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ABSTRACT
Cloud applications generate a mix of flows with and without
deadlines. Scheduling such mix-flows is a key challenge; our
experiments show that trivially combining existing schemes
for deadline/non-deadline flows is problematic. For exam-
ple, prioritizing deadline flows hurts flow completion time
(FCT) for non-deadline flows, with minor improvement for
deadline miss rate.

We present Karuna, a first systematic solution for schedul-
ing mix-flows. Our key insight is that deadline flows should
meet their deadlines while minimally impacting the FCT of
non-deadline flows. To achieve this goal, we design a novel
Minimal-impact Congestion control Protocol (MCP) that han-
dles deadline flows with as little bandwidth as possible. For
non-deadline flows, we extend an existing FCT minimiza-
tion scheme to schedule flows with known and unknown
sizes. Karuna requires no switch modifications and is back-
ward compatible with legacy TCP/IP stacks. Our testbed
experiments and simulations show that Karuna effectively
schedules mix-flows, for example, reducing the 95th per-
centile FCT of non-deadline flows by up to 47.78% at high
load compared to pFabric, while maintaining low (<5.8%)
deadline miss rate.
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1. INTRODUCTION
User-facing datacenter applications (web search, social

networks, retail, recommendation systems, etc.) often have
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stringent latency requirements, and generate a diverse mix
of short and long flows with strict deadlines [3, 22, 38, 39].
Flows that fail to finish within their deadlines are excluded
from the results, hurting user experience, wasting network
bandwidth, and incurring provider revenue loss [39]. Yet, to-
day’s datacenter transport protocols such as TCP, given their
Internet origins, are oblivious to flow deadlines and perform
poorly. For example, it has been shown that a substantial
fraction (from 7% to over 25%) of flow deadlines are not met
using TCP in a study of multiple production DCNs [39].

Meanwhile, flows of other applications have different per-
formance requirements; for example, parallel computing ap-
plications, VM migration, and data backups impose no spe-
cific deadline on flows but generally desire shorter comple-
tion time. Consequently, a key question is: how to schedule
such a mix of flows with and without deadlines? To handle
the mixture, a good scheduling solution should simultane-
ously:

• Maximize deadline meet rate for deadline flows.

• Minimize average flow completion time (FCT) for non-
deadline flows.

• Be practical and readily-deployable with commodity hard-
ware in today’s DCNs.
While there are many recent DCN flow scheduling solu-

tions [3–5, 22, 30, 38, 39], they largely ignore the mix-flow
scheduling problem and cannot meet all of the above goals.
For example, PDQ [22] and PIAS [5] do not consider the
mix-flow scenario, while pFabric [4] simply prioritizes dead-
line flows over non-deadline traffic, which is problematic
(§2). Furthermore, many of these solutions [4, 22, 30, 39]
require non-trivial switch modifications or complex arbitra-
tion control planes, making them hard to deploy in practice.

We observe that the main reason prior solutions such as
pFabric [4], or more generally, EDF-based (Earliest Dead-
line First) scheduling schemes, suffer in the mix-flow sce-
nario is that they complete deadline flows too aggressively,
thus hurting non-deadline flows. For example, since pFabric
strictly prioritizes deadline flows, they aggressively take all
available bandwidth and (unnecessarily) complete far before
their deadlines, at the expense of increasing FCT for non-
deadline flows. The impact on non-deadline flows worsens
with more deadline traffic, but is severe even when a small
fraction (e.g., 5%) of all traffic has deadlines (see §2.2).
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Our key insight to solve the mix-flow scheduling problem
is that deadline flows, when fulfilling their primary goal of
meeting deadlines, should minimally impact FCT for non-
deadline flows. This is based on the assumption that dead-
lines reflect actual performance requirements of applications,
and there is little utility in finishing a flow earlier than its
deadline. To this end, we design MCP, a novel distributed
rate control protocol for deadline flows. MCP takes the min-
imum bandwidth needed to complete deadline flows barely
before their deadlines (§4), thereby leaving maximal band-
width to complete non-deadline flows quickly.

MCP flows walk a thin line between minimal-impact com-
pletion and missing deadlines, and must therefore be pro-
tected from any aggressive non-deadline flows. Thus, we
leverage priority queues available in commodity switches
and place MCP-controlled deadline flows in the highest pri-
ority queue. For non-deadline flows, we place them in the
lower priority queues and use an aggressive rate control (e.g.,
DCTCP [3]) to take the bandwidth left over by MCP. Fur-
ther, we extend the PIAS scheduling algorithm [6] to jointly
schedule non-deadline flows with known or unknown sizes
among the multiple lower priority queues, in order to mini-
mize their FCT (§5.2).

Taken together, we develop Karuna, a mix-flow schedul-
ing system that simultaneously maximizes deadline meet rate
for deadline flows, and minimizes FCT for non-deadline flows.
Essentially, Karuna trades off higher FCT for deadline flows,
for which the key performance requirement is meeting dead-
lines, to improve FCT for non-deadline flows. Karuna makes
this tradeoff deliberately to tackle this multi-faceted mix-
flow problem. Karuna does not require any switch hardware
modifications or complex control plane for rate arbitration,
and is backward-compatible with legacy TCP/IP stacks. We
further identify and address a few practical issues such as
starvation and traffic variation (§6).

We implement a Karuna prototype (§7) and deploy it on
a small testbed with 16 servers and a Broadcom Gigabit
Ethernet switch. On the end host, we implement Karuna
as a Linux kernel module that resides, as a shim layer, be-
tween the Network Interface Card (NIC) driver and TCP/IP
stack, without changing any TCP/IP code. On the switch,
we enable priority queueing and Explicit Congestion Noti-
fication (ECN), which are both standard features on current
switching chips. Our implementation experience suggests
that Karuna is readily deployable in existing commodity dat-
acenters.

We evaluate Karuna using testbed experiments and large-
scale ns-3 simulations with realistic workloads (§8). Our re-
sults show that Karuna maintains high deadline completion
while significantly lowering FCT for non-deadline flows. For
example, it reduces the 95th percentile FCT of non-deadline
flows by up to 47.78% at heavy load compared to a clean-
slate design, pFabric [4], while still maintaining low (<5.8%)
deadline miss rate. Furthermore, our simulations show that
Karuna is effective in handling starvation, and is resilient to
traffic variations and multiple bottlenecks.

2. BACKGROUND AND MOTIVATION
To motivate our design, we identify 3 types of flows in

DCNs, and show performance trade-offs with existing schedul-
ing schemes for mix-flows.

2.1 Application examples of 3 flow types
Type 1: Flows with deadlines: Applications such as web
search, recommendation, and advertisement usually gener-
ate flows with deadlines [38].1 User experience of these
applications is affected by latency, and hence they enforce
strict deadlines on network flows. The flows are useful to
the application if, and only if, they complete within the dead-
line [39]. In other words, the primary performance metric for
this type of traffic is the deadline miss rate, i.e. the fraction
of flows that miss their deadline.2 If the traffic is only of this
type, EDF-based proposals (e.g., pFabric [4] with priority
given to flows with shorter deadlines, or PDQ [22] using re-
maining deadline as the flow criticality) are the best known
schemes to minimize deadline miss rate.3

Type 2: Flows without deadlines but known sizes: Ap-
plications such as VM migration and data backup generate
flows without strict latency requirements, but generally de-
sire short completion times. Further, the sizes of these flows
are usually known before transmission. If the traffic is only
of this type, SJF-based proposals (e.g., PASE [30] and pFab-
ric with priority given to flows with smaller sizes, or PDQ
and pFabric using remaining size as flow criticality) are the
best known schemes to minimize average FCT (AFCT).

Type 3: Flows without deadlines or known sizes: A num-
ber of applications are unable to provide size/deadline infor-
mation at the start of their flows, e.g. database access and
HTTP chunked transfer [6]. If the traffic is only of this type,
best-effort schemes like DCTCP [3] are the predominant so-
lutions, while recently PIAS [6] achieves better FCT than
DCTCP by emulating SJF without knowing flow sizes.

Observation 1: The 3 types of flows coexist in DCNs. Each
type alone has well-known scheduling solutions (based on
SJF or EDF). But there is little prior work on how to schedule
a mix of flows with different types.

2.2 Trade-offs in different scheduling schemes
We use ns-3 [33] simulations to show that applying criticality-

based scheduling schemes (SJF or EDF) hurts the perfor-
mance of different types of flows in mixed scenarios. In
these experiments, the sender and receiver are connected to
a switch, and the NIC capacity of both servers are 1Gbps.
We use DCTCP for the end host rate control. We simu-
late a query/response application for the deadline flows. The

1In most applications where flows have deadlines, the sizes
of these flows are also known in advance [39].
2This is equivalent to the application throughput metric
(fraction of flows that meet their deadline) used in prior
work [4, 22, 39].
3EDF is optimal because if there exist any scheduling dis-
cipline that can satisfy a set of deadlines, EDF also satisfies
them. [29]
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Figure 1: SJF hurts type 1 flows. Background flows sizes are
drawn from the Data Mining workload in Figure 12. Type 1
flows are generated with deadline of 10ms, and their sizes are
exactly the x-th percentile of the type 2 flows.
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Figure 2: EDF hurts type 2 flows, especially smaller ones. Type
2 flows are scheduled using SJF, and their sizes are drawn as in
Figure 1. Sizes of type 1 flows are 5KB, and their deadlines are
drawn from an exponential distribution with mean 10ms. We
vary the percentage of type 1 flows, and collect the FCT of type
2 flows.

queries are generated with a Poisson process, and we con-
trol the flow sizes and deadlines of response flows (type 1).
Background flows (type 2) are generated using a Poisson
process with flow sizes drawn from realistic traffic traces,
and the average load of background traffic is 800Mbps (80%
load). There are no type 3 flows in these experiments.

Case against pure SJF: In the first experiment, we schedule
flows strictly based on their sizes (SJF). Figure 1 shows that
the deadline miss rate of deadline flows is undermined by
SJF. When the sizes of deadline flows are smaller than 1%
of the type 2 flows, the deadline miss rate is 0; when the
sizes are the 20th percentile (13KB), more than 40% of the
responses misses their deadlines.

Observation 2: Simply applying SJF hurts type 1 flows.
This is because size alone decides which flow goes first,
which prevents deadline flows, especially the larger ones,
from completing before their deadlines.

Case against pure EDF: Next, we instead use EDF to sched-
ule the deadline flows, and let the type 1 flows have strict pri-
ority over type 2 flows. Type 2 flows are still scheduled using
SJF. This is the strategy adopted in prior works [4, 22, 30].
In Figure 2, we observe that the tail latency of type 2 flows
increases with the percentage of deadline traffic. For short
type 2 flows (latency-sensitive), we observe a ∼5× increase
in tail latency when the percentage of type 1 traffic increases
from 0 to 8%. Because type 1 traffic is prioritized and ag-
gressively takes up available bandwidth using DCTCP, the
more type 1 flows, the worse the performance for other types
of traffic.

Observation 3: Simple combination of EDF (for type 1

Figure 3: Karuna system overview.

flows) and SJF (for type 2&3 flows), with priority given to
type 1 flows, hurts type 2&3 flows. Type 1 flows complete
quickly with small FCT, which is unnecessary for meeting
their deadlines, at the cost of higher tail latency for other
flows.

3. SYSTEM OVERVIEW
This section outlines our design, Karuna (Figure 3). Karuna

resolves the tension between different types of flows accord-
ing to their respective goals. Since the primary goal of type
1 flows is to meet their deadlines, Karuna uses the minimum
bandwidth required for these flows to complete just before
their deadline, thus leaving maximal bandwidth to type 2&3
flows to optimize their FCT.

Deadline flows: A naive rate-control scheme to achieve near-
deadline completion is to always set the rate of a deadline
flow to its expected rate, M/δ, where M is the remaining
size, and δ the remaining time to deadline. However, this
scheme fails [39] when many deadline flows collide due to
lack of congestion control. Moreover, a similar but more
sophisticated rate-control scheme, D3 [39], has a "priority-
inversion" problem [22] due to its greedy algorithm (details
in §4). Thus, to achieve the desired behavior, we design a
new minimal-impact congestion control protocol for dead-
line flows, MCP, which reacts to network congestion and
controls the rate conservatively to just meet the deadline
(§4). We place deadline flows in the highest priority queue,
so they are protected from the aggressive non-deadline flows.

Non-deadline flows: Type 2&3 flows reside in multiple lower
priority queues (Queue 2–K)4 and are regulated by aggres-
sive protocols (e.g., DCTCP [3]) at end hosts to use all band-
width left over by type 1. We further schedule, i.e. split
or sieve, them among these multiple lower priority queues
based on their sizes to minimize FCT:

• If their sizes are known a priori (type 2 flows), they are
directly split into different priority queues based on their
sizes in the spirit of SJF .

• If their sizes are unknown (type 3 flows), they are grad-
ually sieved from higher priority queues to lower priority
queues according to the number of bytes sent, which ef-
fectively emulates SJF without knowing flow sizes.
How to sieve type 3 flows has been explored in [6]. How-

ever, in Karuna, we need to handle both type 2 and 3 flows,
which is a different problem. We thus extend the technique

4K is the number of priority queues supported by commodity
switches, usually 4–8 [5, 6].



in [6] to jointly solve the problem of splitting type 2 flows
and sieving type 3 flows (see §5 and Appendix A).

4. HANDLING DEADLINE FLOWS
WITH MCP

Deadline flows are given the highest priority in our design,
and their rates are throttled so that they finish transmission
just before the deadlines. The key question is how to throttle
the flows to just meet the deadlines in an environment where
flow arrive and depart dynamically.

At first glance, D3 [39], which sets the flow rate to γ=
M/δ plus the fair share of the remaining link bandwidth af-
ter subtracting the demand of all deadline flows, seems to be
a suitable solution. However, D3 suffers from the priority in-
version problem [38], as shown in the example in Figure 4.
D3 greedily allocates rates to flows that arrive earlier5. In
Figure 4(a), flow C misses its deadline because the earlier
flows A&B do not relinquish their bandwidth; an optimal
schedule in (b) shows that flows A&B can give up band-
width for flow C to complete before its deadline while still
meeting their own deadlines. D2TCP [38] overcomes this
problem with a deadline-aware congestion window update
function, which allows each flow to achieve its deadline on
its own. Nonetheless, D2TCP is not suitable for use in the
highest priority in Karuna, because it aggressively takes over
all available bandwidth, affecting non-deadline flows.

Therefore, we proceed to design MCP6 for Karuna, which
allows flows to achieve deadlines while minimally impact-
ing non-deadline flows. In what follows, we formulate the
near-deadline completion congestion control problem as a
stochastic optimization problem, and solve it to derive MCP’s
congestion window update function.

4.1 Problem formulation
We first introduce the system model. Then, we formulate

the problem and transform it to a convex problem (§4.1.1).
By solving the transformed problem, we derive the optimal
congestion window update function (§4.1.2).

System model: Consider L logical links, each with a ca-
pacity of Cl bits per second (bps). In the network, the total
number of active sessions is S. At time t, session s trans-
mits exactly one flow at a rate of xs(t) bps. The remain-
ing flow size is denoted as Ms(t), and the remaining time
to deadline is δs(t). Applications pass deadline information
to the transport layer (§7) in the request to send data. De-
fine γs(t)=Ms(t)/δs(t) as the expected rate for session s at
time t. The expected rate in the next Round Trip Time (RTT)
is γs(t+τs(t))=

Ms(t)−τs(t)xs(t)
δs(t)−τs(t) , where τs(t) is the RTT of

flow s at t. We assume that the flow from session s is routed
through a fixed set of links L(s). For link l, denote yl as the

5In dynamic setting, the allocation of rates to maximize
deadline completion is NP-Complete [9], and D3 chooses
a greedy approach.
6MCP was first explored in our earlier paper [11] with pre-
liminary simulation results for only type 1 flows.
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Figure 4: Link capacity is C. Flows A&B have deadline 3T ,
size CT , and arrive at t=0. Flow C has deadline T , size 2CT
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,

and arrives at t=T . We assume immediate convergence.

aggregate input rate, yl=
∑
s∈S(l)xs, where the set of flows

that pass through link l is S(l).

Minimal impact: Our objective in designing MCP is to
limit the impact of deadline flows on other traffic. Instead
of using aggregate rates of deadline flows, we choose per-
packet latency introduced by deadline flows to quantify their
impact, because short non-deadline flows are more sensitive
to per-packet delays and suffer the most from deadline flows
in the high priority queue, as was shown in Figure 2.

We therefore use the long term time-averaged per-packet
delay as the minimization objective. Denote dl(yl) as the de-
lay that a packet experiences on link l with aggregate arrival
rate yl. For session s, the average packet delay is

∑
l∈L(s)dl(yl).

We assume infinite buffer for all links, and the dl(yl) is a
positive, convex, and increasing function. We define the
objective function as the average of the summation of per-
packet delay of every source over time.

P (y(t))= lim
T→∞

1
T

∑T−1
t=0

∑
s{
∑
l∈L(s)dl(yl(t))} (1)

where y(t)=[yl(t)]
L
l=1, a L×1 vector.

Network stability: To stabilize the queues, we require that
each source control its sending rate xs(t), so that the aggre-
gated rates at each link l, yl(t)=

∑
s∈S(l)xs(t), will satisfy:

yl(t)≤Cl,∀l. In practice, temporary overloading is allowed
due to buffering in switches, thus we relax this constraint
into the objective with a penalty term, µ, so flows that ex-
ceed the link capacity are penalized.

P̃ (y(t))= lim
T→∞

1
T

T−1∑
t=0

(
∑
s
{

∑
l∈L(s)

dl(yl(t))}+µ
∑
l(yl(t)−Cl))

(2)

Deadline constraint: To complete within a flow’s deadline,
we require the transmission rate to be larger than or equal to
the expected rate, xs(t)−γs(t)≥0, ∀s,t.We relax this con-
straint with its long term time-average:

limt→∞

∑t
0(γs(t)−xs(t))

t ≤0,∀s (3)

which essentially says that, for every flow that requires γs,
the transmission rate xs is on average larger than γs to com-
plete before its deadline. This is a relaxation, as realistic
flows will not last forever.

Formulation: Our goal is to derive optimal source rates
(x(t)=[xs(t)]

S
s=1, a S×1 vector) to minimize long-term per-

packet delay while completing within deadlines. Thus, we
formulate the following stochastic minimization problem (4)



to encapsulate the above objective and constraints.

min
x(t)

P̃ (y(t))

subject to xs(t)>0,∀s; yl(t)=
∑
s∈S(l)

xs(t),∀l;

lim
t→∞

∑t
0(γs(t)−xs(t))

t
≤0,∀s

(4)

4.1.1 Application of Lyapunov optimization
Next, we apply the Lyapunov optimization framework [32]

to transform this minimization problem to a convex problem,
and then derive an optimal congestion window update func-
tion (§4.1.2) based on the optimal solution to the transformed
convex problem. The drift-plus-penalty method [32] is the
key technique in Lyapunov optimization, which stabilizes a
queueing network while also optimizing the time-average of
an objective (e.g. per-packet latency).

Here we explain the application of drift-plus penalty method
to Problem 4 to transform it into a convex programming
problem. To use this framework, a solution to our problem
must address the following aspects:

Queue stability at all links: We first define a scalar mea-
sure L(t) of the stability of the queueing system at time t,
which is called Lyapunov function in control theory. For
our model, we use the quadratic Lyapunov function: L(t)=
1
2

∑
lQl(t)

2. The Lyapunov drift is defined as ∆(tk)=L(tk+1)−
L(tk), the difference between 2 consecutive time instants.
The stability of a queueing network is achieved by taking
control actions that make the Lyapunov function drift in the
negative direction towards zero. With drift-plus-penalty method,
MCP controls the transmission rates of the sources to mini-
mize an upperbound to the network Lyapunov drift, so as to
ensure network stability.

Deadline constraint: To handle the deadline constraints in
(4), we transform them into virtual queues [32]. Consider a
virtual queue Zs(t) for flow s at time t, where the expected
rate is the input and the actual rate is the output.

Zs(t+τs(t))=[Zs(t)+γs(t)−xs(t)]+,∀s (5)

For the virtual queues to be stable, we have:

limt→∞
∑t

0γs(t)/t≤limt→∞
∑t

0xs(t)/t (6)

Similar to the packet queues at the switches, the virtual queues
can also be stabilized by minimizing the Lyapunov drift. To
include the virtual queues, the Lyapunov function becomes
L(t)= 1

2 (
∑
lQl(t)

2+
∑
sZs(t)

2). If the virtual queues are
stabilized, the deadline constraint (3) is also achieved, be-
cause the input γs(t) of the virtual queue is on average smaller
than the output xs(t).

Minimization of impact (per-packet latency): The above
two points concern the “drift”. We also use a “penalty” term
to achieve MCP’s goal of minimizing impact to other traffic.
We formulate the drift-plus-penalty as ∆(tk)+V P̃0(y(tk)).
where V is a non-negative weight chosen to ensure the time
average of P̃0(t) is arbitrarily close (within O(1/V )) to op-
timal, with a corresponding O(V ) tradeoff in average queue

size [31]. By minimizing an upperbound of the drift-plus-
penalty expression, the time average of per-packet latency
can be minimized while stabilizing the network of packet
queues and virtual queues.

Convex Problem: Finally, we arrive at the following covex
problem:

min
x(t)

∑
s{V

∑
l∈L(s)

dl(yl(t))+
Zs(t)γs(t)
xs(t)

+
∑

l∈L(s)
(Ql(t)+µ)xs(t)} (7)

subject to yl(t)=
∑
s∈S(l)xs(t),∀l

At a high-level, we transform the the long term (t→∞)
stochastic delay minimization problem (4) into a drift-plus-
penalty minimization problem (7) at every update instant t.
To solve the transformed problem, we develop an adaptive
source rate control algorithm.

4.1.2 Optimal congestion window update func-
tion

By considering the properties of the optimal solution and
the KKT conditions [8] of the above problem, we obtain a
primal algorithm to achieve optimality for (7). Eq.(8) sta-
bilizes the queueing system and minimizes the overall per-
packet delay of the network:

d
dtxs(t)=f

′
s(xs(t))−

∑
l∈L(s)λl(t), (8)

where fs(xs)=−Zs(t) γs(t)xs(t)
−Qs(t)xs(t), λl(t)=d′l(yl(t)). In-

terested reader may refer to MCP technical report [10] for
derivation.

Each flow should adjust its transmission rate according to
(8), which can be re-written as:

d
dtxs(t)=Θ(γs(t),xs(t))−

∑
l∈L(s)(Ql(t)+λl(t)), (9)

where Θ(γs(t),xs(t))=
Zs(t)Ms(t)
τs(t)x2

s(t)
=Zs(t)γs(t)

x2
s(t)

.
We then can derive the equivalent optimal congestion win-

dow update function:

Ws(t+τs(t))←Ws(t)+τs(t)(Θ(γs(t),
Ws(t)
τs(t)

)−
∑

l∈L(s)
(Ql(t)+λl(t)))

(10)
Consider the two terms that constitute the difference be-

tween window sizes:
• The first (source term), Θ(γs(t),xs(t)) where xs(t)=

Ws(t)
τs(t)

,
is an increasing function of γs, and a decreasing function
of xs. A large γ for a flow means that this flow is more
urgent, i.e. it has large remaining data to send and/or an
imminent deadline. This term ensures that the flow will
be more aggressive as its urgency grows.

• The second (network term),
∑
l∈L(s)(Ql(t)+λl(t)), sum-

marizes the congestion in the links along the path. If any
link is congested, sources that use that link will reduce
their transmission rates. This term makes MCP flows re-
act to congestion.
Combining these two terms, the update function allows

deadline flows meet their deadlines, while impacting the other
flows as little as possible.



Figure 5: Queue length approximation.

4.2 MCP: From theory to practice
We now turn Eq.(10) into a practical algorithm.

4.2.1 ECN-based network term approximation
The source term can be obtained using information from

upper layer applications (§7). However, obtaining the net-
work term is not easy, as the sum of all link prices, λl, and
queue lengths,Ql, are needed along the path, and this aggre-
gated path-level information is not directly available at the
source. This sum can be stored in an additional field in the
packet header, and each switch adds and stores its own price
and queue length to this field for every packet. However,
current commodity switches are not capable of such opera-
tions. For implementation, we use the readily available ECN
functionality in commodity switches to estimate the network
term.

Estimating queue lengths: The focus of our approxima-
tion is the aggregated queue lengths for each flow,Q. We de-
note F (0≤F≤1) as the fraction of packets that were marked
in the last window of packets, and F is updated for every
window of packets. Both DCTCP and D2TCP compute F to
estimate the extent of congestion, and MCP further exploits
F to estimate queue lengths.

For our estimation, we abstract the DCN fabric as one
switch. Current data center topologies enable high bisec-
tion bandwidth in the fabric, which pushes the bandwidth
contention to the edge switches (assuming load-balancing is
done properly) [4, 24]. In particular, the bottleneck link usu-
ally occurs at the egress switch of the fabric. Our estimation
scheme therefore models the queueing behavior in the bot-
tleneck switch.

Figure 5 illustrates how a source s estimates the queue
length based on F . Assume the ECN threshold is K, the
current queue length is Q, and the last window size of s is
W . The fraction of packets in W of s that are marked by
ECN should be Q−K. Therefore, we have F≈Q−KW , and
thus Q̂≈K+F×W , which is the estimate we use for the
aggregated queue length for each source.

Estimating link prices: The link price represents the level
of congestion at the bottleneck link, and, for mathematical
tractability, we make the simplifying assumption that the
link is an M/M/1 queue [27], d(y)=1/(C−y). Therefore,
the price of the link is proportional to the derivative of the
delay function, d′(y)=(C−y)−2.The arrival rate can be di-
rectly obtained by two consecutive queue estimations at the
source: ŷ(t)= Q̂(t)−Q̂(t−τs(t))

τs(t)
.

4.2.2 Practical MCP algorithm
Using the above estimation and Eq.(10), the congestion

window update function of a practical MCP therefore is:

Ws(t+τs(t))+=τs(t)(Θ(γs(t),
Ws(t)
τs(t)

)−(K+Fs(t)Ws(t)+λ(t))) (11)

where λ(t)=(C−Fs(t)Ws(t)−Fs(t−τs(t))Ws(t−τs(t))
τs(t)

)−2.
We evaluate this algorithm in experiments (§8.1) and sim-

ulations (§8.2).

4.2.3 Early flow termination
Some flows may need to be terminated before their dead-

lines in order to ensure that other flows can meet theirs.
Optimally selecting such flows has been shown to be NP-
hard [22]. We propose an intuitive heuristic for MCP to ter-
minate a flow when there is no chance for it to complete be-
fore its deadline: when the residual rate of the flow is larger
than the link capacity, the flow will be aborted: Zs(t)>
minl∈L(s)Cl, where Zs(t) is the virtual queue of the flow,
which stores the accumulative differences between the ac-
tual rates and the expected rates. Zs(t) is therefore a past
performance indicator for this flow. This criterion implies
that the capacity of the path is no longer sufficient for fin-
ishing before the deadline. Early termination of flows gives
more opportunities for other flows to meet deadlines [39].
We evaluate this criterion in §8.1.3.

5. HANDLING NON-DEADLINE FLOWS
To consumer the bandwidth left over by type 1 flows,

Karuna employs aggressive rate control such as DCTCP [3]
for type 2&3 flows. Further, it leverages multiple lower pri-
ority queues in the network to minimize FCT of these flows.

5.1 Splitting type 2 flows
Since the sizes for type 2 flows are known, implementing

SJF over them is conceptually simple. Karuna splits these
flows to different priority queues according to their sizes:
Smaller flows are sent to higher priority queues than larger
flows. In our implementation, using limited number of pri-
ority queues, Karuna approximates SJF by assigning each
priority to type 2 flows within a range of sizes. We denote
{βi} as the splitting thresholds, so that a flow with size x
is given priority i if βi−1<x≤βi (β0=0 and βK=∞). With
this, we formulate and solve an optimization problem to ob-
tain the optimal splitting thresholds for different priorities
(see Appendix A for details). Karuna effectively performs
quantized SJF on type 2 flows using these thresholds.

5.2 Sieving type 3 flows
Type 3 flows differ from type 2 flows in that their sizes are

unknown. As a result, there is no ground-truth for Karuna to
directly split type 3 flows into different priority queues for
approximating SJF. Inspired by PIAS [6] and Least Attained
Service scheduling [15, 16], Karuna addresses this issue by
sieving type 3 flows through multiple priority queues, which
emulates SJF without knowing flow sizes.

Specifically, in the lifetime of a type 3 flow, Karuna sieves
it from higher priority queues to lower priority queues based
on the number of bytes it has sent. In this process, smaller
flows are likely to complete in the first few priority queues,



whereas long flows eventually sink to the lowest priority
queues. In this way, Karuna ensures that short type 3 flows
are generally prioritized over long flows. All type 3 flows
are at first given the highest priority, and they are moved to
lower priorities as they send more bytes. The sieving thresh-
olds are denoted as {αi}. A flow, which has transmitted x
bytes, is given priority i if αi−1<x≤αi.

The idea of sieving type 3 flows to minimize FCT has
been well studied in [6]. However, in Karuna, we need to
address both type 2 and type 3 flows together, which is a
different problem. We reformulate the threshold optimiza-
tion problem in [6] to jointly solve for the splitting thresh-
olds for type 2 flows, and the sieving thresholds for type 3
flows. We pose this as a sum-of-quadratic-ratios problem,
for which the solution in [6] is not applicable. Therefore,
we relax the problem to a quadratic programming problem
with linear constraints, and solve the relaxed problem (see
Appendix A). We further investigate the effectiveness and
robustness of the optimized thresholds in §8.2.1 and §8.2.3.

6. PRACTICAL ISSUES
We further examine several practical issues with Karuna,

and discuss how to solve them.

Starvation: Using strict priority queueing in switches can
potentially starve certain flows. A key benefit of Karuna is
that it throttles deadline flows in the first priority queue us-
ing conservative rates, leaving the rest of bandwidth to non-
deadline flows. In the extreme case, if deadline flows have
to take up all the bandwidth for their deadlines, non-deadline
flows will starve. There is not much a transport mechanism
can do in such case, and the operators should consider in-
creasing the network capacity.

In another scenario, deadline flows and small non-deadline
flows in the higher priority queues can starve large non-
deadline flows in the lowest priority queue. To counter this,
we employ flow aging to elevate the priority of the flows that
are being starved. Karuna identifies starved flows at end-
hosts by observing time-out events. For example, when a
flow experiences κ TCP timeouts, Karuna elevates this flow
to a higher priority. In our implementation, if it is a type 2
flow, we re-split it to the queue based on the remaining size;
if it is a type 3 flow, we move it to the highest priority queue
for non-deadline flows (Queue 2) and let it re-sieve. We pick
κ from [2,10] uniformly at random for each flow, so that two
long flows with similar size can avoid synchronization and
congestion collapse [12]. Lifting the priorities of different
flows with a random κ allows some of them to have higher
priority earlier (and thus finish earlier). We note that such
priority elevation may potentially lead to packet re-ordering,
but it is not a serious issue, since TCP can handle it well for
long flows. In our experiments, we found that flow aging
is effective in solving starvation, and priority elevation does
not have negative side-effects (see §8.1.3 and §8.2.2).

Traffic variation across time and space: Traffic in DCNs
can vary across both time and space. Fortunately, such traffic
variation does not affect type 1 flows, because type 1 flows
are protected in highest priority queue. However, it does

potentially affect types 2&3 flows, because they need to be
split or sieved into multiple queues according to respective
thresholds derived from a global traffic distribution. As a
result, Karuna needs to dynamically update the thresholds
as traffic varies.

It is challenging to accurately match the thresholds to the
traffic. First, the distribution is always changing, and it takes
time to collect sizes and distribute thresholds. Second, traf-
fic also varies in space, and thresholds derived from a global
distribution may not be perfect for each switch. When there
is a mismatch between the traffic and thresholds, either pack-
ets of long flows are mis-split (type 2) or stay too long (type
3) in the higher priority queue, or packets of short flows are
mis-split (type 2) or get prematurely sieved (type 3) to the
lower priority queue. In both cases, the outcome is that short
flows may queue behind long flows, increasing their latency.

We find that ECN used in network term estimation can
also be used to to address this problem. With ECN, we can
effectively keep low buffer occupation and minimize the im-
pact of long flows on short flows. In our evaluation, we find
this effectively addresses such thresholds-traffic mismatch
and makes Karuna resilient to traffic variation (see §8.1.3
and §8.2.3).

One benefit of Karuna’s resilience to traffic variation is
that Karuna can afford to update thresholds infrequently. Thus,
we periodically update the thresholds at a fixed time period,
determined by the time it takes to collect/distribute infor-
mation from/to the network (which depends on its scale).
However, our threshold computation (see Appendix) is fast,
taking at most seconds, irrespective of network scale.

Traffic statistics collection & threshold distribution: Com-
puting thresholds requires flow size information from the en-
tire network. It is impractical and time-consuming to collect
and analyze complete traffic traces in large DCNs [34]. In-
stead, we design our end-host module (§7) to be capable of
collecting flow information including sizes for all flows, and
reporting to a centralized entity which computes the thresh-
olds. The reporting and computation are done periodically,
and in each period, a new set of thresholds are distributed to
the end-host modules.

Coflow scheduling in Karuna: Coflow [13, 14, 17] is an
important abstraction that identifies the inter-dependencies
between flows. Karuna can facilitate coflow scheduling by
exposing priorities in the network layer. Coflows with dead-
lines can be simply treated as type 1 flows in Karuna, and
their deadlines can be met with the highest priority.

For the other 2 types, coflow scheduling requires applica-
tion level coordination across multiple servers to determine
the schedule–the order of transmission of coflows. With
Karuna, such an order can be easily expressed with priori-
ties in packets, and a similar idea, Smart Priority Class, has
already been explored in a recent proposal (Baraat [17]) for
decentralized coflow scheduling, where coflows mapped to
a higher priority class get strict precedence over those in a
lower priority class, and flows of the same class share band-
width. Karuna can be readily employed in Baraat.



7. IMPLEMENTATION
We have implemented a Karuna prototype. We describe

each component of the prototype in detail.

Information passing: For type 1 and 2 flows, Karuna needs
to get the flow information (i.e., sizes and deadlines) to en-
force flow scheduling. Such information is also required by
previous works [4, 22, 30, 38, 39]. Flow information can be
obtained by patching applications in user space. However,
passing flow information down to the network stack in ker-
nel space is still a challenge, which has not been explicitly
discussed in prior works.

To address this, in our implementation of Karuna, we use
setsockopt to set the mark for each packet sent through
a socket. mark is an unsigned 32-bit integer variable of
sk_buff structure in Linux kernel. By modifying the value
of mark for each socket, we can easily deliver per-flow in-
formation into kernel space. Given that mark only has 32
bits, we use 12 bits for deadline information (ms) and the
remaining 20 bits for size information (KB) in the imple-
mentation. Therefore, mark can represent 1GB flow size
and 4s deadline at most, which can meet the requirements of
most data center applications [3].

Packet tagging: This module maintains per-flow state and
marks packets with a priority at end hosts. We implement it
as a Linux kernel module. The packet tagging module hooks
into the TX datapath at Netfilter Local_Out, residing
between TCP/IP stacks and TC.

The operations of the packet tagging modules are as fol-
lows: 1) when a outgoing packet is intercepted by Netfilter
hook, it will be directed to a hash-based flow table. 2) Each
flow in the flow table is identified by the 5-tuple: src/dst IPs,
src/dst ports and protocol. For each new outgoing packet,
we identify the flow it belongs to (or create a new flow en-
try) and update per-flow state (extract flow size and deadline
information from mark for type 1&2 flows and increase the
amount of bytes sent for type 3 flows).7 3) Based on the flow
information, we modify the the DSCP field in the IP header
correspondingly to enforce packet priority.

Today’s NICs use various offload mechanisms to reduce
CPU overhead. When Large Segmentation Offloading (LSO)
is enabled, the packet tagging module may not be able to set
the right DSCP value for each individual MTU-sized packet
with one large segment. To understand the impact of this
inaccuracy, we measure the lengths of TCP segments with
payload data in our 1G testbed. The average segment length
is only 7.2KB which has little impact to packet tagging. We
attribute this to the small TCP window size in the data center
network with small bandwidth delay product (BDP). Ideally,
packet tagging should be implemented in the NIC hardware
to completely avoid this issue.

Rate control: Karuna employs MCP for type 1 flows and
DCTCP [3] for type 2&3 flows at end hosts. For DCTCP
implementation, we use DCTCP patch [2] for Linux ker-

7For persistent TCP connections, we can periodically update
flow states (e.g. , reset bytes sent to 0 for type 3 flows that
are idle for some time).

nel 2.6.38.3. We implement MCP as a Netfilter kernel
module at receiver side inspired by [40]. The MCP mod-
ule intercepts TCP packets of deadline flows and modifies
the receive window size based on the MCP congestion con-
trol algorithm. This implementation choice avoids patching
network stacks of different OS versions.

MCP updates the congestion window based on the RTT
and the fraction of ECN marked packets each RTT (Eq.(11)).
Therefore, accurate RTT estimation is important for MCP.
We can only estimate RTT using TCP timestamp option since
the traffic from the receiver to the sender may not be enough.
However, the current TCP timestamp option is in millisec-
ond granularity which cannot meet the requirement of data
center networks. Similar to [40], we modify timestamp to
microsecond granularity.

Switch configuration: Karuna only requires ECN and strict
priority queueing, both of which are available in existing
commodity switches [4, 5, 30]. We enforce strict priority
queueing at the switches and classify packets based on the
DSCP field. Like [3], we configure ECN marking based on
the instant queue lengths with a single marking threshold.

We observe that some of today’s commodity switching
chips provide multiple ways to configure ECN marking. For
our Broadcom BCM#56538, it supports ECN marking on
different egress entities (queue, port and service pool). In
per-queue ECN marking, each queue has its own marking
threshold and performs independent ECN marking. In per-
port ECN marking, each port is assigned a single marking
threshold and packets are marked when the sum of all queue
sizes belong to this port exceeds the marking threshold. Per-
port ECN marking cannot provide the same isolation be-
tween queues as per-queue ECN. Interested readers may re-
fer to [7] for detailed discussions on ECN marking schemes.

Despite this drawback, we still employ per-port ECN for
two reasons. First, per-port ECN marking has higher burst
tolerance. For per-queue ECN marking, each queue requires
an ECN marking threshold h to fully utilize the link inde-
pendently (e.g, DCTCP requires h=20 packets for 1G link).
When all the queues are active, it may require the shared
memory be at least the number of queues times the mark-
ing threshold, which cannot be supported by most shallow
buffered commodity switches. (e.g. our Gigabit Pronto 3295
switch has 384 queues and 4MB shared memory for 48 ports
in total). Second, per-port ECN marking can mitigate the
starvation problem, as it pushes back high priority flows when
many packets of low priority flows get queued in the switch
(see §8.1.3).

8. EVALUATION
We evaluate Karuna using testbed experiments and ns-3

simulations. The result highlights include:

• Karuna maintains low deadline miss rate (<5.8%) while
greatly reducing the 95th percentile FCT of non-deadline
flows by up to 47.78%, compared to pFabric, at heavy
load (§8.2.1, we attribute this result to the facts shown in
§8.1.1 and §8.1.2).



Flow# Size Deadline Start Time
1 14.4MB 20ms 1ms
2 48MB 120ms 1ms
3 3MB 5ms 50ms
4 0.5MB 10ms 80ms
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Figure 6: Karuna completes type 1 flows conservatively.

• The aging mechanism effectively addresses starvation and
reduces FCT for long type 2&3 flows (§8.2.2).

• Karuna is resilient to traffic variation. Type 1 flows adapt
to traffic dynamics well and keep close to 0 deadline miss
rates in all scenarios. For type 2&3 flows, Karuna per-
forms the best when the thresholds match the traffic, but
it slightly degrades when mismatch occurs (§8.2.3, we at-
tribute this partially to the fact in §8.1.3).

• While queue length estimation becomes inaccurate in ex-
treme scenarios (oversubscribed network with multiple
bottlenecks), Karuna still shows low (<7.9%) deadline
miss rate for 2 bottlenecks at full load (§8.2.4).

8.1 Testbed experiments
Our testbed experiments focus on micro benchmarks us-

ing synthetic traffic. The main goal is to show how Karuna
works, thus leading to the simulation results in §8.2.

Setting: We built a small testbed that consists of 16 servers,
each with a 4-core Intel 2.8GHz CPU and 8G memory. The
servers run Debian 6.0-64bit with Linux 2.6.38.3 kernel and
are equipped with a Broadcom BCM5719 NetXtreme Giga-
bit Ethernet NICs. NIC offload mechanisms are enabled by
default to reduce the CPU overhead. All the servers are con-
nected to a Pronto 3295 48-port Gigabit Ethernet switch with
4MB shared memory. Our switch supports ECN and strict
priority queuing with at most 8 class of service queues [1].
Our base RTT is ∼100µs.

Karuna uses 8 priority queues by default. We set per-port
ECN marking threshold to be 30KB as [3] recommends. We
develop a client/server model to generate traffic and measure
the FCT on application layer. The client application, running
on 1 server, generates requests to the other 15 servers to fetch
data. Following [4, 6, 30], the requests are generated with a
Poisson process.
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Figure 7: Karuna emulates SJF for type 2&3 flows.
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Figure 8: Effect of early flow termination.

8.1.1 How Karuna meets deadlines of type 1 flows?
MCP takes just enough bandwidth to meet the deadlines

of type 1 flows, so that it can leave more bandwidth to type
2&3 flows. To demonstrate this, we showcase Karuna’s be-
havior using a simple testbed experiment in Figure 6. In
this experiment, four flows sharing a 1Gbps link. We ob-
serve that deadline flows in Karuna proceed conservatively
as expected, and finish right before their deadlines. How-
ever, for DCTCP, lows 1 and 3 miss their deadlines by 21ms
and 13ms, whereas flows 2 and 4 finish much earlier before
their respective deadlines using more bandwidth. pFabric8

meets all deadlines by consuming full bandwidth.

8.1.2 How Karuna minimizes FCT of type 2&3
flows?

Karuna optimizes FCT for type 2&3 flows by emulating
SJF. Type 2 flows, given priorities based on size, are sched-
uled with quantized SJF. We proceed to show that type 3
flows are also indeed scheduled in SJF-like fashion. We run
Web Search workload (Figure 12) at 80% load and com-
pare Karuna with DCTCP, a fair-sharing scheme. Figure 7
shows the FCT results across different sizes. We observe the
trend that, for small to medium sized flows Karuna is better
than fair-sharing, and for larger sized flows Karuna is worse
than fair-sharing. This indicates that Karuna emulates SJF
on type 3 flows even though their sizes are not known be-
forehand.

8.1.3 Deep dive

Effect of flow termination: Early termination of type 1
flows based on its residual rate gives other flows more band-
width to achieve their deadlines. We evaluate 3 schemes of
flow termination in Figure 8: 1) termination based on Z(t)
(§4.2.3), 2) termination based on expected rate (i.e. when
γ(t)>C, similar to [39]), and 3) no termination. We observe
that Scheme 1 has overall better performance: it terminates
more flows than Scheme 2, but has fewer deadline misses

8Approximated by giving flows pre-determined priorities.
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(terminated flows count as miss). This shows that Scheme 2
is too lenient in termination, and some flows still send when
they cannot meet their deadline, wasting bandwidth.

Effect of ECN: To evaluate the effect of ECN in handling
the threshold-traffic mismatch, we create a contrived work-
load where 80% of flows are 30KB and 20% are 10MB and
conduct the experiment at 80% load. We assume all the
flows are type 3 flows and allocate 2 priority queues. Ob-
viously, the optimal sieving threshold should be 30KB. We
intentionally run experiments with three thresholds 20KB,
30KB and 2MB. In the first case, the short flow sieves to
the low priority too early, while in the third case, the long
flows over-stay in the high priority queue. In both cases,
packets of short flows may experience large delay due to the
queue built up by long flows. Figure 9 shows the FCT of
30KB flows with and without ECN. When the threshold is
30KB, both schemes achieve ideal FCT. Karuna w/o ECN
even achieves 9% lower FCT due to the spurious marking
of per-port ECN. However, with a larger threshold (2MB)
or a smaller threshold (20KB), Karuna achieves 57%∼85%
lower FCT compared to Karuna w/o ECN at both average
and 99th percentile. With ECN, we can effectively control
the queue build-up, thus mitigating the effect of threshold-
traffic mismatch.

Effect of number of queues: In Figure 10, we inspect the
impact of queue number on FCT of type 2&3 flows. For
this experiment, we use traffic generated from Web Search
workload and consider 2, 4 and 7 priority queues (the first
queue is reserved for type 1 flows). We observe that: 1)
more queues leads to better average FCT in general. This is
expected because, with more queues, Karuna can better seg-
regate type 2&3 flows into different queues, thus improving
overall performance; 2) the average FCT of short flows are

Figure 11: Spine-leaf topology in simulation.
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comparable in all three cases. This indicates that with only
2 queues, the short flows benefit most from Karuna.

8.2 Large-scale simulations
Our simulations evaluate Karuna using realistic DCN work-

loads on a common DCN topology. We test the limits of
Karuna in deadline completion, starvation, traffic variation,
and bottlenecked scenarios.

Topology: We perform large scale packet-level simulations
with ns-3 [33] simulator, and use fnss [35] to generate dif-
ferent scenarios. We use a 144-server spine-and-leaf fabric
(Figure 11), a common topology for production DCNs [4]
with 4 core switches, 9 ToRs, and 16 servers per ToR. It is a
multi-hop, multiple bottleneck setting, which complements
our testbed evaluations. We use 10G link for server to ToR
links, and 40G for ToR uplinks.

Traffic workloads: We use two widely-used [3, 6, 20, 30]
realistic DCN traffic workloads: a web search workload [3]
and a data mining workload [20]. In these workloads, more
than half of the flows are less than 100KB in size, which
reflects the nature of DCN traffic in practice. However, in
some parts of the network, the traffic may be biased towards
large sizes. For a more comprehensive study, we also create
the “Long Flow” workload to cover this case. In this work-
load, the size is uniformly distributed from 1KB to 10MB,
which means that half of the flows are larger than 5MB. The
CDFs of flow sizes from the 3 workloads are shown in Fig-
ure 12. Unless specified, each flow type (§2.1) amounts to
1/3 of overall traffic. As in [4, 6, 30], flow arrival follows a
Poisson process and the source and destination for each flow
is chosen uniformly at random. We vary flow arrival rate
(λarr) to obtain a desired load (ρ=λarr·E(F ), where E(F )
is the average flow size for flow size distribution F ).

We compare Karuna with DCTCP, D2TCP, D3, and pFab-
ric. To compare with DCTCP, we follow the parameter set-
ting in [3], and set the switch ECN marking threshold as
65 packets for 10Gbps links and 250 packets for 40Gbps
links. We implemented D2TCP and D3 in ns-3, including
the packet format and switch operations in [39]. Follow-
ing [38], 0.5≤d≤2 for D2TCP, and the base rate for D3 is
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one segment per RTT. For pFabric, we follow the default
parameter setting in [30], and it runs EDF scheduling as in
§2.2. Each simulation runs for 60s (virtual time).

8.2.1 Key strength of Karuna
Karuna reduces FCT for non-deadline flows without sac-

rificing much for deadline flows. To show this, we compare
Karuna with deadline-aware schemes, D3, D2TCP, pFabric
(EDF). In this simulation, we choose flow sizes from data
mining workload, and source-destination pairs are randomly
chosen. We control the load of type 1 flows (total expected
rate Γ) by assigning deadlines as follows: we record the to-
tal expected rates of all active type 1 flows Γ̃, and for each
new flow, if Γ̃<Γ, we tag this flow as type 1 and assign a
deadline to achieve Γ as much as possible (minimum dead-
line is 5ms); otherwise we tag it as type 2 or 3 uniformly at
random. We vary Γ from 80% to 95%. The total network
load is fixed at 95%.

In Figure 13(a), we observe that Karuna maintains low (<
5.8%) deadline miss rate, comparable to D2TCP (only los-
ing to optimal pFabric (EDF)), while in (b) Karuna achieves
51.92%, 37.07%, and 47.78% less the 95th percentile FCT
than D3, D2TCP, and pFabric respectively, at maximum load.
In fact, Karuna completes ∼100× more non-deadline flows
(15123 compared to 1338 for pFabric, 834 for D2TCP when
Γ=95%) in the simulation. We note that MCP is not an opti-
mal deadline scheduling discipline like EDF, and is bound to
miss some deadlines which only EDF can satisfy. However,
the value of Karuna is that it allows non-deadline flows to re-
duce their FCT in presence of deadline flows, while achiev-
ing comparable deadline completion to previous deadline-
aware schemes. Therefore, Karuna can provide substantial
benefits to applications in §2.1.

8.2.2 Aging mechanism against starvation
In this simulation, we use the Long Flow (LF) traffic at

80% load, because we observe very few cases of starvation
in the other two realistic workloads. We compare the fol-
lowing schemes for aging as shown in Figure 14: for type
2 flows: 1) "One Higher", which elevates the flow one pri-
ority higher (the common approach in OS [37]); 2) "Rem.
Size", which elevates the flow to the priority corresponding
to its remaining size (Karuna’s approach); for type 3 flows:
3) "One Higher" is the same as 2); 4) "Highest", which ele-
vates the flow to the highest priority (i.e. Queue 2; Karuna’s
approach).

In Figure 14, we find that, with aging, the FCT of large
flows is much smaller than that without aging for both type
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Figure 14: Aging against starvation in Karuna.

Scenario Index WS (80%) DM (80%) LF (80%)
Set 1: thresholds for WS 60% load 1 5 9
Set 2: thresholds for WS 80% load 2 6 10
Set 3: thresholds for DM 60% load 3 7 11
Set 4: thresholds for DM 80% load 4 8 12
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Figure 15: Deadline miss rates in different scenarios.

2&3 flows. We also observe that scheme 2 achieves better
performance than scheme 1, and scheme 4 achieves better
performance than scheme 3. This is because, in this multi-
priority queueing system, moving upward for one priority
does not always stop starvation. When starvation occurs, the
starved flow may be blocked by flows that are a few priorities
above, so the flow may still starve with just one priority up.
In summary, aging effectively handles starvation in Karuna,
and therefore improves FCT for long flows.

8.2.3 Resilience to traffic variation
We study Karuna’s sensitivity to threshold settings, which

include the splitting thresholds {β}, and the sieving thresh-
olds {α}. Specifically, we calculate 4 sets of [{α},{β}]
thresholds: Set 1 and Set 2 are the thresholds calculated for
the web search (WS) workload at 60% and 80% load; and
Set 3 and Set 4 are the thresholds calculated for the data min-
ing (DM) workload at 60% and 80% load, respectively. For
these 4 sets of thresholds, we pair them with different work-
loads (all at 80% load) to create the 12 scenarios shown in
Figure 15 (table at the top). Among these, except scenarios
#2 and #8, all the other 10 scenarios create threshold-traffic
mismatch. Each type contributes 1/3 of the overall traffic.

First, we check deadline completion for type 1 flows for
all scenarios in Figure 15. Karuna achieves close-to-zero
deadline miss rates for type 1 flows in all the scenarios. This
is because type 1 flows reside in the highest priority queue,
thus can be protected from traffic variations.

Second, we examine the FCT for type 2&3 flows. Fig-
ure 16 shows the average FCT of type 2 flows. For WS, the
thresholds match the traffic only in scenario #2, and this sce-
nario has the lowest FCT. We also find that scenario #1 has
comparable FCT to scenario #2, while scenarios #3 and #4
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Figure 16: AFCT performance for type 2 flows (The same trend
applies to type 3 flows).
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Figure 17: Karuna in bottlenecked environment.

have worse FCT, but not significant. For DM, the matched
case is scenario #8, which also has the lowest FCT, whereas
the FCTs for other scenarios are relatively worse. For LF,
the thresholds are mismatched in all the scenarios, and the
FCTs are longer compared to the first two groups. In all
cases, Karuna achieves better FCT than DCTCP. The similar
trend applies to type 3 flows as well (omitted for space).

In summary, for type 2&3 flows, Karuna performs the best
when the thresholds match the traffic, which demonstrates
the utility of the optimizations in Appendix A. When the
thresholds do not match the traffic, the FCT degrades only
slightly (but still much better than DCTCP), which shows
that Karuna is resilient to traffic variation, partially because
it has employed the ECN-based rate control to mitigate the
mismatch (as validated in §8.1.3).

8.2.4 Karuna in bottlenecked environments
All the above simulations assume a full bisection band-

width network, which fits the one switch assumption in esti-
mating network term in Eq.(11). To evaluate network term
estimation, we intentionally create high loads for cross-rack
deadline flows on 1 (destination ToR), 2 (source & desti-
nation ToRs), and 3 (source & destination ToRs, and core)
intermediate links. We obtain ground-truth queue length and
the estimated queue length in MCP in the simulator.

In Figure 17, for different loads on the bottleneck links,
we show the average queue estimation error (100%×| Q̂−QQ |)
and average deadline miss rates. We observe that the queue
estimation error increases when the setting deviates more
from our assumptions in (§4.2.1)—both load and number of
bottlenecks negatively affect the estimation accuracy. How-
ever, Karuna still manages to achieve <7.9% miss rate for
2 bottlenecks at 99% load. This is because inaccurate esti-
mation leads to accumulation of residual rates, and when the
deadline is near, the source term (Eq.(11)) drives up sending
rate for the flow to finish.

9. RELATED WORKS
There has been vast literature space on transport design.

Here we review works that are closely related to Karuna.
DCTCP [3] is a transport protocol designed for DCN. We

employ DCTCP in handling type 2&3 flows since its con-
gestion control scheme works well with ECN. Compared to
Karuna, DCTCP is deadline-unaware and unable to simulate
SJF because DCTCP flows share bandwidth.

For type 1 flows, D2TCP [38] adds deadline-awareness
to DCTCP, but it does not address type 2&3 flows. D3 [39]
deals with the deadline flows using a greedy approach, which
leads to priority-inversion problem (§4) and requires heavy
modifications to switches. A flexible transport framework,
FCP [21], also implements D3 with a pricing mechanism.
In contrast, Karuna ensures the completion of most deadline
flows, and also optimizes FCT for other types of flows.

PDQ [22] and pFabric [4] are both criticality-based flow
scheduling schemes, and they may hurt other types of flows
(see §2.2). In contrast, Karuna not only maintains high dead-
line meet rate of type 1 flows, it also leaves as much band-
width as possible for other flows, achieving lower FCT for
type 2&3 flows.

PASE [30] combines previous transport layer strategies to
reduce average FCT, but does not directly address the mix-
flow scheduling problem. Also, PASE requires coordinated
rate arbitration in the network control plane, whereas Karuna
requires only ECN support in the network.

PIAS [5] is an information agnostic flow scheduling scheme
that simulates SJF without knowing the flow sizes. PIAS is
effective for type 3 flows, but does not account for the other
types. Every flow in PIAS is treated as a type 3 flow, which
hurts the performance of the other 2 types. The sieving oper-
ation in Karuna is inspired by PIAS, but Karuna adds support
for type 1&2 flows.

It is worthwhile to note that MCP-like behaviors (just-in-
time strategy and smoothening out link usage) has been ex-
plored in areas other than flow scheduling: e.g. traffic engi-
neering [26] and guaranteeing job latencies [18].

For application developers, Karuna is flexible in terms of
information needed for scheduling. Most of the above pro-
tocols require developers to provide full information about
deadlines and sizes [4, 21, 22, 30, 38, 39]; on the other hand,
some cannot benefit from flow information [3, 6], even if
developers can provide them. In contrast, Karuna can take
advantage of any available information given by developers
to achieve performance benefits for all types of traffic.

10. CONCLUDING REMARKS
In this paper, we focused on how to schedule a mix of

flows in DCNs. This is an important and practical problem,
but has been neglected by prior work in this field. Karuna
resolves the tension between different types of flows with a
joint design of rate-control (MCP) and priority-based flow
scheduling with limited priorities in commodity switches.
Karuna is not designed to be an optimal flow scheduling
algorithm, but a mix-flow scheduling system that balances
the interests of deadline and non-deadline flows. At a high



level, Karuna trades off the average performance of one type
of traffic (type 1 flows)to improve the average and tail per-
formance of other traffic (type 2&3 flows).

Future work: We intend to explore different formulations
of the mix-flow problem with the goal of improving average
FCT for all types of flows, subject to deadline constraints for
type 1 flows. This formulation is more suitable if deadlines
represent the worst case requirements (e.g. Service Level
Agreement), not the expected performance as we have as-
sumed in the paper. For the current formulation, we plan to
improve the queue length estimation using models with less
assumptions (e.g. M/G/1). In addition, we intend to verify
the safety of the relaxations and approximations with pertur-
bation analysis.
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Appendix
A. OPTIMAL THRESHOLDS

We describe our formulation to derive optimal thresholds
for splitter and sieve to minimize the average FCT for type
2&3 flows.

Problem formulation: We take the flow size cumulative
density functions of different types as given. Denote F1(·),
F2(·), and F1(·) as the respective traffic distributions of the
three types, andF (·) as the overall distribution. Thus, F (·)=∑3
i=1Fi(·).

As in §5, type 2 flows are split into different priorities
based on their sizes with {β} as splitting thresholds, and
type 3 flows are sieved in a multi-level feedback queue with
{α} as sieving thresholds. We assume flows arrival follows
a Poisson process, and denote the load of network as ρ, 0≤
ρ≤1. For a type 2 flow with priority j, the expected FCT is
upper-bounded by [28]:

T
(2)
j =

ρ(F2(βj)−F2(βj−1))
1−ρ(F1(αK)+F2(βj−1)+F3(αj−1))

For a type 3 flow with size in [αj−1,αj), it experiences
the delays in different priorities upto the j-th priority. An
upper-bound is identified as [5]:

∑j
l=1T

(3)
l , where T (3)

l is
the average time of a type 3 flow spent in the j-th queue.
Thus:

T
(3)
l = ρ(F3(αl)−F3(αl−1))

1−ρ(F1(αK)+F2(βl−1)+F3(αl−1))

We identifies the problem as choosing an optimal set of
thresholds {α,β} to minimize the objective: the average FCT
of type 2&3 flows in the network:

min
{α},{β}

K∑
l=1

T
(2)
l +

K∑
l=1

(F3(αl)−F3(αl−1))

l∑
m=1

T (3)
m )

subject to α0=0,αK=∞,αj−1<αj ,j=1,...,K

β0=0,βK=∞,βj−1<βj ,j=1,...,K

To simplify the notations, we define φj=F2(βj)−F2(βj−1)
and θj=F3(αj)−F3(αj−1). Thus, φj denotes the percent-
age of type 2 flows with sizes in [βj−1,βj), and θj denotes
the percentage of type 3 flows with sizes in [αj−1,αj). And
the objective can be transformed equivalently to:

min
{φ},{θ}

ρ
∑K
l=1

φl+θl
∑l−1

i=1θi

1−ρF̂1−ρ
∑l−1

i=1(θi+φi)

where F̂1=F1(∞), the fraction of type 1 flows.

Solution method: We identify this as a quadratic sum-of-
ratios problem (due to the term θl

∑l−1
i=1θi), which has been

thoroughly investigated by applied mathematical modeling
and optimizations communities [23, 25, 36]. We use relax-
ation technique, and solve for the lower-bound of the objec-
tive. Notice that 1−F̂1−ρ

∑l−1
i=1(θi+φi) is strictly smaller

than 1, thus ρ
∑K
l=1φl+θl

∑l−1
i=1θi must be the lower bound

of the objective for all possible choices of the thresholds.
Therefore, we look for a set of percentages {φ} and {θ} that
minimize the lower-bound. The problem then becomes:

min
{θ},{φ}

K∑
l=1

(φl+θl

l−1∑
i=1

θi)

subject to
K∑
i=1

φi=F2(∞),
K∑
i=1

θi=F3(∞)

Now the problem is relaxed into a quadratic programming
problem with linear constraints, which can be solved us-
ing semidefinite programming packages available in many
solvers. We use the CVX toolbox [19] for MATLAB to solve
the above problem. Since the complexity of the problem is
related to the number of queues in the switches, the scale
of the network is irrelevant, and we can solve it in under 10
seconds on a testbed machine.
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