
Tiny Packet Programs for low-latency network control and
monitoring

Vimalkumar Jeyakumar1, Mohammad Alizadeh2, Changhoon Kim3, David Mazières1

{jvimal,alizade}@stanford.edu, chakim@microsoft.com, www.scs.stanford.edu/∼dm/addr
1Stanford University 2Insieme Networks 3Windows Azure
Stanford, CA, USA San Jose, CA, USA Redmond, WA, USA

ABSTRACT
Networking researchers and practitioners strive for a greater
degree of control and programmability to rapidly innovate in
production networks. While this desire enjoys commercial
success in the control plane through efforts such as Open-
Flow, the dataplane has eluded such programmability. In
this paper, we show how end-hosts can coordinate with the
network to implement a wide-range of network tasks, by em-
bedding tiny programs into packets that execute directly in
the dataplane. Our key contribution is a programmatic in-
terface between end-hosts and the switch ASICs that does
not sacrifice raw performance. This interface allows network
tasks to be refactored into two components: (a) a simple pro-
gram that executes on the ASIC, and (b) an expressive task
distributed across end-hosts. We demonstrate the promise of
this approach by implementing three tasks using read/write
programs: (i) detecting short-lived congestion events in high
speed networks, (ii) a rate-based congestion control algo-
rithm, and (iii) a forwarding plane network debugger.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design; C.2.3 [Computer-
Communication Networks]: Network Operations; C.4
[Performance of Systems]: Design Studies, Performance
Attributes

General Terms
Design, Measurement, Performance

Keywords
Active Networks, SDN, Software-Defined Networks, Net-
work Architecture, Switch ASIC Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’13, November 21–22, 2013, College Park, MD, USA.
Copyright 2013 ACM 978-1-4503-2596-7 ...$10.00.

1. INTRODUCTION
Dataplane network tasks such as congestion control, mea-

surement, and fault diagnosis, benefit from low-latency1 vis-
ibility into network state. Many research proposals show
how to make better decisions with more visibility; for ex-
ample, Rate Control Protocol (RCP) [1] is a congestion-
control mechanism that uses link utilization and average
queue sizes to allocate bandwidth to flows rapidly so they
converge quickly to their max-min fair rates. Unfortunately,
deploying such proposals requires ASICs that directly im-
plement the required functionality in the dataplane, as the
control plane is orders of magnitude slower to provide such
visibility. However, designing ASIC features for each task
can take many years, and once fabricated, they cannot be
changed for years. We are stuck in a world where we have
neither the flexibility in the dataplane, nor the required per-
formance to access network state for dataplane tasks.

End-hosts could readily implement many network tasks
if they had access to network state. Thus, an ideal goal
would be to have flexible access to network state that is fast
enough for end-hosts to implement dataplane tasks. To this
end, this paper describes a simple programmable interface
that enables end-hosts to query and compute on switch mem-
ory (ASIC registers, SRAM, etc.) using packets, directly in
the dataplane. Specifically, packets carry a tiny packet pro-
gram (TPP) in their header, which consists of a few instruc-
tions that read, write, or perform arithmetic using data on
the ASIC registers and SRAM. We show how this dataplane
interface enables end-hosts to rapidly deploy new function-
ality by refactoring it into: (a) simple TPPs that execute on
the ASICs, and (b) expressive tasks at end-hosts.

An astute reader might ask, “Isn’t this Active Network-
ing?” Active networking [2, 3] proposed an audacious idea
of allowing network routers to execute arbitrary programs
to carry out tasks that actively control network behaviour
such as routing, packet compression, and duplication. Our
goal, however, is to explore an alternative that is simple
and cost-effective, while still meeting an ASIC’s stringent

1By low-latency, we refer to timescales on the order of round-trip
times; it can be a few microseconds in a datacenter, or 10s of mil-
liseconds in wide-area networks.

1

Instruction Meaning
LOAD, PUSH Copy values from switch to packet
STORE, POP Copy values from packet to switch
CSTORE Conditional store for atomic operations
CEXEC Conditionally execute the subsequent instructions

Table 1: The tasks we present in the paper require support only for
the above instructions, whose operands will be clear when we discuss
examples.

performance requirements.2 The instructions are simple in
that they execute within the time budget for handling small
sized packets at line-rate. These instructions free the ASIC
of complex tasks, leaving end-hosts to coordinate with the
network directly in the dataplane to achieve a desired func-
tionality. We show how even a minimal read and write in-
struction set enables new capabilities on a network, many of
which would otherwise be feasible today only after years of
investment on ASIC development.

This interface raises a number of questions and concerns,
which is the subject of this paper.
• How general is this interface? In §2, we walk through

refactoring three different network tasks on a TPP enabled
Linux Router using read/write instructions.
• Can TPPs work at line-rate and what are the overheads?

(§3) Restricting TPPs to (say) five instructions per-packet
requires only 20 bytes of instruction overhead and up to
60 bytes of output space, and execution takes less than a
packet’s transmission time. Nonetheless, we show how
network tasks can use many TPPs to overcome this limi-
tation.
• Where is it applicable, and what are its security implica-

tions? (§4) The rise of large-scale and privately owned
networks (e.g., datacenters, WANs) makes the TPP ap-
proach attractive. In such networks, only trusted entities
may use TPPs.

2. EXAMPLE PROGRAMS
In this section we use a sequence of tiny packet programs

(TPPs) at end-hosts to implement three network tasks: (i)
micro-burst detection, (ii) a rate based congestion control
algorithm, and (iii) a network forwarding plane debugger.

What is a TPP? A TPP is any ethernet packet with a
uniquely identifiable header that contains instructions, some
additional space (packet memory), and encapsulates an op-
tional ethernet payload. The TPP exclusively owns its packet
memory, but also has access to shared memory on the switch
(its SRAM and internal registers) through a virtual address
interface. TPPs are executed on a tiny CPU (TCPU) in the
dataplane by the ASIC, but are forwarded just like other
packets. TPPs use a very minimal instruction set listed in
Table 1. Section 3 talks about the structure of a TPP, the
virtual address space, and the TCPU in greater detail.

2A 64-port 10GbE switch has to process about a billion 64-byte-
packets/second to operate at line-rate.

SP = 0x0
PUSH [QSize]

SP = 0x4
PUSH [QSize]

0x00

SP = 0x8
PUSH [QSize]

0x00
0xa0

SP = 0xc
PUSH [QSize]

0x00
0xa0
0x0e

Packet memory is preallocated. The TPP never grows/shrinks inside the network.

Ethernet Header

Other headers
(e.g., TCP/IP)

Figure 1: Visualizing the execution of a TPP that queries the network
for queue sizes. As the TPP traverses a network of switches, the ASIC
executes the program, which modifies the packet to reflect the queue
sizes on the link.

For readability, when we write TPPs in an x86-like assem-
bly language, we will refer to specific dataplane statistics us-
ing the notation [Namespace:Statistic]. For instance,
[Queue:QueueSize] will be compiled a virtual memory
address (say) 0xb000 at compile time. To the ASIC, the ad-
dress 0xb000 refers to the queue size on the link the packet
will be sent out. To simplify discussion, we assume that the
address is the same across all network devices, and that they
are unaffected by network operation (such as routing).

2.1 Micro-burst Detection
In low-latency networks such as datacenters, queueing

delays contribute significantly to overall network latency.
Queue occupancy fluctuations due to small-timescale con-
gestion (i.e., “micro-bursts”) are hard to detect as queues
change at timescales of a few RTTs, which can be as small as
a few 100 microseconds. Today’s monitoring mechanisms
operate only on timescales that are 10s of seconds at best,
and are therefore ill-suited for isolating micro-bursts.

TPPs can provide fine-grained per-RTT, or even per-
packet visibility into queue evolution inside the network.
Today, the ASIC memory manager already keeps track of
per-port, per-queue occupancies in its registers. If packet
memory is addressed like a stack, then, the instruction PUSH

[Queue:QueueSize] copies the queue register onto packet
memory. As the packet traverses each hop, the packet mem-
ory records snapshots of queue size statistics at each hop.
The queue sizes are useful in diagnosing micro-bursts, as
they are not an average statistic. They are recorded the in-
stant the packet traversed the switch. Figure 1 shows how
the state of of a sample packet as it traverses a network.
In the figure, SP is the stack pointer which points to the
next offset inside the packet memory where new values may
be pushed. Since the maximum number of hops is small
within a datacenter (typically 5–7), the end-host preallocates
enough packet memory to store queue sizes. Moreover, the
end-host knows exactly how to interpret values in the packet

2

to obtain a detailed breakdown of queueing latencies on all
network hops.

This example illustrates how a low-latency, programmatic
interface to access dataplane state can be used by software
at end-hosts to measure dataplane behavior that is hard to
observe in the control plane.

2.2 Rate based congestion control
While the previous example shows how TPPs can help

debug latency spikes using queue sizes, we now show how
such visibility can be used to control network congestion.
Congestion control is arguably a dataplane task, and the lit-
erature has a number of ideas on designing better algorithms.
However, TCP and its variants still remain the dominant con-
gestion control algorithms. We show how end-hosts can use
TPPs to deploy a new congestion control algorithm that en-
joys many benefits of Rate Control Protocol (RCP) [1]. RCP
is a congestion control algorithm that rapidly allocates link
capacity to help flows finish quickly. An RCP router main-
tains one fair-share rate per link R(t) (regardless of the num-
ber of flows), computed periodically (every T seconds) as
follows:

R(t +T) = R(t)

(
1− T

d
×

α (y(t)−C)+β
q(t)

d
C

)
Here, y(t) is the average ingress link utilization, q(t) is

the average queue size, and d is the average round-trip time
of flows traversing the link, and α and β are configurable
parameters. Each router checks if its estimate of R(t) is
smaller than the flow’s fair-share (indicated on each packet’s
header); if so, it replaces the flow’s fair share header value
with R(t).

We now describe RCP*, an end-host implementation of
RCP. The implementation consists of a rate limiter and a
rate controller at end-hosts for every flow (since RCP does
per-flow congestion control). For ease of exposition, we as-
sume all links have the same capacity, and all flows have
the same RTT. Each flow’s rate controller periodically (using
the flow’s packets, or using additional probe packets) queries
and modifies network state in three phases.

Phase 1: Collect. Using the following TPP, the rate con-
troller queries the network for the switch ID on each hop,
queue sizes, link utilizations, and the link’s fair share rate,
for all links along the path. The receiver simply echos a
fully executed TPP back to the sender.3

PUSH [Switch:SwitchID]

PUSH [Link:QueueSize]

PUSH [Link:RX-Utilization]

PUSH [Link:RCP-RateRegister]

Phase 2: Compute. In the second phase, each sender com-
putes a fair share rate Rlink for each link: Using the samples
collected in phase 1, the rate controller computes the average
3We assume a control plane program initializes each link’s fair
share rate to its capacity.

0 5 10 15 20 25 30
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
R

(t)
/C

RCP: simulation
RCP*: TPP+endhost

Figure 2: We compare a Linux router based implementation of
RCP* and a simulation of the original RCP algorithm. We start one
flow each at t=0s, t=10s and t=20s and we find that RCP* helps flows
converge quickly to their fair share on the bottleneck link.

queue sizes on each link along the path. Then, it computes a
per-link rate Rlink using the RCP control equation.

Phase 3: Update. In the last phase, since the rate-controller
clearly knows the bottleneck link from the values of Rlink
(the minimum), it sends a TPP that only executes on the
bottleneck switch link to update its per-link’s state. This is
achieved using the conditional execute instruction (CEXEC),
where, CEXEC reg,mask,value ensures the TPP executes
on a switch only if (reg & mask) == value. (Note that
the end-host need not know the actual route to reach the bot-
tleneck switch link.)

CEXEC [Switch:SwitchID], 0xFFFFFFFF,

$BottleneckSwitchID

STORE [Link:RCP-RateRegister],

[PacketMemory:Offset]

Each flow executes the above TPP, independently writing
values into the ASIC’s register, and reading it through sub-
sequent TPPs. With multiple concurrent writers to a shared
switch memory, one might wonder if there could be race
conditions that are hard to detect. While this is a legitimate
concern for network tasks such as accounting, we found that
congestion control does not require such strong notions of
consistency. Nevertheless, we support a conditional store
instruction to provide a stronger (linearizable [4]) notion of
consistency for memory updates. CSTORE dst,cond,src

stores src into dst only if dst==cond.
Our RCP* implementation is a userspace program that

sends UDP packets to query a TPP enabled Linux Router.
Figure 2 plots the evolution of R(t)/C on a 10Mb/s bottle-
neck link shared by three flows. We compared our imple-
mentation with the original RCP algorithm available in ns2
simulation. As we can see, the behavior of RCP and RCP*
are qualitatively similar, in that they both show quick con-
vergence (we set α = 0.5,β = 1 for both).

This example shows the benefits of our proposed refac-
toring: the ASIC only supports reads and writes, but the
end-hosts can use this state to implement a new congestion
control mechanism without requiring a specialized ASIC.

3

2.3 Forwarding plane debugger
There has been recent interest in verifying that network

forwarding rules match the intent specified by the adminis-
trator [5, 6]. However, forwarding rules change constantly,
and a network-wide consistent update is not a trivial task [7].
Forwarding rule verification is further complicated by the
fact that there can be a mismatch between the control plane’s
view of routing state and the actual forwarding state in hard-
ware. Thus, verifying whether every packet has been cor-
rectly forwarded requires help from the dataplane.

We now show how to implement a network forwarding
plane debugger ndb [8] for a Software-Defined Network.
ndb works by interposing on the control channel between the
controller and the network, stamping each flow entry with a
unique version number, and modifying flow entries to cre-
ate truncated copies of packet headers tagged with the ver-
sion number (without affecting a packet’s normal forward-
ing) and additional metadata (e.g., the packet’s input/out-
put ports). These truncated packet copies are reassembled
by servers to present a unified view of a packet’s journey
through the network. This trace can then be used for verifi-
cation.

Using TPPs, end-hosts can get the same level of visibility
as ndb by having a trusted entity insert the TPP shown be-
low on all its packets. On receiving a TPP that has finished
executing on all hops, the end-host gets an accurate view of
the network forwarding state that affected the packet’s for-
warding, without requiring the network to create additional
packet copies. This information can then be used by soft-
ware to verify whether network forwarding conforms to a
specified policy.

PUSH [Switch:ID]

PUSH [PacketMetadata:MatchedEntryID]

PUSH [PacketMetadata:InputPort]

Other possibilities. The above examples illustrate how sim-
ple primitives in ASICs can enable end-hosts to coordinate
and achieve a certain behavior. TPPs are not just limited
to wired networks; they can also be used in wireless net-
works where access points can annotate end-host packets
with channel SNR which changes very quickly. Low-latency
access to such rapidly changing state is useful for network
diagnosis and fault localization.

3. DESIGNING A PROGRAMMABLE
ASIC

In this section, we walk through the design of a TPP-
capable ASIC and discuss why it is feasible to process TPPs
in the dataplane. The ASIC is one important component
in the end-to-end picture of low-latency and programmable
network control. Our holistic design is guided by the follow-
ing design principles:
• Simplicity in the network. Switch ASICs have stringent

performance requirements to work at line-rate, and there-
fore, any complex design increases its cost which hinders

RX
PHY

Header
Parser

L2, L3,
TCAM TCPU

M
em

or
y

M
an

ag
em

en
t

M
od

ul
e

Switch
SRAM
Buffers

Egress
queues and
scheduling

TX
PHY

Packet
Arrives

Packet
Leaves

Figure 3: A simplified block diagram of the dataplane pipeline in a
switch ASIC. Packets arrive at the ingress, and pass through multiple
modules. The scheduler then forwards packets (that are not dropped)
to the output ports computed at earlier stages in the pipeline. The tiny
CPU (TCPU) that processes TPPs is placed just before the packet is
stored in memory.

its adoption. At the very least, implementing a network
task needs access to network state, which is exactly what
our minimal instruction set provides (besides the ability to
synchronize multiple writers).
• Smartness at the edge. Any complexity in implementing

a network task is pushed to fully programmable end-hosts,
which can act on network state to make smart decisions.

3.1 Background on an ASIC pipeline
Figure 3 shows a simplified block diagram of an ASIC.

The packet flows from input to output(s) through many
pipelined hardware modules. Here, the PHY module first
decodes the packet from the wire, and passes it to a data-
plane module, which tags the packet with metadata (such as
its ingress port number). Then, the packet passes through a
header parser that extracts fields from the packet header and
passes it further down the pipeline, which uses the parsed
fields to route the packet (using a combination of layer 2
MAC table, layer 3 longest-prefix match table and a flexi-
ble TCAM table). Finally, any modifications to the packet
are committed and the packet is queued in switch memory.
Using metadata (such as the packet’s priority), the scheduler
decides when it is time for the packet to be transmitted out
of the egress port determined earlier in the pipeline. A more
thorough pipeline in a commercial ASIC can be found in [9,
Page 26] and [10, Page 7].

3.2 Programming Model
Tiny packet programs (TPPs) are executed in the data-

plane pipeline. The ASIC parses and sequentially executes
these instructions on a tiny CPU (TCPU). The TPP has ac-
cess to all switch memory which includes ASIC registers and
SRAM, as well as packet memory, which is a small scratch
space included within the packet payload (limited by the
packet length). End-hosts can use multiple packets if a single
packet is insufficient for a network task. Figure 4 shows the
structure of a TPP. Unless otherwise noted, a TPP executes
at all TCPU-enabled ASICs it traverses.

4

Ethernet Header

Payload
(e.g., TCP header)

1 2 3 4 5

Instructions

Packet memory
(Initialized by end-hosts)

Up to
20 bytes

40–60
bytes

1: Length of TPP
2: Length of Packet memory
3: Packet mem. addressing
 mode (stack, hop, etc.)
4: Hop number / stack pointer
5: Per hop memory length
 (used only when memory is
 hop-addressed)

All memory lengths are 4 byte
aligned for efficient encoding.

Packet memory can contain
initialized values to load data
into the ASIC.

Figure 4: A packet carrying a tiny program.

Namespace Examples
Per-Switch Switch ID, counters associated with

the global L2 or L3 flow tables, flow
table version number [8], etc.

Per-Port Link utilization, bytes received, bytes
dropped, bytes enqueued.

Per-Queue Bytes enqueued, bytes dropped
Per-Packet Packet’s input/output port, matched

flow entry [8], alternate routes for a
packet [11].

Table 2: By having access to the switch’s memory address space,
the TPP can access statistics listed above. Many statistics are already
tracked by today’s ASICs, but others, such as flow table version (for
ndb), will have to be implemented.

Multiple tasks. We rely on a control-plane agent to parti-
tion switch SRAM and isolate concurrently executing net-
work tasks. For instance, if end-hosts implement both RCP
and ndb, the agent would allocate a non-overlapping set of
SRAM addresses to RCP and ndb. We defer the discussion
of memory allocation to future work.

3.2.1 Unified Memory-Mapped IO
A TPP has access to any switch statistic tracked by the

ASIC. The statistics can be broadly namespaced into per-
switch (i.e. global), per-port, per-queue and per-packet. Ta-
ble 2 shows example statistics in each of these namespaces.
These statistics reside in different memory banks, but pro-
viding a unified address space makes them available to TPPs.
For instance, in its registers, the ASIC keeps metadata such
as input port, the selected route, etc. for every packet. The
memory locations 0xa000 + {0x1,0x2} could refer to the
input port and the selected route. These address mappings
must be known upfront so that the TPP compiler can convert
mnemonics (such as PacketMetadata:InputPort) into
addresses.

3.2.2 Addressing Packet Memory
Instructions can manage packet memory using x86-like

addressing schemes. For example, memory can be man-
aged using a stack pointer and a PUSH instruction that
appends values to preallocated packet memory. We also

found a hop addressing scheme to be useful, which is
similar to the the base:offset x86-addressing scheme.
Here, base:offset refers to the word at location base

* size + offset. Thus, if size is 16 bytes, the instruc-
tion LOAD [Switch:SwitchID], [Packet:hop[1]] will
copy the switch ID into PacketMemory[1] on the first hop,
PacketMemory[17] on the second hop, etc. The numbers
base (hop number) and offset are part of the instruction
and the size of the per-hop data structure is kept in the TPP
header. To simplify memory management in the ASICs, the
end-host preallocate enough space in the TPP to hold per-
hop data structures. Recall that end-hosts can use multiple
TPPs if one packet is insufficient to load all statistics.

3.2.3 Instructions
To meet our main goal of accessing network state, the

ASIC must support read/write instructions that read values
from the ASIC into packet memory, or write from packet
memory into the ASIC. Besides read and write, a use-
ful instruction in a concurrent programming environment
is an atomic update instruction, such as a conditional store
CSTORE, conditioned on a memory location matching a spec-
ified value.

To keep the ASIC design simple, we do not recommend
instructions that change execution flow, with one exception.
In our experience, we found the conditional execute (CEXEC)
instruction to be very useful. For instance, it may be de-
sirable to execute a network task only on one switch (see
§2.2), or only on a subset of switches (say all the top of rack
switches in a datacenter). The conditional execute instruc-
tion can be implemented by specifying a switch register, a
mask, and a value, which instructs the ASIC to execute the
TPP only when (register & mask) == value. Since in-
structions are executed sequentially, all instructions that fol-
low a failed CEXEC check will not be executed.

3.3 Putting it together: the TCPU
We insert the TCPU just after the L2/L3/TCAM tables.

Besides the specific TCPU processing, the ASIC forwards
TPPs like regular packets; TPPs are therefore subject to
congestion, or configured access control policies. Non-TPP
packets are ignored by the TCPU.

The TCPU is a Reduced Instruction Set Computer (RISC)
processor (Figure 5) that executes instructions in a five stage
pipeline: (a) instruction fetch, (b) instruction decode, (c) ex-
ecute, (d) memory read and (e) memory write. The header
parser completes stage (a) by the time the packet reaches the
TCPU, and stores the fixed size instructions in a temporary
buffer. With read/write/simple arithmetic instructions, each
stage takes only 1 cycle. Since instructions are pipelined,
this RISC processor runs at a throughput of 1 instruction per
clock cycle, with a latency of 4 cycles. Note that the en-
tire packet passes through a series of registers before it is
copied to memory, so all modifications to the packet are in
local buffers. Finally, all packet modifications are commit-

5

TCPU

Pa
ck

et
 R

ew
rit

e SP = 0x8
PUSH [QSize]

0x00
0x10

PUSH [SwID]
0x01
0x02

Switch Stats

TCAM SlicesQueue Stats
L2 Hash Table

SRAM
Blocks

In today's ASICs, memory is organized into multiple blocks to achieve high throughput,
and the TCPU can issue a read/write to each block every clock cycle. The latency of a
read/write could be different but it can be hidden by pipelining multiple requests.

SP = 0x4
PUSH [QSize]

0x00
PUSH [SwID]

0x01
MWMREXID

MWMREXID

Execution pipeline

ID = Instruction Decode
EX = Instruction Execute
MR = Memory Read
MW = Memory Write

L3 LPM Table

TCAM SlicesTCAM Slices

SRAM
Blocks
SRAM
Blocks

Interface Stats

MMU: Translate Virtual Address
to Table Addresses

Ins(1)

Ins(2)

Register
File

SWID: 0x2 0x10,0x00,0x30

Figure 5: A TCPU implementing the standard RISC processor
pipeline supporting instructions in Table 1.

ted to the packet before it is copied to switch memory (to
save memory bandwidth).

Overheads. Our initial Linux prototype supports all instruc-
tions in Table 1, and we were able to encode an instruction
and its operands in a 4-byte integer. If we limit to 5 in-
structions per packet, the instruction space overhead is 20
bytes/packet; if each instruction accesses 8-byte values in
the packet, we require only 40 bytes of packet memory per
hop. Low-latency ASICs today can switch minimum sized
packets with a cut-through latency of 300ns [9], which is 300
clock cycles for a 1GHz ASIC. Since TPPs can be pipelined
with other modules, we believe restricting a TPP to a handful
of instructions makes it feasible to implement the RISC pro-
cessor directly in the datapath, without incurring additional
latency.

4. DISCUSSION
In the previous sections, we showed how TPPs enable

end-hosts to access network state with low-latency, which
can then act on this state to achieve a certain functionality.
This is attractive as it makes the ASIC future proof (to an ex-
tent), making it possible to deploy interesting functionality
at software-development timescales. We now discuss a few
important concerns.

What about security? The very thought of packets query-
ing and modifying network state induces worry to a network
operator, even if the memory map (§3.2.1) isolates critical
forwarding state from state modifiable by TPPs. We think
this architecture makes sense (at least initially) in network-
ing environments operated by a single entity (e.g., datacen-
ters, or an enterprise network, or a single Autonomous Sys-
tem), where it is easy to exercise strict control over what
packets are injected into the network. For example, in multi-
tenant or untrusted environments such as public cloud dat-
acenters, the ingress switches at the network edge (the vir-
tual switch, or the border routers) can strip TPPs injected by
VMs, or those TPPs received from the Internet.

How are TPPs different from other proposals to program
a network? TPPs fit into a wide spectrum of dataplane pro-
grammability available today [10, 12, 13], and proposed in
literature recently [14]. In the dataplane, today’s ASICs sup-
port configurable packet matching using Ternary Content
Addressable Memory, and programmable actions through
custom ‘field processors’ [12, 14]. These action processors
apply a sequence of actions (such as push headers, pop head-
ers, rewrite fields) to a filtered subset of packets. Our work
is complementary to the above switch-centric proposals and
differs in two ways: (a) we focus on refactoring network-
wide tasks to take advantage of the dataplane programma-
bility, and (b) the TPPs are within the packets and hence can
be changed rapidly, in contrast to TCAM rules that are up-
dated slowly in the control plane.

There have been numerous efforts to expose switch statis-
tics through the dataplane, particularly to improve conges-
tion management and network monitoring. One example is
Explicit Congestion Notification (ECN) in which a router
stamps a bit in the IP header whenever the egress queue oc-
cupancy exceeds a configurable threshold. Another example
is IP Record Route, an IP option that enables routers to insert
the interface IP address on the packet. Instead of anticipat-
ing future requirements and designing specific solutions, we
adopt a more generic approach to accessing switch state.

Parting remarks. Our goal in this paper is to enable end-
hosts to flexibly measure and control network behavior. Our
key insight is that providing end-hosts with low-latency ac-
cess to shared network state helps in realizing this goal. To
maintain flexibility, we designed a programmable interface
to access network state. To achieve low-latency, we pro-
posed tiny packet programs that query and modify network
state directly in the dataplane. By identifying simple instruc-
tions that can execute at line-rate in hardware, we were able
to push the responsibility of carrying out complex computa-
tion on network state to end-hosts. ASICs have long been the
most cost-effective way of obtaining high bandwidth. Our
design to split functionality between end-hosts and the net-
work is largely driven by the key requirement to meet the
stringent performance requirements of the ASIC.

Though read-write TPPs already enable a wide range of
network tasks, we stress that TPPs have not been designed
with completeness in mind to solve any and all networking
tasks. Understanding the tradeoffs between implementing
primitives within the network versus the end-hosts is an im-
portant direction for future work.

Acknowledgments
The authors would like to thank Brandon Heller, Kok-Kiong
Yap, Sarang Dharmapurikar, Srinivas Narayana, and Patrick
Bosshart for helpful feedback and discussions. The work
at Stanford was funded by NSF FIA award CNS–1040190.
Opinions, findings, and conclusions do not necessarily re-
flect the views of NSF or other sponsors.

6

References
[1] Nandita Dukkipati and Nick McKeown. Why Flow-

Completion Time is the Right metric for Congestion
Control. ACM SIGCOMM CCR, 2006.

[2] David L Tennenhouse and David J Wetherall. Towards
an Active Network Architecture. DARPA Active Net-
works Conference and Exposition, 2002.

[3] Beverly Schwartz, Alden W Jackson, W Timothy
Strayer, Wenyi Zhou, R Dennis Rockwell, and Craig
Partridge. Smart packets for active networks. Open
Architectures and Network Programming Proceedings,
1999.

[4] Maurice P Herlihy and Jeannette M Wing. Lineariz-
ability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 1990.

[5] Peyman Kazemian, Michael Chang, Hongyi Zeng,
George Varghese, Nick McKeown, and Scott Whyte.
Real Time Network Policy Checking using Header
Space Analysis. USENIX NSDI, 2013.

[6] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar,
and P Godfrey. VeriFlow: Verifying Network-Wide In-
variants in Real Time. ACM SIGCOMM, 2012.

[7] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole
Schlesinger, and David Walker. Abstractions for Net-
work Update. ACM SIGCOMM, 2012.

[8] Brandon Heller, Nikhil Handigol, Vimalkumar Jeyaku-
mar, Nick McKeown, and David Mazières. Where is
the debugger for my Software-Defined Network? ACM
HotSDN, 2012.

[9] Intel Fulcrum FM4000 ASIC. http:

//www.intel.com/content/dam/www/

public/us/en/documents/datasheets/

ethernet-switch-fm4000-datasheet.pdf,
Retrieved July 1, 2013.

[10] Intel Fulcrum FM6000 ASIC. http://www.

ethernetsummit.com/English/Collaterals/

Proceedings/2013/20130404_S23_Ozdag.pdf,
Retrieved July 1, 2013.

[11] Multipath proposal for OpenFlow. http://www.

openflow.org/wk/index.php/Multipath_

Proposal, Retrieved July 1, 2013.

[12] Eric A Baden, Mohan Kalkunte, John J Dull, and
Venkateshwar Buduma. Field processor for a network
device, 2010. US Patent 7,787,471.

[13] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. OpenFlow: Enabling In-
novation in Campus Networks. ACM SIGCOMM CCR,
2008.

[14] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George
Varghese, Nick McKeown, Martin Izzard, Fernando
Mujica, and Mark Horowitz. Forwarding Metamor-
phosis: Fast Programmable Match-Action Processing
in Hardware for SDN. ACM SIGCOMM, 2013.

7

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-switch-fm4000-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-switch-fm4000-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-switch-fm4000-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-switch-fm4000-datasheet.pdf
http://www.ethernetsummit.com/English/Collaterals/Proceedings/2013/20130404_S23_Ozdag.pdf
http://www.ethernetsummit.com/English/Collaterals/Proceedings/2013/20130404_S23_Ozdag.pdf
http://www.ethernetsummit.com/English/Collaterals/Proceedings/2013/20130404_S23_Ozdag.pdf
http://www.openflow.org/wk/index.php/Multipath_Proposal
http://www.openflow.org/wk/index.php/Multipath_Proposal
http://www.openflow.org/wk/index.php/Multipath_Proposal

	Introduction
	Example Programs
	Micro-burst Detection
	Rate based congestion control
	Forwarding plane debugger

	Designing a Programmable ASIC
	Background on an ASIC pipeline
	Programming Model
	Unified Memory-Mapped IO
	Addressing Packet Memory
	Instructions

	Putting it together: the TCPU

	Discussion

