
This paper is included in the Proceedings of the
14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’17).
March 27–29, 2017 • Boston, MA, USA

ISBN 978-1-931971-37-9

Open access to the Proceedings of the
14th USENIX Symposium on Networked

 Systems Design and Implementation
is sponsored by USENIX.

Let It Flow: Resilient Asymmetric Load Balancing
with Flowlet Switching

Erico Vanini and Rong Pan, Cisco Systems;
Mohammad Alizadeh, Massachusetts Institute of Technology;

Parvin Taheri and Tom Edsall, Cisco Systems

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini

Let it Flow: Resilient Asymmetric Load Balancing with Flowlet Switching

Erico Vanini∗ Rong Pan∗ Mohammad Alizadeh† Parvin Taheri∗ Tom Edsall∗
∗Cisco Systems †Massachusetts Institute of Technology

Abstract
Datacenter networks require efficient multi-path load
balancing to achieve high bisection bandwidth. Despite
much progress in recent years towards addressing this
challenge, a load balancing design that is both simple
to implement and resilient to network asymmetry has
remained elusive. In this paper, we show that flowlet
switching, an idea first proposed more than a decade ago,
is a powerful technique for resilient load balancing with
asymmetry. Flowlets have a remarkable elasticity prop-
erty: their size changes automatically based on traffic
conditions on their path. We use this insight to develop
LetFlow, a very simple load balancing scheme that is re-
silient to asymmetry. LetFlow simply picks paths at ran-
dom for flowlets and lets their elasticity naturally bal-
ance the traffic on different paths. Our extensive eval-
uation with real hardware and packet-level simulations
shows that LetFlow is very effective. Despite being much
simpler, it performs significantly better than other traffic
oblivious schemes like WCMP and Presto in asymmet-
ric scenarios, while achieving average flow completions
time within 10-20% of CONGA in testbed experiments
and 2× of CONGA in simulated topologies with large
asymmetry and heavy traffic load.

1 Introduction

Datacenter networks must provide large bisection band-
width to support the increasing traffic demands of ap-
plications such as big-data analytics, web services, and
cloud storage. They achieve this by load balancing traffic
over many paths in multi-rooted tree topologies such as
Clos [13] and Fat-tree [1]. These designs are widely de-
ployed; for instance, Google has reported on using Clos
fabrics with more than 1 Pbps of bisection bandwidth in
its datacenters [25].

The standard load balancing scheme in today’s data-
centers, Equal Cost MultiPath (ECMP) [16], randomly
assigns flows to different paths using a hash taken over
packet headers. ECMP is widely deployed due to its sim-
plicity but suffers from well-known performance prob-
lems such as hash collisions and the inability to adapt
to asymmetry in the network topology. A rich body of
work [10, 2, 22, 23, 18, 3, 15, 21] has thus emerged on

better load balancing designs for datacenter networks.
A defining feature of these designs is the informa-

tion that they use to make decisions. At one end of the
spectrum are designs that are oblivious to traffic con-
ditions [16, 10, 9, 15] or rely only on local measure-
ments [24, 20] at the switches. ECMP and Presto [15],
which picks paths in round-robin fashion for fixed-sized
chunks of data (called “flowcells”), fall in this category.
At the other extreme are designs [2, 22, 23, 18, 3, 21, 29]
that use knowledge of traffic conditions and congestion
on different paths to make decisions. Two recent exam-
ples are CONGA [3] and HULA [21], which use feed-
back between the switches to gather path-wise conges-
tion information and shift traffic to less-congested paths.

Load balancing schemes that require path congestion
information, naturally, are much more complex. Current
designs either use a centralized fabric controller [2, 8, 22]
to optimize path choices frequently or require non-trivial
mechanisms, at the end-hosts [23, 18] or switches [3, 21,
30], to implement end-to-end or hop-by-hop feedback.
On the other hand, schemes that lack visibility into path
congestion have a key drawback: they perform poorly in
asymmetric topologies [3]. As we discuss in §2.1, the
reason is that the optimal traffic split across asymmet-
ric paths depends on (dynamically varying) traffic con-
ditions; hence, traffic-oblivious schemes are fundamen-
tally unable to make optimal decisions and can perform
poorly in asymmetric topologies.

Asymmetry is common in practice for a variety of rea-
sons, such as link failures and heterogeneity in network
equipment [31, 12, 3]. Handling asymmetry gracefully,
therefore, is important. This raises the question: are
there simple load balancing schemes that are resilient
to asymmetry? In this paper, we answer this question in
the affirmative by developing LetFlow, a simple scheme
that requires no state to make load balancing decisions,
and yet it is very resilient to network asymmetry.

LetFlow is extremely simple: switches pick a path at
random for each flowlet. That’s it! A flowlet is a burst
of packets that is separated in time from other bursts by
a sufficient gap — called the “flowlet timeout”. Flowlet
switching [27, 20] was proposed over a decade ago as
a way to split TCP flows across multiple paths without
causing packet reordering. Remarkably, as we uncover in
this paper, flowlet switching is also a powerful technique

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 407

for resilient load balancing.
The reason for this resilience is that flowlet sizes are

elastic and change based on traffic conditions on dif-
ferent paths. On slow paths, with low per-flow band-
width and high latency, flowlets tend to be smaller be-
cause there is a greater chance of a flowlet timeout (a
large inter-packet gap for a flow). On fast paths, on the
other hand, flowlets grow larger since flowlet timeouts
are less likely to occur than on slow paths. This elastic-
ity property is rooted in the fact that higher layer con-
gestion control protocols like TCP react to traffic con-
ditions on the flow’s path, slowing down on congested
paths (which leads to smaller flowlets) and speeding up
on uncongested paths (which causes larger flowlets).

As a result of their elasticity, flowlets can compen-
sate for inaccurate load balancing decisions, e.g., deci-
sions that send an incorrect proportion of flowlets on
different paths. Flowlets accomplish this by changing
size in a way that naturally shifts traffic away from slow
(congested) paths and towards fast (uncongested) paths.
Since flowlet-based load balancing decisions need not be
accurate, they do not require explicit path congestion in-
formation or feedback.

The only requirement is that the load balancing algo-
rithm should not predetermine how traffic is split across
paths. Instead, it should allow flowlets to “explore” dif-
ferent paths and determine the amount of traffic on each
path automatically through their (elastic) sizes. Thus, un-
like schemes such as Flare [27, 20], which attempts to
achieve a target traffic split with flowlets, LetFlow sim-
ply chooses a path at random for each flowlet.

We make the following contributions:

• We show (§2) that simple load balancing ap-
proaches that pick paths in a traffic-oblivious man-
ner for each flow [31] or packet [15] perform poorly
in asymmetric topologies, and we uncover flowlet
switching as a powerful technique for resilient load
balancing in the presence of asymmetry.

• We design and implement LetFlow (§3), a sim-
ple randomized load balancing algorithm using
flowlets. LetFlow is easy to implement in hardware
and can be deployed without any changes to end-
hosts or TCP. We describe a practical implementa-
tion in a major datacenter switch.

• We analyze (§4) how LetFlow balances load on
asymmetric paths via detailed simulations and the-
oretical analysis. For a simplified traffic model, we
show that flows with a lower rate are more likely
to experience a flowlet timeout, and that LetFlow
tends to move flows to less-congested paths where
they achieve a higher rate.

• We evaluate (§5) LetFlow extensively in a small
hardware testbed and large-scale simulations across

S0 S1

L0 L1 L2

(a)

S0 S1

L0 L1

(b)
Figure 1: Two asymmetric topologies caused by link failure.
All links run at 40 Gbps. Figure 1b is our baseline topology.

a large number of scenarios with realistic traffic pat-
terns, different topologies, and different transport
protocols. We find that LetFlow is very effective.
It achieves average flow completion times within
10-20% of CONGA [3] in a real testbed and 2× of
CONGA in simulations under high asymmetry and
traffic load, and performs significantly better than
competing schemes such as WCMP [31] and an ide-
alized variant of Presto [15].

2 Motivation and Insights

The goal of this paper is to develop a simple load balanc-
ing scheme that is resilient to network asymmetry. In this
section, we begin by describing the challenges created by
asymmetry and the shortcomings of existing approaches
(§2.1). We then present the key insights underlying Let-
Flow’s flowlet-based design (§2.2).

2.1 Load balancing with Asymmetry
In asymmetric topologies, different paths between one
or more source/destination pairs have different amounts
of available bandwidth. Asymmetry can occur by de-
sign (e.g., in topologies with variable-length paths like
BCube [14], Jellyfish [26], etc.), but most datacenter net-
works use symmetric topologies.1 Nonetheless, asym-
metry is difficult to avoid in practice: link failures and
heterogeneous switching equipment (with different num-
bers of ports, link speeds, etc.) are common in large de-
ployments and can cause asymmetry [31, 24, 3]. For in-
stance, imbalanced striping [31], which occurs when the
switch radix in one layer of a Clos topology is not divisi-
ble by the number of switches in an adjacent layer creates
asymmetry (see [31] for details).

Figure 1 shows two basic asymmetric topologies that
we will consider in this section. The asymmetry here is
caused by the failure of a link. For example, in Figure 1a,
the link between L0 and S1 is down, thus any L0→ L2
traffic can only use the L0→ S0→ L2 path. This causes
asymmetry for load balancing L1→ L2 traffic.

1We focus on tree topologies [13, 1, 25] in this paper, since they are
by far the most common in real deployments.

408 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Scheme Granularity Information needed to make decisions Handle asymmetry?
ECMP [16] Flow None No

Random Packet Scatter [10] Packet None No
Flare [20] Flowlet Local traffic No

WCMP [31] Flow Topology Partially
DRB [9] Packet Topology Partially

Presto [15] Flowcell (fixed-sized units) Topology Partially
LocalFlow [24] Flow with selective splitting Local traffic + Topology Partially

FlowBender [18] Flow (occasional rerouting) Global traffic (per-flow feedback) Yes
Hedera [2], MicroTE [8] Flow (large flows only) Global traffic (centralized controller) Yes

Fastpass [22] Packet Global traffic (centralized arbiter) Yes
DeTail [30] Packet Global traffic (hop-by-hop back-pressure) Yes

MPTCP [23] Packet Global traffic (per-flow, per-path feedback) Yes
CONGA [3] Flowlet Global traffic (per-path feedback) Yes
HULA [21] Flowlet Global traffic (hop-by-hop probes) Yes

LetFlow Flowlet None (Implicit feedback via flowlet size) Yes
Table 1: Comparison of existing load balancing schemes and LetFlow. Prior designs either require explicit information about
end-to-end (global) path traffic conditions, or cannot handle asymmetry.

1	

2	

4	

8	

16	

32	

64	

Traffic-‐based	 Weights	 Equal	 Weights	

Av
g.
	 F
CT

	 (n
or
m
.	 t
o	
CO

N
G
A)
	 Flow	

Packet	
Flowlet	

Figure 2: Load balancing dynamic traffic with asymmetry.
Randomized per-flow and per-packet load balancing are signif-
icantly worse than CONGA, even with traffic-based (but static)
weights; per-flowlet performs nearly as well as CONGA.

Why is asymmetry challenging? Load balancing in
asymmetric topologies is difficult because the optimal
split of traffic across paths in asymmetric topologies gen-
erally depends on real-time traffic demands and conges-
tion on different paths [3]. By contrast, in symmetric
topologies, splitting traffic equally across all (shortest)
paths is always optimal, regardless of traffic conditions.

As an example, consider the topology in Figure 1a.
Suppose the workload consists of L0→ L2 and L1→ L2
traffic. How should the L1→ L2 traffic be split across the
two paths through S0 and S1? It is not difficult to see that
the ideal split depends on the amount of L0→ L2 traffic.
For example, if all the traffic is between L1 and L2, then
we should send half of the traffic via S0, and half via S1.
However, if there is 40 Gbps of L0→ L2 traffic, then the
L1→ L2 traffic should avoid S0 as much as possible.

Table 1 compares several proposed load balancing
schemes along two key dimensions: (1) the informa-
tion they use to make load balancing decisions; and (2)
the decision granularity (we discuss this aspect later).
Load balancing designs that rely on explicit end-to-end
(global) information about traffic conditions on different
paths can handle asymmetry. There are many ways to
collect this information with varying precision and com-
plexity, ranging from transport-layer signals (e.g., ECN
marks), centralized controllers, and in-network hop-by-
hop or end-to-end feedback mechanisms. An example
is CONGA [3], which uses explicit feedback loops be-
tween the top-of-rack (or “leaf”) switches to collect per-

path congestion information.
By contrast, schemes that are oblivious to traffic con-

ditions generally have difficulty with asymmetry. This is
the case even if different paths are weighed differently
based on the topology, as some designs [31, 9, 15, 24]
have proposed. Using the topology is better than noth-
ing, but it does not address the fundamental problem of
the optimal traffic splits depending on real-time traffic
conditions. For instance, as we show next, knowing the
topology does not help in the above scenario.

Asymmetry with dynamic workloads. Real datacen-
ter traffic and congestion is highly dynamic [6, 7]. Since
servers run at the same speed (or nearly the same speed)
as network links, congestion can quickly arise as a few
high rate flows start, and just as quickly dissipate as
these flows end. The dynamism of real datacenter work-
loads makes load balancing in asymmetric topologies
even more challenging, because the load balancing al-
gorithm must adapt to fast-changing traffic conditions.

To illustrate the issue, consider again the topology in
Figure 1a, and suppose that servers under switches L0
and L1 send traffic to servers under L2. The traffic is
generated by randomly starting flows of finite length via
a Poisson process, with a realistic distribution of flow
sizes (details in §5). The average rate for L0→ L2 and
L1→ L2 traffic are 20 Gbps and 48 Gbps respectively.

Ideally, the load balancer at leaf L1 should dynami-
cally split traffic based on real-time L0→ L2 traffic. We
consider simple randomized load balancing instead, with
(1) equal weights for the two paths; (2) a higher weight
(roughly 2.4-to-1) for the S1-path compared to the S0-
path. This weight is set statically to equalize the average
load on the two paths. This represents a hypothetical sys-
tem (e.g., a centralized controller) that optimizes the path
weights using long-term traffic estimates.

Figure 2 shows the average FCT for both weight set-
tings with load balancing decisions made on a per-flow,
per-packet, and per-flowlet granularity. The results are
normalized to the average FCT achieved by CONGA [3]
for reference. The per-flow case is identical to ECMP
and WCMP [31]. The per-packet case provides an up-

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 409

per bound on the performance of schemes like Random
Packet Scatter [10] and Presto [15] that balance load
on a finer granularity with static weights.2 (We discuss
the per-flowlet case later.) The results show that ran-
domized traffic-oblivious load balancing at per-flow and
per-packet granularity performs significantly worse than
CONGA with both weight settings.

In summary, existing load balancing designs either ex-
plicitly use global path congestion information to make
decisions or do poorly with asymmetry. Also, static
weights based on the topology or coarse traffic estimates
are inadequate in dynamic settings. In the next section,
we describe how LetFlow overcomes these challenges.

2.2 Let the Flowlets Flow

Consider Figure 2 again. Remarkably, the same ran-
domized load balancing scheme that did poorly at the
per-flow and per-packet granularities performs very well
when decisions are made at the level of flowlets [27, 20].
Picking paths uniformly at random per flowlet already
does well; optimizing the path weights further improves
performance and nearly matches CONGA.

Recall that flowlets are bursts of packets of the same
flow that are sufficiently apart in time that they can be
sent on different paths without causing packet reorder-
ing at the receiver. More precisely, the gap between two
flowlets must exceed a threshold (the flowlet timeout)
that is larger than the difference in latency among the
paths; this ensures that packets are received in order.

Our key insight is that (in addition to enabling fine-
grained load balancing) flowlets have a unique property
that makes them resilient to inaccurate load balancing de-
cisions: flowlets automatically change size based on the
extent of congestion on their path. They shrink on slow
paths (with lower per-flow bandwidth and higher latency)
and expand on fast paths. This elasticity property allows
flowlets to compensate for poor load balancing decisions
by shifting traffic to less-congested paths automatically.

We demonstrate the resilience of flowlets to poor load
balancing decisions with a simple experiment. Two leaf
switches, L0-L1, are connected via two spine switches,
S0-S1, with the path through S1 having half the capacity
of the path through S0 (see topology in Figure 1b). Leaf
L0 sends traffic — consisting of a realistic mix of short
and large flows (§5) — to leaf L1 at an average rate of
112 Gbps (over 90% of the available 120 Gbps capacity).

We compare weighted-random load balancing on a
per-flow, per-packet, and per-flowlet basis, as in the pre-
vious section. In this topology, ideally, the load balancer
should pick the S0-path 2/3rd of the time. To model in-

2Our implementation of per-packet load balancing includes an ideal
reordering buffer at the receiver to prevent a performance penalty for
TCP. See §5 for details.

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

Av
er
ag
e	
FC
T	
(n
or
m
.	 t
o	
be

st
)	

%	 of	 Decisions	 for	 S0-‐Path	

Flowlet	

Flow	

Packet	 1	

1.25	

1.5	

1.75	

2	

55	 65	 75	 85	

Figure 3: Flowlet-based load balancing is resilient to inaccu-
rate load balancing decisions.

0	

500	

1000	

1500	

2000	

2500	

2	 10	 20	 30	 40	 50	 56	 60	 64	 70	 76	 80	 84	 90	 94	 98	

Av
g	
Fl
ow

le
t	 L
en

gt
h	
(P
kt
s)
	

%	 of	 Decisions	 for	 S0-‐Path	

S0:	 Full	 Capacity	 Path	
S1:	 Half	 Capacity	 Path	

Figure 4: The flowlet sizes on the two paths change depending
on how flowlets are split between them.

accurate decisions, we vary the weight (probability) of
the S0-path from 2% to 98% in a series of simulations.
At each weight, we plot the overall average flow com-
pletion time (FCT) for the three schemes, normalized to
the lowest value achieved across all experiments (with
per-packet load balancing using a weight of 66% for S0).

Figure 3 shows the results. We observe that flow- and
packet-based load balancing deteriorates significantly
outside a narrow range of weights near the ideal point.
This is not surprising, since in these schemes, the amount
of traffic on each path is directly determined by the
weight chosen by the load balancer. If the traffic on either
path exceeds its capacity, performance rapidly degrades.

Load balancing with flowlets, however, is robust over
a wide range of weights: it is within 2× of optimal for all
weights between 20–95% for S0. The reason is explained
by Figure 4, which shows how the average flowlet size
on the two paths changes based on the weights chosen
by the load balancer. If the load balancer uses the cor-
rect weights (66% for S0, 33% for S1) then the flowlet
sizes on the two paths are roughly the same. But if the
weights are incorrect, the flowlet sizes adapt to keep the
actual traffic balanced. For example, even if only 2% of
flowlets are sent via S0, the flowlets on the S0 path grow
∼ 65× larger than those on the S1 path, to keep the traffic
reasonably balanced at a 57% to 43% split.

This experiment suggests that a simple scheme that
spreads flowlets on different paths in a traffic-oblivious
manner can be very effective. In essence, due to their
elasticity, flowlets implicitly reflect path traffic condi-
tions (we analyze precisely why flowlets are elastic in
§4). LetFlow takes advantage of this property to achieve
good performance without explicit information or com-
plex feedback mechanisms.

410 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Design and Hardware Implementation

LetFlow is very simple to implement. All functional-
ity resides at the switches. The switches pick an outgo-
ing port at random among available choices (given by
the routing protocol) for each flowlet. The decisions
are made on the first packet of each flowlet; subsequent
packets follow the same uplink as long as the flowlet re-
mains active (there is not a sufficiently long gap).

Flowlet detection. The switch uses a Flowlet Table to
detect flowlets. Each entry in the table consists of a port
number, a valid bit and an age bit. When a packet arrives,
its 5-tuple header is hashed into an index for accessing an
entry in the flowlet table. If the entry is active, i.e. the
valid bit is set to one, the packet is sent to the port stored
in the entry, and the age bit is cleared to zero. If the entry
is not valid, the load balancer randomly picks a port from
the available choices to forward the packet. It then sets
the valid bit to one, clears the age bit, and records the
chosen port in the table.

At a fixed time interval, ∆, a separate checker process
examines each entry’s age bit. If the age bit is not set,
the checker sets the age bit to one. If the age bit is al-
ready set, the checker ages out the entry by clearing the
valid bit. Any subsequent packet that is hashed to the en-
try will be detected as a new flowlet. This one-bit aging
scheme, which was also used by CONGA [3], enables
detection of flowlets without maintaining timestamps for
each flow. The tradeoff is that the flowlet timeout can
take any value between ∆ and 2∆. More precision can be
attained by using more age bits per entry, but we find that
a single bit suffices for good performance in LetFlow.

The timeout interval, ∆, plays a key role: setting it too
low would risk reordering issues, but if set too high, it
can reduce flowlet opportunities. We analyze the role of
the flowlet timeout in LetFlow’s effectiveness in §4.

Load balancing decisions. As previously discussed,
LetFlow simply picks a port at random from all available
ports for each new flowlet.

Hardware costs. The implementation cost (in terms of
die area) is mainly for the Flowlet Table, which requires
roughly 150K gates and 3 Mbits of memory, for a ta-
ble with 64K entries. The area consumption is negli-
gible (< 0.3%) for a modern switching chip. LetFlow
has been implemented in silicon for a major datacenter
switch product line.

4 Analysis

We have seen that flowlets are resilient to inaccurate load
balancing decisions because of their elasticity. In this
section, we dig deeper to understand the reasons for the
elasticity of flowlets (§4.1). We find that this is rooted

0	
5	

10	
15	
20	
25	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	

#	
of
	 F
lo
w
s	

Time	 (ms)	

40Gb/s	 Path	
10Gb/s	 Path	

Figure 5: LetFlow balances the average rate of (long-lived)
flows on asymmetric paths. In this case, 5 flows are sent to the
10 Gbps link; 20 flows to the 40 Gbps link.

in the fact that higher layer congestion control protocols
like TCP adjust the rate of flows based on the available
capacity on their path. Using these insights, we develop
a Markov Chain model (§4.2) that shows how LetFlow
balances load, and the role that the key parameter, the
flowlet timeout, plays in LetFlow’s effectiveness.

4.1 Why are Flowlets elastic?
To see why flowlets are elastic, let us consider what
causes flowlets in the first place. Flowlets are caused by
the burstiness of TCP at sub-RTT timescale [20]. TCP
tends to transmit a window of packets in one or a few
clustered bursts, interspersed with idle periods during an
RTT. This behavior is caused by various factors such as
slow-start, ACK compression, and packet drops.

A simple explanation for why flowlet sizes change
with path conditions (e.g., shrinking on congested paths)
points the finger at packet drops. The argument goes:
on congested path, more packets are dropped; each drop
causes TCP to cut its window size in half, thereby idling
for at least half an RTT [5] and (likely) causing a flowlet.

While this argument is valid (and easy to observe em-
pirically), we find that flowlets are elastic for a more ba-
sic reason, rooted in the way congestion control proto-
cols like TCP adapt to conditions on a flow’s path. When
a flow is sent to a slower (congested) path, the congestion
control protocol reduces its rate.3 Because the flow slows
down, there is a higher chance that none of its packets ar-
rive within the timeout period, causing the flowlet to end.
On the other hand, a flow on a fast path (with higher rate)
has a higher chance of having packets arrive within the
timeout period, reducing flowlet opportunities.

To illustrate this point, we construct the following
simulation: 25 long-lived TCP flows send traffic on
two paths with bottleneck link speeds of 40 Gbps and
10 Gbps respectively. We cap the window size of the
flows to 256 KB, and set the buffer size on both links to
be large enough such that there are no packet drops. The
flowlet timeout is set to 200 µs and the RTT is 50 µs (in
absence of the queueing delay).

Figure 5 shows how the number of flows on each path

3This may be due to packet drops or other congestion signals like
ECN marks or increased delay.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 411

changes over time. We make two observations. First,
changes to the flows’ paths occur mostly in the first
30 ms; after this point, flowlet timeouts become rare and
the flows reach an equilibrium. Second, at this equilib-
rium, the split of flows on the two paths is ideal: 20 flows
on the 40 Gbps path, and 5 flows on 10 Gbps path. This
results in an average rate of 2 Gbps per flow on each path,
which is the largest possible.

The equilibrium is stable in this scenario because, in
any other state, the flows on one path will have a smaller
rate (on average) than the flows on the other. These flows
are more likely to experience a flowlet timeout than their
counterparts. Thus, the system has a natural “stochastic
drift”, pushing it towards the optimal equilibrium state.
Notice that a stochastic drift does not guarantee that the
system remains in the optimal state. In principle, a flow
could change paths if a flowlet timeout occurs. But this
does not happen in this scenario due to TCP’s ACK-
clocked transmissions. Specifically, since the TCP win-
dow sizes are fixed, ACK-clocking results in a repeating
pattern of packet transmissions. Therefore, once flows
reach a state where there are no flowlet timeouts for one
RTT, they are locked into that state forever.

In practice, there will be far more dynamism in the
cross traffic and TCP’s packet transmissions and inter-
packet gaps. In general, the inter-packet gap for TCP de-
pends on the window size, RTT, and degree of intra-RTT
burstiness. The precise characterization of TCP inter-
packet gaps is a difficult problem. But it is clear that
inter-packet gaps increase as the flow’s rate decreases
and the RTT increases.

In search of a simpler, non-TCP-specific model, we
next analyze a simple Poisson packet arrival process that
provides insight into how LetFlow balances load.

4.2 A Markov chain model
Consider n flows that transmit on two paths P1 and P2,
with bottleneck capacity C1 and C2 respectively.4 As-
sume packet arrivals from flow i occur as a Poisson pro-
cess with rate λi, independent of all other flows. Poisson
arrivals is not realistic for TCP traffic (which is bursty)
but allows us to capture the essence of the system’s dy-
namics while keeping the model tractable (see below for
more on the limitations of the model).

Assume the flowlet timeout is given by ∆, and that
each new flowlet is mapped to one of the two paths at
random. Further, assume that the flows on the same path
achieve an equal share of the path’s capacity; i.e.,

λi =

{
C1/n1 flow i is on path P1

C2/n2 flow i is on path P2

4For ease of exposition, we describe the model for two paths; the
general case is similar.

... , , ...

Figure 6: Markov chain model. The state (n1,n2) gives the
number of flows on the two paths.

where n1 and n2 denote the number of flows on each path.
This is an idealization of the fair bandwidth allocation
provided by congestion control protocols. Finally, let
λa =C1 +C2 be the aggregate arrival rate on both paths.

It is not difficult to show that (n1, n2) forms a Markov
chain. At each state, (n1, n2), if the next packet to arrive
triggers a new flowlet for its flow, the load balancer may
pick a different path for that flow (at random), causing
a transition to state (n1− 1, n2 + 1) or (n1 + 1, n2− 1).
If the next packet does not start a new flowlet, the flow
remains on the same path and the state does not change.

Let P1
n1,n2

and P2
n1,n2

be the transition probabilities from
(n1,n2) to (n1− 1, n2 + 1) and (n1 + 1, n2− 1) respec-
tively, as shown in Figure 6. In Appendix A, we derive
the following expression for the transition probabilities:

P1
n1,n2

=
1
2 ∑

i∈P1

[
λi

λa−λi

(
e−λi∆− e−λa∆

)
+

λi

λa
e−λa∆

]
(1)

The expression for P2
n1,n2

is similar, with the sum taken
over the flows on path P2. The transition probabilities
can be further approximated as

P j
n1,n2
≈

C j

2(C1 +C2)
e−(C j/n j)∆ (2)

for j ∈ {0,1}. The approximation is accurate when λa�
λi, which is the case if the number of flows is large, and
(n1,n2) isn’t too imbalanced.

Comparing P1
n1,n2

and P2
n1,n2

in light of Eq. (2) gives
an interesting insight into how flows transition between
paths. For a suitably chosen value of ∆, the flows on the
path with lower per-flow rate are more likely to change
path. This behavior pushes the system towards states
where C1/n1 ≈ C2/n2,5 implying good load balancing.
Notice that this is exactly the behavior we observed in
the previous simulation with TCP flows (Figure 5).
The role of the flowlet timeout (∆). Achieving the good
load balancing behavior above depends on ∆. If ∆ is very
large, then P j

n1,n2 ≈ 0 (no timeouts); if ∆ is very small,
then P j

n1,n2 ≈ C1/2(C1 +C2). In either case, the transi-
tion probabilities don’t depend on the rate of the flows
and thus the load balancing feature of flowlet switching

5The most precise balance condition is C1
n1
− C2

n2
≈ 1

∆
log(C1

C2
).

412 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0	
0.05	
0.1	
0.15	
0.2	
0.25	
0.3	
0.35	
0.4	
0.45	
0.5

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

Pr
ob

ab
ili
ty
	

#	of	Flows	on	Path	1	

900μs	
500μs	
300μs	
50μs	
30μs	

Figure 7: State probability distribution after 1011 steps, start-
ing from (50,50), for different values of flowlet timeout.

100

101

102

103

104

105

106

0	 2	 4	 6	 8	 10	

Ti
m
eo

ut
	(μ

s)
	

Avg	Flow	Rate	Gb/s	

∆max	2:1 ∆min	2:1
∆max	4:1 ∆min	4:1

500μs	Line		

Figure 8: Flowlet timeout range vs. average flow rate.

is lost. This behavior is illustrated in Figure 7, which
shows the probability distribution of the number of flows
on path 1 for several values of ∆, with n = 100 flows,
C1 = 40 Gbps, and C2 = 10 Gbps. These plots are ob-
tained by solving for the probability distribution of the
Markov chain after 1011 steps numerically, starting with
an initial state of (50,50).

The ideal operating point in this case is (80,20). The
plot shows that for small ∆ (30 µs and 50 µs) and large
∆ (900 µs), the state distribution is far from ideal. How-
ever, for moderate values of ∆ (300 µs and 500 µs), the
distribution concentrates around the ideal point.

So how should ∆ be chosen in practice? This ques-
tion turns out to be tricky to answer based purely on
this model. First, the Poisson assumption does not cap-
ture the RTT-dependence and burstiness of TCP flows,
both of which impact the inter-packet gap, hence, flowlet
timeouts. Second, in picking the flowlet timeout, we
must take care to avoid packet reordering (unless other
mitigating measures are taken to prevent the adverse ef-
fects of reordering [11]).

Nonetheless, the model provides some useful insights
for setting ∆. This requires a small tweak to (roughly)
model burstiness: we assume that the flows transmit in
bursts of b packets, as a Poisson process of rate λi/b.
Empirically, we find that TCP sends in bursts of roughly
b = 10 in our simulation setup (§5). Using this value,
we run a series of simulations to obtain ∆min and ∆max,
the minimum and maximum values of ∆ for which the
load balancer achieves a near-ideal split of flows across
the two paths. In these simulations, we vary the number
of flows, and consider two cases with 20/10 Gbps and
40/10 Gbps paths.

Figure 8 shows ∆min and ∆max as a function of the av-

0	

0.2	

0.4	

0.6	

0.8	

1

10	1 10	3 105 107 109

CD
F	

size	(Bytes)	

Web	Search	
Enterprise	
Data	Mining	

Figure 9: Empirical traffic distributions.

erage flow rate in each scenario: (C1 +C2)/n. There is a
clear correlation between the average flow rate and ∆. As
the average flow rate increases, ∆ needs to be reduced to
achieving good load balancing. A flowlet timeout around
500 µs supports the largest range of flow rates. We adopt
this value in our experiments (§5).

5 Evaluation

In this section, we evaluate LetFlow’s performance with
a small hardware testbed (§5.1) as well as large-scale
simulations (§5.2). We also study LetFlow’s generality
and robustness (§5.3).
Schemes compared. In our hardware testbed, we com-
pare LetFlow against ECMP and CONGA [3], a state-
of-the-art adaptive load balancing mechanism. In sim-
ulations, we compare LetFlow against WCMP [31],
CONGA, and Presto?, an idealized variant of Presto [15],
a state-of-the-art proactive load balancing scheme that
sprays small fixed-sized chunks of data across different
paths and uses a reordering buffer at the receivers to put
packets of each flow back in order. Presto? employs per-
packet load balancing and a perfect reordering buffer that
knows exactly which packets have been dropped, and
which have been received out-of-order.
Note: Presto? cannot be realized in practice, but it pro-
vides the best-case performance for Presto (and other
such schemes) and allows us to isolate performance is-
sues due to load balancing from those caused by packet
reordering. CONGA has been shown to perform better
than MPTCP in scenarios very similar to those that we
consider [3]; therefore, we do not compare with MPTCP.
Workloads. We conduct our experiments using realis-
tic workloads based on empirically observed traffic pat-
terns in deployed data centers. We consider the three
flow size distributions shown in Figure 9, from (1) pro-
duction clusters for web search services [4]; (2) a typical
large enterprise datacenter [3]; (3) a large cluster dedi-
cated to data mining services [13]. All three distributions
are heavy-tailed: a small fraction of the flows contribute
most of the traffic. Refer to the papers [4, 3, 13] that
report on these distributions for more details.
Metrics. Similar to prior work, we use flow completion
time (FCT) as the primary performance metric. In certain
experiments, we also consider packet latency and traffic
distribution across paths.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 413

4	
6	
8	
10	
12	
14	
16	

30	 40	 50	 60	 70	

FC
T	
(m

s)
	

Rela-ve	 Load	 %	 If	 No	 Link	 Down	

ECMP	

CONGA	

LetFlow	

(a) Web search workload

0.5	
1	

1.5	
2	

2.5	
3	

30	 40	 50	 60	 70	

FC
T	
(m

s)
	

Rela-ve	 Load	 %	 If	 No	 Link	 Down	

ECMP	
CONGA	
LetFlow	

(b) Enterprise workload

0	

50	

100	

150	

200	

30	 40	 50	 60	 70	

FC
T	
(m

s)
	

Rela-ve	 Load	 %	 If	 No	 Link	 Down	

ECMP	
CONGA	
LetFlow	

(c) Data mining traffic workload
Figure 10: Testbed results: overall average FCT for different workloads on baseline topology with link failure (Fig. 1b).

0	

1	

2	

3	

30	 40	 50	 60	 70	

FC
T	
(m

s)
	

Rela-ve	 Load	 %	 If	 No	 Link	 Down	

ECMP	
CONGA	
LetFlow	

(a) Avg FCT: small flows (<100 KB)

35	

55	

75	

95	

30	 40	 50	 60	 70	
FC
T	
(m

s)
	

Rela-ve	 Load	 %	 If	 No	 Link	 Down	

ECMP	
CONGA	
LetFlow	

(b) Avg FCT: large flows (>10 MB)

20	
30	
40	
50	
60	

30	 40	 50	 60	 70	

FC
T	
(m

s)
	

Rela-ve	 Load	 %	 If	 No	 Link	 Down	

ECMP	
CONGA	
LetFlow	

(c) 95th percentile FCT
Figure 11: Several FCT statistics for web search workload on baseline topology with link failure.

Summary of results. Our evaluation spans several di-
mensions: (1) different topologies with varying asym-
metry and traffic matrices; (2) different workloads; (3)
different congestion control protocols with varying de-
grees of burstiness; (4) and different network and algo-
rithm settings. We find that:

1. LetFlow achieves very good performance for real-
istic datacenter workloads in both asymmetric and
symmetric topologies. It achieves average FCTs
that are significantly better than competing traffic-
oblivious schemes such as WCMP and Presto, and
only slightly higher than CONGA: within 10-20%
in testbed experiments and 2× in simulations with
high asymmetry and traffic load.

2. LetFlow is effective in large topologies with high
degrees of asymmetry and multi-tier asymmetric
topologies, and also handles asymmetries caused by
imbalanced and dynamic traffic matrices.

3. LetFlow performs consistently for different trans-
port protocols, including “smooth” congestion con-
trol algorithms such as DCTCP [4] and schemes
with hardware pacing such as DCQCN [32].

4. LetFlow is also robust across a wide range of buffer
size and flowlet timeout settings, though tuning the
flowlet timeout can improve its performance.

5.1 Testbed Experiments

Our testbed setup uses a topology that consists of two
leaf switches and two spine switches as shown in Fig-
ure 1b. Each leaf switch is connected to each spine
switch with two 40 Gbps links. We fail one of the links
between a leaf and spine switch to create asymmetry,
as indicated by the dotted line in Figure 1b. There are
64 servers that are attached to the leaf switches (32 per
leaf) with 10 Gbps links. Hence, we have a 2:1 over-

subscription at the leaf level, which is typical in modern
data centers. The servers have 12 core Intel Xeon X5670
2.93 Ghz CPUs and 96 GB of RAM.

We use a simple client-server program to generate traf-
fic. Each server requests flows according to a Poisson
process from randomly chosen servers. The flow size
is drawn from one of the three distributions discussed
above. All 64 nodes run both client and server processes.
To stress the fabric’s load balancing, we configure the
clients under each leaf to only send to servers under the
other leaf, so that all traffic traverses the fabric.

Figure 10 compares the overall average FCT achieved
by LetFlow, CONGA and ECMP for the three work-
loads at different levels of load. We also show a break-
down of the average FCT for small (<100 KB) and large
(>10 MB) flows as well as the 95th percentile FCT for
the web search workload in Figure 11. (The results for
the other workloads are similar.)

In these experiments, we vary the traffic load by
changing the arrival rate of flows to achieve different lev-
els of load. The load is shown relative to the bisectional
bandwidth without the link failure; i.e., the maximum
load that the fabric can support with the link failure is
75% (see Figure 1b). Each data point is the average of
ten runs on the testbed.

The results show that ECMP’s performance deterio-
rates quickly as the traffic load increases to 50%. This
is not surprising; since ECMP sends half of the traffic
through each spine, at 50% load, the S1→ L1 link (on
the path with reduced capacity) is saturated and perfor-
mance rapidly degrades. LetFlow, on the other hand,
performs very well across all workloads and different
flow size groups (Figure 11), achieving FCTs that are
only 10-20% higher than CONGA in the worst case.
This demonstrates the ability of LetFlow to shift traffic

414 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5	

10	

15	

30	 40	 50	 60	 70	 80	 90	 100	

FC
T	
(m

s)
	

Load	 %	

ECMP	
CONGA	
LetFlow	

Figure 12: Overall average FCT for web search workload on
symmetric testbed experiments.

10G	 2x10G	

L0	 	 	 	 L1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 L2	 	 	 	 L3	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 L4	 	 	 	 L5	

S0	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 S1	 	 S2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 S3	 	 S4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 S5	

Figure 13: Large-scale topology with high path asymmetry.

0"
100"
200"
300"
400"
500"

30" 40" 50" 60" 70" 80" 90"

FC
T$
(m

s)
$

Load$%$$

CONGA"
LetFlow"
WCMP"
Presto"★

Figure 14: Average FCT comparison (web search workload,
large-scale asymmetric topology).

away from the congested link for realistic dynamic traf-
fic loads, without any explicit knowledge of path traffic
conditions or complex feedback mechanisms.

Symmetric topology. We repeat these experiments in
a symmetric topology without link failures. Figure 12
shows the results for the web search traffic workload. As
expected, all three schemes perform similarly when the
load is low, but CONGA and LetFlow both outperform
ECMP at higher levels of load. Despite its simplicity,
LetFlow is within 10% of CONGA at all levels of loads.

5.2 Large Scale Simulations
In this section, we evaluate LetFlow’s performance via
simulations in larger scale topologies with high degrees
of asymmetry and multi-tier asymmetric topologies. We
also validate LetFlow’s ability to handle challenging traf-
fic scenarios which require different load balancing deci-
sions for traffic destined to different destinations. Our
simulations use OMNET++ [28] and the Network Sim-
ulation Cradle [17] to port the actual Linux TCP source
code (from kernel 2.6.26) as our simulator.

Large-scale topology with high asymmetry. In order to
evaluate LetFlow in more complex topologies, we sim-
ulate an asymmetric topology with 6 spines and 6 leaf
switches, shown in Figure 13. This topology is from the
WCMP paper [31]. Spine and leaf switches that belong
to the same pod are connected using two 10 Gbps links

L0	 L1	 L2	 L3	

40G	
2x40G	

Figure 15: Multi-tier topology with link failure.

0"

50"

100"

40" 50" 60" 70"

FC
T$
(m

s)
$

Rela-ve$Load$%IfNo$Link$Down$

WCMP""
Presto"
LetFlow"

★

Figure 16: Average FCT (web search workload, asymmetric
multi-tier topology).

while inter-pod connections use a single 10 Gbps link.
Such asymmetric topologies can occur as a result of im-
balanced striping — a mismatch between switch radices
at different levels in a Clos topology [31].

Each leaf is connected to 48 servers. We generate
web search traffic uniformly at random from servers at
each leaf to servers at the other five leaves. We compare
the performance of LetFlow against Presto?, WCMP and
CONGA. Presto? and WCMP take into account the path
asymmetry by using static weights (based on the topol-
ogy) to make load balancing decisions, as described in
the WCMP [31] and Presto [15] papers.

Figure 14 shows that WCMP and Presto? fail to
achieve the performance of CONGA and LetFlow. In this
scenario, Presto? cannot finish flows quickly enough and
is unstable at 80% and 90% load. CONGA has the best
performance overall. But LetFlow also performs quite
well: it achieves average FCTs within 50% of CONGA,
even at 90% load. This result shows that static topology-
dependent weights are inadequate for handling asymme-
try with dynamic workloads, and LetFlow is able to bal-
ance load well in complex asymmetric topologies.

Multi-tier topology. In order to evaluate LetFlow’s scal-
ability, we simulate a 3-tier topology with asymmetry as
shown in Figure 15. We aim to validate that LetFlow is
able to detect this asymmetry and react accordingly. We
focus on the performance of traffic from L0-L1 to L2-L3.

We do not consider CONGA in this scenario since it
was designed for two-tier topologies [3]. We compare
LetFlow’s performance against WCMP and Presto? for
the web search workload. Figure 16 shows the aver-
age flow completion time at 40%-70% load. The results
show that LetFlow handles asymmetry in the multi-tier
topology very well. While Presto? is unstable when the
load is larger than 50% and WCMP degrades severely
when the load reaches 70%, LetFlow performs similarly
to that in the two-tier network.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 415

f a
d c

e b

S0

L0 L1 L2

10G
2x40G

S1

(a) Topology

2/23/17, 5:40 PM

Page 1 of 1file:///Users/evanini/git/LetFlow/images/performances/throughput.svg

0

0.2

0.4

0.6

0.8

1

LetFlow
60%

CONGA
60%

LetFlow
90%

CONGA
90%

%
of

lin
k
tr
affi

c Link9d→L0
Link9c→L0

Link9d→L2
Link9c→L2

(b) Traffic split across different paths

0	
10	
20	
30	
40	
50	

30	 40	 50	 60	 70	 80	 90	

FC
T	
(m

s)
	

Load	 %	 	

CONGA	
LetFlow	
WCMP	
Presto	 ★	

(c) Avg FCT (web search workload)
Figure 17: Multi-destination scenario with varying asymmetry.

Destined to L0 Destined to L2
Traffic on Link c 11.1% 88.9%
Traffic on Link d 88.9% 11.1%

Table 2: Ideal traffic split for multi-destination scenario.

Multiple destinations with varying asymmetry. Load
balancing in asymmetric topologies often requires split-
ting traffic to different destinations differently. For this
reason, some load balancing schemes like CONGA [3]
take into account the traffic’s destination to make load
balancing decisions. We now investigate whether Let-
Flow can handle such scenarios despite making random
decisions that are independent of a packet’s destination.

We simulate the topology shown in Figure 17a. One
leaf switch, L1, sends traffic uniformly at random to the
other two leaf switches, L0 and L2, using the web search
workload. Note that the two paths from L1 to L0 are
symmetric (both have 80 Gbps of capacity) while the
paths between L1 to L2 are asymmetric: there is only
one 10 Gbps link between S1 to L2. As a result, leaf L1
must send more L1→ L2 traffic via spine S0 than S1.
This in turn creates (dynamic) bandwidth asymmetry for
the L1→ L0 traffic.

The ideal traffic split to balance the maximum load
across all fabric links is given in Table 2. We should split
the traffic between Link e and Link f with a ratio of 8:1;
i.e., 88.9% of the traffic destined to L2 should be carried
on Link c while 11.1% should be carried on Link d. To
counter the traffic imbalance on Link c and Link d, the
traffic to L0 should ideally be split in the opposite ratio,
1:8, on Link c and Link d.

Can LetFlow achieve such an ideal behavior? Fig-
ure 17b shows the traffic split for LetFlow and CONGA
when the total traffic load from L1 is 48 Gbps (60%)
and 72 Gbps (90%) respectively. We omit ECMP results
since it is unstable in this scenario.

We observe that when the traffic load is relatively low
(60% for Link c and Link d), the traffic split with Let-
Flow for the L1 → L0 traffic is simply 50%-50%, not
ideal. However, notice that at this low load, Link c has
spare capacity, even with a 50%-50% split for L1→ L0
traffic. Thus, flowlets destined to L0 do not find either
link to be particularly better than the other. For traffic
destined to L2, however, the paths via Link e and Link f

0	
0.2	
0.4	
0.6	
0.8	
1	

0.0	 0.2	 0.4	 0.6	 0.8	 1.0	

CD
F	

Latency	 (ms)	

LetFlow	
CONGA	

(a) Symmetric

0	
0.2	
0.4	
0.6	
0.8	
1	

0.0	 0.2	 0.4	 0.6	 0.8	 1.0	

CD
F	

Latency	 (ms)	

LetFlow	

CONGA	

(b) With link failure
Figure 18: Network latency CDF with LetFlow and CONGA
on the baseline topology (simulation).

are vastly different. Thus LetFlow’s flowlets automati-
cally shift traffic away from the congested link, and the
traffic split ratio is 81%/19%, close to ideal.

Now when the load increases to 90%, evenly splitting
traffic destined to L0 on Link c and Link d would cause
Link c to be heavily congested. Interestingly, in this case,
LetFlow avoids congestion and moves more L1 → L0
traffic to Link d and achieves close to the ideal ratio.

LetFlow’s good performance is also evident from the
average FCT in this scenario, shown in Figure 17c. Let-
Flow achieves similar performance as CONGA (at most
10% worst), which achieves close-to-ideal traffic splits
for both L0- and L2-bound traffic.

Impact on Latency. Finally, we compare LetFlow and
CONGA in terms of their impact on fabric latency. We
omit the results for ECMP and Presto? which perform
much worse in asymmetric topologies, as to examine
closely the differences between CONGA and LetFlow.
We measure a packet’s fabric latency by timestamping it
when it enters the ingress leaf switch and when it enters
the egress leaf switch. This allows us to measure the fab-
ric latency without including the latency incurred at the
egress switch, which is not influenced by load balancing.

Figure 18 shows the CDF of fabric latency for the
web search workload at 60% average load in the topol-
ogy shown in Figure 1b, with and without asymmetry.
In the heavily congested asymmetric scenario, LetFlow
has similar fabric latency to CONGA. In the symmet-
ric topology, however, CONGA achieves lower fabric la-
tency. The reason is that CONGA can detect subtle traf-
fic imbalances on the two paths and proactively balance
load by choosing the path that is least congested. Let-
Flow, however, is reactive and needs to cause congestion

416 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(e.g. packet loss, increased delay) for TCP to “kick in”
and the flowlet sizes to change. Hence, its reaction time
is slower than CONGA. This distinction is less relevant
in the asymmetric scenario where congestion is high and
even CONGA can’t avoid increasing queuing delay.

5.3 Robustness
We have shown that LetFlow can effectively load bal-
ance traffic under various conditions. In this section, we
evaluate LetFlow’s robustness to different factors, partic-
ularly, different transport protocols, flowlet time timeout
periods, and buffer sizes.

Different transport protocols. As explained in §4, Let-
Flow’s behavior depends on the nature of inter-packet
gaps. A natural question is thus how effective is LetFlow
for other transport protocols that have different burstiness
characteristics than TCP? To answer this question, we
repeat the previous experiment for two new transports:
DCTCP [4] and DCQCN [32].

DCTCP is interesting to consider because it adjusts its
window size much more smoothly than TCP and largely
avoids packet drops that can immediately cause flowlet
timeouts. To use DCTCP, we enable ECN marking at the
switches and set the marking threshold to be 100 KB.
Since DCTCP reduces queuing delay, we also set the
flowlet table timeout period to 50 µs. We discuss the
impact of the flowlet timeout parameter further in the fol-
lowing section. Figure 19a compares the overall average
flow completion time using CONGA and LetFlow (with
DCTCP as the transport). Similar to the case with TCP,
we observe that LetFlow is able to achieve performance
within 10% of CONGA in all cases.

Next, we repeat the experiment for DCQCN [32], a
recent end-to-end congestion control protocol designed
for RDMA environments. DCQCN operates in the NICs
to throttle flows that experience congestion via hardware
rate-limiters. In addition, DCQCN employs Layer 2 Pri-
ority Flow Control (PFC) to ensure lossless operations.

We use the same flowlet table timeout period of 50 µs
as in DCTCP’s simulation. Figure 19b shows that, while
ECMP’s performance becomes unstable at loads above
50%, both CONGA and LetFlow can maintain stabil-
ity by moving enough traffic away from the congested
path. LetFlow achieves an average FCT within 47% of
CONGA. The larger gap relative to CONGA compared
to TCP-based transports is not surprising since DCQCN
generates very smooth, perfectly paced traffic, which re-
duces flowlet opportunities. Nonetheless, as our analy-
sis (§4) predicts, LetFlow still balances load quite effec-
tively, because DCQCN adapts the flow rates to traffic
conditions on their paths.

At the 95th percentile, LetFlow’s FCT is roughly
within 2× of CONGA (and still much better than ECMP)

2	

3	

4	

5	

40	 50	 60	 70	

FC
T	
(m

s)
	

Rela-ve	 Load	 %	 If	 No	 Link	 Down	

ECMP	
CONGA	
LetFlow	

(a) DCTCP

2	

7	

12	

40	 50	 60	 70	

FC
T	
(m

s)
	

Rela-ve	 Load	 %	 If	 No	 Link	 Down	

ECMP	
CONGA	
LetFlow	

(b) DCQCN
Figure 19: Overall average FCT with different transport

protocols (web search workload, baseline topology).

10	
30	
50	
70	
90	

40	 50	 60	 70	

FC
T	
(m

s)
	

Rela-ve	 Load	 %	 If	 No	 Link	 Down	

ECMP	
CONGA	
LetFlow	

(a) DCTCP

10	
30	
50	
70	
90	

40	 50	 60	 70	

FC
T	
(m

s)
	

Rela-ve	 Load	 %	 If	 No	 Link	 Down	

ECMP	
CONGA	
LetFlow	

(b) DCQCN
Figure 20: 95th percentile FCT with different transport

protocols (web search workload, baseline topology).

5	
6	
7	
8	
9	
10	

10	 25	 50	 75	 100	 125	 150	 175	 200	
FC
T	
(m

s)
	

Buffer	 Size	 %	 Rela5ve	 to	 Default	

CONGA	
LetFlow	 150us	
LetFlow	 250us	
LetFlow	 500us	

Figure 21: Effect of buffer size and flowlet timeout period on
FCT (web search workload at 60% load, baseline topology).

for DCTCP, as shown in Figure 20a. The degradation
for DCQCN is approximately 1.5× of CONGA (Fig-
ure 20b). This degradation at the tail is not surprising,
since unlike CONGA which proactively balances load,
LetFlow is reactive and its decisions are stochastic.
Varying flowlet timeout. The timeout period of the
flowlet table is fundamental to LetFlow: it determines
whether flowlets occur frequently enough to balance traf-
fic. The analysis in §4 provides a framework for choos-
ing the correct flowlet timeout period (see Figure 8). In
Figure 21, we show how FCT varies with different values
of the flowlet timeout (150 µs, 250 µs and 500 µs) and
different buffer sizes in the testbed experiment. These
experiments use the web search workload at 60% load
and TCP New Reno as the transport protocol. The
buffer size is shown relatively to the maximum buffer
size (10 MB) of the switch.

When the buffer size is not too small, different time-
out periods do not change LetFlow’s performance. Since
all three values are within the minimum and maximum
bounds in Figure 8, we expect all three to perform well.
However, for smaller buffer sizes, the performance im-
proves with lower values of the flowlet timeout. The rea-
son is that smaller buffer sizes result in smaller RTTs,
which makes TCP flows less bursty. Hence, the burst
parameter, b, in §4.2 (set to 10 by default) needs to be

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 417

reduced for the model to be accurate.

Varying buffer size. We also evaluate LetFlow’s per-
formance for different buffer sizes. As shown in Figure
21, the FCT suffers when the buffer is very small (e.g.,
10% of the max) and gradually improves as the buffer
size increases to 75% of the maximum size. Beyond this
point, the FCT is flat. LetFlow exhibits similar behavior
to CONGA in terms of dependency on buffer size.

6 Related Work

We briefly discuss related work, particularly for datacen-
ter networks, that has inspired and informed our design.

Motivated by the drawbacks of ECMP’s flow-based
load balancing [16], several papers propose more fine-
grained mechanisms, including flowlets [20], spatial
splitting based on TCP sequence numbers [24], per-
packet round robin [9], and load balancing at the level
of TCP Segmentation Offload (TSO) units [15]. Our re-
sults show that such schemes cannot handle asymmetry
well without path congestion information.

Some schemes have proposed topology-dependent
weighing of paths as a way of dealing with asymme-
try. WCMP [31] adds weights to ECMP in commodity
switches, while Presto [15] implements weights at the
end-hosts. While weights can help in some scenarios,
static weights are generally sub-optimal with asymme-
try, particularly for dynamic traffic workloads. LetFlow
improves resilience to asymmetry even without weights,
but can also benefit from better weighing of paths based
on the topology or coarse estimates of traffic demands
(e.g., see experiment in Figure 2).

DeTail [30] propose per-packet adaptive load balanc-
ing, but requires priority flow control for hop-by-hop
congestion feedback. Other dynamic load balancers like
MPTCP [23], TeXCP [19], CONGA [3], and HULA [21]
load balance traffic based on path-wise congestion met-
rics. LetFlow is significantly simpler compared to these
designs as its decisions are local and purely at random.

The closest prior scheme to LetFlow is FlowBen-
der [18]. Like LetFlow, FlowBender randomly reroutes
flows, but relies on explicit path congestion signals such
as per-flow ECN marks or TCP Retransmission Timeout
(RTO). LetFlow does not need any explicit congestion
signals or TCP-specific mechanisms like ECN, and can
thus support different transport protocols more easily.

Centralized load balancing schemes such as Hedera
[2] and MicroTE [8] tend to be slow [23] and also have
difficulties handling traffic volatility. Fastpass [22] is a
centralized arbiter which can achieve near-ideal load bal-
ancing by determining the transmission time and path for
every packet, but scaling a centralized per-packet arbiter
to large-scale datacenters is very challenging.

7 Final Remarks

Let the flowlets flow!
The main thesis of this paper is that flowlet switching

is a powerful technique for simple, resilient load balanc-
ing in the presence of network asymmetry. The ability
of flowlets to automatically change size based on real-
time traffic conditions on their path enables them to ef-
fectively shift traffic away from congested paths, without
the need for explicit path congestion information or com-
plex feedback mechanisms.

We designed LetFlow as an extreme example of this
approach. LetFlow simply picks a path uniformly at ran-
dom for each flowlet, leaving it to the flowlets to do
the rest. Through extensive evaluation in a real hard-
ware testbed and large-scale simulations, we showed that
LetFlow has comparable performance to CONGA [3],
e.g., achieving average flow completion times within 10-
20% of CONGA in our testbed experiments and 2× of
CONGA in challenging simulated scenarios.

LetFlow is not an optimal solution or the only way to
use flowlet switching. By its reactive and stochastic na-
ture, LetFlow cannot prevent short-time-scale traffic im-
balances that can increase queuing delay. Also, in sym-
metric topologies, schemes that balance load proactively
at a more fine-grained level (e.g., packets or small-sized
chunks [15]) would perform better.

LetFlow is, however, a significant improvement over
ECMP and can be deployed today to greatly improve re-
silience to asymmetry. It is trivial to implement in hard-
ware, does not require any changes to end-hosts, and is
incrementally deployable. Even if only some switches
use LetFlow (and others use ECMP or some other mech-
anism), flowlets can adjust to bandwidth asymmetries
and improve performance for all traffic.

Finally, LetFlow is an instance of a more general ap-
proach to load balancing that randomly reroutes flows
with a probability that decreases as a function of the
flow’s rate. Our results show that this simple approach
works well in multi-rooted tree topologies. Modeling
this approach for general topologies and formally ana-
lyzing its stability and convergence behavior is an inter-
esting avenue for future work.

Acknowledgements
We are grateful to our shephard, Thomas Anderson,
the anonymous NSDI reviewers, Akshay Narayan, and
Srinivas Narayana for their valuable comments that
greatly improved the clarity of the paper. We are also
thankful to Edouard Bugnion, Peter Newman, Laura
Sharpless, and Ramanan Vaidyanathan for many fruit-
ful discussions. This work was funded in part by NSF
grants CNS-1617702 and CNS-1563826, and a gift from
the Cisco Research Center.

418 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-
able, commodity data center network architecture.
In SIGCOMM, 2008.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan,
N. Huang, and A. Vahdat. Hedera: Dynamic Flow
Scheduling for Data Center Networks. In NSDI,
2010.

[3] M. Alizadeh, T. Edsall, S. Dharmapurikar,
R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam,
F. Matus, R. Pan, N. Yadav, and G. Varghese.
CONGA: Distributed Congestion-aware Load Bal-
ancing for Datacenters. In Proceedings of the 2014
ACM Conference on SIGCOMM, SIGCOMM ’14,
pages 503–514, New York, NY, USA, 2014. ACM.

[4] M. Alizadeh et al. Data center TCP (DCTCP). In
SIGCOMM, 2010.

[5] G. Appenzeller, I. Keslassy, and N. McKeown. Siz-
ing Router Buffers. In SIGCOMM, 2004.

[6] T. Benson, A. Akella, and D. A. Maltz. Network
Traffic Characteristics of Data Centers in the Wild.
In SIGCOMM, 2010.

[7] T. Benson, A. Anand, A. Akella, and M. Zhang.
Understanding data center traffic characteristics.
SIGCOMM Comput. Commun. Rev., 40(1):92–99,
Jan. 2010.

[8] T. Benson, A. Anand, A. Akella, and M. Zhang.
MicroTE: Fine Grained Traffic Engineering for
Data Centers. In CoNEXT, 2011.

[9] J. Cao et al. Per-packet Load-balanced, Low-
latency Routing for Clos-based Data Center Net-
works. In CoNEXT, 2013.

[10] A. Dixit, P. Prakash, Y. Hu, and R. Kompella. On
the impact of packet spraying in data center net-
works. In INFOCOM, 2013.

[11] Y. Geng, V. Jeyakumar, A. Kabbani, and M. Al-
izadeh. Juggler: a practical reordering resilient net-
work stack for datacenters. In Proceedings of the
Eleventh European Conference on Computer Sys-
tems, page 20. ACM, 2016.

[12] P. Gill, N. Jain, and N. Nagappan. Understanding
Network Failures in Data Centers: Measurement,
Analysis, and Implications. In SIGCOMM, 2011.

[13] A. Greenberg et al. VL2: a scalable and flexible
data center network. In SIGCOMM, 2009.

[14] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi,
C. Tian, Y. Zhang, and S. Lu. BCube: A High Per-
formance, Server-centric Network Architecture for
Modular Data Centers. In SIGCOMM, 2009.

[15] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter,
and A. Akella. Presto: Edge-based load balancing
for fast datacenter networks. 2015.

[16] C. Hopps. Analysis of an equal-cost multi-path al-
gorithm, 2000.

[17] S. Jansen and A. McGregor. Performance, Valida-
tion and Testing with the Network Simulation Cra-
dle. In MASCOTS, 2006.

[18] A. Kabbani, B. Vamanan, J. Hasan, and F. Duch-
ene. Flowbender: Flow-level adaptive routing for
improved latency and throughput in datacenter net-
works. In Proceedings of the 10th ACM Interna-
tional on Conference on emerging Networking Ex-
periments and Technologies, pages 149–160. ACM,
2014.

[19] S. Kandula, D. Katabi, B. Davie, and A. Charny.
Walking the Tightrope: Responsive Yet Stable
Traffic Engineering. In SIGCOMM, 2005.

[20] S. Kandula, D. Katabi, S. Sinha, and A. Berger. Dy-
namic Load Balancing Without Packet Reordering.
SIGCOMM Comput. Commun. Rev., 37(2):51–62,
Mar. 2007.

[21] N. Katta, M. Hira, C. Kim, A. Sivaraman, and
J. Rexford. Hula: Scalable load balancing using
programmable data planes. In Proc. ACM Sympo-
sium on SDN Research, 2016.

[22] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah,
and H. Fugal. Fastpass: A centralized zero-queue
datacenter network. In Proceedings of the 2014
ACM conference on SIGCOMM, pages 307–318.
ACM, 2014.

[23] C. Raiciu et al. Improving datacenter performance
and robustness with multipath tcp. In SIGCOMM,
2011.

[24] S. Sen, D. Shue, S. Ihm, and M. J. Freedman. Scal-
able, Optimal Flow Routing in Datacenters via Lo-
cal Link Balancing. In CoNEXT, 2013.

[25] A. Singh, J. Ong, A. Agarwal, G. Anderson,
A. Armistead, R. Bannon, S. Boving, G. Desai,
B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hoelzle,
S. Stuart, and A. Vahdat. Jupiter rising: A decade of
clos topologies and centralized control in google’s
datacenter network. In Sigcomm ’15, 2015.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 419

[26] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey.
Jellyfish: Networking Data Centers Randomly. In
Proceedings of the 9th USENIX Conference on Net-
worked Systems Design and Implementation, 2012.

[27] S. Sinha, S. Kandula, and D. Katabi. Harnessing
TCPs Burstiness using Flowlet Switching. In 3rd
ACM SIGCOMM Workshop on Hot Topics in Net-
works (HotNets), San Diego, CA, November 2004.

[28] A. Varga et al. The OMNeT++ discrete event sim-
ulation system. In ESM, 2001.

[29] P. Wang, H. Xu, Z. Niu, D. Han, and Y. Xiong. Ex-
peditus: Congestion-aware load balancing in clos
data center networks. In Proceedings of the Sev-
enth ACM Symposium on Cloud Computing, SoCC
’16, pages 442–455, New York, NY, USA, 2016.
ACM.

[30] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. H.
Katz. DeTail: Reducing the Flow Completion Time
Tail in Datacenter Networks. In SIGCOMM, 2012.

[31] J. Zhou, M. Tewari, M. Zhu, A. Kabbani,
L. Poutievski, A. Singh, and A. Vahdat. Wcmp:
weighted cost multipathing for improved fairness
in data centers. In Proceedings of the Ninth Eu-
ropean Conference on Computer Systems, page 5.
ACM, 2014.

[32] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lip-
shteyn, Y. Liron, J. Padhye, S. Raindel, M. H.
Yahia, and M. Zhang. Congestion control for
large-scale rdma deployments. SIGCOMM Com-
put. Commun. Rev., 45(4):523–536, Aug. 2015.

A Derivation of Equation (1)

Suppose n flows share a link, and flow i transmits packets
as a Poisson process with a rate λi, independent of the
other flows. Let λa = ∑

n
i=1 λi be the aggregate packet

arrival rate. Notice that the packet arrival process for all
flows besides flow i is Poisson with rate λa−λi.

Consider an arbitrary time instant t. Without loss of
generality, assume that flow i is the next flow to incur
a flowlet timeout after t. Let τ

−1
i be the time interval

between flow i’s last packet arrival and t, and τi be the
time interval between t and flow i’s next packet arrival.
Also, let τa\i be the time interval until the next packet
arrival from any flow other than flow i. Figure 22 shows
these quantities.

The probability that flow i incurs the next flowlet time-
out, Pi, is the joint probability that the next packet ar-
rival after time t is from flow i, and its inter-packet gap,
τ
−1
i +τi, is larger than the flowlet timeout period ∆:

t

Figure 22: Packet arrival processes for flow i and other flows,
and their relationship to each other

Pi = P
{

τi < τa\i,τi + τ
−1
i > ∆

}
=

∫
∞

0
λie−λitP

{
τa\i > t,τ−1

i > ∆− t
}

dt. (3)

Since packet arrivals of different flows are independent,
we have:

P
{

τa\i > t,τ−1
i > ∆− t

}
=P

{
τa\i > t

}
P
{

τ
−1
i > ∆− t

}
.

Also, it follows from standard properties of Poisson pro-
cesses that

P
{

τa\i > t
}

= e−(λa−λi)t

P
{

τ
−1
i > ∆− t

}
=

{
e−λi(∆−t) t ≤ ∆

1 t ≥ ∆.
(4)

Therefore, we obtain

Pi =
∫

∆

0
λie−λi∆e−(λa−λi)tdt +

∫
∞

∆

λie−λatdt

=
λi

λa−λi

(
e−λi∆− e−λa∆

)
+

λi

λa
e−λa∆. (5)

Now, assume that there are two paths P1 and P2, and
let n1 and n2 denote the number of flows on each path.
Also, assume that the total arrival rate on both paths is
given by λa. Following a flowlet timeout, the flow with
the timeout is assigned to a random path. It is not difficult
to see that (n1, n2) forms a Markov chain (see Figure 6).

Let P1
n1,n2

and P2
n1,n2

be the transition probabilities from
(n1,n2) to (n1− 1, n2 + 1) and (n1 + 1, n2− 1) respec-
tively. To derive P1

n1,n2
, notice that the probability that

the next flowlet timeout occurs for one of the flows on
path P1 is given by ∑i∈P1

Pi, where the notation i ∈ P1 in-
dicates that the sum is over the flows on path P1, and Pi
is given by the expression in Eq. (5). The flow that times
out will change paths with probability 1/2. Therefore:

P1
n1,n2

=
1
2 ∑

i∈P1

[
λi

λa−λi

(
e−λi∆− e−λa∆

)
+

λi

λa
e−λa∆

]
,

(6)
which is Equation (1) in §4. The derivation for P2

n1,n2
is

similar.

420 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Motivation and Insights
	Load balancing with Asymmetry
	Let the Flowlets Flow

	Design and Hardware Implementation
	Analysis
	Why are Flowlets elastic?
	A Markov chain model

	Evaluation
	Testbed Experiments
	Large Scale Simulations
	Robustness

	Related Work
	Final Remarks
	Derivation of Equation (1)

