
Millions of Little Minions: Using Packets for Low Latency
Network Programming and Visibility

(Extended Version)

Vimalkumar Jeyakumar1, Mohammad Alizadeh2, Yilong Geng1, Changhoon Kim3, David Mazières1

jvimal@cs.stanford.edu,{alizade,gengyl08}@stanford.edu, chkim@barefootnetworks.com,

http://www.scs.stanford.edu/~dm/addr
1Stanford University 2Cisco Systems 3Barefoot Networks
Stanford, CA, USA San Jose, CA, USA Palo Alto, CA, USA

ABSTRACT
This paper presents a practical approach to rapidly introduc-
ing new dataplane functionality into networks: End-hosts
embed tiny programs into packets to actively query and ma-
nipulate a network’s internal state. We show how this “tiny
packet program” (TPP) interface gives end-hosts unprece-
dented visibility into network behavior, enabling them to
work with the network to achieve a desired functionality.
Our design leverages what each component does best: (a)
switches forward and execute tiny packet programs (at most
5 instructions) in-band at line rate, and (b) end-hosts per-
form arbitrary (and easily updated) computation on network
state. By implementing three different research proposals,
we show that TPPs are useful. Using a hardware prototype
on a NetFPGA, we show our design is feasible at a reason-
able cost.

1 Introduction
Consider a large datacenter network with thousands of
switches. Applications complain about poor performance
due to high flow completion times for a small subset of their
flows. As an operator, you realize this symptom could be due
to congestion, either from competing cross traffic or poor
routing decisions, or alternatively could be due to packet
drops at failed links. In any case, your goal is to diagnose
this issue quickly. Unfortunately, the extensive use of multi-
path routing in today’s networks means one often cannot de-
termine the exact path taken by every packet; hence it is quite
difficult to triangulate problems to a single switch. Making
matters worse, if congestion is intermittent, counters within
the network will look “normal” at timescales of minutes or
even seconds.

Such issues would be straightforward to debug if one
could examine relevant network state such as switch ID,
queue occupancy, input/output ports, port utilization, and
matched forwarding rules at the exact time each packet was
forwarded, so as to reconstruct what exactly transpired in the
dataplane. In the above example, end-hosts could use state
obtained from millions of successfully delivered packets to
explicitly pinpoint network links that have high queue occu-

pancy (for congestion), or use switch and port IDs to verify
that packets were correctly routed, or use path information
to triangulate network links that cause packet drops due to
link failures. In short, the ability to correlated network state
to specific packets would be invaluable.

Can packets be instrumented to access and report on
switch state? To date such state has been locked inside
switches. This paper describes a simple, programmable
interface that enables end-hosts to query switch memory
(counters, forwarding table entries, etc.) from packets, di-
rectly in the dataplane. Specifically, a subset of packets carry
in their header a tiny packet program (TPP), which consists
of a few instructions that read, write, or perform simple,
protocol-agnostic computation using switch memory.

A key observation in this paper is that having such pro-
grammable and fast access to network state benefits a broad
class of network tasks—congestion control, measurement,
troubleshooting, and verification—which we call dataplane
tasks. We show how the TPP interface enables end-hosts to
rapidly deploy new functionality by refactoring many net-
work tasks into: (a) simple TPPs that execute on switches,
and (b) expressive programs at end-hosts.

TPPs contrast to three approaches to introduce new data-
plane functionality: (1) build custom hardware for each task,
(2) build switches that can execute arbitrary code [36, 39], or
(3) use FPGAs and network processors [29]. Each approach
has its own drawbacks: Introducing new switch functional-
ity can take many years; switch hardware has stringent per-
formance requirements and cannot incur the penalty of ex-
ecuting arbitrary code; and FPGAs and network processors
are simply too expensive at large scale [9]. Instead, we ar-
gue that if we could build new hardware to support just one
simple interface such as the TPP, we can leverage end-hosts
to implement many complex tasks at software-development
timescales.

TPPs can be viewed as a particular, reasoned point within
the spectrum of ideas in Active Networking [36, 39]. In
many Active Networks formulations, routers execute arbi-
trary programs that actively control network behavior such
as routing, packet compression, and (de-)duplication. By

1

ar
X

iv
:1

40
5.

71
43

v3
 [

cs
.N

I]
 7

 J
un

 2
01

4

http://www.scs.stanford.edu/~dm/addr

Instruction Meaning
LOAD, PUSH Copy values from switch to packet
STORE, POP Copy values from packet to switch
CSTORE Conditionally store and execute subsequent opera-

tions
CEXEC Conditionally execute the subsequent instructions

Table 1: The tasks we present in the paper require support
only for the above instructions, whose operands will be clear
when we discuss examples. Write instructions may be selec-
tively disabled by the administrator.

contrast, TPP instructions are so simple they execute within
the time to forward packets at line-rate. Just a handful of
TPP instructions, shown in Table 1, providing access to the
statistics in Table 2, proved sufficient to implement several
previous research proposals.

1.1 Goals
Our main goal is to expose network state to end-hosts
through the dataplane. To benefit dataplane tasks, any in-
terface should satisfy the following requirements:

• Speed: A recent study shows evidence that switch CPUs
are not powerful and are unable to handle more than a few
hundred OpenFlow control messages/second [17]. Our
experience is that such limitations stand in the way of a
whole class of dataplane tasks as they operate at packet
and round-trip timescales.
• Packet-level consistency: Switch state such as link queue

occupancy and forwarding tables varies over time. Today,
we lack any means of obtaining a consistent view of such
state as it pertains to each packet traveling through the
network.
• Minimality and power: To be worth the effort, any hard-

ware design should be simple, be sufficiently expressive
to enable a diverse class of useful tasks, and incur low-
enough overhead to work at line rates.

This paper presents a specific TPP interface whose design
is largely guided by the above requirements.

Non-Goals: It is worth noting that our goal is not to be
flexible enough to implement any, and all dataplane net-
work tasks. For instance, TPPs are not expressive enough
to implement per-packet scheduling. Moreover, our design
is for networks owned and operated by a single adminis-
trative entity (e.g., privately owned WANs and datacenters).
We do not advocate exposing network state to untrusted end-
hosts connected to the network, but we describe mechanisms
to avoid executing untrusted TPPs (§4.3). Finally, a de-
tailed design for inter-operability across devices from mul-
tiple vendors is beyond the scope of this paper, though we
discuss one plausible approach (§8).

1.2 Summary of Results
Through both a software implementation and a NetFPGA
prototype, this paper demonstrates that TPPs are both useful
and feasible at line rate. Moreover, an analysis using recent

Statistics Examples
Per-Switch Switch ID, counters associated with the global L2 or L3

flow tables, flow table version number, timestamp.
Per-Port Link utilization, bytes received, bytes dropped, bytes

enqueued, application-specific registers.
Per-Queue Bytes enqueued, bytes dropped.
Per-Packet Packet’s input/output port, queue, matched flow entry,

alternate routes for a packet.
Table 2: A non-exhaustive list of statistics stored in switches
memory that TPPs can access when mapped to known mem-
ory locations. Many statistics are already tracked today but
others, such as flow table version will have to be imple-
mented. Some statistics are read-only (e.g. matched flow en-
try, bytes received), but others can be modified (e.g. packet’s
output port). See OpenFlow 1.4 specification [32, Table 5]
for a detailed list of available statistics.

data [9] suggests that TPP support within switch hardware
can be realized at an acceptable cost.

Applications: We show the benefits of TPP by refactor-
ing many recent research proposals using the TPP interface.
These tasks broadly fall under the following three categories:

• Congestion Control: We show how end-hosts, by peri-
odically querying network link utilization and queue sizes
with TPP, can implement a rate-based congestion con-
trol algorithm (RCP) providing max-min fairness across
flows. We furthermore show how the TPP interface en-
ables fairness metrics beyond the max-min fairness for
which RCP was originally designed (§2.2).
• Network Troubleshooting: TPPs give end-hosts detailed

per-packet visibility into network state that can be used to
implement a recently proposed troubleshooting platform
called NetSight [16]. In particular, we walk through im-
plementing and deploying ndb, a generalization of tracer-
oute introduced by NetSight (§2.3).
• Network Monitoring: TPPs can be used in a straightfor-

ward way to do network monitoring, but we also show
how to refactor new kinds of measurement tasks: For ex-
ample, OpenSketch [42] proposed switch modifications
to increase accuracy of five different measurement tasks
while incurring low storage overhead. We show how to
achieve similar functionality using network visibility of-
fered by TPPs. In particular, we walk through using TPPs
to count the number of unique source IP addresses that
communicate over all network links in the core of the net-
work (§2.5).
• Network Control: We also demonstrate how low-latency

visibility offered by TPPs enables end-hosts to control
how traffic is load balanced across network paths. We
refactor CONGA [1], an in-network load-balancing mech-
anism implemented in Cisco’s new ASICs, between end-
hosts and a network that supports only the TPP interface.

Hardware: To evaluate the feasibility of building a TPP-
capable switch, we synthesized and built a four-port Net-
FPGA router (at 160MHz) with full TPP support, capable
of switching minimum sized packets on each interface at

2

10Gb/s. We show the hardware and latency costs of adding
TPP support are minimal on NetFPGA, and argue the same
would hold of a real switch (§6). We find that the key to
achieving high performance is restricting TPPs to a handful
of instructions per packet (say five), as it ensures that any
TPP executes within a fraction of the its transmission time.

Software: We also implemented the TPP interface in
Open vSwitch [34], which we use to demonstrate research
proposals and examples. Additionally, we present a software
stack (§4) that enforces security and access control, handles
TPP composition, and has a library of useful primitives to
ease the path to deploying TPP applications.

The software and hardware implementations of TPP,
scripts to run experiments and plots in this paper, and an
extended version of this paper describing more TPP applica-
tions are all available online at http://jvimal.github.
io/tpp.

2 Example Programs
We start our discussion using examples of dataplane tasks
that can be implemented using TPPs, showcasing the util-
ity of exposing network state to end-hosts directly in the
dataplane. Each of these tasks typically requires new task-
specific hardware changes; however, we show how each task
can be refactored such that the network only implements
TPPs, while delegating complex task-specific functionality
to end-hosts. We will discuss the following tasks: (i) micro-
burst detection, (ii) a rate-based congestion control algo-
rithm, (iii) a network troubleshooting platform, (iv) a con-
gestion aware, distributed, network load balancer, and (v) a
low-overhead network measurement platform.

What is a TPP? A TPP is any Ethernet packet with a
uniquely identifiable header that contains instructions, some
additional space (packet memory), and an optional encapsu-
lated Ethernet payload (e.g. IP packet). The TPP exclusively
owns its packet memory, but also has access to shared mem-
ory on the switch (its SRAM and internal registers) through
addresses. TPPs execute directly in the dataplane at every
hop, and are forwarded just like other packets. TPPs use a
very minimal instruction set listed in Table 1, and we refer
the reader to Section 3 to understand the space overheads.
We abuse terminology, and use TPPs to refer both to the
programs and the packets that carry them.

We write TPPs in a pseudo-assembly-language with a
segmented address space naming various registers, switch
RAM, and packet memory. We write addresses using
human-readable labels, such as [Namespace:Statistic]
or [Queue:QueueOccupancy]. We posit that these ad-
dresses be known upfront at compile time. For example, the
mnemonic [Queue:QueueOccupancy] could be refer to an
address 0xb000 that stores the occupancy of a packet’s out-
put queue at each switch.

2.1 Micro-burst Detection
Consider the problem of monitoring link queue occupancy
within the network to diagnose short-lived congestion events

(or “micro-bursts”), which directly quantifies the impact of
incast. In low-latency networks such as datacenters, queue
occupancy changes rapidly at timescales of a few RTTs.
Thus, observing and controlling such bursty traffic requires
visibility at timescales orders of magnitude faster than the
mechanisms such as SNMP or embedded web servers that
we have today, which operate at tens of seconds at best.
Moreover, even if the monitoring mechanism is fast, it is not
clear which queues to monitor, as (i) the underlying rout-
ing could change, and (ii) switch hash functions that affect
multipath routing are often proprietary and unknown.

TPPs can provide fine-grained per-RTT, or even per-
packet visibility into queue evolution inside the network.
Today, switches already track per-port, per-queue occu-
pancy for memory management. The instruction PUSH

[Queue:QueueOccupancy] could be used to copy the
queue register onto the packet. As the packet traverses each
hop, the packet memory has snapshots of queue sizes at each
hop. The queue sizes are useful in diagnosing micro-bursts,
as they are not an average value. They are recorded when
the packet traverses the switch. Figure 1a shows the state of
a sample packet as it traverses a network. In the figure, SP
is the stack pointer which points to the next offset inside the
packet memory where new values may be pushed. Since the
maximum number of hops is small within a datacenter (typ-
ically 5–7), the end-host preallocates enough packet mem-
ory to store queue sizes. Moreover, the end-host knows ex-
actly how to interpret values in the packet to obtain a detailed
breakdown of queueing latencies on all network hops.

This example illustrates how a low-latency, programmatic
interface to access dataplane state can be used by software
at end-hosts to measure dataplane behavior that is hard to
observe in the control plane. Figure 1a shows a six-node
dumbell topology on Mininet [15], in which each node sends
a small 10kB message to every other node in the topology.
The total application-level offered load is 30% of the hosts’
network capacity (100Mb/s). We instrumented every packet
with a TPP, and collected fully executed TPPs carrying net-
work state at one host. Figure 1b shows the queue evolution
of 6 queues inside the network obtained from every packet
received at that host.

Overheads: The actual TPP consists of three instructions,
one each to read the switch ID, the port number, and the
queue size, each a 16 bit integer. If the diameter of the net-
work is 5 hops, then each TPP adds only a 54 byte over-
head to each packet: 12 bytes for the TPP header (see §3.4),
12 bytes for instructions, and 6×5 bytes to collect statistics
at each hop.

2.2 Rate-based Congestion Control
While the previous example shows how TPPs can help ob-
serve latency spikes, we now show how such visibility can
be used to control network congestion. Congestion control
is arguably a dataplane task, and the literature has a num-
ber of ideas on designing better algorithms, many of which

3

http://jvimal.github.io/tpp
http://jvimal.github.io/tpp

SP = 0x0
PUSH [QSize]

SP = 0x4
PUSH [QSize]

0x00

SP = 0x8
PUSH [QSize]

0x00
0xa0

Packet memory is preallocated. The TPP never grows/shrinks
inside the network.

Ethernet Header

Other headers
(e.g., TCP/IP)

(a) Visualizing the execution of a TPP as it is routed through
the network.

0 5 10 15 20 25
Queue size (packets)

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

til
es

2.0 2.2 2.4 2.6 2.8 3.0
Time (s)

0

5

10

15

20

25

Q
ue

ue
si

ze
(p

ac
ke

ts
)

(b) CDF and time series of queue occupancy on 6 queues in the
network, obtained from every packet arriving at one host.

Figure 1: TPPs enable end-hosts to measure queue occupancy evolution at a packet granularity allowing them to detect micro-
bursts, which are the spikes in the time series of queue occupancy (bottom of Figure 1b). Notice from the CDF (top) that one
of the queues is empty for 80% of the time instants when packet arrives to the queue; a sampling method is likely to miss the
bursts.

require switch support. However, TCP and its variants still
remain the dominant congestion control algorithms. Many
congestion control algorithms, such as XCP [23], FCP [14],
RCP [11], etc. work by monitoring state that indicates con-
gestion and adjusting flow rates every few RTTs.

We now show how end-hosts can use TPPs to deploy a
new congestion control algorithm that enjoys many bene-
fits of in-network algorithms, such as Rate Control Proto-
col (RCP) [11]. RCP is a congestion control algorithm that
rapidly allocates link capacity to help flows finish quickly.
An RCP router maintains one fair-share rate R(t) per link
(of capacity C, regardless of the number of flows), computed
periodically (every T seconds) as follows:

R(t +T) = R(t)

(
1− T

d
× a (y(t)−C)+b q(t)

d
C

)
(1)

Here, y(t) is the average ingress link utilization, q(t) is the
average queue size, d is the average round-trip time of flows
traversing the link, and a and b are configurable parameters.
Each router checks if its estimate of R(t) is smaller than the
flow’s fair-share (indicated on each packet’s header); if so, it
replaces the flow’s fair share header value with R(t).

We now describe RCP*, an end-host implementation of
RCP. The implementation consists of a rate limiter and a rate
controller at end-hosts for every flow (since RCP operates at
a per-flow granularity). The network control plane allocates
two memory addresses per link (Link:AppSpecific_0 and
Link:AppSpecific_1) to store fair rates. Each flow’s rate
controller periodically (using the flow’s packets, or using ad-
ditional probe packets) queries and modifies network state in
three phases.

Phase 1: Collect. Using the following TPP, the rate con-
troller queries the network for the switch ID on each hop,

queue sizes, link utilization, and the link’s fair share rate
(and its version number), for all links along the path. The re-
ceiver simply echos a fully executed TPP back to the sender.
The network updates link utilization counters every millisec-
ond. If needed, end-hosts can measure them faster by query-
ing for [Link:RX-Bytes].

PUSH [Switch:SwitchID]

PUSH [Link:QueueSize]

PUSH [Link:RX-Utilization]

PUSH [Link:AppSpecific_0] # Version number

PUSH [Link:AppSpecific_1] # Rfair

Phase 2: Compute. In the second phase, each sender com-
putes a fair share rate Rlink for each link: Using the samples
collected in phase 1, the rate controller computes the average
queue sizes on each link along the path. Then, it computes a
per-link rate Rlink using the RCP control equation.

Phase 3: Update. In the last phase, the rate-controller of
each flow asynchronously sends the following TPP to up-
date the fair rates on all links. To ensure correctness due to
concurrent updates, we use the CSTORE instruction:

CSTORE [Link:AppSpecific_0], \

[Packet:Hop[0]], [Packet:Hop[1]]

STORE [Link:AppSpecific_1], [Packet:Hop[2]]

PacketMemory:

Hop1: V_1, V_1+1, R_new_1, (* 16 bits each*)

Hop2: V_2, V_2+1, R_new_2, ...

where Vi is the version number in the AppSpecific_0 that
the end-host used to derive an updated Rnew,i for hop i, thus
ensuring consistency. (CSTORE dst,old,new updates dst
with new only if dst was old, ignoring the rest of the TPP

4

0 10 20 30 40 50 60 70 80
Time (s)

0
10
20
30
40
50
60
70

Th
ro

ug
hp

ut
 (M

b/
s)

Max-min fairness

flow a
flow b
flow c

0 10 20 30 40 50 60 70 80
Time (s)

0
10
20
30
40
50
60
70

Th
ro

ug
hp

ut
 (M

b/
s)

Proportional fairness

flow a

flow b

flow c

Figure 2: Allocations by max-min and proportional fairness
variant of RCP on the traffic pattern shown inset on the right
plot; each link has 100Mb/s capacity and all flows start at
1Mb/s at time 0.

otherwise.) Note that in the TPP, the version numbers and
fair rates are read from packet memory at every hop.

Other allocations: Although RCP was originally designed
to allocate bandwidth in a max-min fair manner among com-
peting flows, Kelly et al. [25] showed how to tweak RCP to
allocate bandwidth for a spectrum of fairness criteria—α-
fairness parameterized by a real number α ≥ 0. α-fairness
is achieved as follows: if Ri is the fair rate computed at the
i-th link traversed by the flow (as per the RCP control equa-
tion 1), the flow sets its rate as

R =

(
∑

i
R−α

i

)−1/α

(2)

The value α = 1 corresponds to proportional fairness, and
we can see that in the limit as α → ∞, R = mini Ri, which
is consistent with the notion of max-min fairness. Observe
that if the ASIC hardware had been designed for max-min
version of RCP, it would have been difficult for end-hosts to
achieve other useful notions of fairness. However, TPPs help
defer the choice of fairness to deployment time, as the end-
hosts can aggregate the per-link Ri according to equation 2
based on one chosen α . (We do not recommend flows with
different α sharing the same links due to reasons in [38].)

Figure 2 shows the throughput of three flows for both
max-min RCP* and proportional-fair RCP* in Mininet:
Flow ‘a’ shares one link each with flows ‘b’ and ‘c’ (shown
inset in the right plot). Flows are basically rate-limited UDP
streams, where rates are determined using the control algo-
rithm: Max-min fairness should allocate rates equally across
flows, whereas proportional fairness should allocate 1⁄3 of the
link to the flow that traverses two links, and 2⁄3 to the flows
that traverse only one link.

Overheads: For the experiment in Figure 2, the bandwidth
overhead imposed by TPP control packets was about 1.0–
6.0% of the flows’ rate as we varied the number of long lived
flows from 3 to 30 to 99 (averaged over 3 runs). In the same
experiment, TCP had slightly lower overheads: 0.8–2.4%.
The RCP* overhead is in the same range as TCP because
each flow sends control packets roughly once every RTT.
As the number of flows n increases, the average per-flow
rate decreases as 1/n, which causes the RTT of each flow to

TPPPacket
Insert
TPPs

TPP
view

Packet
Strip
TPPs

End-host
Apps

Network

End-host
Apps

view

Collector

Pkt Hdr

Collector
Collectors

Figure 3: TPPs enable end-hosts to efficiently collect packet
histories, which can then be used to implement four different
troubleshooting applications described in [16].

increase (as the RTT is inversely proportional to flow rate).
Therefore, the total overhead does not blow up.

Are writes absolutely necessary? RCP* is one of the few
TPP applications that writes to network state. It is worth ask-
ing if this is absolutely necessary. We believe it is necessary
for fast convergence since RCP relies on flows traversing a
single bottleneck link agreeing on one shared rate, which
is explicitly enforced in RCP. Alternatively, if rapid conver-
gence isn’t critical, flows can converge to their fair rates in an
AIMD fashion without writing to network state. In fact, XCP
implements this AIMD approach, but experiments in [11]
show that XCP converges more slowly than RCP.

2.3 Network Troubleshooting Framework
There has been recent interest in designing programmatic
tools for troubleshooting networks; without doubt, dataplane
visibility is central to a troubleshooter. For example, con-
sider the task of verifying that network forwarding rules
match the intent specified by the administrator [24, 26]. This
task is hard as forwarding rules change constantly, and a
network-wide ‘consistent’ update is not a trivial task [35].
Verification is further complicated by the fact that there can
be a mismatch between the control plane’s view of routing
state and the actual forwarding state in hardware (and such
problems have shown up in a cloud provider’s production
network [27]). Thus, verifying whether packets have been
correctly forwarded requires help from the dataplane.

Recently, researchers have proposed a platform called
NetSight [16]. NetSight introduced the notion of a ‘packet
history,’ which is a record of the packet’s path through
the network and the switch forwarding state applied to the
packet. Using this construct, the authors show how to build
four different network troubleshooting applications.

We first show how to efficiently capture packet histories
that are central to the NetSight platform. NetSight works
by interposing on the control channel between the controller
and the network, stamping each flow entry with a unique ver-
sion number, and modifying flow entries to create truncated
copies of packet headers tagged with the version number
(without affecting a packet’s normal forwarding) and addi-
tional metadata (e.g., the packet’s input/output ports). These
truncated packet copies are reassembled by servers to recon-
struct the packet history.

5

We can refactor the task of collecting packet histories by
having a trusted agent at every end-host (§4) insert the TPP
shown below on all (or a subset of) its packets. On receiving
a TPP that has finished executing on all hops, the end-host
gets an accurate view of the network forwarding state that
affected the packet’s forwarding, without requiring the net-
work to create additional packet copies.

PUSH [Switch:ID]

PUSH [PacketMetadata:MatchedEntryID]

PUSH [PacketMetadata:InputPort]

Once the end-host constructs a packet history, it is for-
warded to collectors where they can be used in many ways.
For instance, if the end-host stores the histories, we get the
same functionality as netshark—a network-wide tcpdump
distributed across servers. From the stored traces, an admin-
istrator can use any query language (e.g., SQL) to extract rel-
evant packet histories, which gives the same functionality as
the interactive network debugger ndb. Another application,
netwatch simply uses the packet histories to verify whether
network forwarding trace conforms to a policy specified by
the control plane (e.g., isolation between tenants).

Overheads: The instruction overhead is 12 bytes/packet and
6 bytes of per-hop data. With a TPP header and space for 10
hops, this is 84 bytes/packet. If the average packet size is
1000 bytes, this is a 8.4% bandwidth overhead if we insert
the TPP on every packet. If we enable it only for a subset of
packets, the overhead will be correspondingly lower.

Caveats: Despite its benefits, there are drawbacks to us-
ing only TPPs, especially if the network transforms pack-
ets in erroneous or non-invertible ways. We can overcome
dropped packets by sending packets that will be dropped to
a collector (we describe how in §2.6). Some of these as-
sumptions (trusting the dataplane to function correctly) are
also made by NetSight, and we believe the advantages of
TPPs outweigh its drawbacks. For instance, TPPs can col-
lect more statistics, such as link utilization and queue occu-
pancy, along with a packet’s forwarding history.

2.4 Distributed Load Balancing
We now show how end-hosts can use TPPs to probe for
network congestion, and use this detailed visibility to load
balance traffic in a distributed fashion. We demonstrate a
simplified version of CONGA [1], which is an in-network
scheme for traffic load balancing. CONGA strives to max-
imize network throughput and minimize the maximum net-
work link utilization in a distributed fashion by having net-
work switches maintain a table of path-level congestion met-
rics (e.g., quantized link utilization). Using this information,
switches route small bursts of flows (“flowlets”) selfishly on
the least loaded path. CONGA is optimized for datacenter
network topologies; we refer the curious reader to [1] for
more details.

CONGA’s design highlights two benefits relevant to our
discussion. First, it uses explicit visibility by having

S0

S1

L0

L2

L1

Each link capacity = 100Mb/s.

120115L1:L2 120
5045L0:L2 50

CONGA*ECMPDem.Flow
Achieved Thput.

Max Util = 100 85

All demand and throughput
numbers are in Mb/s.

Figure 4: An example showing the benefits of congestion-
aware load balancing: ECMP splits flow from L1 to L2
equally across the two paths resulting in suboptimal net-
work utilization. CONGA*, an end-host refactoring of
CONGA [1] is able to detect and reroute flows, achieving
optimum in this example.

switches stamp quantized congestion information on packet
headers. Second, load balancing decisions are made at
round-trip timescales to rapidly detect and react to network
congestion. Since TPPs also offer similar benefits, we show
how we can refactor the load balancing task between end-
hosts and the network, without requiring custom hardware
(except, of course, to support TPPs).

First, we require the network to install multipath routes
that end-hosts can select based on packet header values. This
can be done in the slow-path by the control plane by pro-
gramming a ‘group table’ available in many switches today
for multipath routing [32, §5.6.1], which selects an output
port by hashing on header fields (e.g., the VLAN tag). This
allows end-hosts to select network paths simply by changing
the VLAN ID.

Second, we need end-hosts to query for link utilization
across various paths, by inserting the following TPP on a
subset of packets destined to hosts within the datacenter:

PUSH [Link:ID]

PUSH [Link:TX-Utilization]

PUSH [Link:TX-Bytes]

We query for Link:TX-Bytes to measure small conges-
tion events if the link utilization isn’t updated. The receiver
echoes fully executed TPPs back to the sender to communi-
cate the congestion. Note that the header of the echoed TPP
also contains the path ID along with the link utilization on
each link in the path.

Third, using information in the fully executed TPPs, end-
hosts can build a table mapping ‘Path i→ Congestion Met-
ric (mi),’ where mi is either the maximum or sum of link
utilization on each switch–switch network hop on path i.
The authors of CONGA note that ‘sum’ is closer to optimal
than ‘max’ in the worst-case scenario (adversarial); however
CONGA used ‘max’ as it does not cause overflows when
switches aggregate path-congestion. With TPPs, this is not
an issue, and the choice can be deferred to deploy time.

And finally, end-hosts have full context about flows and
flowlets, and therefore each end-host can select a flowlet’s
path by setting the path tag appropriately on the flowlet’s
packets.

6

Overheads: We implemented a proof-of-concept prototype
(CONGA*) in software using UDP flows; Figure 4 repro-
duces an example from CONGA [1, Figure 4]. We config-
ured switches S0 and S1 to select paths based on destina-
tion UDP port. The flow from L0 to L2 uses only one path,
whereas the flow from L1 to L2 has two paths. The UDP
agents at L0 and L1 query for link utilization and aggre-
gate congestion metrics every millisecond for the two paths.
With CONGA*, end-hosts can maximize network through-
put meeting the demands for both flows, while simultane-
ously minimizing the maximum link utilization. In this ex-
ample, the overhead introduced by TPP packets was minimal
(< 1% of the total traffic).

Remark: Note that the functionality is refactored between
the network and end-hosts; not all functionality resides com-
pletely at the end-hosts. The network implements TPP and
multipath routing. The end-hosts merely select paths based
on congestion completely in software.

2.5 Low-overhead Measurement
Since TPPs can read network state, it is straightforward to
use them to monitor the network. However, we show how
to implement non-trivial measurement tasks. In particu-
lar, OpenSketch [42] is a recently published measurement
framework that makes the observation that many measure-
ment tasks can be approximated accurately using probabilis-
tic summary algorithms called “sketches,” which can in turn
be compiled down to a three-stage pipeline where packets
are hashed, filtered, and counted. The authors show how to
combine these primitives to answer questions such as: (i)
what is the number of unique IP addresses communicating
across links? (ii) what is the flow size distribution across
switches?

An example of a sketch is the bitmap sketch, which can
count the number of unique elements in a stream as follows:
hash the element (e.g. source IP address) to one of b bits
and set it to 1. The estimate of the cardinality of the set is
b× ln(b/z), where z is the number of unset bits [13].

Many sketches require multiple hash functions in hard-
ware operating at line-rate. This introduces a new ASIC
functionality that is specific to sketches; thus, it is worth ask-
ing if the task can be refactored using the visibility offered
by TPPs. Since end-hosts can readily implement many hash
functions cheaply in software, the only piece of information
they are missing is the packet’s routing context, which can
be obtained by the following TPP:

PUSH [Switch:ID]

PUSH [PacketMetadata:OutputPort]

As example, consider a task where one wants to measure
the number of unique destination IP addresses traversing the
core switches in the network, and update these values every
few (say 10) seconds. Each end-host in the network partici-
pates in this task by inserting the above TPP into its packets.
Note that this TPP need not be inserted into all packets, but it

per-link bitmasks

Link Monitoring Servers

NetworkEnd-host
Apps TPP End-host

AppsTPP
link-ids

hash()

Figure 5: Refactoring the bitmap sketch [13] to estimate set
cardinality.

should be inserted at least once for every destination IP ad-
dress the host communicates with. The receiving end-host
parses the fully executed TPP to retrieve the (switch,link)
IDs from the packet and implements the sketch as follows:

index = hash(packet.ip.dest)

foreach (switch,link) in tpp:

bitmask[switch][index] = 1

The sketch data-structures are distributed across the end-
hosts in the network, but we can take advantage of the fact
that the sketch operation (‘bit-set’) is commutative. Every
10 seconds, the end-hosts push those summary data struc-
tures that have changed since the last interval to a central,
load-balanced, link monitoring service. The link monitor-
ing service aggregates the bit-vectors to obtain the sketch
data-structure for every link, obtaining the same result as
one would obtain using OpenSketch. This refactoring allow
end-hosts to retain flexibility in implementing other kinds of
sketches.

Overheads: To implement the count-cardinality sketch, we
only need one TPP per unique destination IP address. If we
sample one out of every 10 packets to insert the measure-
ment TPPs, we will incur less than 1% bandwidth overhead
due to extra headers in packets. If we assume a k = 64 Fat-
Tree datacenter network, there are 65536 core links, and
65536 servers. The sketch data-structure’s accuracy depends
on the number of bits and the probability of collision [13].
If we use 1kbit memory per link, the total memory usage for
all 65536 links is about 8MB/server.

2.6 Other possibilities
The above examples illustrate how a single TPP interface
enables end-hosts to achieve many tasks. There are more
tasks that we couldn’t cover in detail. In the interest of space,
we refer the reader to the extended version of this paper for
more details on some of the tasks below [31].

Measurement: Since TPPs can read network state, they can
be used in a straightforward fashion for measuring any net-
work statistic at rapid timescales. As TPPs operate in the

7

dataplane, they are in a unique position to expose path char-
acteristics experienced by a specific packet that an end-host
cares about.

Network verification: TPPs also help in verifying whether
network devices meet certain requirements. For example,
the path visibility offered by TPPs help accurately verify
that route convergence times are within an acceptable value.
This task can be challenging today, if we rely on end-
to-end reachability as a way to measure convergence, be-
cause backup paths can still maintain end-to-end connectiv-
ity when routes change. Also, the explicit visibility eases
fault localization [44].

Fast network updates: By allowing secure applications to
write to a switch’s forwarding tables, network updates can be
made very fast. This can reduce the time window of a tran-
sient state when network forwarding state hasn’t converged.
For example, it is possible to add a new route to all switches
along a path in half a round-trip time, as updating an IP for-
warding table requires only 64 bits of information per-hop:
32 bit address and a 32 bit netmask per hop, tiny enough to
fit inside a packet.

Wireless Networks: TPPs can also be used in wireless net-
works where access points can annotate end-host packets
with rapidly changing state such as channel SNR. Low-
latency access to such rapidly changing state is useful for
network diagnosis, allows end-hosts to distinguish between
congestive losses and losses due to poor channel quality, and
query the bitrate that an AP selected for a particular packet.

3 Design of TPP-Capable Switches
In this section, we discuss the TPP instructions, address-
ing schemes, and the semantics of the TPP interface to a
switch and what it means for a switch to be TPP-capable.
Network switches have a variety of form factors and im-
plementations; they could be implemented in software (e.g.,
Click, Open vSwitch), or in network processors (e.g., Net-
FPGA), or as hardware ASICs. A switch might also be built
hierarchically from multiple ASICs, as in ‘chassis’ based
switches [21, Figure 3]. A TPP can be executed on each
of these platforms. Thus, it is useful for a TPP-capable
switch and the end-host to have a contract that preserves use-
ful properties without imposing a performance penalty. We
achieve this by constraining the instruction execution order
and atomicity.

3.1 Background on a Switch Pipeline
We begin with an abstract model of a switch execution en-
vironment shown in Figure 6. The packet flows from in-
put to output(s) through many pipelined modules. Once a
packet arrives at an input port, the dataplane tags the packet
with metadata (such as its ingress port number). Then, the
packet passes through a parser that extracts fields from the
packet and passes it further down the pipeline which consists
of several match-action stages. This is also known as mul-
tiple match table model [9]. For example, one stage might

use the parsed fields to route the packet (using a combi-
nation of layer 2 MAC table, layer 3 longest-prefix match
table, and a flexible TCAM table). Finally, any modifica-
tions to the packet are committed and the packet is queued
in switch memory. Using metadata (such as the packet’s pri-
ority), the scheduler decides when it is time for the packet
to be transmitted out of the egress port determined earlier in
the pipeline. The egress stage also consists of a number of
match-action stages.

3.2 TPP Semantics
The read/write instructions within a TPP access two distinct
memory spaces: memory within the switch (switch mem-
ory), and a per-hop scratch space within the packet (packet
memory). By all switch memory, we only mean memory at
the stages traversed by a TPP, except the memory that stores
packet contents. By all packet memory, we mean the TPP re-
lated fields in the packet. Now, we state our requirements for
read/write instructions accessing the two memory spaces.

Switch memory: To expose statistics pertaining to a specific
packet as it traverses the network, it is important for the in-
structions in the TPP to have access to the same values that
are used to forward the packet. For read-only values, this
requirement means that reads by a TPP to a single memory
location must necessarily be atomic and after all writes by
the forwarding logic to the same memory location. For ex-
ample, if a TPP accesses the memory that holds the output
port of a packet, it must return the same port that the for-
warding logic determines, and no other value. This is what
we mean by a “packet-consistent” view of network state.

For read-write memory addresses, it is useful if instruc-
tions within the TPP were executed in the order specified by
the TPP to a given location after any modifications by the
switch forwarding logic. Thus, writes by a TPP supersede
those performed by forwarding logic.

Packet memory: Since instructions can read from and write
to packet memory using PUSH and POP, writes to packet
memory must take effect sequentially in the order specified
by the TPP. This guarantees that if a TPP pushes values at
memory locations X, Y, and Z onto packet memory, the end-
host sees the values in the packet in the same order. This
does not require that reads to X, Y, and Z be issued in the
same order.

3.3 TPP Execution Model
TPPs are executed in the dataplane pipeline. TPPs are re-
quired to fit exactly within an MTU to avoid having the
ASIC deal with fragmentation issues. This is not a big lim-
itation, as end-hosts can split a complex task into multiple
smaller TPPs if a single packet has insufficient memory to
query all the required statistics. By default, a TPP executes
at every hop, and instructions are not executed if they ac-
cess memory that doesn’t exist. This ensures the TPP fails
gracefully.

8

Ingress
Parsers

Match
Action
Stage

1

Match
Action
Stage

2

Match
Action
Stage

n

Packets
Arrive

Egress
Parsers

Match
Action
Stage

1

Match
Action
Stage

2

Match
Action
Stage

n

Ingress Pipeline Egress Pipeline

Switch
Memory

(Queues)

Packets
Depart

Figure 6: A simplified block diagram of the dataplane pipeline in a switch ASIC. Packets arrive at the ingress, and pass through
multiple modules. The scheduler then forwards packets (that are not dropped) to the output ports computed at earlier stages in
the pipeline.

TPP

ARP

Ethernet

IPv4

UDP TCP

TPP

ether.type=0x6666
ether.type=0x0800

tpp.proto=0x0800

udp.dstport
=0x6666

non-TPP
udp.dstport
!=0x6666

ether.type=0x0806 ip.p=6ip.p=17

(a) Parse graph for the two ways to parse TPPs: trans-
parent mode, or standalone mode.

1 2 3 4 5

Instructions

Packet memory
(Initialized by end-hosts)

Up to
20 bytes

40–200
bytes

1: Length of TPP
2: Length of Packet memory
3: Packet mem. addressing
 mode (stack, hop, etc.)
4: Hop number / stack pointer
5: Per hop memory length
 (used only when memory is
 hop-addressed)
6: TPP checksum
7: Encapsulated TPP proto
 (default 0, i.e., none)

6 8 bytes

7 2 bytes

TPP Application ID 4 bytes

(b) TPP’s packet structure.
Figure 7: The parse graph and structure of a TPP. We chose 0x6666 as the ethertype and source UDP port that uniquely
identifies a TPP. With a programmable switch parser, this choice can be reprogrammed at any time.

Furthermore, the platform is free to reorder reads and
writes so they execute in any order. However, if the pro-
grammer needs guarantees on ordering instructions due to
data hazards (e.g., for CEXEC, CSTORE), they must ensure
the TPP accesses memory in the pipeline order. For a vast
majority of use cases, we argue this restriction is not severe.
From a practical standpoint, this requirement ensures that
the switch pipeline remains feed-forward as it is today in a
majority of switches.

3.3.1 Unified Memory-Mapped IO

A TPP has access to any statistic computed by the switch
that is addressable. The statistics can be broadly names-
paced into per-switch (i.e., global), per-port, per-queue and
per-packet. Table 2 shows example statistics in each of these
namespaces. These statistics may be scattered across differ-
ent stages in the pipeline, but TPPs access them via a unified
address space. For instance, a switch keeps metadata such as
input port, the selected route, etc. for every packet that can
be made addressable. These address mappings are known
upfront to the TPP compiler that converts mnemonics such
as [PacketMetadata:InputPort] into virtual addresses.

3.3.2 Addressing Packet Memory

Memory is managed using a stack pointer and a PUSH

instruction that appends values to preallocated packet
memory. TPPs also support a hop addressing scheme,
similar to the the base:offset x86-addressing mode.
Here, base:offset refers to the word at location
base * hop_size + offset. Thus, if hop-size is 16
bytes, the instruction “LOAD [Switch:SwitchID],

[Packet:hop[1]]” will copy the switch ID into

PacketMemory[1] on the first hop, PacketMemory[17]

on the second hop, etc. The offset is part of the instruc-
tion; the base value (hop number) and per-hop memory
size values are in the TPP header. To simplify memory
management in the dataplane, the end-host must preallocate
enough space in the TPP to hold per-hop data structures.

3.3.3 Synchronization Instructions
Besides read and write, a useful instruction in a concurrent
programming environment is an atomic update instruction,
such as a conditional store CSTORE, conditioned on a mem-
ory location matching a specified value, halting subsequent
instructions in the TPP if the update fails. That is, CSTORE
[X],[Packet:hop[Pre]],[Packet:hop[Post]] works
as follows:

succeeded = False

if (value at X == value at Packet:hop[Pre]) {

value at X = value at Packet:hop[Post]

succeeded = True

}

value at Packet:hop[Pre] = value at X;

if (succeeded) {

allow subsequent instructions to execute

}

By having CSTORE return the value of X, an end-host can
infer if the instruction succeeded. Notice that the second and
third operands are read from a unique location at every hop.
This is needed to ensure correct semantics when the switch
overwrites the value at the second operand.

In a similar vein, we found a conditional execute (CEXEC)
instruction useful; for example, it may be desirable to exe-

9

Match Action Stage n

SRAM Register
File

Packet Headers
(TPP, IP, etc.) +

Metadata
From

previous
stage

To next
stage

TCPU

Instructions Packet Mem.
(at most 320b),

Metadata

SRAM Reg.File
Controller Crossbar

CrossbarCrossbar

TCPU
MMIO

160b

Figure 8: At every stage, the TCPU has execution units that
can access only local memory and registers, as well as packet
metadata.

cute a network task only on one switch, or on a subset of
switches (say all the top of rack switches in a datacenter).
The conditional execute instruction specifies a memory ad-
dress, a 32-bit mask, and a 32-bit value (specified in the
packet hop), which instructs the switch to execute all sub-
sequent instructions only when (switch_value & mask)

== value. All instructions that follow a failed CEXEC check
will not be executed.

3.4 Parsing: TPP Packet Format
As noted in §2, a TPP is any Ethernet frame from which we
can uniquely identify a TPP header, the instructions, packet
memory, and an optional payload. This allows end-hosts to
use TPPs in two ways: (i) piggy-back TPPs on any existing
packet by encapsulating the packet within a TPP of ether-
type 0x6666, or (ii) embed a TPP into an otherwise normal
UDP packet destined for port 0x6666, which is a special port
number usurped by TPP-enabled routers.

Figure 7a shows the two parse graphs depicting the two
ways in which our prototype uses TPPs. A parse graph de-
picts a state machine for a packet parser, in which the nodes
denote protocols and edges denote state transitions when
field values match. We use the same convention as in [9]
to show the two ways in which we can parse TPPs.

3.5 Putting it together: the TCPU
TPPs execute on a tiny processor, which we call the TCPU.
A simple way to implement the TCPU is by having a RISC-
like processor at the end of the ingress match-action stages
as we described in our earlier position paper [22, Figure 5].
This simple approach could be practical for software, or low-
speed hardware switches, but might be impractical in high-
speed hardware switches as memory in an ASIC is often dis-
tributed across modules. The wiring complexity to provide
read and write paths from each module to the TCPU be-
comes prohibitively expensive within an ASIC, and is sim-
ply infeasible across line-cards in a chassis switch.

We overcome this limitation in two ways. First, our exe-
cution model permits reordering reads and writes across dif-
ferent ASIC memory locations. Second, end-hosts can stati-

cally analyze a desired TPP and split it into smaller TPPs if
one TPP is insufficient. For instance, if an end-host requires
link utilization on all links at all switches a packet traverses,
it can stage the following sequence of TPPs: (i) send one
TPP to collect switch ID and link utilizations on links tra-
versed by the packet, and (ii) send a new TPP to each switch
link on the switches traversed by TPP 1 to collect the re-
maining statistics. To summarize:

• Loads and stores in a single packet can be executed in any
order, by having end-hosts ensure there are no write-after-
write, or read-after-write conflicts.
• The operands for conditional instructions, such as CSTORE

and CEXEC, are available before, or at the stages where the
subsequent instructions execute; CEXEC can execute when
all its operands are available.

By allowing instructions to be executed out of order, we
can distribute the single logical TCPU on an ASIC by repli-
cating its functionality at every stage. Each stage has one
execution unit for every instruction in the packet, a cross-
bar to connect the execution units to all registers local to
the stage and packet memory, and access to the stage’s local
memory read/write port. From the decoded instructions, the
stage can execute all instructions local to the stage, and once
all memory accesses have completed, the packet leaves the
stage.

Replicating execution units might seem expensive, but the
majority of logic area in an ASIC is due to the large memo-
ries (for packet buffers, counters, etc.), so the cost of execu-
tion units is not prohibitive [9]. Figure 8 shows the TCPU if
we zoom into one of the match-action stages.

Serializing PUSH/POP instructions: Finally, there are
many techniques to ensure the effect of PUSH and POP in-
structions appear if they executed inorder. Since the packet
memory addresses accessed by PUSH/POP instructions are
known immediately when they are parsed, they can be con-
verted to equivalent LOAD/STOREs that can then be executed
out of order. For example, consider the following TPP:

PUSH [PacketMetadata:OutputPort]
PUSH [PacketMetadata:InputPort]
PUSH [Stage1:Reg1]
POP [Stage3:Reg3]

After parsing the instructions, they can be converted to the
following TPP which is equivalent to the above TPP:

LOAD [PacketMetadata:OutputPort], [Packet:Hop[0]]
LOAD [PacketMetadata:InputPort], [Packet:Hop[1]]
LOAD [Stage1:Reg1], [Packet:Hop[2]]
STORE [Stage3:Reg3], [Packet:Hop[2]]

Now, the TPP loads the values stored in two registers to
the packet memory addressed in the hop addressing format.
Note that the packet’s output port is not known until the
packet is routed, i.e., at the end of the ingress stage. The
execution proceeds as follows:

10

End-host
App 1 App 2Network

Control Plane
TPP Control Plane

Agent
Executor

Dataplane shim

RCP/TCP/IP Stack

RCP
can send

piggybacked
TPPs

packets with
piggybacked

TPP

TPPs within
UDP payload with
dstport=0x6666

RPCs

TPP Control
Plane

RPCs

Figure 9: End-host stack for creating and managing TPP-
enabled applications. Arrows denote packet flow paths
through the stack, and communication paths between the
end-host and the network control plane.

• By ingress stage 1, the metadata consists of four instruc-
tions, the memory addresses they access (the four registers
and the three packet memory offsets), the packet’s hop
number, the packet’s headers, its input port, its CRC, etc.
• At stage 1, the packet’s input port is known. Stage 1 ex-

ecutes the second instruction, and stores the input port
value at the 2nd word of the packet memory. Stage 1
also executes the third instruction, copying Reg1 to the
3rd word of packet memory.
• At stage 3, the fourth instruction executes, copying the 3rd

word from packet memory into Reg3.
• At the end of the ingress stage, the packet’s output port

is already computed, and the last stage copies the output
port number to the 1st word of the packet memory before
the packet is stored in the ASIC packet buffers.

4 End-host Stack
Now that we have seen how to design a TPP-enabled ASIC,
we look at the support needed from end-hosts that use TPPs
to achieve a complex network functionality. Since TPP en-
ables a wide range of applications that can be deployed in
the network stack (e.g., RCP congestion control), or individ-
ual servers (e.g., network monitoring), or a combination of
both, we focus our efforts on the common usage patterns.

End-host architecture: The purpose of the end-host stack
(Figure 9) is to abstract out the common usage patterns of
TPPs and implement TPP access control policies. At every
end-host, we have a TPP control- and dataplane agent. The
control plane is a software agent that does not sit in the crit-
ical forwarding path, and interacts with the network control
plane if needed. The dataplane shim sits on the critical path
between the OS network stack and the network interface and
has access to every packet transmitted and received by the
end-host. This shim is responsible for transparently adding
and removing TPPs from application-generated packets, and
enforcing access control.

4.1 Control plane
The TPP control plane (TPP-CP) is a central entity to keep
track of running TPP applications and manage switch mem-
ory, and has an agent at every end-host that keeps track of the

active TPP-enabled applications running locally. Each ap-
plication is allocated a contiguous set of memory addresses
that it can read/write. For example, the RCP application re-
quires access to a switch memory word to store the Rfair at
each link, and it owns this memory exclusively. This mem-
ory access control information is similar to the x86’s global
descriptor table, where each entry corresponds to a segment
start and end address, and permissions to read/write to mem-
ory is granted accordingly.

TPP-CP exports an API which authorized applications can
use to insert TPPs on a subset of packets matching certain
criteria, with a certain sampling frequency. Note that TPP-
CP will know the caller application (e.g. ndb) so it can deny
the API call if the TPP accesses memory locations other than
those permitted. The API definition is as follows:

add_tpp(filter, tpp_bytes, sample_frequency, priority)

where filter is a packet filter (as in iptables), and
tpp_bytes is the compiled TPP, and sample_frequency

is a non-negative integer that indicates the sampling fre-
quency: if it is N, then a packet is stamped with the TPP with
probability 1/N. If N = 1, all packets have the TPP. The
dataplane stores the list of all TPPs with each filter: This en-
sures that multiple applications, which want to install TPPs
on (say) 1% of all IP packets, can coexist.

TPP-CP also configures the dataplane to enforce access
control policies. Each memory access policy is a tuple:
(appid,op,address_range). The value appid is a 64-bit
number, op is either read or write, and address_range is
an interval denoting the start and end address. The TPPs are
statically analyzed, to see if it accesses memories outside the
permitted address range; if so, the API call returns a failure
and the TPP is never installed.

4.2 Dataplane
The end-host dataplane is a software packet processing
pipeline that allows applications to inject TPPs into ongo-
ing packets, process executed TPPs from the network, and
enforce access control policies.

Interposition: The dataplane realizes the TPP-CP API
add_tpp. It matches outgoing packets against the table of
filters and adds a TPP to the first match, or sends the packet
as such if there is no match. Only one TPP is added to
any packet. The interposition modules in the dataplane also
strips incoming packets that have completed TPPs before
passing the packet to the network stack, so the applications
are oblivious to TPPs.

Processing executed TPPs: The dataplane also processes
incoming packets from the network, which have fully ex-
ecuted. It echoes any standalone TPPs that have finished
executing back to the packet’s source IP address. For piggy-
backed TPPs, the dataplane checks the table mapping the
application ID to its aggregator, and sends the finished TPP
to the application-specific aggregator.

11

4.3 Security considerations
There is a great deal of software generating network traffic
in any datacenter, and most of it should not be trusted to gen-
erate arbitrary TPPs. After all, TPPs can read and write a va-
riety of switch state and affect packet routing. This raises the
questions of how to restrict software from generating TPPs,
but also how to provide some of the benefits of TPPs to soft-
ware that is not completely trusted. We now discuss possible
mechanisms to enforce such restrictions, under the assump-
tion that switches are trusted, and there is a trusted software
layer at end hosts such as a hypervisor.

Fortunately, restricting TPPs is relatively simple, because
it boils down to packet filtering, which is already widely
deployed. Just as untrusted software should not be able to
spoof IP addresses or VLAN IDs, it should not able to orig-
inate TPPs. Enforcing this restriction is as easy as filtering
based on protocol and port numbers, which can be done ei-
ther at all ingress switch ports or hypervisors.

In many settings, read-only access to most switch state is
harmless. (A big exception is the contents of other buffered
packets, to which TPPs do not provide access anyway.) For-
tunately, TPPs are relatively amenable to static analysis,
particularly since a TPP contains at most five instructions.
Hence the hypervisor could be configured to drop any TPPs
with write instructions (or write instructions to some subset
of switch state). Alternatively, one could imagine the hyper-
visor implementing higher-level services (such as network
visibility) using TPPs and expose them to untrusted software
through a restricted API.

At a high level, a compromised hypervisor sending mali-
cious TPPs is as bad as a compromised SDN controller. The
difference is that hypervisors are typically spread throughout
the datacenter on every machine and may present a larger at-
tack surface than SDN controllers. Hence, for defense in
depth, the control plane needs the ability to disable write in-
structions (STORE, CSTORE) entirely. A majority of the tasks
we presented required only read access to network state.

4.4 TPP Executor
Although the default way of executing TPP is to execute
at all hops from source to destination, we have built a
‘TPP Executor’ library that abstracts away common ways
in which TPPs can be (i) executed reliably, despite TPPs be-
ing dropped in the network, (ii) targeted at one switch, with-
out incurring a full round-trip from one end-host to another,
(iii) executed in a scatter-gather fashion across a subset of
switches, and many more. The goal of this section is to
show how complex operations can be built from a simple set
of primitives.

Reliable execution: Since TPPs are forwarded just like reg-
ular packets, they can be dropped if there is congestion.
The helper function abstracts away retrying (for a maximum
number of times) before giving up. Applications can use
this functionality for idempotent operations (e.g., loads and
conditional stores). We can make stores idempotent by first

reading the value and conditioning on the value for subse-
quent retries.

Targeted execution: TPPs can be crafted so that they exe-
cute only at one specific switch. This helper function wraps
a TPP with a CEXEC instruction conditioned on the switch ID
matching the specified value. The end-host agent creates a
UDP packet and sends it to the switch IP (obtained from the
network control plane).

As we noted in §3, a switch might have multiple pipelines
connecting a set of interfaces. Since interfaces typically
have their own IP addresses, the end-host can send a TPP
addressed to a specific interface which would result in the
TPP being routed through a pipeline. Furthermore, switches
can be configured to reflected back to the source, using the
following execution pattern.

Reflective TPP: Consider an example where a server wants
to monitor congestion at the top-of-rack switch it is con-
nected to. Sending a TPP from the server to a destination and
back incurs a full round-trip time. To achieve even quicker
response, the server can program the switch to reflect spe-
cially marked TPPs (in its header) back to to the source ad-
dress. With programmable protocol parsing [7, §4], switches
can swap the source and destination IP addresses inside the
TPP so the packet never leaves the rack.

Scatter gather: Some monitoring applications collect statis-
tics from a number of switches, so we provide an execu-
tor that implements scatter-gather with retries. The applica-
tion specifies the list of switches to execute a TPP, and the
executor library takes care of creating the necessary TPPs,
and masks any failures. The control plane can minimize the
number of packets sent from the application to the switches,
by constructing a multicast tree between the sender and mon-
itored switches (in the slow path).

Large TPPs: If the statistics collected do not fit into a
packet, either because the number of hops is large, or the
number of statistics collected per-hop is large, then the ex-
ecutor automatically splits the TPP into smaller TPPs. The
smaller TPPs use the CEXEC instruction, conditioned on the
hop number on the packet’s TPP header, to execute on a spe-
cific range of hops.

4.5 Deploying a TPP Application
Applications that use TPPs can be deployed in two ways: (i)
standalone, and (ii) piggy-backed. Standalone apps use the
raw TPP interface, and have their own deployment strategy,
because of their unique requirements. For example, RCP is
a highly tuned implementation within the OS kernel at every
end-host.

Piggy-backed applications are intrusive in the sense that
they attach TPPs to packets that flow through the network.
There is a common pattern to such applications (e.g., net-
work troubleshooting and monitoring), which is abstracted
away to make them easy to deploy. The programmer speci-
fies the following:

12

• Filter: An iptables packet filter that specifies the subset
of traffic through the network to which TPPs should be
attached. The filter also includes the sampling frequency
and the application’s priority.
• TPP: A compiled TPP (a string of bytes) that should be

attached with packets.
• Aggregator: The aggregator is a per-node application that

receives the application-specific, fully executed TPPs, and
does post-processing. For example, the OpenSketch mon-
itoring application implements hash functions and sum-
mary data-structures.
• Collector: A software service that collects summaries

from the aggregators spawned across the cluster. The pro-
grammer specifies the service’s virtual IP address; packets
sent to this IP are load balanced across a replicated collec-
tor instances.
Once the programmer specifies the above inputs, a pro-

visioning agent creates a new application ID and verifies
permissions by examining the TPP. The provisioning agent
also spawns the aggregator and collector which receive fully
executed TPPs and does application-specific processing. Fi-
nally, the provisioning agent configures appropriate end-host
dataplane agents by invoking the add_tpp API call, com-
pleting the application setup. Once the application is set up,
the collector will start receiving packets from its aggregator
agents on deployed hosts.

5 Implementation
We have implemented both hardware and software support
needed for TCPU: the distributed TCPU on the 10Gb/s Net-
FPGA platform, and a software TCPU for the Open vSwitch
Linux kernel module. The NetFPGA hardware prototype has
a four-stage pipeline at each port, with 64 kbit block RAM
and 8 registers at each stage (i.e. a total of 1Mbit RAM
and 128 registers). We were able to synthesize the hardware
modules at 160 MHz, capable of switching minimum sized
(64Byte) packets at a 40Gb/s total data rate.

The end-host stack is a relatively straightforward imple-
mentation: We have implemented the TPP-CP, and the TPP
executor (with support only for the reliable and scatter-
gather execution pattern) as Python programs running in
userspace. The software dataplane is a kernel module that
acts as a shim between the network stack and the underly-
ing network device, where it can gain access to all network
packets on the transmit and receive path. For filtering pack-
ets to attach TPPs, we use iptables to classify packets and
tag them with a TPP number, and the dataplane inserts the
appropriate TPP by modifying the packet in place.

6 Evaluation
In §2 we have already seen how TPPs enable many data-
plane applications. We now delve into targeted benchmarks
of the performance of each component in the hardware and
software stack.

Task NetFPGA ASICs
Parsing < 1 cycle 1 cycle
Memory access 1 cycle 2–5 cycles
Instr. Exec.: CSTORE 1 cycle 10 cycles
Instr. Exec.: (the rest) < 1 cycle 1 cycle
Packet rewrite < 1 cycle 1 cycle
Total per-stage 2–3 cycles 50–100 cycles†

Table 3: Summary of hardware latency costs. †The ASIC’s
per-stage cost is estimated from the total end-to-end latency
(200–500ns) and dividing it by the number of stages (typ-
ically 4–5). This does not include packetization latency,
which is another ∼50ns for a 64Byte packet at 10Gb/s.

6.1 Hardware
The cost of each instruction is dominated by the memory ac-
cess latency. Instructions that only access registers complete
in less than 1 cycle. On the NetFPGA, we use a single-port
128-bit wide block RAM that has a read (or write) latency of
1 cycle. We measured the total per-stage latency by sending
a hundreds of 4 instruction TPP reading the clock from every
stage, and found that the total per-stage latency was exactly 2
cycles: thus, parsing, execution, and packet rewrite all com-
plete within a cycle, except for CSTORE, which takes 1 cycle
to execute (excluding the time for accessing operands from
memory).

The latency cost is different in a real switch: From per-
sonal communication with multiple ASIC designers [8, 10],
we learned that 1GHz ASIC chips in the market typically use
single-port SRAMs 32–128bits wide, and have a 2–5 cycle
latency for every operation (read/write). This means that in
the worst case, each load/store instruction adds a 5 cycle la-
tency, and a CSTORE adds 10 cycles. Thus, in the worst case,
if every instruction is a CSTORE, a TPP can add a maximum
of 50ns latency to the pipeline; to avoid losing throughput
due to pipeline stalls, we can add 50ns worth of buffering
(at 1Tb/s, this is 6.25kB for the entire switch). However, the
real cost is likely to be smaller because the ASIC already ac-
cesses memory locations that are likely to be accessed by the
TPP that is being executed: For instance, the ASIC always
looks up the flow entry, and updates queue sizes for memory
accounting, so those values needn’t be read twice.

Though switch latency costs are different from that of the
NetFPGA, they do not significantly impact packet process-
ing latency, as in a typical workload, queueuing and prop-
agation delays dominate end-to-end latency and are orders
of magnitude larger. Even within a switch, the unloaded
ingress-egress latency for a commercial ASIC is about 500ns
per packet [3]. The lowest-latency ASICs are in the range
of about 200ns per packet [19]. Thus, the extra 50ns worst-
case cost per packet adds at most 10–25% extra latency to
the packet. Table 3 summarizes the latency costs.

Die Area: The NetFPGA costs are summarized in Table 4.
Compared to the single-stage reference router, the costs are
within 30.1% in terms of the number of gates. However,
gate counts by themselves do not account for the total area
cost, as logic only accounts for a small fraction of the total

13

Resource Router +TCPU %-extra
Slices 26.8K 5.8K 21.6%
Slice registers 64.7K 14.0K 21.6%
LUTs 69.1K 20.8K 30.1%
LUT-flip flop pairs 88.8K 21.8K 24.5%

Table 4: Hardware cost of TPP modules at 4 pipelines in the
NetFPGA (4 outputs, excluding the DMA pipeline).

1 10 20 ∞
Sampling Frequency

2
3
4
5
6
7
8
9

10

TC
P

go
od

pu
t(

G
b/

s) 1 flows
10 flows
20 flows

1 10 20 ∞
Sampling Frequency

2
3
4
5
6
7
8
9

10

Th
ro

ug
hp

ut
(G

b/
s)

Figure 10: Maximum attainable application-level and net-
work throughput with a 260 byte TPPs inserted on a fraction
of packets (1500Byte MTU and 1240Byte MSS). A sam-
pling frequency of ∞ depicts the baseline performance as no
TPPs are installed. Error bars denote the standard deviation.

area that is dominated by memory. To assess the area cost
for a real switch, we use data from Bosshart et al. [9]. In
their paper, the authors note that the extra area for a total
of 7000 processing units—which support instructions that
are similar to the TCPU—distributed across all match-action
stages, accounts for less than 7% of the ASIC area [9, §5.4].
We only need 5×64 = 320 TCPUs, one per instruction per
stage in the ingress/egress pipelines; therefore, the area costs
are not substantial (0.32%).

6.2 End-host Stack
The critical component in the end-host stack is the dataplane.
In the transmit side, the dataplane processes every packet,
matches against a list of filters, and attaches TPPs. We use a
4-core Intel core i7 machine running Linux 3.12.6.

Figure 10 shows the baseline throughput of a single TCP
flow, without segmentation offloads, across a virtual ether-
net link, which was able to push about 4Gb/s traffic with one
TCP flow, and about 6.5Gb/s of traffic with 20 flows. Af-
ter adding TPPs, the throughput of the TCP flow reduces,
depending on the (uniform random) sampling frequency. If
the sampling frequency is infinite, none of the packets have
TPPs, which denotes the best possible performance in our
setup. As we can see, the network throughput doesn’t suffer
much, which shows that the CPU overhead to add/remove
TPPs is minimal. However, application throughput reduces
proportionally, due to header overheads. Table 5 shows the

Match # Rules
0 1 10 100 1000

First 8.8 8.7 8.6 7.8 3.6
Last 8.8 8.7 8.6 7.7 3.6
All 8.8 8.7 8.3 6.7 1.4

Table 5: Maximum attainable network throughput in Gb/s
with varying number of filters (1500Byte MTU). The num-
bers are the average of 5 runs.

impact on the number of filters in the dataplane, and its ef-
fect on network throughput, under three different scenarios:
(i) ‘first’ means we create flows that always match the first
rule, (ii) ‘last’ means flows always match the last rule, and
(iii) ‘all’ means there is at least one flow that matches each
rule. In ‘first’ and ‘last,’ there are 10 TCP flows. In ‘all,’
there are as many flows as there are number of rules (with
at least 10 flows). Each rule matches on a TCP destination
port. As we can see, there is little loss in throughput up to 10
rules. With more rules, throughput does drop, but there is no
difference between matching on the first (best case) and last
rule (worst case) in the filter chain. With 1000 flows, other
overheads (context switches) result in much lower through-
put.

7 Limitations
Though TPPs help in a wide variety of tasks that were dis-
cussed in §2, they are not a panacea to implement any arbi-
trary functionality due to two reasons: (i) the restricted in-
struction set, and (ii) restricted programming model in which
end-hosts initiate tasks. As we have not presented a formal
theory of “network tasks,” the classification below is neither
complete nor mutually exclusive; it is only meant to be an
illustration.

Tasks that require per-packet computation: The read and
write instructions in TPPs limit end-hosts to high through-
put network updates, but not arbitrary network computation.
As an example, consider the task of implementing an active
queue management scheme such as Stochastic Fair Queue-
ing, static priority, dynamic priority queueing (e.g. pFab-
ric [2]), and fair queueing. These tasks require fine-grained
control over per-packet transmit and drop schedules, which
is better realized using dedicated hardware or FPGAs [37].
In a similar vein, TPPs are not expressive enough to scan
packets for specific signatures (e.g., payload analysis us-
ing deep packet inspection). Such tasks are better served
by other approaches (e.g., middlebox software, or custom
packet processors).

Tasks that are event-driven: In the examples we discussed,
all TPPs originate at end-hosts. This limits end-hosts from
implementing tasks that require precisely timed notifications
whenever there is some state change within the network.
For instance, TPPs by themselves cannot be used to imple-
ment flow control mechanisms (e.g., priority flow control, or
PFC [18]), or reactive congestion notifications such as Quan-
tized Congestion Notification [33] and FastLane [43]. Such
tasks require the network to send special packets when the
queue occupancy reaches a certain threshold. However, this
isn’t a show-stopper for TPPs, as end-hosts can proactively
inject TPPs on a subset of packets and be notified quickly of
network congestion.

8 Discussion
In §2, we showed how TPPs enable end-hosts to access net-
work state with low-latency, which can then act on this state

14

to achieve a certain functionality. This is attractive as it en-
ables interesting functionality to be deployed at software-
development timescales. We now discuss a number of im-
portant concerns that we haven’t covered.

Handling Device Heterogeneity: There are two issues here:
instruction encoding, and statistics addressing. First, in-
structions are unlikely to be implemented in an ASIC as
hardwired logic, but using microcodes, adding a layer of
indirection for platform specific designs. Second, we rec-
ommend having two address spaces: (i) a standardized ad-
dress space where a majority of the important statistics are
preloaded at known locations, such as those identified by the
OpenFlow standard [32], and (ii) a platform-specific address
space through which additional statistics, specific to vendors
and switch generations can be accessed. For dealing with
multiple vendors, TPPs can support an indirect addressing
scheme, so that the the compiler can preload packet memory
with platform specific addresses. For example, to load queue
sizes from a Broadcom ASIC at hop 1, and an Intel ASIC at
hop 2, the compiler generates the TPP below, loading the
word from 0xff00 for Broadcom, and 0xfe00 for Intel, ob-
tained out-of-band. For safety, the entire TPP is wrapped
around a CEXEC as follows:

CEXEC [Switch:VendorID], [Packet:Hop[0]]
LOAD [[Packet:Hop[1]], [Packet:Hop[1]]

PacketMemory:
Hop1: $BroadcomVersionID, 0xff00 (* overwritten *)
Hop2: $IntelVersionID, 0xfe00

The TPP compiler can query the ASIC vendor IDs from time
to time and change the addresses if the devices at a particular
hop suddenly change. However, indirect addressing limits
the extent to which a TPP can be statically analyzed.

MTU issues: Piggy-backed TPPs are attached to packets at
the edge of a network (end-host or a border router). Thus, if
the incoming packet is already at the MTU size, there would
be no room to add a TPP. This is fortunately not a big issue,
as many switches support MTUs up to 9000 bytes. This is
already being done today in overlay networks to add headers
for network virtualization [1].

Offloading more functionality to the network: Many net-
work tasks we present in this paper requires cooperation
from all end-hosts to achieve a task. It is worth asking if
including every end-host is worth the trouble. We argue that
it is: Many tasks such as congestion control (e.g. TCP), and
monitoring (e.g. SNAP [41]), are already implemented in
a way where every server takes part in the task. Network
functionality can have a more informed path to a hardware
implementation starting with the end-hosts.

Active networks and end-to-end arguments: Active Net-
works was criticized for its complexity and lack of ‘killer ap-
plications,’ but the end-to-end principle does not completely
rule it out [6]. The networks we build are larger, more com-
plex, and more critical than ever, as they form the backbone

of all compute within and between datacenters. To manage a
network at large scale, applications must have an unprecen-
dented visibility into the dataplane at timescales orders of
magnitude faster than with the best tools we have today. We
do not claim that TPPs are “novel,” as they fall under the
broad category of active networks. However, we have ruth-
lessly tried to keep the interface between the end-hosts and
dataplane to the bare minimum to make interesting applica-
tions feasible. We believe TPPs strike a delicate balance be-
tween what is possible in hardware at line rate, and sufficient
flexibility that end-hosts can implement dataplane tasks.

9 Related Work
TPPs represent a point in the broad design space of pro-
grammable networks, ranging from essentially arbitrary
in-band programs as formulated by Active Network pro-
posals [36, 39], to switch-centric programmable dataplane
pipelines [4, 9, 20, 28], to controller-centric out-of-band pro-
posals such as OpenFlow [30] and Simple Network Man-
agement Protocol (SNMP). We do not claim that the TPP
approach is a fundamentally novel idea, as it is a specific re-
alization of Active Networks. However, we have been ruth-
less in simplifying the interface between the end-hosts and
switches to a bare minimum. We believe TPPs strike a deli-
cate balance between what is possible in switch hardware at
line rate, and what is sufficiently expressive for end-hosts to
perform a variety of useful tasks.

TPPs superficially resemble Sprocket, the assembly lan-
guage in Smart Packets [36]. However, Sprocket represents a
far more expressive point in the design space. It allows loops
and larger programs that would be hard to realize in hard-
ware at line rate. By contrast, a TPP is a straight-line pro-
gram whose execution latency is deterministic, small, and
known at compile time. TPPs fully execute on the fast-path
(i.e., router ASIC), whereas Sprocket exercises the slow-path
(router CPU), which has orders of magnitude lower band-
width. TPPs also resemble the read/write in-band control
mechanism for ATM networks as described in a patent [5];
however, we also focus extensively on how to refactor use-
ful dataplane tasks, and a security policy to safeguard the
network against malicious TPPs. Wolf et al. [40] focus on
designing a high performance Active Network router that
supports general purpose instructions. It is unclear whether
their model allows end-hosts to obtain a consistent view
of network state. Moreover, it is unlikely that ASICs can
take on general purpose computations at today’s switching
capacities at a reasonable cost. Furthermore, out-of-band
control mechanisms such as OpenFlow and Simple Net-
work Management Protocol (SNMP) neither meet the per-
formance requirements for dataplane tasks, nor provide a
packet-consistent view of network state.

There have been numerous efforts to expose switch statis-
tics through the dataplane, particularly to improve conges-
tion management and network monitoring. One example is
Explicit Congestion Notification in which a router stamps a
bit in the IP header whenever the egress queue occupancy

15

exceeds a configurable threshold. Another example is IP
Record Route, an IP option that enables routers to insert
the interface IP address on the packet. Yet another example
is Cisco’s Embedded Logic Analyzer Module (ELAM) [12]
that traces the packet’s path inside the ASIC at layer 2 and
layer 3 stages, and generates a summary to the network
control plane. Instead of anticipating future requirements
and designing specific solutions, we adopt a more generic,
protocol-independent approach to accessing switch state.

10 Conclusion
We set out with a goal to rapidly introduce new dataplane
functionality into the network. We showed how, by pre-
senting a programmatic interface, using which end-hosts
can query and manipulate network state directly using tiny
packet programs. TPPs support both a distributed program-
ming model in which every end-host participates in a task
(e.g., RCP* congestion control), and a logically centralized
model in which a central controller can monitor and program
the network. We demonstrated that TPPs enable a whole
new breed of useful applications at end-hosts: ones that can
work with the network, have unprecedented visibility nearly
instantly, with the ability to tie dataplane events to actual
packets, umambiguously isolate performance issues, and act
on network view without being limited by the control plane’s
ability to provide such state in a timely manner.

Acknowledgments
Vimalkumar thanks Brandon Heller, Kok-Kiong Yap,
Sarang Dharmapurikar, Srinivas Narayana, Vivek Seshadri,
Yiannis Yiakoumis, Patrick Bosshart, Glen Gibb, Swarun
Kumar, Lavanya Jose, Michael Chan, Nick McKeown, Bal-
aji Prabhakar, and Navindra Yadav for helpful feedback and
discussions that shaped this work. The authors also thank
our shepherd John Wroclawski and the anonymous SIG-
COMM reviewers for their thoughtful reviews.

The work at Stanford was funded by NSF FIA award
CNS–1040190. Opinions, findings, and conclusions do not
necessarily reflect the views of NSF or other sponsors.

References
[1] Mohammad Alizadeh, Tom Essall, Sarang Dharma-

purikar, Ramanan Vaidyanathan, Kevin Chu, Andy
Fingerhut, Terry Lam, Francis Matus, Rong Pan,
Navindra Yadav, and George Varghese. “CONGA:
Distributed Congestion-Aware Load Balancing for
Datacenters”. In: SIGCOMM (2014).

[2] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. “pFabric: Minimal Near-Optimal Dat-
acenter Transport”. In: SIGCOMM (2013).

[3] Arista Networks – 7100 Series Performance Results.
http : / / www . aristanetworks . com / media /

system / pdf / 7148sx - rfc2889 - broadcast -

with-latency.pdf, Retrieved January 23, 2014.

[4] Eric A Baden, Mohan Kalkunte, John J Dull, and
Venkateshwar Buduma. Field processor for a network
device. US Patent 7,787,471. 2010.

[5] A.D. Berenbaum, Alexander Gibson Fraser, and Hu-
bert Rae McLellan Jr. In-band device configuration
protocol for ATM transmission convergence devices.
US Patent 08/939,746. 2001.

[6] Samrat Bhattacharjee, Kenneth L Calvert, and Ellen
W Zegura. “Active networking and the end-to-end ar-
gument”. In: IEEE ICNP (1997).

[7] Pat Bosshart, Dan Daly, Martin Izzard, Nick McK-
eown, Jennifer Rexford, Dan Talayco, Amin Vahdat,
George Varghese, and David Walker. “Programming
Protocol-Independent Packet Processors”. In: arXiv
preprint arXiv:1312.1719 (2013).

[8] Pat Bosshart and Glen Gibb. Personal communica-
tion, 2014-01-27.

[9] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George
Varghese, Nick McKeown, Martin Izzard, Fernando
Mujica, and Mark Horowitz. “Forwarding Metamor-
phosis: Fast Programmable Match-Action Processing
in Hardware for SDN”. In: SIGCOMM (2013).

[10] Sarang Dharmapurikar. Insieme Networks, Personal
communication, 2013-07-18.

[11] Nandita Dukkipati and Nick McKeown. “Why Flow-
Completion Time is the Right metric for Congestion
Control”. In: SIGCOMM CCR (2006).

[12] ELAM Overview. http : / / www . cisco . com / c /
en/us/support/docs/switches/nexus-7000-

series-switches/116648-technote-product-

00.html, Retrieved March 13, 2014.

[13] Cristian Estan, George Varghese, and Mike Fisk.
“Bitmap algorithms for counting active flows on high
speed links”. In: IMC (2003).

[14] Dongsu Han, Robert Grandl, Aditya Akella, and
Srinivasan Seshan. “FCP: a flexible transport frame-
work for accommodating diversity”. In: SIGCOMM
(2013).

[15] Nikhil Handigol, Brandon Heller, Vimalkumar
Jeyakumar, Bob Lantz, and Nick McKeown. “Repro-
ducible network experiments using container-based
emulation”. In: CoNEXT (2012).

[16] Nikhil Handigol, Brandon Heller, Vimalkumar
Jeyakumar, David Mazières, and Nick McKeown.
“I Know What Your Packet Did Last Hop: Using
Packet Histories to Troubleshoot Networks”. In:
NSDI (2014).

[17] Danny Yuxing Huang, Kenneth Yocum, and Alex C
Snoeren. “High-Fidelity Switch Models for Software-
Defined Network Emulation”. In: HotSDN (2013).

16

http://www.aristanetworks.com/media/system/pdf/7148sx-rfc2889-broadcast-with-latency.pdf
http://www.aristanetworks.com/media/system/pdf/7148sx-rfc2889-broadcast-with-latency.pdf
http://www.aristanetworks.com/media/system/pdf/7148sx-rfc2889-broadcast-with-latency.pdf
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/116648-technote-product-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/116648-technote-product-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/116648-technote-product-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/116648-technote-product-00.html

[18] IEEE 802.1Qbb – Priority-based Flow Control.
http://www.ieee802.org/1/pages/802.1bb.

html, Retrieved April 1 2014.

[19] Intel Fulcrum FM4000 ASIC. http://www.intel.
com / content / dam / www / public / us / en /

documents / datasheets / ethernet - switch -

fm4000-datasheet.pdf, Retrieved July 1, 2013.

[20] Intel Fulcrum FM6000 ASIC. http : / / www .

ethernetsummit.com/English/Collaterals/

Proceedings/2013/20130404_S23_Ozdag.pdf,
Retrieved July 1, 2013.

[21] Sushant Jain, Alok Kumar, Subhasree Mandal,
Joon Ong, Leon Poutievski, Arjun Singh, Subbaiah
Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al.
“B4: Experience with a globally-deployed software
defined WAN”. In: SIGCOMM (2013).

[22] Vimalkumar Jeyakumar, Mohammad Alizadeh,
Changhoon Kim, and David Mazières. “Tiny Packet
Programs for low-latency network control and
monitoring”. In: HotNets (2013).

[23] Dina Katabi, Mark Handley, and Charlie Rohrs. “Con-
gestion control for high bandwidth-delay product net-
works”. In: SIGCOMM (2002).

[24] Peyman Kazemian, Michael Chang, Hongyi Zeng,
George Varghese, Nick McKeown, and Scott Whyte.
“Real Time Network Policy Checking using Header
Space Analysis”. In: NSDI (2013).

[25] Frank Kelly, Gaurav Raina, and Thomas Voice. “Sta-
bility and fairness of explicit congestion control with
small buffers”. In: SIGCOMM CCR (2008).

[26] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou,
Matthew Caesar, and P Brighten Godfrey. “VeriFlow:
Verifying Network-Wide Invariants in Real Time”. In:
NSDI (2013).

[27] Changhoon Kim. Windows Azure, Personal commu-
nication, 2014-01-26.

[28] Eddie Kohler, Robert Morris, Benjie Chen, John Jan-
notti, and M Frans Kaashoek. “The Click modular
router”. In: TOCS (2000).

[29] Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang
Zhou, Tong Yuan, Haitao Wu, Yongqiang Xiong, Rui
Gao, and Yongguang Zhang. “ServerSwitch: a pro-
grammable and high performance platform for data
center networks”. In: NSDI (2011).

[30] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford,
Scott Shenker, and Jonathan Turner. “OpenFlow: En-
abling Innovation in Campus Networks”. In: SIG-
COMM CCR (2008).

[31] Millions of Little Minions: Using Packets for Low La-
tency Network Programming and Visibility (extended
version). http://arxiv.org/abs/1405.7143.
2014.

[32] OpenFlow Switch Specification, version 1.4. https:
/ / www . opennetworking . org / images /

stories / downloads / sdn - resources / onf -

specifications / openflow / openflow - spec -

v1.4.0.pdf, Retrieved April 1, 2014.
[33] Rong Pan, Balaji Prabhakar, and Ashvin Laxmikan-

tha. “QCN: Quantized congestion notification”. In:
IEEE802 1 (2007).

[34] Ben Pfaff, Justin Pettit, Keith Amidon, Martin
Casado, Teemu Koponen, and Scott Shenker. “Ex-
tending Networking into the Virtualization Layer.” In:
HotNets (2009).

[35] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole
Schlesinger, and David Walker. “Abstractions for Net-
work Update”. In: SIGCOMM (2012).

[36] Beverly Schwartz, Alden W Jackson, W Timothy
Strayer, Wenyi Zhou, R Dennis Rockwell, and Craig
Partridge. “Smart packets for active networks”. In:
Open Architectures and Network Programming Pro-
ceedings (1999).

[37] Anirudh Sivaraman, Keith Winstein, Suvinay Subra-
manian, and Hari Balakrishnan. “No silver bullet: ex-
tending SDN to the data plane”. In: HotNets (2013).

[38] Ao Tang, Jiantao Wang, Steven H Low, and Mung
Chiang. “Equilibrium of heterogeneous congestion
control: Existence and uniqueness”. In: IEEE TON
(2007).

[39] David L Tennenhouse and David J Wetherall. “To-
wards an Active Network Architecture”. In: DARPA
Active Nets. Conf. and Exposition (2002).

[40] Tilman Wolf and Jonathan S Turner. “Design Is-
sues for High Performance Active Routers”. In: IEEE
Journal on Sel. Areas in Comm. (2001).

[41] Minlan Yu, Albert Greenberg, Dave Maltz, Jen-
nifer Rexford, Lihua Yuan, Srikanth Kandula, and
Changhoon Kim. “Profiling network performance for
multi-tier data center applications”. In: NSDI (2011).

[42] Minlan Yu, Lavanya Jose, and Rui Miao. “Software
Defined Traffc Measurement with OpenSketch”. In:
NSDI (2013).

[43] David Zats, Anand Padmanabha Iyer, Randy H Katz,
Ion Stoica, and Amin Vahdat. “FastLane: An Ag-
ile Congestion Signaling Mechanism for Improv-
ing Datacenter Performance”. In: Technical Report
UCB/EECS-2013-113 (2013).

[44] Hongyi Zeng, Peyman Kazemian, George Varghese,
and Nick McKeown. “Automatic test packet genera-
tion”. In: CoNEXT (2012).

17

http://www.ieee802.org/1/pages/802.1bb.html
http://www.ieee802.org/1/pages/802.1bb.html
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-switch-fm4000-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-switch-fm4000-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-switch-fm4000-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-switch-fm4000-datasheet.pdf
http://www.ethernetsummit.com/English/Collaterals/Proceedings/2013/20130404_S23_Ozdag.pdf
http://www.ethernetsummit.com/English/Collaterals/Proceedings/2013/20130404_S23_Ozdag.pdf
http://www.ethernetsummit.com/English/Collaterals/Proceedings/2013/20130404_S23_Ozdag.pdf
http://arxiv.org/abs/1405.7143
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

APPENDIX
Memory Map
In this section, we list the memory map to access switch statistics and per-packet metadata that is usually tracked by a switch.
This list of statistics and metadata is by no means complete, nor necessarily tracked by all switches, but it serves as a reference
list of statistics we found useful when implementing new dataplane tasks.

Counters and statistics
We borrow heavily from the list of counters from the OpenFlow 1.4 specification [32, Table 5]. We introduce more useful
counters which would help monitoring and debugging the network. As switch vendors add more statistics, they could be made
accessible to TPPs using a vendor-specific memory map. The vendor can then provide documentation on using the memory
map using a data sheet.

When we refer to some values as ‘stats,’ or a ‘stats block’ we track the following four counters: packets, bytes, rate of
packets, and rate of bytes. For example, the ‘Lookup stats’ block tracks the aggregate number of bytes and packets that
resulted in a lookup on the table. This is useful to know for every table, as some packets (e.g., an ARP packet) may not match
all tables (e.g., the layer 3 routing table).

Value Name Purpose
Per ASIC. Namespace [Switch:]

Switch ID A unique ID given to a switch
Version Number A global counter that tracks the generation of the switch for-

warding state
Clock/uptime The duration, in clock cycles, for which the switch has been

online
Clock frequency The clock frequency of the switching ASIC in cycles per second

Per Flow Table. Namespace [Stage$i:] for the ith stage.
Version Number A per flow table version number that monotonically increases

on every flow update
Reference Count Number of active flow entries in the table
Lookup stats Number of packets and bytes that resulted in a lookup in the

table
Match stats Number of packets and bytes that matched some entry in the

table
Per Flow Entry. Namespace [FlowEntry$i:] for the ith stage.

Insert clock The clock cycle when the flow entry was installed in the table
Match stats Number of packets and bytes that resulted in a match on this

entry
Per Port. Namespace [Link$i:] for the ith link.

Queued stats Number of packets and bytes waiting on this port to be trans-
mitted

Transmit stats Stats block for packets transmitted on this port
Receive stats Stats block for packets received on this port
Drop stats Stats block for drops on this port
Error stats Stats block for CRC/other bit errors on this port
Port status Status bits (up/down/maintenance/etc.) for this port

Per Queue. Namespace [Queueij:] for the jth queue on the ith link.
Scheduling configuration block This memory block contains counters and statistics that pertain

to the scheduling algorithm (e.g., deficit round robin weight,
quantum, etc.).

Queued stats Stats block for packets currently queued
Transmit stats Stats block for transmitted packets
Receive stats Stats block for received packets
Drop stats Stats block for dropped packets

Table 6: Statistics required from the ASIC, based on the standard values tracked by an OpenFlow 1.4 capable switch. These
statistics must be accessible to the TPP.

18

Value Name Purpose
Namespace: [PacketMetadata:].

Input port The input port number on which the packet arrived to the switch
Input port statistics An indirection to the stats block tracking the port’s counters
Output port bitmap A bitmap indicating the port(s) out of which the packet will be

forwarded. The bitmap is initialized to 0. If, at the end of the
ingress pipeline, the bitmap is still set to 0, then the packet will
be dropped.

Matched flow entry An index into the flow entry that the packet matches at each
table

Matched flow entry stats Each flow entry tracks various statistics as shown above. This
is an indirection to the stats block for the flow entry counters.

Enqueued queue ID An index into the queue at the output port into which the packet
is queued for transmission

Enqueued queue’s stats An indirection to the stats block tracking the queues’s counters
Packet fields All packet fields that were parsed by the parser for this packet.

This includes all the standard OpenFlow 1.4 [32] fields, and our
proposed fields for the TPP (§3.4).

Table 7: Per-packet metadata that must be available to every TPP at the ingress pipeline.

Value Name Purpose
Namespace: [PacketMetadata:].

Output port The port through which the packet is currently being forwarded
out of

Output port statistics An indirection to the stats block tracking the port’s counters
Output queue The queue on which the packet was scheduled
Output queue statistics An indirection to the stats block tracking the queue’s counters
Table 8: Per-packet metadata that must be available to every TPP at the egress pipeline.

Per-packet metadata
Recall that the packet is processed once at the ingress pipeline, where its output port(s) is (are) determined. We expect the
statistics listed in Table 7 to be available to every TPP. These statistics are not shared across packets. It is analogous to the
/proc/self interface that a process can use to access its own statistics such as memory usage. Similarly, Table 8 lists statistics
that should be available to every TPP at the egress.

19

	1 Introduction
	1.1 Goals
	1.2 Summary of Results

	2 Example Programs
	2.1 Micro-burst Detection
	2.2 Rate-based Congestion Control
	2.3 Network Troubleshooting Framework
	2.4 Distributed Load Balancing
	2.5 Low-overhead Measurement
	2.6 Other possibilities

	3 Design of TPP-Capable Switches
	3.1 Background on a Switch Pipeline
	3.2 TPP Semantics
	3.3 TPP Execution Model
	3.3.1 Unified Memory-Mapped IO
	3.3.2 Addressing Packet Memory
	3.3.3 Synchronization Instructions

	3.4 Parsing: TPP Packet Format
	3.5 Putting it together: the TCPU

	4 End-host Stack
	4.1 Control plane
	4.2 Dataplane
	4.3 Security considerations
	4.4 TPP Executor
	4.5 Deploying a TPP Application

	5 Implementation
	6 Evaluation
	6.1 Hardware
	6.2 End-host Stack

	7 Limitations
	8 Discussion
	9 Related Work
	10 Conclusion

