 10* 11* 12 13 14 15 16 17 18* 19* 20
0

0.2

0.4

0.6

0.8

1

Memcachier Application

H
it

R
at

e
(%

)

Default Dynacache Solver Cliffhanger

Figure 6: Hit rates of top 20 applications in Memcachier trace with Cliffhanger, compared to the Dynacache solver.

1* 2 3 4 5 6 7* 8 9 10* 11* 12 13 14 15 16 17 18* 19* 20
0

0.2

0.4

0.6

0.8

1

M
em

or
y

Sa
vi

ng
s

(%
)

Memcachier Application

M
is

s
R

ed
uc

tio
n

(%
)

Misses Reduced by Cliffhanger Memory Saved by Cliffhanger

Figure 7: Miss reduction and amount of memory that can be saved to achieve the default hit rate of top 20 applications in Memcachier trace with
Cliffhanger.

erated by Mutilate [19], a load generator that simulates
traffic from the 2012 Facebook study [5].

Figure 5 is an illustration of the structure of the queues
in Cliffhanger’s implementation. Each queue is parti-
tioned into two smaller queues (left and right queue).
Each of the smaller queues needs to track whether items
hit to the right or left of the pointers of the cliff scaling
algorithm. In order to determine if an item hit to the left
of the pointer, we do not need an extra shadow queue,
since the section of the hit rate curve that is to the left
of the pointer is already contained in the physical queue.
To this end, our implementation tracks whether it sees
hits in the last part of the queue (the last 128 items). In
order to track hits to the right of the pointer, a 128 item
shadow queue is appended after the physical queue. Fi-
nally, another shadow queue is appended to the end of
each queue, to track hits for the hill climbing algorithm,
since it requires a longer shadow queue.

The implementation only runs the cliff scaling al-
gorithm when the queue is relatively large (over 1000
items), since it needs a large queue with a steep cliff to
be accurate. It always runs the hill climbing algorithm,

including on short queues. When it runs both of the algo-
rithms in parallel, the 1 MB shadow queue used for hill
climbing is partitioned into two shadow queues in pro-
portion to the partition sizes (e.g., if the smaller partition
is 0.4 MB and the larger one is 1.6 MB, the shadow queue
will be split into 0.2 MB and 0.8 MB). To avoid thrash-
ing, the cliff scaling algorithm resizes the two queues
only when there is a miss (i.e., when a miss occurs we
insert the new item into the queue that is larger).

5.2 Miss Reduction and Memory Savings
Figure 6 presents the hit rate of Cliffhanger, and Fig-

ure 7 presents the miss reduction of Cliffhanger com-
pared to the default scheme, and the amount of memory
that Cliffhanger requires to produce the same hit rate as
the default scheme. Cliffhanger on average increases the
hit rate by 1.2% and reduces the number of misses by
36.7%, and requires 55% of the memory to achieve the
same hit rate as the default scheme.

For some of the applications, the reduction in misses
is negligible (less than 10%). In these applications there
is not much room for optimizing the memory alloca-

9

0

5

10

15

20

25

30

35

40

86400 172800 259200 345600 432000 518400 604800

M
em

or
y	
Al
lo
ca
te
d	
(M

Bs
)

Seconds

Slab 9

Slab	 8

Slab	 7

Slab	 6
Slab	 5

Slab	 4

Figure 8: Memory allocated to slabs over time in Application 5, using
Cliffhanger with shadow queues of 1 MB and 4 KB credits.

tion based on request sizes. For some applications,
such as Application 5, 13 and 16, the hit rate with
Cliffhanger is very similar to the hit rate of the Dy-
nacache solver. In some applications, like applications
9, 18 and 19, Cliffhanger significantly outperforms the
Dynacache solver. The reason that Cliffhanger outper-
forms the Dynacache solver in these applications is that
it is an incremental algorithm, and therefore it can deal
with hit rate curve changes even in queues that are rel-
atively small. For the Dynacache solver to work well,
it needs to profile a larger amount of data on the perfor-
mance of the queue, otherwise it will not estimate the
concave shapes of the curves accurately (for more infor-
mation, see Dynacache [10]). In addition, application 19
has steep performance cliffs, which hurt the performance
of the Dynacache solver.

5.3 Constants and Queue Sizes
Both the hill climbing algorithm and cliff scaling al-

gorithms require the storage designer to determine the
size of the shadow queues and the amount of credits we
award each queue when it gets a hit to its shadow queue.
For example, the behavior of the hill climbing algorithm
is demonstrated in Figure 8. The figure depicts the mem-
ory allocation across slabs, when we use the hill climbing
algorithm with shadow queues of 1 MB and 4 KB cred-
its, and shows that it takes several days for the algorithm
to shift memory across the different slabs. The reason it
takes several days is that the request rate on each Mem-
cachier server is relatively low: about 10,000 requests
per second, across 490 different total applications.

We found little variance in the behavior of the hill
climbing algorithm when we use shadow queues over 1
MB. The cliff scaling algorithm is more sensitive to the
size of the shadow queues, since it measures the second
gradient. We found that we achieve the highest hit rate
when we use shadow queues of 128 items for the cliff
scaling algorithm. We experimented with using different
credit sizes for both algorithms, and found that 1-4 KB

Slab
Class

Original
Hitrate

Cliff Scal-
ing Hitrate

Hill
Climbing
Hitrate

Combined
Algorithm
Hitrate

0 38.1% 44.8% 95.3% 98.3%
1 37.3% 45.6% 67.4% 69.1%

Total
Hitrate

37.3% 45.5% 70.3% 72.1%

Table 4: Comparing the hit rates with the default scheme, with the hill
climbing and cliff scaling algorithms.

0

0.2

0.4

0.6

0.8

1

48 49 50 51 52 53

Hi
t	 R

at
e

Hours

Application	 19,	 Slab	 Class	 0

Figure 9: Hit rate of Application 19’s Slab Class 0 under Cliffhanger,
when the queue is in a region with a convex cliff.

provide the highest hit rates when we run the algorithms
across an entire week. If we use significantly larger cred-
its sizes, the algorithms may oscillate their memory allo-
cation, which could cause thrashing across the queues.

5.4 Combined Algorithm Behavior
To better understand the affect of the hill climbing and

cliff scaling algorithms, we focus on Application 19 that
has steep performance cliffs in both slab classes. Table 4
depicts the results of running Cliffhanger on Application
19 when we use queues of 8000 items so that the hill-
climbing algorithm gets stuck in the performance cliffs
in both of its slab classes. We compare it to the default
first-come-first-serve resource allocation, and to running
only Algorithms 1 and 2 separately.

This demonstrates the algorithms have a cumulative
hit rate benefit. The hill climbing algorithm’s benefit is
due to a long period where the application sends requests
belonging to Slab Class 0, and then sends a burst of re-
quests belonging to Slab Class 1. The reason the cliff
scaling algorithm improves the hit rate, is that both slab
class 0 and 1 are stuck in a performance cliff.

The behavior of the combined algorithms is demon-
strated in Figure 9. The queue starts at a hit rate of
about 70%. It takes about 30 minutes to stabilize until
it reaches a hit rate of about 99.7%.

5.5 Comparison with LFU Schemes
Much of the previous work on improving cache

hit rates focuses on allocating memory between LRU

10

Application Original
Hitrate

Facebook
Hitrate

Cliffhanger
+ LRU
Hitrate

Cliffhanger
+ Facebook
Hitrate

3 97.7% 97.8% 99.3% 99.3%
4 97.4% 97.6% 97.6% 97.6%
5 98.4% 98.5% 99.1% 99.1%

Table 5: Hit rates with the Facebook eviction scheme.

Algorithm Operation Cache Hit Cache Miss

Hill Climb-
ing

GET 0% 1.4%

Hill Climb-
ing

SET 0% 4.7%

Cliffhanger GET 0.8% 1.4%
Cliffhanger SET 0.8% 4.8%

Table 6: Average latency overhead when the cache is full.

and LFU queues. We compared the performance of
Cliffhanger with two such schemes: the first is ARC [25],
which splits each queue to an LRU and LFU queue and
uses shadow queues to dynamically resize them based
similar to our algorithm. The second scheme is used by
Facebook, in which the first time a request hits it is in-
serted at the middle of the queue. When it hits a second
time, it is inserted to the top of the queue.

We found that ARC did not provide any hit rate im-
provement in any of the applications of the Memcachier
trace. We found that most recently used items that are
ranked high in the LFU queue, are also ranked high by
LRU. Therefore, the LFU queue never gets any hits in its
shadow queue and does not get more memory.

The Facebook scheme performed better than LRU, but
did not perform as well as Cliffhanger with LRU. Table 5
presents the results with Applications 3, 4 and 5.

5.6 Micro Benchmarks
We observed negligible latency and throughput over-

head with high hit rates, such as the hit rate of most
applications in Memcachier, since in the case of a hit,
the shadow queue does not add any latency. To analyze
the overhead of Cliffhanger under a worst-case scenario,
we used synthetic trace where all keys are unique and
all queries miss the cache. In this scenario the cache
is always full, and every single request causes shadow
queue allocations and evictions and all the GETs perform
lookups in the shadow queue. We warm up the caches
for 100 seconds to fill the eviction queues and shadow
queues, and only then start measuring the latency and
throughput. The experiment utilizes the same key and
value distribution described by Facebook [5].

Table 6 shows that the average latency in this worst-
case scenario was between 1.4%-4.8%, when the request
missed. When the request hit there was no latency over-

% GETs % SETs Throughput
Slowdown

96.7% 3.3% 1.5%
50% 50% 3%
10% 90% 3.7%

Table 7: Throughput overhead when the cache is full and CPU
bounded. The first row represents the GET/SET ratio in Facebook.

head with the hill climbing algorithm, since a hit does
not require a lookup in the shadow queue, and 0.8% of
latency with Cliffhanger, because we need to route the
request between two physical queues. Table 7 presents
the throughput overhead when the cache is full, which
are identical when we are running the hill climbing algo-
rithm alone and Cliffhanger. In any case, both Mem-
cachier and Facebook are not CPU bound, but rather
memory bound. Therefore, in both of these cases, in-
creasing the average hit rate for applications at the ex-
pense of slightly decreased throughput at maximum CPU
utilization is a favorable trade-off.

5.7 Memory Overhead
The memory overhead of Cliffhanger is minimal. The

hill climbing algorithm uses shadow queues that repre-
sent 1 MB of requests. For example, with a 64 byte slab
class the shadow queue will store 16384 keys, and with a
1KB slab class the shadow queue will store 1024 keys.
The average key size is about 14 bytes. The cliff scaling
algorithm uses a constant of 4 shadow queues (two left
and right queues) of 128 items for each queue. There-
fore, with the smallest slab class (64 bytes) the overhead
will be 16384+128 · 4 = 16896 keys of 14 bytes for the
smallest queue, which is about 200KB of extra memory
for each queue. In Memcachier applications have 15 slab
classes at most, and the overhead in the worst case will
be 0.5MB of memory for each application.

6. RELATED WORK
There are two main bodies of related work. The first

is previous work on improving the performance of web-
based caches. The second is resource allocation tech-
niques applied in other areas of caching and memory
management, such as multi-core caches.

6.1 Web-based Memory Caches
Several systems improved the performance of memory

cache servers by modifying their cache allocation and
eviction policies. GD-Wheel [20] (GDW) uses the cost
of recomputing the request in the database when priori-
tizing items in the cache eviction queue. This approach
assumes the cache knows the recomputation cost in the
database. Such information is not available to memory
caches like Memcachier and Facebook, and would re-

11

quire changes to the memory cache clients. Regardless,
Cliffhanger can be used with GDW as a replacement
for LRU. Similar to Cliffhanger, GD-Size-Frequency
(GDSF) [9] takes into account value size and frequency
to replace LRU as a cache eviction algorithm for web
proxy caches. GDSF relies on a global LRU queue,
which is not available in Memcached, and on know-
ing the frequencies of each request. Unlike Cliffhanger,
GDW and GDSF suffer from performance cliffs.

Mica [23], MemC3 [11] and work from Intel Labs [21]
focus on improving the throughput of memory caches
on multi-cores, by increasing concurrency and remov-
ing lock bottlenecks. While these systems offer signif-
icant throughput improvements over stock Memcached,
they do not improve hit rates as a function of memory ca-
pacity. In the case of Facebook and Memcachier, Mem-
cached is memory bound and not CPU bound.

Dynacache [10], Moirai [33, 34], Mimir [32] and
Blaze [7] estimate stack distances and optimize resource
allocation based on knowing the entire hit rate curve.
Similar to Cliffhanger, Mimir approximates the hit rate
curves using multiple buckets that contain only the keys
and not the value sizes. Similarly, Wires et. al. pro-
file hit rate curves using Counter Stacks [36] in order
to better provision Flash based storage resources. All
of these systems rely on estimation of the entire hit rate
curve, which is generally more expensive and complex
that local-search based methods like Cliffhanger, and do
not deal with performance cliffs.

A recent study on the Facebook photo cache demon-
strates that modifying LRU can improve web cache per-
formance [14]. Twitter [30] and Facebook [26] have tried
to improve Memcached slab class allocation to better ad-
just for varying item sizes, by periodically shifting pages
from slabs with a high hitrate to those with a low hi-
trate. Unlike Cliffhanger, both of these schemes do not
take into account the hit rate curve gradients and there-
fore would allocate too much memory to large requests.

Facebook [22], Zhang et al [37] and Fan et al [12] pro-
pose client-side proxies that provide better load-balacing
and application isolation for Memcached clusters by
choosing which servers to route requests to. While
client-side proxies improve load-balancing, they do not
control resource allocation within memory cache servers.

6.2 Cache Resource Allocation
Our work relies on results from multi-core cache par-

titioning. Talus [6] laid the groundwork for dealing with
performance cliffs in memory caches, by providing a
simple cache partitioning scheme that allows caches to
trace the hit rate curve’s concave hull, given knowledge
of the shape of the convex portions of the hit rate graph.
Talus relies on hardware utility monitors (UMONs) [29]
to estimate stack distances and construct the hit rate

curves. In contrast, Cliffhanger does not rely on profil-
ing stack distance curves to trace the concave hull, and is
therefore more lightweight and can incrementally adapt
to changes in the hit rate curve profile of applications.
LookAhead [29] is another algorithm that deals with per-
formance cliffs. Instead of tracing the concave hull, it
simply looks ahead in the hit rate curve graph, and al-
locates memory to applications after taking into account
the affect of performance cliffs. Like Talus, it also relies
on having knowledge of the entire hit rate curve.

There is an extensive body of working on workload
aware eviction policies for multi-core systems that uti-
lize shadow queues. A prominent example is ARC [25],
which leverages shadow queues to dynamically allocate
memory between LRU and LFU queues. Cliffhanger
also leverages shadow queues in order to locate perfor-
mance cliffs and dynamically shift memory across slab
classes and applications. There are many other systems
that try to improve on variants of LRU and LFU, includ-
ing LRU-K [27], 2Q [16], LIRS [15] and LRFU [17, 18].
In addition, Facebook has implemented a hybrid scheme,
where the first time a request is inserted into the eviction
queue, it is not inserted at the top of the queue but in the
middle. We have found that for the Memcachier traces,
Facebook’s hybrid scheme does provide hit rate improve-
ments over LRU, and that ARC does not.

7. CONCLUSION
By analyzing a week-long trace from a multi-tenant

Memcached cluster, we demonstrated that the standard
hit rate of a data center memory cache can be improved
significantly by using workload aware cache allocation.
We presented Cliffhanger, a lightweight iterative algo-
rithm, that locally optimizes memory allocation within
and across applications. Cliffhanger uses a hill climbing
approach, which allocates more memory to the queues
with the highest hit rate curve gradient. In parallel, it
utilizes a lightweight local algorithm to overcome per-
formance cliffs, which have been shown to hurt cache
allocation algorithms. We implemented Cliffhanger and
evaluated its performance on the Memcachier traces and
micro benchmarks. The algorithms introduced in this pa-
per can be applied to other cache and storage systems
that need to dynamically handle different request sizes
and varying workloads without having to estimate global
hit rate curves.

8. ACKNOWLEDGMENTS
We thank Amit Levy and David Terei, who helped

us gather the traces from Memcachier. We also thank
Nathan Bronson, Sathya Gunasekar, Anton Likhtarov,
Ryan Stutsman, our shepherd, Mahesh Balakrishnan,
and our reviewers for their valuable feedback.

12

References
[1] Amazon Elasticache. aws.amazon.com/elasticache/.

[2] Memcached. code.google.com/p/memcached/wiki/
NewUserInternals.

[3] Memcachier. www.memcachier.com.

[4] Redis. redis.io.

[5] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny.
Workload analysis of a large-scale key-value store. In ACM SIG-
METRICS Performance Evaluation Review, volume 40, pages
53–64. ACM, 2012.

[6] N. Beckmann and D. Sanchez. Talus: A simple way to remove
cliffs in cache performance. In High Performance Computer Ar-
chitecture (HPCA), 2015 IEEE 21st International Symposium on,
pages 64–75. IEEE, 2015.

[7] H. Bjornsson, G. Chockler, T. Saemundsson, and Y. Vigfusson.
Dynamic performance profiling of cloud caches. In Proceed-
ings of the 4th annual Symposium on Cloud Computing, page 59.
ACM, 2013.

[8] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov,
H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. C. Li, et al. TAO:
Facebook’s distributed data store for the social graph. In USENIX
Annual Technical Conference, pages 49–60, 2013.

[9] L. Cherkasova. Improving WWW proxies performance with
greedy-dual-size-frequency caching policy. Hewlett-Packard
Laboratories, 1998.

[10] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti. Dynacache:
Dynamic cloud caching. In 7th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 15), Santa Clara, CA, July 2015.
USENIX Association.

[11] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Com-
pact and concurrent Memcache with dumber caching and smarter
hashing. In NSDI, volume 13, pages 385–398, 2013.

[12] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky. Small cache,
big effect: Provable load balancing for randomly partitioned clus-
ter services. In Proceedings of the 2nd ACM Symposium on Cloud
Computing, page 23. ACM, 2011.

[13] B. Fitzpatrick. Distributed caching with Memcached. Linux jour-
nal, 2004(124):5, 2004.

[14] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and
H. C. Li. An analysis of Facebook photo caching. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 167–181. ACM, 2013.

[15] S. Jiang and X. Zhang. LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache perfor-
mance. SIGMETRICS Perform. Eval. Rev., 30(1):31–42, June
2002.

[16] T. Johnson and D. Shasha. 2Q: A low overhead high performance
buffer management replacement algorithm. In VLDB’94, Pro-
ceedings of 20th International Conference on Very Large Data
Bases, September 12-15, 1994, Santiago de Chile, Chile, pages
439–450, 1994.

[17] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim. On the existence of a spectrum of policies that subsumes
the least recently used (LRU) and least frequently used (LFU)
policies. In ACM SIGMETRICS Performance Evaluation Review,
volume 27, pages 134–143. ACM, 1999.

[18] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim. LRFU: A spectrum of policies that subsumes the least re-
cently used and least frequently used policies. IEEE transactions
on Computers, (12):1352–1361, 2001.

[19] J. Leverich. Mutilate. github.com/leverich/
mutilate/.

[20] C. Li and A. L. Cox. GD-Wheel: a cost-aware replacement pol-
icy for key-value stores. In Proceedings of the Tenth European
Conference on Computer Systems, page 5. ACM, 2015.

[21] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky,
D. G. Andersen, O. Seongil, S. Lee, and P. Dubey. Architecting to
achieve a billion requests per second throughput on a single key-
value store server platform. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture, pages 476–
488. ACM, 2015.

[22] A. Likhtarov, R. Nishtala, R. McElroy, H. Fugal, A. Gry-
nenko, and V. Venkataramani. Introducing McRouter: A
memcached protocol router for scaling Memcached deploy-
ments, 2014. https://code.facebook.com/posts/
296442737213493.

[23] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A
holistic approach to fast in-memory key-value storage. manage-
ment, 15(32):36, 2014.

[24] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems journal, 9(2):78–
117, 1970.

[25] N. Megiddo and D. S. Modha. Arc: A self-tuning, low overhead
replacement cache. In FAST, volume 3, pages 115–130, 2003.

[26] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.
Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford,
T. Tung, and V. Venkataramani. Scaling Memcache at Face-
book. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages
385–398, Lombard, IL, 2013. USENIX.

[27] E. J. O’neil, P. E. O’neil, and G. Weikum. The LRU-K page re-
placement algorithm for database disk buffering. ACM SIGMOD
Record, 22(2):297–306, 1993.

[28] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast crash recovery in RAMCloud. In Proceed-
ings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pages 29–41. ACM, 2011.

[29] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition
shared caches. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 423–432.
IEEE Computer Society, 2006.

[30] M. Rajashekhar and Y. Yue. Twemcache. blog.twitter.
com/2012/caching-with-twemcache.

[31] S. M. Rumble, A. Kejriwal, and J. K. Ousterhout. Log-structured
memory for DRAM-based storage. In FAST, volume 1, page 16,
2014.

[32] T. Saemundsson, H. Bjornsson, G. Chockler, and Y. Vigfusson.
Dynamic performance profiling of cloud caches. In Proceedings
of the ACM Symposium on Cloud Computing, pages 1–14. ACM,
2014.

[33] I. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder, H. Bal-
lani, T. Karagiannis, A. Rowstron, and T. Talpey. Software-
defined caching: Managing caches in multi-tenant data centers.
In Proceedings of the Sixth ACM Symposium on Cloud Comput-
ing, pages 174–181. ACM, 2015.

13

aws.amazon.com/elasticache/
code.google.com/p/memcached/wiki/NewUserInternals
code.google.com/p/memcached/wiki/NewUserInternals
www.memcachier.com
redis.io
github.com/leverich/mutilate/
github.com/leverich/mutilate/
https://code.facebook.com/posts/296442737213493
https://code.facebook.com/posts/296442737213493
blog.twitter.com/2012/caching-with-twemcache
blog.twitter.com/2012/caching-with-twemcache

[34] I. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder, H. Ballani,
T. Karagiannis, A. Rowstron, and T. Talpey. Software-defined
caching: Managing caches in multi-tenant data centers. Technical
Report CSRG-626, Department of Computer Science, University
of Toronto, 2015.

[35] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of
shared cache memory. The Journal of Supercomputing, 28(1):7–
26, 2004.

[36] J. Wires, S. Ingram, Z. Drudi, N. J. Harvey, A. Warfield, and
C. Data. Characterizing storage workloads with counter stacks.
In Proceedings of the 11th USENIX conference on Operating Sys-
tems Design and Implementation, pages 335–349. USENIX As-
sociation, 2014.

[37] W. Zhang, J. Hwang, T. Wood, K. Ramakrishnan, and H. Huang.
Load balancing of heterogeneous workloads in Memcached clus-
ters. In 9th International Workshop on Feedback Computing
(Feedback Computing 14), Philadelphia, PA, 2014.

14

	Introduction
	Background
	The Cache Allocation Problem

	Trace Analysis
	Resource Allocation in Memcachier
	Variance in Request Sizes
	Cross-application Performance
	Climbing Concave Hills
	Performance Cliffs

	Design
	Hill Climbing Using Shadow Queues
	Scaling Cliffs Using Shadow Queues
	Combining the Algorithms

	Evaluation
	Implementation
	Miss Reduction and Memory Savings
	Constants and Queue Sizes
	Combined Algorithm Behavior
	Comparison with LFU Schemes
	Micro Benchmarks
	Memory Overhead

	Related Work
	Web-based Memory Caches
	Cache Resource Allocation

	Conclusion
	Acknowledgments

