
Dynacache: Dynamic Cloud Caching

Asaf Cidon1, Assaf Eisenman1, Mohammad Alizadeh2, and Sachin Katti1

1Stanford University
2MIT CSAIL

ABSTRACT
Web-scale applications are heavily reliant on memory
cache systems such as Memcached to improve through-
put and reduce user latency. Small performance improve-
ments in these systems can result in large end-to-end
gains, for example a marginal increase in hit rate of 1%
can reduce the application layer latency by over 25%.
Yet, surprisingly many of these systems use generic first-
come-first-serve designs with simple fixed size alloca-
tions that are oblivious to the application’s requirements.
In this paper, we use detailed empirical measurements
from a widely used caching service, Memcachier [3] to
show that these simple default policies can lead to sig-
nificant performance penalties, in some cases increasing
the number of cache misses by as much as 3×.

Motivated by these empirical analyses, we propose
Dynacache, a cache controller that significantly im-
proves the hit rate of web applications, by profiling ap-
plications and dynamically tailoring memory resources
and eviction policies. We show that for certain appli-
cations in our real-world traces from Memcachier, Dy-
nacache reduces the number of misses by more than 65%
with a minimal overhead on the average request perfor-
mance. We also show that Memcachier would need to
more than double the number of Memcached servers in
order to achieve the same reduction of misses that is
achieved by Dynacache. In addition, Dynacache allows
Memcached operators to better plan their resource allo-
cation and manage server costs, by estimating the cost of
cache hits as a function of memory.

1. INTRODUCTION
Memory caches like Memcached [11] and Redis [4]

have become a vital component of cloud infrastructure.
Major web service providers such as Facebook, Twit-
ter, Pinterest, Box and Airbnb have large deployments
of Memcached, while smaller providers utilize caching-
as-a-service solutions like Amazon ElastiCache [1] and
Memcachier [3]. These applications rely heavily on
caching to improve the latency of web requests, reduce
load on backend databases and lower operating costs.

Even modest improvements to the cache hit rate have
a significant impact on user perceived performance in
modern web services, because reading data from a disk-
based database (like MySQL) is orders of magnitude
slower than in-memory cache. For instance, the hit rate
of one of Facebook’s main Memcached pools has been
reported to be 98.2% [6]. Assuming the latency for a
typical cache hit and MySQL read is 200µs and 10ms,
respectively, increasing the hit rate by just 1% would
reduce the average read latency by over 25% (from
376.4µs at a 98.2% hit rate to 278.4µs at a 99.2% hit
rate). The end-to-end benefits can be substantially larger
for user queries, which often must wait on hundreds of
reads [17].

Memory caching systems are very simple and are
roughly modeled on CPU caches with tables of nearly
equal-sized items and Least Recently Used (LRU) evic-
tions. Importantly, current memory caches are oblivious
to application request patterns and requirements. Mem-
ory allocation across slab classes1 and across different
applications sharing a cache server is based on fixed poli-
cies like first-come first-serve or static reservations. The
eviction policy, LRU, is also fixed.

In this paper, we argue that this one-size-fits-all cache
behavior is poorly suited to cloud environments. Our po-
sition is that cloud memory caches must be dynamically
tuned based on application access patterns, hit rate re-
quirements, and operator policy. Like any other critical
resource (e.g., compute, storage, network bandwidth),
memory caches require intelligent application-aware re-
source management and policy.

We observe that cloud memory caches are very dif-
ferent from CPU caches in terms of workloads and ca-
pabilities. On the one hand, cloud application request
patterns are significantly more variable than CPU work-
loads, which access fixed-sized cache lines, and often se-
quentially due to inherent program structures like loops.
On the other hand, cloud caches are much more capa-

1To avoid memory fragmentation, Memcached divides its
memory into several slabs. Each slab stores items with size
in a specific range (e.g., < 128B, 128-256B, etc.) [2]

1



ble than CPU caches. Unlike CPU caches, free from
the restrictions of hardware implementation at GHz fre-
quencies, a memory caching system can use sophisti-
cated application profiling and optimization to adapt to
the unique characteristics of each application.

While a dynamic application-aware cache is concep-
tually appealing, is it worth the additional complexity in
practice? We answer this in the affirmative by analyz-
ing of a week-long trace of over 490 web applications
at Memcachier [3], a popular Memcached-as-a-service
platform. We find significant room for improvement over
the application-oblivious baseline cache system. Specif-
ically, Memcached’s default first-come first-serve slab
memory allocation performs very poorly for some ap-
plications. In some cases, the default slab class alloca-
tions result in over 3× more misses than could have been
achieved with an optimal allocation of the same amount
of memory. For the same hit rate, default Memcached
sometimes requires over 2.5× more memory.

Our trace analysis demonstrates the need for a cache
that can dynamically adjust its memory allocation to sat-
isfy the varying demands of different applications. To
this end, we develop Dynacache, a lightweight, min-
imally invasive, application-aware cache controller for
cloud environments. Dynacache detects the applications
that are most likely to benefit from optimization using a
simple, easy-to-compute entropy metric. It then profiles
the request pattern of the selected applications and opti-
mizes their slab allocation to maximize hit rate.

We have built a prototype implementation of Dy-
nacache in C for Memcached. Our preliminary evalua-
tion with realistic workloads based on measurements at
Facebook [6] shows that Dynacache’s application profil-
ing is feasible and has a low overhead on the performance
of other applications.

Our current design focuses on slab memory alloca-
tion to demonstrate how rigid cache policies hurt perfor-
mance. However, we believe that other parameters such
as eviction policy and memory allocation across appli-
cations also hold great promise for improvement. Fur-
ther, we expect that our application profiling may inform
developers and operators to make more intelligent deci-
sions about their cache needs and resource sharing pol-
icy, which today are mostly determined arbitrarily. We
intend to explore these directions in future work.

2. MEMCACHIER TRACE ANALYSIS
In this section, we provide empirical evidence that

the one-size-fits-all resource allocation policies of Mem-
cached are not ideal for real web applications that ex-
hibit variable behavior. We collected a trace of 490 appli-
cations on Memcachier, a multi-tenant Memcached ser-
vice. Each application reserves a certain amount of mem-
ory in advance, which is uniformly allocated across mul-

App % of
Trace

Old
Hitrate

New
Hitrate

%
Miss
Re-
duc-
tion

Additional
Memory
Required
with
Default
Alloc.

Miss
En-
tropy

1 36.8% 69.6% 75.3% 18.6% 20% 0.5
2 8.6% 99.9% 99.9% 0% 0% 0
3 5.7% 97.5% 98.7% 51.1% 133% 2.7
4 4.2% 97.5% 97.7% 8.4% 14% 0
5 3.6% 98.3% 99.4% 65.2% 145% 2.4
6 3.4% 99.8% 99.8% 0% 0% 0.2
7 2.9% 29% 32.6% 5% 70% 0.6
8 2.7% 99.9% 99.9% 0% 0% 0.2
9 2.4% 93.9% 93.9% 0% 0% 1.6
10 2% 99.6% 99.6% 11.9% 14% 0.1

Table 1: Analysis of the affect of optimizing the slab class allocation
for the top 10 applications in the Memcachier trace. The sixth column
in the table depicts the amount of memory required to achieve the im-
proved hit rate using the default slab class allocation of Memcachier,
and Miss Entropy is a metric for classifying which application will ben-
efit most from optimizing its slab class allocation.

tiple Memcached servers comprising the Memcachier
cache. We obtained packet captures on one of the Mem-
cachier servers for a week. In all, the raw captures
amount to 220 GB of compressed data. We analyzed the
packet captures to reconstruct all Memcached requests
and responses, including the type of request (e.g., GET,
SET), key and value sizes, whether the request hit or
missed, and the slab class for each request.

In particular, we focus on one dimension of cache re-
source allocation, namely, the allocation of memory re-
sources across slab classes for each application. In Mem-
cached, memory pages are divided into 1MB pages as-
signed to one of several slab classes. Each slab class
stores items whose sizes are within a specific range (e.g.,
between 1KB and 2KB). For example, a 1MB page that
belongs to the 1-2KB slab class, would be split into 512
chunks of 2KB in size. Each slab class has its own LRU
eviction queue per application.

In Memcachier, memory is allocated to slab classes
greedily based on the sizes of the initial items at the be-
ginning of the workload. Since each slab class has its
own eviction queue, the length of the queues can vary
greatly among slab classes, and some slab classes may
be under or over provisioned.

Table 1 presents the hit rate achieved by Memcachier
for the top 10 applications (sorted by number of requests)
in our trace, and the hit rate that could be achieved with
an optimal allocation of memory to slab classes (we will
show how to derive the optimal slab class allocation in
Section 3).

The results show that some applications can benefit
greatly from better slab class allocation, and some do not.

2



App Slab
Class

%
GETs

Original
Hitrate

Original
Alloca-
tion

Optimal
Hitrate

Optimal
Alloca-
tion

4 0 9% 99.98% 1.38MB 98.11% 0.72MB
4 1 91% 97.32% 4.39MB 97.66% 5.05MB

3 0 9% 98.18% 0.002MB 99.99% 0.25MB
3 1 22% 96.71% 0.002MB 99.98% 0.56MB
3 3 3% 97.27% 0.017MB 99.99% 0.67MB
3 4 45% 98.45% 0.25MB 99.31% 2.27MB
3 5 6% 99.70% 0.02MB 100% 0.55MB
3 6 1% 97.08% 0.07MB 99.95% 1.06MB
3 7 5% 98.89% 0.18MB 99.97% 2.22MB
3 8 6% 98.90% 0.42MB 99.97% 4.24MB
3 9 1% 69.35% 3.75MB 17.16% 0MB
3 10 1% 82.62% 11.13MB 94.51% 15.72MB
3 11 2% 93.12% 32.75MB 77.09% 21.05MB

Table 2: Hit rate and slab class allocations of two applications in the
Memcachier trace in a single server. Each application’s workload is
spread uniformly across 12 servers. In Memcachier, each slab class
size is: 64bytes · 2SlabId. So for example, slab class 0 is for items
with value between 0-64 bytes, while slab class 1 is for values between
64-128 bytes. The slab class optimization improved the overall hit rate
of application 4 from 97.5% to 97.7%, and of application 3 from 97.5%
to 98.7%.

For example, the number of misses in applications 3 and
5 is reduced by 51% and 65% respectively. About half
of the applications in the trace do not benefit at all from
optimized slab allocation, because applications are typi-
cally well over provisioned. In some applications (like
application 7), while the optimal slab class allocation
does improve the hit rate, the improvement is small. The
table also shows the amount of memory that would be re-
quired to achieve the improved hit rate, using the default
slab allocation. For applications 3 and 5, Memcachier
must more than double the amount of allocated memory
to achieve the same hit rate with the default policy.

The problem with Memcachier’s first-come-first-serve
memory allocation to slab classes is that if some applica-
tions change their request distribution, some slab classes
may not have enough memory and their eviction queues
will be too short. Some Memcached implementations
have tried to solve this problem by periodically evicting
an entire slab of a slab class, and reassigning it to the cor-
responding slab class of new incoming requests [17, 18].
However, even these improved slab class allocation may
suffer from sub-optimal slab class allocation. For exam-
ple, they may tend to favor large slab classes over small
ones, because if a request for a large item size is received
at the server, it will be treated equally as a request with a
small item size, even though the large item size occupies
much more memory in the Memcached server.

This is demonstrated in Table 2, which details the de-
fault hit rate and the slab class allocation of two Mem-
cachier applications. In both applications, Memcachier

Figure 1: High level architecture of Dynacache.

allocates relatively much more memory to the larger slab
classes, compared to the number of requests from each
slab class. It is clear that in both applications, the Mem-
cachier slab class allocation favors large slab classes rel-
ative to the number of times they are requested.

Intuitively, we expect that in application 3 this prob-
lem will be more severe, since the requests are more
evenly distributed among the slab classes. In application
4, since the vast majority of the requests belong to slab
class 1, the default slab allocation will perform reason-
ably well. This is the reason some applications’ perfor-
mance can be improved more than others with optimal
slab class allocation.

3. DESIGN
In this section we describe the design of Dynacache.

In order to tailor the resource allocation of Memcached
for different applications, Dynacache first classifies and
profiles the applications’ access patterns, and then com-
putes and sets their optimal slab class allocation. The
architecture of Dynacache is depicted in Figure 1. Dy-
nacache runs as a module that integrates with the Mem-
cached server. We describe its three components below.

3.1 Slab Class Allocation Optimization
We first describe how to compute the optimal memory

allocation to each slab class for a single application. The
problem can be expressed as an optimization:

maximize
m

s∑
i=1

fihi(mi, e)

subject to
s∑

i=1

mi ≤M

(1)

Where s is the number of slab classes, fi is the fre-
quency of GETs for each slab class, hi(mi, e) is the hit

3



rate of each slab class as a function of the its available
memory (mi) and cache eviction policy (e), and M is
the amount of memory reserved by the application on
the Memcached server.

In order to solve this optimization problem, we need
to compute hi(mi, e), or the hit rate curve for each slab
class. Stack distances [16] provide a convenient means of
computing the hit rate curve beyond the allocated mem-
ory size, for a given eviction policy. The stack distance of
a requested item is its rank in the cache, counted from the
top of the eviction queue. For example, if the requested
item is at the top of the eviction queue, its stack distance
is equal to 1. If an item has never been requested before,
its stack distance would be infinite.

The stack distances can be computed offline for each
incoming request in the Memcachier trace (e.g., once ev-
ery 6-12 hours). This allows us to compute the hit rate
curve as a function of the memory allocated to each slab
class. For example, Figure 2 depicts the hit rate curve of
slab class 9 of application 3.

To solve the optimization in Equation (1) efficiently,
the hit rate curves need to be approximated as concave
functions. Fortunately, hit rate curves in the Memcachier
traces are concave or nearly concave. We use convex
piecewise-linear fitting [15] to approximate the hit rate
curves. The piecewise-linear hit rate curves allow us to
solve the optimization (1) using a simple LP solver.

3.2 Practical Profiling
Computing the exact stack distance for each incoming

request requires maintaining a “shadow” eviction queue
and tracking the position of every incoming request in the
queue to calculate its stack distance. This can be com-
putationally prohibitive, especially when the application
accesses a large number of unique keys (the computation
is O(n), where n is the size of the shadow queue).

Instead, Dynacache uses a bucketing scheme simi-
lar to Mimir [19] (similar schemes were described in
CRAMM [21] and Path [7]). In this bucketing scheme,
instead of keeping track of a shadow eviction queue,
there is a linked list of buckets, each containing a fixed
number of items. Each incoming request enters the top
bucket, and when the top bucket is filled, we remove
the bucket at the end of the queue. We maintain a hash
function that maps each item to the bucket in which it
is stored. We can estimate the stack distance of an in-
coming request, by summing the size of all buckets that
appear in the queue before it, and adding it to the size of
its own bucket divided by 2. This stack distance com-
putation algorithm is much faster than the naïve method,
since its complexity is O(B), where B is the number of
buckets. For Memcachier, we utilized 100 buckets with
100 keys each. The difference in the hit rate improve-
ment for the optimized slab class allocation based on the

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Number of Items in LRU Queue

H
it
ra

te

Application 3, Slab Class 9

Figure 2: Hit rate curve over an entire week for Application 3, Slab
Class 9 (item sizes of 16-32 KB).

bucket algorithm versus exact stack distances is less than
10% for all the applications we analyzed.

3.3 Which Applications to Optimize?
The naïve approach would be to simply calculate the

hit rate curves of all the applications and run the op-
timization function. However, estimating the hit rate
curves for hundreds of applications on each server is
costly. As our results in Table 1 have shown, not all ap-
plications benefit from optimized slab class allocation.

Dynacache should ideally only optimize the slab class
allocation of applications that are likely to benefit. To
this end, we derive a metric that is simple to compute
and with a high degree of certainty predicts the hit rate
improvement due to optimized slab class allocation.

Intuitively, the default slab class allocation will per-
form poorly when there is a relatively uniform distribu-
tion of unique requests among slab classes. When all the
requests are concentrated on a small number of adjacent
slab classes (or in a single slab class), there won’t be a
big difference between a first-come-first-serve slab allo-
cation policy and the optimal slab allocation policy.

Entropy is a metric that provides a measure of the uni-
formity of a distribution function. When a probability
function behaves completely uniformly, its entropy will
be the highest, and when it behaves deterministically, its
entropy will be 0. The last column in Table 1 shows the
Miss Entropy across slab classes for the different appli-
cations in the trace. The Miss Entropy is calculated by
treating the misses per slab class as a probability density
function and calculating its entropy [9].

We have found that Miss Entropy is a good indi-
cator for applications that would benefit from optimal
slab class allocation. The reason is that high Miss En-
tropy implies that accesses to unique keys are evenly dis-
tributed across slab classes, and the default slab class al-

4



0.00%	  

2.00%	  

4.00%	  

6.00%	  

8.00%	  

4	   8	   12	   16	   20	   24	   28	   32	   36	   40	  

Th
ro
ug
hp

ut
	  

O
ve
rh
ea
d	  

Requests	  per	  Second	  (1000s)	  

Figure 3: Throughput overhead of Dynacache profiler. The overhead
remains 6% after 40,000 requests per second, because the Memcached
server becomes saturated.

location tends to disproportionately prioritize large slab
classes in such workloads. The only exception to this
rule is application 9. This is because Memcachier allo-
cated a very small amount of memory (only 1.6MB) to
application 9. The optimization function does not work
with a very small number of data points, and therefore
cannot improve the slab allocation, given the memory
constraints. If application 9 had been allocated more
memory, it would have benefited significantly from an
improved slab class allocation, similar to applications 3
and 5.

4. EVALUATION
We implemented a prototype of the Dynacache profiler

in C, and integrated it with Memcached 1.4.22. Our im-
plementation consists of about 170 code lines. In order
to measure the overhead added by Dynacache, we lever-
aged Mutilate [14], a load generator that emulates Mem-
cached workloads from the 2012 Facebook study [6]. We
used the same key, value and read/write distributions as
described in the Facebook paper. We used the Facebook
workload because it is much more CPU intensive than
the applications measured in the Memcachier trace. We
ran our simulation on an Intel Xeon E5-2670 system with
32 GB of RAM and an SSD drive, using 5 minutes ex-
periments. We measured the achieved throughput and
latency overhead while running the Dynacache profiler,
under different request loads.

We examined the throughput and latency achieved us-
ing different request loads, ranging from 4000 requests
per second (Memcachier’s average load) to 100,000 re-
quests per second. Our evaluation shows an average
of 5.8% latency slowdown for read queries (GETs) and
9.6% latency slowdown for write queries (SETs), with
negligible deviations between the experiments.

Figure 3 presents the throughput overhead. In order to
measure throughput, we generated a series of requests at
the client, and measured the number of requests returned
during a 5 minute period. The figure shows that through-

put was not affected at lower loads, but had an overhead
of 6% compared to the default Memcached implementa-
tion, once Memcached became CPU bounded. The over-
head remained at 6% after 40,000 requests per second,
because the Memcached server becomes saturated. Note
that in the case of Memcachier, Memcached is memory
bound and not CPU bound, and therefore the Dynacache
would not impose any overhead on throughput. Initial
profiling shows that further optimizations can be made
in our implementation by reducing the number of hash
computations in cases of updates and bucket deletions,
and by running the profiler asynchronously (i.e., not in
the critical path of incoming requests).

5. RELATED WORK
This work is related to previous work on improv-

ing and profiling the performance of Memcached.
Mimir [19] and Blaze [8] also profile cache hit rate
curves to enforce QoS guarantees in multi-tenant web
caches. Similarly, Wires et. al. profile hit rate curves
using Counter Stacks [20] in order to better provision
Flash based storage resources. In addition, Hwang et.
al. have proposed a dynamic hashing system [13] that
can evenly distribute requests across servers, taking into
account varying item sizes. A recent study on the Face-
book photo cache demonstrates that modifying LRU can
significantly improve web cache performance [12]. Twit-
ter [18] and Facebook [17] have tried to improve Mem-
cached slab class allocation to better adjust for varying
item sizes, by periodically shifting pages from slabs with
a high hitrate to those with a low hitrate. Both of these
schemes are far from optimal, since they do not take into
account the hit rate curves across all the slab classes, and
we plan to conduct a quantitative comparison with them
in future work. There is a body of prior work on algo-
rithms for calculating stack distances in the context of
CPU caches [5, 10, 16, 22]. These techniques may be
applicable for Dynacache to enhance the performance of
the profiler.

6. CONCLUSION
By analyzing a multi-tenant Memcached cluster, we

demonstrated that a web-based cache can be improved
significantly by tuning its behavior to dynamically adjust
to the requirements of different applications. We showed
that the performance of certain applications can be sig-
nificantly improved by simply better allocating the mem-
ory slab allocation within the Memcached servers, with-
out interfering with the data path of the cache. Our next
step is to generalize dynamic tuning to the other param-
eters in cache systems such as relative allocations across
applications and eviction policies.

5



References
[1] Amazon Elasticache. aws.amazon.com/elasticache/.

[2] Memcached. code.google.com/p/memcached/wiki/
NewUserInternals.

[3] Memcachier. www.memcachier.com.

[4] Redis. redis.io.

[5] G. Almási, C. Caşcaval, and D. A. Padua. Calculating stack dis-
tances efficiently. In ACM SIGPLAN Notices, volume 38, pages
37–43. ACM, 2002.

[6] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny.
Workload analysis of a large-scale key-value store. In ACM SIG-
METRICS Performance Evaluation Review, volume 40, pages
53–64. ACM, 2012.

[7] R. Azimi, L. Soares, M. Stumm, T. Walsh, and A. D. Brown.
Path: page access tracking to improve memory management. In
Proceedings of the 6th international symposium on Memory man-
agement, pages 31–42. ACM, 2007.

[8] H. Bjornsson, G. Chockler, T. Saemundsson, and Y. Vigfusson.
Dynamic performance profiling of cloud caches. In Proceed-
ings of the 4th annual Symposium on Cloud Computing, page 59.
ACM, 2013.

[9] T. M. Cover and J. A. Thomas. Elements of information theory.
John Wiley & Sons, 2012.

[10] C. Ding and Y. Zhong. Predicting whole-program locality
through reuse distance analysis. In ACM SIGPLAN Notices, vol-
ume 38, pages 245–257. ACM, 2003.

[11] B. Fitzpatrick. Distributed caching with Memcached. Linux jour-
nal, 2004(124):5, 2004.

[12] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and
H. C. Li. An analysis of Facebook photo caching. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 167–181. ACM, 2013.

[13] J. Hwang and T. Wood. Adaptive performance-aware distributed
memory caching. In ICAC, pages 33–43, 2013.

[14] J. Leverich. Mutilate. github.com/leverich/
mutilate/.

[15] A. Magnani and S. P. Boyd. Convex piecewise-linear fitting. Op-
timization and Engineering, 10(1):1–17, 2009.

[16] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems journal, 9(2):78–
117, 1970.

[17] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.
Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford,
T. Tung, and V. Venkataramani. Scaling Memcache at Face-
book. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages
385–398, Lombard, IL, 2013. USENIX.

[18] M. Rajashekhar and Y. Yue. Twemcache. blog.twitter.
com/2012/caching-with-twemcache.

[19] T. Saemundsson, H. Bjornsson, G. Chockler, and Y. Vigfusson.
Dynamic performance profiling of cloud caches. In Proceedings
of the ACM Symposium on Cloud Computing, pages 1–14. ACM,
2014.

[20] J. Wires, S. Ingram, Z. Drudi, N. J. Harvey, A. Warfield, and
C. Data. Characterizing storage workloads with counter stacks.
In Proceedings of the 11th USENIX conference on Operating Sys-
tems Design and Implementation, pages 335–349. USENIX As-
sociation, 2014.

[21] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. CRAMM:
Virtual memory support for garbage-collected applications. In
Proceedings of the 7th symposium on Operating systems de-
sign and implementation, pages 103–116. USENIX Association,
2006.

[22] Y. Zhong, S. G. Dropsho, and C. Ding. Miss rate prediction across
all program inputs. In Parallel Architectures and Compilation
Techniques, 2003. PACT 2003. Proceedings. 12th International
Conference on, pages 79–90. IEEE, 2003.

6

aws.amazon.com/elasticache/
code.google.com/p/memcached/wiki/NewUserInternals
code.google.com/p/memcached/wiki/NewUserInternals
www.memcachier.com
redis.io
github.com/leverich/mutilate/
github.com/leverich/mutilate/
blog.twitter.com/2012/caching-with-twemcache
blog.twitter.com/2012/caching-with-twemcache

	Introduction
	Memcachier Trace Analysis
	Design
	Slab Class Allocation Optimization
	Practical Profiling
	Which Applications to Optimize?

	Evaluation
	Related Work
	Conclusion

