
Millions of Little Minions: Using Packets for Low Latency
Network Programming and Visibility

Vimalkumar Jeyakumar1, Mohammad Alizadeh2, Yilong Geng1, Changhoon Kim3,
David Mazières1

1Stanford University, 2Cisco Systems, 3Barefoot Networks
{jvimal@cs.,alizade@,gengyl08@}stanford.edu, chkim@barefootnetworks.com

ABSTRACT
This paper presents a practical approach to rapidly introducing new
dataplane functionality into networks: End-hosts embed tiny pro-
grams into packets to actively query and manipulate a network’s
internal state. We show how this “tiny packet program” (TPP) in-
terface gives end-hosts unprecedented visibility into network be-
havior, enabling them to work with the network to achieve a de-
sired functionality. Our design leverages what each component
does best: (a) switches forward and execute tiny packet programs
(at most 5 instructions) in-band at line rate, and (b) end-hosts per-
form arbitrary (and easily updated) computation on network state.
By implementing three different research proposals, we show that
TPPs are useful. Using a hardware prototype on a NetFPGA, we
show our design is feasible at a reasonable cost.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design; C.2.3 [Computer-Communication Net-
works]: Network Operations; C.4 [Performance of Systems]: De-
sign Studies, Performance Attributes

Keywords
Active Networks, SDN, Software-Defined Networks, Network Ar-
chitecture, Switch ASIC Design

1 Introduction
Consider a large datacenter network with thousands of switches.
Applications complain about poor performance due to high flow
completion times for a small subset of their flows. As an operator,
you realize this symptom could be due to congestion, either from
competing cross traffic or poor routing decisions, or alternatively
could be due to packet drops at failed links. In any case, your goal
is to diagnose this issue quickly. Unfortunately, the extensive use
of multipath routing in today’s networks means one often cannot
determine the exact path taken by every packet; hence it is quite
difficult to triangulate problems to a single switch. Making matters
worse, if congestion is intermittent, counters within the network
will look “normal” at timescales of minutes or even seconds.

http://dx.doi.org/10.1145/2619239.2626292

Such issues would be straightforward to debug if one could ex-
amine relevant network state such as switch ID, queue occupancy,
input/output ports, port utilization, and matched forwarding rules at
the exact time each packet was forwarded, so as to reconstruct what
exactly transpired in the dataplane. In the above example, end-hosts
could use state obtained from millions of successfully delivered
packets to explicitly pinpoint network links that have high queue
occupancy (for congestion), or use switch and port IDs to verify
that packets were correctly routed, or use path information to tri-
angulate network links that cause packet drops due to link failures.
In short, the ability to correlate network state to specific packets
would be invaluable.

Can packets be instrumented to access and report on switch
state? To date such state has been locked inside switches. This
paper describes a simple, programmable interface that enables end-
hosts to query switch memory (counters, forwarding table entries,
etc.) from packets, directly in the dataplane. Specifically, a subset
of packets carry in their header a tiny packet program (TPP), which
consists of a few instructions that read, write, or perform simple,
protocol-agnostic computation using switch memory.

A key observation in this paper is that having such programmable
and fast access to network state benefits a broad class of net-
work tasks—congestion control, measurement, troubleshooting,
and verification—which we call dataplane tasks. We show how
the TPP interface enables end-hosts to rapidly deploy new func-
tionality by refactoring many network tasks into: (a) simple TPPs
that execute on switches, and (b) expressive programs at end-hosts.

TPPs contrast to three approaches to introduce new dataplane
functionality: (1) build custom hardware for each task, (2) build
switches that can execute arbitrary code [33, 36], or (3) use FP-
GAs and network processors [26]. Each approach has its own draw-
backs: Introducing new switch functionality can take many years;
switch hardware has stringent performance requirements and can-
not incur the penalty of executing arbitrary code; and FPGAs and
network processors are simply too expensive at large scale [7]. In-
stead, we argue that if we could build new hardware to support
just one simple interface such as the TPP, we can leverage end-
hosts to implement many complex tasks at software-development
timescales.

TPPs can be viewed as a particular, reasoned point within the
spectrum of ideas in Active Networking [33, 36]. In many Active
Networks formulations, routers execute arbitrary programs that ac-
tively control network behavior such as routing, packet compres-
sion, and (de-)duplication. By contrast, TPP instructions are so
simple they execute within the time to forward packets at line-rate.
Just a handful of TPP instructions, shown in Table 1, providing
access to the statistics in Table 2, proved sufficient to implement
several previous research proposals.

3

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, Illinois, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2836-4/14/08…$15.00.

Instruction Meaning
LOAD, PUSH Copy values from switch to packet
STORE, POP Copy values from packet to switch
CSTORE Conditionally store and execute subsequent opera-

tions
CEXEC Conditionally execute the subsequent instructions

Table 1: The tasks we present in the paper require support only
for the above instructions, whose operands will be clear when we
discuss examples. Write instructions may be selectively disabled
by the administrator.

1.1 Goals
Our main goal is to expose network state to end-hosts through the
dataplane. To benefit dataplane tasks, any interface should satisfy
the following requirements:

• Speed: A recent study shows evidence that switch CPUs are
not powerful and are unable to handle more than a few hundred
OpenFlow control messages/second [14]. Our experience is that
such limitations stand in the way of a whole class of dataplane
tasks as they operate at packet and round-trip timescales.

• Packet-level consistency: Switch state such as link queue oc-
cupancy and forwarding tables varies over time. Today, we lack
any means of obtaining a consistent view of such state as it per-
tains to each packet traveling through the network.

• Minimality and power: To be worth the effort, any hardware
design should be simple, be sufficiently expressive to enable a
diverse class of useful tasks, and incur low-enough overhead to
work at line rates.

This paper presents a specific TPP interface whose design is
largely guided by the above requirements.

Non-Goals: It is worth noting that our goal is not to be flexible
enough to implement any, and all dataplane network tasks. For in-
stance, TPPs are not expressive enough to implement per-packet
scheduling. Moreover, our design is for networks owned and oper-
ated by a single administrative entity (e.g., privately owned WANs
and datacenters). We do not advocate exposing network state to un-
trusted end-hosts connected to the network, but we describe mecha-
nisms to avoid executing untrusted TPPs (§4.3). Finally, a detailed
design for inter-operability across devices from multiple vendors
is beyond the scope of this paper, though we discuss one plausible
approach (§8).

1.2 Summary of Results
Through both a software implementation and a NetFPGA proto-
type, this paper demonstrates that TPPs are both useful and feasi-
ble at line rate. Moreover, an analysis using recent data [7] suggests
that TPP support within switch hardware can be realized at an ac-
ceptable cost.

Applications: We show the benefits of TPP by refactoring many
recent research proposals using the TPP interface. These tasks
broadly fall under the following three categories:

• Congestion Control: We show how end-hosts, by periodically
querying network link utilization and queue sizes with TPP, can
implement a rate-based congestion control algorithm (RCP) pro-
viding max-min fairness across flows. We furthermore show how
the TPP interface enables fairness metrics beyond the max-min
fairness for which RCP was originally designed (§2.2).

• Network Troubleshooting: TPPs give end-hosts detailed per-
packet visibility into network state that can be used to imple-
ment a recently proposed troubleshooting platform called Net-
Sight [13]. In particular, we walk through implementing and de-

Statistics Examples
Per-Switch Switch ID, counters associated with the global L2 or L3

flow tables, flow table version number, timestamp.
Per-Port Link utilization, bytes received, bytes dropped, bytes

enqueued, application-specific registers.
Per-Queue Bytes enqueued, bytes dropped.
Per-Packet Packet’s input/output port, queue, matched flow entry,

alternate routes for a packet.
Table 2: A non-exhaustive list of statistics stored in switches mem-
ory that TPPs can access when mapped to known memory loca-
tions. Many statistics are already tracked today but others, such
as flow table version will have to be implemented. Some statistics
are read-only (e.g. matched flow entry, bytes received), but oth-
ers can be modified (e.g. packet’s output port). See OpenFlow 1.4
specification [29, Table 5] for a detailed list of available statistics.

ploying ndb, a generalization of traceroute introduced by Net-
Sight (§2.3).

• Network Control: We also demonstrate how low-latency visi-
bility offered by TPPs enables end-hosts to control how traffic is
load balanced across network paths. We refactor CONGA [1], an
in-network load-balancing mechanism implemented in Cisco’s
new ASICs, between end-hosts and a network that supports only
the TPP interface.

Hardware: To evaluate the feasibility of building a TPP-capable
switch, we synthesized and built a four-port NetFPGA router (at
160MHz) with full TPP support, capable of switching minimum
sized packets on each interface at 10Gb/s. We show the hardware
and latency costs of adding TPP support are minimal on NetFPGA,
and argue the same would hold of a real switch (§6). We find that
the key to achieving high performance is restricting TPPs to a hand-
ful of instructions per packet (say five), as it ensures that any TPP
executes within a fraction of the its transmission time.

Software: We also implemented the TPP interface in
Open vSwitch [31], which we use to demonstrate research
proposals and examples. Additionally, we present a software
stack (§4) that enforces security and access control, handles TPP
composition, and has a library of useful primitives to ease the path
to deploying TPP applications.

The software and hardware implementations of TPP, scripts to
run experiments and plots in this paper, and an extended version of
this paper describing more TPP applications are all available online
at http://jvimal.github.io/tpp.

2 Example Programs
We start our discussion using examples of dataplane tasks that
can be implemented using TPPs, showcasing the utility of expos-
ing network state to end-hosts directly in the dataplane. Each of
these tasks typically requires new task-specific hardware changes;
however, we show how each task can be refactored such that the
network only implements TPPs, while delegating complex task-
specific functionality to end-hosts. We will discuss the following
tasks: (i) micro-burst detection, (ii) a rate-based congestion control
algorithm, (iii) a network troubleshooting platform, (iv) a conges-
tion aware, distributed, network load balancer.

What is a TPP? A TPP is any Ethernet packet with a uniquely
identifiable header that contains instructions, some additional space
(packet memory), and an optional encapsulated Ethernet payload
(e.g. IP packet). The TPP exclusively owns its packet memory, but
also has access to shared memory on the switch (its SRAM and
internal registers) through addresses. TPPs execute directly in the
dataplane at every hop, and are forwarded just like other packets.
TPPs use a very minimal instruction set listed in Table 1, and we

4

http://jvimal.github.io/tpp

SP = 0x0
PUSH [QSize]

SP = 0x4
PUSH [QSize]

0x00

SP = 0x8
PUSH [QSize]

0x00
0xa0

Packet memory is preallocated. The TPP never grows/shrinks
inside the network.

Ethernet Header

Other headers
(e.g., TCP/IP)

(a) Visualizing the execution of a TPP as it is routed through
the network.

0 5 10 15 20 25
Queue size (packets)

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

til
es

2.0 2.2 2.4 2.6 2.8 3.0
Time (s)

0

5

10

15

20

25

Q
ue

ue
si

ze
(p

ac
ke

ts
)

(b) CDF and time series of queue occupancy on 6 queues in the
network, obtained from every packet arriving at one host.

Figure 1: TPPs enable end-hosts to measure queue occupancy evolution at a packet granularity allowing them to detect micro-bursts, which
are the spikes in the time series of queue occupancy (bottom of Figure 1b). Notice from the CDF (top) that one of the queues is empty for
80% of the time instants when packet arrives to the queue; a sampling method is likely to miss the bursts.

refer the reader to Section 3 to understand the space overheads. We
abuse terminology, and use TPPs to refer both to the programs and
the packets that carry them.

We write TPPs in a pseudo-assembly-language with a segmented
address space naming various registers, switch RAM, and packet
memory. We write addresses using human-readable labels, such
as [Namespace:Statistic] or [Queue:QueueOccupancy]. We
posit that these addresses be known upfront at compile time. For
example, the mnemonic [Queue:QueueOccupancy] could be re-
fer to an address 0xb000 that stores the occupancy of a packet’s
output queue at each switch.

2.1 Micro-burst Detection
Consider the problem of monitoring link queue occupancy within
the network to diagnose short-lived congestion events (or “micro-
bursts”), which directly quantifies the impact of incast. In low-
latency networks such as datacenters, queue occupancy changes
rapidly at timescales of a few RTTs. Thus, observing and con-
trolling such bursty traffic requires visibility at timescales orders of
magnitude faster than the mechanisms such as SNMP or embedded
web servers that we have today, which operate at tens of seconds at
best. Moreover, even if the monitoring mechanism is fast, it is not
clear which queues to monitor, as (i) the underlying routing could
change, and (ii) switch hash functions that affect multipath routing
are often proprietary and unknown.

TPPs can provide fine-grained per-RTT, or even per-packet vis-
ibility into queue evolution inside the network. Today, switches
already track per-port, per-queue occupancy for memory manage-
ment. The instruction PUSH [Queue:QueueOccupancy] could be
used to copy the queue register onto the packet. As the packet tra-
verses each hop, the packet memory has snapshots of queue sizes at
each hop. The queue sizes are useful in diagnosing micro-bursts, as
they are not an average value. They are recorded when the packet
traverses the switch. Figure 1a shows the state of a sample packet
as it traverses a network. In the figure, SP is the stack pointer
which points to the next offset inside the packet memory where
new values may be pushed. Since the maximum number of hops is
small within a datacenter (typically 5–7), the end-host preallocates
enough packet memory to store queue sizes. Moreover, the end-
host knows exactly how to interpret values in the packet to obtain a
detailed breakdown of queueing latencies on all network hops.

This example illustrates how a low-latency, programmatic in-
terface to access dataplane state can be used by software at end-
hosts to measure dataplane behavior that is hard to observe in the
control plane. Figure 1a shows a six-node dumbell topology on
Mininet [12], in which each node sends a small 10kB message to
every other node in the topology. The total application-level offered
load is 30% of the hosts’ network capacity (100Mb/s). We instru-
mented every packet with a TPP, and collected fully executed TPPs
carrying network state at one host. Figure 1b shows the queue evo-
lution of 6 queues inside the network obtained from every packet
received at that host.

Overheads: The actual TPP consists of three instructions, one each
to read the switch ID, the port number, and the queue size, each a
16 bit integer. If the diameter of the network is 5 hops, then each
TPP adds only a 54 byte overhead to each packet: 12 bytes for the
TPP header (see §3.4), 12 bytes for instructions, and 6×5 bytes to
collect statistics at each hop.

2.2 Rate-based Congestion Control
While the previous example shows how TPPs can help observe
latency spikes, we now show how such visibility can be used to
control network congestion. Congestion control is arguably a dat-
aplane task, and the literature has a number of ideas on designing
better algorithms, many of which require switch support. How-
ever, TCP and its variants still remain the dominant congestion
control algorithms. Many congestion control algorithms, such as
XCP [20], FCP [11], RCP [9], etc. work by monitoring state that
indicates congestion and adjusting flow rates every few RTTs.

We now show how end-hosts can use TPPs to deploy a new con-
gestion control algorithm that enjoys many benefits of in-network
algorithms, such as Rate Control Protocol (RCP) [9]. RCP is a con-
gestion control algorithm that rapidly allocates link capacity to help
flows finish quickly. An RCP router maintains one fair-share rate
R(t) per link (of capacity C, regardless of the number of flows),
computed periodically (every T seconds) as follows:

R(t +T) = R(t)

(
1− T

d
× a (y(t)−C)+b q(t)

d
C

)
(1)

Here, y(t) is the average ingress link utilization, q(t) is the av-
erage queue size, d is the average round-trip time of flows travers-

5

ing the link, and a and b are configurable parameters. Each router
checks if its estimate of R(t) is smaller than the flow’s fair-share
(indicated on each packet’s header); if so, it replaces the flow’s fair
share header value with R(t).

We now describe RCP*, an end-host implementation of RCP.
The implementation consists of a rate limiter and a rate controller
at end-hosts for every flow (since RCP operates at a per-flow granu-
larity). The network control plane allocates two memory addresses
per link (Link:AppSpecific_0 and Link:AppSpecific_1) to
store fair rates. Each flow’s rate controller periodically (using the
flow’s packets, or using additional probe packets) queries and mod-
ifies network state in three phases.

Phase 1: Collect. Using the following TPP, the rate controller
queries the network for the switch ID on each hop, queue sizes,
link utilization, and the link’s fair share rate (and its version num-
ber), for all links along the path. The receiver simply echos a fully
executed TPP back to the sender. The network updates link utiliza-
tion counters every millisecond. If needed, end-hosts can measure
them faster by querying for [Link:RX-Bytes].

PUSH [Switch:SwitchID]

PUSH [Link:QueueSize]

PUSH [Link:RX-Utilization]

PUSH [Link:AppSpecific_0] # Version number

PUSH [Link:AppSpecific_1] # Rfair

Phase 2: Compute. In the second phase, each sender computes a
fair share rate Rlink for each link: Using the samples collected in
phase 1, the rate controller computes the average queue sizes on
each link along the path. Then, it computes a per-link rate Rlink
using the RCP control equation.

Phase 3: Update. In the last phase, the rate-controller of each flow
asynchronously sends the following TPP to update the fair rates on
all links. To ensure correctness due to concurrent updates, we use
the CSTORE instruction:

CSTORE [Link:AppSpecific_0], \

[Packet:Hop[0]], [Packet:Hop[1]]

STORE [Link:AppSpecific_1], [Packet:Hop[2]]

PacketMemory:

Hop1: V_1, V_1+1, R_new_1, (* 16 bits each*)

Hop2: V_2, V_2+1, R_new_2, ...

where Vi is the version number in the AppSpecific_0 that the end-
host used to derive an updated Rnew,i for hop i, thus ensuring con-
sistency. (CSTORE dst,old,new updates dst with new only if
dst was old, ignoring the rest of the TPP otherwise.) Note that
in the TPP, the version numbers and fair rates are read from packet
memory at every hop.

Other allocations: Although RCP was originally designed to allo-
cate bandwidth in a max-min fair manner among competing flows,
Kelly et al. [22] showed how to tweak RCP to allocate bandwidth
for a spectrum of fairness criteria—α-fairness parameterized by a
real number α ≥ 0. α-fairness is achieved as follows: if Ri is the
fair rate computed at the i-th link traversed by the flow (as per the
RCP control equation 1), the flow sets its rate as

R =

(
∑

i
R−α

i

)−1/α

(2)

The value α = 1 corresponds to proportional fairness, and we
can see that in the limit as α → ∞, R = mini Ri, which is consis-
tent with the notion of max-min fairness. Observe that if the ASIC

0 10 20 30 40 50 60 70 80
Time (s)

0
10
20
30
40
50
60
70

Th
ro

ug
hp

ut
 (M

b/
s)

Max-min fairness

flow a
flow b
flow c

0 10 20 30 40 50 60 70 80
Time (s)

0
10
20
30
40
50
60
70

Th
ro

ug
hp

ut
 (M

b/
s)

Proportional fairness

flow a

flow b

flow c

Figure 2: Allocations by max-min and proportional fairness variant
of RCP on the traffic pattern shown inset on the right plot; each link
has 100Mb/s capacity and all flows start at 1Mb/s at time 0.

hardware had been designed for max-min version of RCP, it would
have been difficult for end-hosts to achieve other useful notions of
fairness. However, TPPs help defer the choice of fairness to deploy-
ment time, as the end-hosts can aggregate the per-link Ri according
to equation 2 based on one chosen α . (We do not recommend flows
with different α sharing the same links due to reasons in [35].)

Figure 2 shows the throughput of three flows for both max-
min RCP* and proportional-fair RCP* in Mininet: Flow ‘a’ shares
one link each with flows ‘b’ and ‘c’ (shown inset in the right plot).
Flows are basically rate-limited UDP streams, where rates are de-
termined using the control algorithm: Max-min fairness should
allocate rates equally across flows, whereas proportional fairness
should allocate 1⁄3 of the link to the flow that traverses two links,
and 2⁄3 to the flows that traverse only one link.

Overheads: For the experiment in Figure 2, the bandwidth over-
head imposed by TPP control packets was about 1.0–6.0% of the
flows’ rate as we varied the number of long lived flows from 3 to
30 to 99 (averaged over 3 runs). In the same experiment, TCP
had slightly lower overheads: 0.8–2.4%. The RCP* overhead is
in the same range as TCP because each flow sends control packets
roughly once every RTT. As the number of flows n increases, the
average per-flow rate decreases as 1/n, which causes the RTT of
each flow to increase (as the RTT is inversely proportional to flow
rate). Therefore, the total overhead does not blow up.

Are writes absolutely necessary? RCP* is one of the few TPP
applications that writes to network state. It is worth asking if this
is absolutely necessary. We believe it is necessary for fast conver-
gence since RCP relies on flows traversing a single bottleneck link
agreeing on one shared rate, which is explicitly enforced in RCP.
Alternatively, if rapid convergence isn’t critical, flows can converge
to their fair rates in an AIMD fashion without writing to network
state. In fact, XCP implements this AIMD approach, but experi-
ments in [9] show that XCP converges more slowly than RCP.

2.3 Network Troubleshooting Framework
There has been recent interest in designing programmatic tools
for troubleshooting networks; without doubt, dataplane visibility
is central to a troubleshooter. For example, consider the task of
verifying that network forwarding rules match the intent specified
by the administrator [21, 23]. This task is hard as forwarding rules
change constantly, and a network-wide ‘consistent’ update is not a
trivial task [32]. Verification is further complicated by the fact that
there can be a mismatch between the control plane’s view of routing
state and the actual forwarding state in hardware (and such prob-
lems have shown up in a cloud provider’s production network [24]).
Thus, verifying whether packets have been correctly forwarded re-
quires help from the dataplane.

Recently, researchers have proposed a platform called Net-
Sight [13]. NetSight introduced the notion of a ‘packet history,’

6

TPPPacket
Insert
TPPs

TPP
view

Packet
Strip
TPPs

End-host
Apps

Network

End-host
Apps

view

Collector

Pkt Hdr

Collector
Collectors

Figure 3: TPPs enable end-hosts to efficiently collect packet histo-
ries, which can then be used to implement four different trouble-
shooting applications described in [13].

which is a record of the packet’s path through the network and
the switch forwarding state applied to the packet. Using this con-
struct, the authors show how to build four different network trouble-
shooting applications.

We first show how to efficiently capture packet histories that are
central to the NetSight platform. NetSight works by interposing on
the control channel between the controller and the network, stamp-
ing each flow entry with a unique version number, and modify-
ing flow entries to create truncated copies of packet headers tagged
with the version number (without affecting a packet’s normal for-
warding) and additional metadata (e.g., the packet’s input/output
ports). These truncated packet copies are reassembled by servers to
reconstruct the packet history.

We can refactor the task of collecting packet histories by having
a trusted agent at every end-host (§4) insert the TPP shown below
on all (or a subset of) its packets. On receiving a TPP that has
finished executing on all hops, the end-host gets an accurate view of
the network forwarding state that affected the packet’s forwarding,
without requiring the network to create additional packet copies.

PUSH [Switch:ID]

PUSH [PacketMetadata:MatchedEntryID]

PUSH [PacketMetadata:InputPort]

Once the end-host constructs a packet history, it is forwarded to
collectors where they can be used in many ways. For instance, if
the end-host stores the histories, we get the same functionality as
netshark—a network-wide tcpdump distributed across servers.
From the stored traces, an administrator can use any query lan-
guage (e.g., SQL) to extract relevant packet histories, which gives
the same functionality as the interactive network debugger ndb.
Another application, netwatch simply uses the packet histories
to verify whether network forwarding trace conforms to a policy
specified by the control plane (e.g., isolation between tenants).

Overheads: The instruction overhead is 12 bytes/packet and 6
bytes of per-hop data. With a TPP header and space for 10 hops,
this is 84 bytes/packet. If the average packet size is 1000 bytes, this
is a 8.4% bandwidth overhead if we insert the TPP on every packet.
If we enable it only for a subset of packets, the overhead will be
correspondingly lower.

Caveats: Despite its benefits, there are drawbacks to using only
TPPs, especially if the network transforms packets in erroneous or
non-invertible ways. We can overcome dropped packets by send-
ing packets that will be dropped to a collector (we describe how
in §2.5). Some of these assumptions (trusting the dataplane to
function correctly) are also made by NetSight, and we believe the
advantages of TPPs outweigh its drawbacks. For instance, TPPs
can collect more statistics, such as link utilization and queue occu-
pancy, along with a packet’s forwarding history.

S0

S1

L0

L2

L1

Each link capacity = 100Mb/s.

120115L1:L2 120
5045L0:L2 50

CONGA*ECMPDem.Flow
Achieved Thput.

Max Util = 100 85

All demand and throughput
numbers are in Mb/s.

Figure 4: An example showing the benefits of congestion-aware
load balancing: ECMP splits flow from L1 to L2 equally across the
two paths resulting in suboptimal network utilization. CONGA*,
an end-host refactoring of CONGA [1] is able to detect and reroute
flows, achieving optimum in this example.

2.4 Distributed Load Balancing
We now show how end-hosts can use TPPs to probe for network
congestion, and use this detailed visibility to load balance traffic
in a distributed fashion. We demonstrate a simplified version of
CONGA [1], which is an in-network scheme for traffic load bal-
ancing. CONGA strives to maximize network throughput and min-
imize the maximum network link utilization in a distributed fashion
by having network switches maintain a table of path-level conges-
tion metrics (e.g., quantized link utilization). Using this informa-
tion, switches route small bursts of flows (“flowlets”) selfishly on
the least loaded path. CONGA is optimized for datacenter network
topologies; we refer the curious reader to [1] for more details.

CONGA’s design highlights two benefits relevant to our discus-
sion. First, it uses explicit visibility by having switches stamp quan-
tized congestion information on packet headers. Second, load bal-
ancing decisions are made at round-trip timescales to rapidly detect
and react to network congestion. Since TPPs also offer similar ben-
efits, we show how we can refactor the load balancing task between
end-hosts and the network, without requiring custom hardware (ex-
cept, of course, to support TPPs).

First, we require the network to install multipath routes that end-
hosts can select based on packet header values. This can be done in
the slow-path by the control plane by programming a ‘group table’
available in many switches today for multipath routing [29, §5.6.1],
which selects an output port by hashing on header fields (e.g., the
VLAN tag). This allows end-hosts to select network paths simply
by changing the VLAN ID.

Second, we need end-hosts to query for link utilization across
various paths, by inserting the following TPP on a subset of packets
destined to hosts within the datacenter:
PUSH [Link:ID]
PUSH [Link:TX-Utilization]
PUSH [Link:TX-Bytes]

We query for Link:TX-Bytes to measure small congestion
events if the link utilization isn’t updated. The receiver echoes fully
executed TPPs back to the sender to communicate the congestion.
Note that the header of the echoed TPP also contains the path ID
along with the link utilization on each link in the path.

Third, using information in the fully executed TPPs, end-hosts
can build a table mapping ‘Path i→Congestion Metric (mi),’ where
mi is either the maximum or sum of link utilization on each switch–
switch network hop on path i. The authors of CONGA note that
‘sum’ is closer to optimal than ‘max’ in the worst-case scenario
(adversarial); however CONGA used ‘max’ as it does not cause
overflows when switches aggregate path-congestion. With TPPs,
this is not an issue, and the choice can be deferred to deploy time.

And finally, end-hosts have full context about flows and flowlets,
and therefore each end-host can select a flowlet’s path by setting
the path tag appropriately on the flowlet’s packets.

7

Overheads: We implemented a proof-of-concept prototype
(CONGA*) in software using UDP flows; Figure 4 reproduces an
example from CONGA [1, Figure 4]. We configured switches S0
and S1 to select paths based on destination UDP port. The flow
from L0 to L2 uses only one path, whereas the flow from L1 to
L2 has two paths. The UDP agents at L0 and L1 query for link
utilization and aggregate congestion metrics every millisecond for
the two paths. With CONGA*, end-hosts can maximize network
throughput meeting the demands for both flows, while simultane-
ously minimizing the maximum link utilization. In this example,
the overhead introduced by TPP packets was minimal (< 1% of the
total traffic).

Remark: Note that the functionality is refactored between the net-
work and end-hosts; not all functionality resides completely at the
end-hosts. The network implements TPP and multipath routing.
The end-hosts merely select paths based on congestion completely
in software.

2.5 Other possibilities
The above examples illustrate how a single TPP interface enables
end-hosts to achieve many tasks. There are more tasks that we
couldn’t cover in detail. In the interest of space, we refer the reader
to the extended version of this paper for more details on some of
the tasks below [28].

Measurement: Since TPPs can read network state, they can be
used in a straightforward fashion for measuring any network statis-
tic at rapid timescales. As TPPs operate in the dataplane, they are
in a unique position to expose path characteristics experienced by
a specific packet that an end-host cares about.

Network verification: TPPs also help in verifying whether net-
work devices meet certain requirements. For example, the path
visibility offered by TPPs help accurately verify that route con-
vergence times are within an acceptable value. This task can be
challenging today, if we rely on end-to-end reachability as a way
to measure convergence, because backup paths can still maintain
end-to-end connectivity when routes change. Also, the explicit vis-
ibility eases fault localization.

Fast network updates: By allowing secure applications to write
to a switch’s forwarding tables, network updates can be made very
fast. This can reduce the time window of a transient state when net-
work forwarding state hasn’t converged. For example, it is possible
to add a new route to all switches along a path in half a round-trip
time, as updating an IP forwarding table requires only 64 bits of
information per-hop: 32 bit address and a 32 bit netmask per hop,
tiny enough to fit inside a packet.

Wireless Networks: TPPs can also be used in wireless networks
where access points can annotate end-host packets with rapidly
changing state such as channel SNR. Low-latency access to such
rapidly changing state is useful for network diagnosis, allows end-
hosts to distinguish between congestive losses and losses due to
poor channel quality, and query the bitrate that an AP selected for
a particular packet.

3 Design of TPP-Capable Switches
In this section, we discuss the TPP instructions, addressing
schemes, and the semantics of the TPP interface to a switch and
what it means for a switch to be TPP-capable. Network switches
have a variety of form factors and implementations; they could be
implemented in software (e.g., Click, Open vSwitch), or in network
processors (e.g., NetFPGA), or as hardware ASICs. A switch might
also be built hierarchically from multiple ASICs, as in ‘chassis’

based switches [18, Figure 3]. A TPP can be executed on each of
these platforms. Thus, it is useful for a TPP-capable switch and the
end-host to have a contract that preserves useful properties without
imposing a performance penalty. We achieve this by constraining
the instruction execution order and atomicity.

3.1 Background on a Switch Pipeline
We begin with an abstract model of a switch execution environ-
ment shown in Figure 5. The packet flows from input to output(s)
through many pipelined modules. Once a packet arrives at an in-
put port, the dataplane tags the packet with metadata (such as its
ingress port number). Then, the packet passes through a parser
that extracts fields from the packet and passes it further down the
pipeline which consists of several match-action stages. This is also
known as multiple match table model [7]. For example, one stage
might use the parsed fields to route the packet (using a combina-
tion of layer 2 MAC table, layer 3 longest-prefix match table, and
a flexible TCAM table). Finally, any modifications to the packet
are committed and the packet is queued in switch memory. Us-
ing metadata (such as the packet’s priority), the scheduler decides
when it is time for the packet to be transmitted out of the egress port
determined earlier in the pipeline. The egress stage also consists of
a number of match-action stages.

3.2 TPP Semantics
The read/write instructions within a TPP access two distinct mem-
ory spaces: memory within the switch (switch memory), and a per-
hop scratch space within the packet (packet memory). By all switch
memory, we only mean memory at the stages traversed by a TPP,
except the memory that stores packet contents. By all packet mem-
ory, we mean the TPP related fields in the packet. Now, we state our
requirements for read/write instructions accessing the two memory
spaces.

Switch memory: To expose statistics pertaining to a specific
packet as it traverses the network, it is important for the instruc-
tions in the TPP to have access to the same values that are used to
forward the packet. For read-only values, this requirement means
that reads by a TPP to a single memory location must necessarily
be atomic and after all writes by the forwarding logic to the same
memory location. For example, if a TPP accesses the memory that
holds the output port of a packet, it must return the same port that
the forwarding logic determines, and no other value. This is what
we mean by a “packet-consistent” view of network state.

For read-write memory addresses, it is useful if instructions
within the TPP were executed in the order specified by the TPP
to a given location after any modifications by the switch forward-
ing logic. Thus, writes by a TPP supersede those performed by
forwarding logic.

Packet memory: Since instructions can read from and write to
packet memory using PUSH and POP, writes to packet memory must
take effect sequentially in the order specified by the TPP. This guar-
antees that if a TPP pushes values at memory locations X, Y, and Z
onto packet memory, the end-host sees the values in the packet in
the same order. This does not require that reads to X, Y, and Z be
issued in the same order.

3.3 TPP Execution Model
TPPs are executed in the dataplane pipeline. TPPs are required to
fit exactly within an MTU to avoid having the ASIC deal with frag-
mentation issues. This is not a big limitation, as end-hosts can split
a complex task into multiple smaller TPPs if a single packet has
insufficient memory to query all the required statistics. By default,
a TPP executes at every hop, and instructions are not executed if

8

Ingress
Parsers

Match
Action
Stage

1

Match
Action
Stage

2

Match
Action
Stage

n

Packets
Arrive

Egress
Parsers

Match
Action
Stage

1

Match
Action
Stage

2

Match
Action
Stage

n

Ingress Pipeline Egress Pipeline

Switch
Memory

(Queues)

Packets
Depart

Figure 5: A simplified block diagram of the dataplane pipeline in a switch ASIC. Packets arrive at the ingress, and pass through multiple
modules. The scheduler then forwards packets (that are not dropped) to the output ports computed at earlier stages in the pipeline.

TPP

ARP

Ethernet

IPv4

UDP TCP

TPP

ether.type=0x6666
ether.type=0x0800

tpp.proto=0x0800

udp.dstport
=0x6666

non-TPP
udp.dstport
!=0x6666

ether.type=0x0806 ip.p=6ip.p=17

(a) Parse graph for the two ways to parse TPPs: trans-
parent mode, or standalone mode.

1 2 3 4 5

Instructions

Packet memory
(Initialized by end-hosts)

Up to
20 bytes

40–200
bytes

1: Length of TPP
2: Length of Packet memory
3: Packet mem. addressing
 mode (stack, hop, etc.)
4: Hop number / stack pointer
5: Per hop memory length
 (used only when memory is
 hop-addressed)
6: TPP checksum
7: Encapsulated TPP proto
 (default 0, i.e., none)

6 8 bytes

7 2 bytes

TPP Application ID 4 bytes

(b) TPP’s packet structure.
Figure 6: The parse graph and structure of a TPP. We chose 0x6666 as the ethertype and source UDP port that uniquely identifies a TPP.
With a programmable switch parser, this choice can be reprogrammed at any time.

they access memory that doesn’t exist. This ensures the TPP fails
gracefully.

Furthermore, the platform is free to reorder reads and writes
so they execute in any order. However, if the programmer needs
guarantees on ordering instructions due to data hazards (e.g., for
CEXEC, CSTORE), they must ensure the TPP accesses memory in
the pipeline order. For a vast majority of use cases, we argue this
restriction is not severe. From a practical standpoint, this require-
ment ensures that the switch pipeline remains feed-forward as it is
today in a majority of switches.

3.3.1 Unified Memory-Mapped IO
A TPP has access to any statistic computed by the switch that is ad-
dressable. The statistics can be broadly namespaced into per-switch
(i.e., global), per-port, per-queue and per-packet. Table 2 shows
example statistics in each of these namespaces. These statistics
may be scattered across different stages in the pipeline, but TPPs
access them via a unified address space. For instance, a switch
keeps metadata such as input port, the selected route, etc. for every
packet that can be made addressable. These address mappings are
known upfront to the TPP compiler that converts mnemonics such
as [PacketMetadata:InputPort] into virtual addresses.

3.3.2 Addressing Packet Memory
Memory is managed using a stack pointer and a PUSH in-
struction that appends values to preallocated packet mem-
ory. TPPs also support a hop addressing scheme, simi-
lar to the the base:offset x86-addressing mode. Here,
base:offset refers to the word at location base * hop_size

+ offset. Thus, if hop-size is 16 bytes, the instruction “LOAD
[Switch:SwitchID], [Packet:hop[1]]” will copy the switch
ID into PacketMemory[1] on the first hop, PacketMemory[17]
on the second hop, etc. The offset is part of the instruction; the
base value (hop number) and per-hop memory size values are in
the TPP header. To simplify memory management in the dataplane,
the end-host must preallocate enough space in the TPP to hold per-
hop data structures.

3.3.3 Synchronization Instructions
Besides read and write, a useful instruction in a concur-
rent programming environment is an atomic update instruction,
such as a conditional store CSTORE, conditioned on a mem-
ory location matching a specified value, halting subsequent in-
structions in the TPP if the update fails. That is, CSTORE

[X],[Packet:hop[Pre]],[Packet:hop[Post]] works as fol-
lows:

succeeded = False

if (value at X == value at Packet:hop[Pre]) {

value at X = value at Packet:hop[Post]

succeeded = True

}

value at Packet:hop[Pre] = value at X;

if (succeeded) {

allow subsequent instructions to execute

}

By having CSTORE return the value of X, an end-host can in-
fer if the instruction succeeded. Notice that the second and third
operands are read from a unique location at every hop. This is
needed to ensure correct semantics when the switch overwrites the
value at the second operand.

In a similar vein, we found a conditional execute (CEXEC) in-
struction useful; for example, it may be desirable to execute a net-
work task only on one switch, or on a subset of switches (say all
the top of rack switches in a datacenter). The conditional execute
instruction specifies a memory address, a 32-bit mask, and a 32-
bit value (specified in the packet hop), which instructs the switch
to execute all subsequent instructions only when (switch_value

& mask) == value. All instructions that follow a failed CEXEC

check will not be executed.

3.4 Parsing: TPP Packet Format
As noted in §2, a TPP is any Ethernet frame from which we can
uniquely identify a TPP header, the instructions, packet memory,
and an optional payload. This allows end-hosts to use TPPs in two
ways: (i) piggy-back TPPs on any existing packet by encapsulating

9

Match Action Stage n

SRAM Register
File

Packet Headers
(TPP, IP, etc.) +

Metadata
From

previous
stage

To next
stage

TCPU

Instructions Packet Mem.
(at most 320b),

Metadata

SRAM Reg.File
Controller Crossbar

CrossbarCrossbar

TCPU
MMIO

160b

Figure 7: At every stage, the TCPU has execution units that can
access only local memory and registers, as well as packet metadata.

the packet within a TPP of ethertype 0x6666, or (ii) embed a TPP
into an otherwise normal UDP packet destined for port 0x6666,
which is a special port number usurped by TPP-enabled routers.

Figure 6a shows the two parse graphs depicting the two ways
in which our prototype uses TPPs. A parse graph depicts a state
machine for a packet parser, in which the nodes denote protocols
and edges denote state transitions when field values match. We use
the same convention as in [7] to show the two ways in which we
can parse TPPs.

3.5 Putting it together: the TCPU
TPPs execute on a tiny processor, which we call the TCPU. A sim-
ple way to implement the TCPU is by having a RISC-like processor
at the end of the ingress match-action stages as we described in our
earlier position paper [19, Figure 5]. This simple approach could be
practical for software, or low-speed hardware switches, but might
be impractical in high-speed hardware switches as memory in an
ASIC is often distributed across modules. The wiring complexity
to provide read and write paths from each module to the TCPU
becomes prohibitively expensive within an ASIC, and is simply in-
feasible across line-cards in a chassis switch.

We overcome this limitation in two ways. First, our execution
model permits reordering reads and writes across different ASIC
memory locations. Second, end-hosts can statically analyze a de-
sired TPP and split it into smaller TPPs if one TPP is insufficient.
For instance, if an end-host requires link utilization on all links at
all switches a packet traverses, it can stage the following sequence
of TPPs: (i) send one TPP to collect switch ID and link utiliza-
tions on links traversed by the packet, and (ii) send a new TPP to
each switch link on the switches traversed by TPP 1 to collect the
remaining statistics. To summarize:

• Loads and stores in a single packet can be executed in any or-
der, by having end-hosts ensure there are no write-after-write, or
read-after-write conflicts.

• The operands for conditional instructions, such as CSTORE and
CEXEC, are available before, or at the stages where the sub-
sequent instructions execute; CEXEC can execute when all its
operands are available.

By allowing instructions to be executed out of order, we can dis-
tribute the single logical TCPU on an ASIC by replicating its func-
tionality at every stage. Each stage has one execution unit for every
instruction in the packet, a crossbar to connect the execution units
to all registers local to the stage and packet memory, and access
to the stage’s local memory read/write port. From the decoded in-
structions, the stage can execute all instructions local to the stage,

and once all memory accesses have completed, the packet leaves
the stage.

Replicating execution units might seem expensive, but the ma-
jority of logic area in an ASIC is due to the large memories (for
packet buffers, counters, etc.), so the cost of execution units is not
prohibitive [7]. Figure 7 shows the TCPU if we zoom into one of
the match-action stages.

Serializing PUSH/POP instructions: Finally, there are many
techniques to ensure the effect of PUSH and POP instructions ap-
pear if they executed inorder. Since the packet memory addresses
accessed by PUSH/POP instructions are known immediately when
they are parsed, they can be converted to equivalent LOAD/STOREs
that can then be executed out of order. For example, consider the
following TPP:
PUSH [PacketMetadata:OutputPort]
PUSH [PacketMetadata:InputPort]
PUSH [Stage1:Reg1]
POP [Stage3:Reg3]

After parsing the instructions, they can be converted to the fol-
lowing TPP which is equivalent to the above TPP:

LOAD [PacketMetadata:OutputPort], [Packet:Hop[0]]
LOAD [PacketMetadata:InputPort], [Packet:Hop[1]]
LOAD [Stage1:Reg1], [Packet:Hop[2]]
STORE [Stage3:Reg3], [Packet:Hop[2]]

Now, the TPP loads the values stored in two registers to the
packet memory addressed in the hop addressing format. Note that
the packet’s output port is not known until the packet is routed, i.e.,
at the end of the ingress stage. The execution proceeds as follows:

• By ingress stage 1, the metadata consists of four instructions, the
memory addresses they access (the four registers and the three
packet memory offsets), the packet’s hop number, the packet’s
headers, its input port, its CRC, etc.

• At stage 1, the packet’s input port is known. Stage 1 executes
the second instruction, and stores the input port value at the 2nd
word of the packet memory. Stage 1 also executes the third in-
struction, copying Reg1 to the 3rd word of packet memory.
• At stage 3, the fourth instruction executes, copying the 3rd word

from packet memory into Reg3.
• At the end of the ingress stage, the packet’s output port is already

computed, and the last stage copies the output port number to the
1st word of the packet memory before the packet is stored in the
ASIC packet buffers.

4 End-host Stack
Now that we have seen how to design a TPP-enabled ASIC, we
look at the support needed from end-hosts that use TPPs to achieve
a complex network functionality. Since TPP enables a wide range
of applications that can be deployed in the network stack (e.g., RCP
congestion control), or individual servers (e.g., network monitor-
ing), or a combination of both, we focus our efforts on the common
usage patterns.

End-host architecture: The purpose of the end-host stack (Fig-
ure 8) is to abstract out the common usage patterns of TPPs and
implement TPP access control policies. At every end-host, we have
a TPP control- and dataplane agent. The control plane is a software
agent that does not sit in the critical forwarding path, and interacts
with the network control plane if needed. The dataplane shim sits
on the critical path between the OS network stack and the network
interface and has access to every packet transmitted and received by
the end-host. This shim is responsible for transparently adding and
removing TPPs from application-generated packets, and enforcing
access control.

10

End-host
App 1 App 2Network

Control Plane
TPP Control Plane

Agent
Executor

Dataplane shim

RCP/TCP/IP Stack

RCP
can send

piggybacked
TPPs

packets with
piggybacked

TPP

TPPs within
UDP payload with
dstport=0x6666

RPCs

TPP Control
Plane

RPCs

Figure 8: End-host stack for creating and managing TPP-enabled
applications. Arrows denote packet flow paths through the stack,
and communication paths between the end-host and the network
control plane.

4.1 Control plane
The TPP control plane (TPP-CP) is a central entity to keep track of
running TPP applications and manage switch memory, and has an
agent at every end-host that keeps track of the active TPP-enabled
applications running locally. Each application is allocated a con-
tiguous set of memory addresses that it can read/write. For ex-
ample, the RCP application requires access to a switch memory
word to store the Rfair at each link, and it owns this memory ex-
clusively. This memory access control information is similar to
the x86’s global descriptor table, where each entry corresponds to
a segment start and end address, and permissions to read/write to
memory is granted accordingly.

TPP-CP exports an API which authorized applications can use to
insert TPPs on a subset of packets matching certain criteria, with a
certain sampling frequency. Note that TPP-CP will know the caller
application (e.g. ndb) so it can deny the API call if the TPP ac-
cesses memory locations other than those permitted. The API defi-
nition is as follows:

add_tpp(filter, tpp_bytes, sample_frequency, priority)

where filter is a packet filter (as in iptables), and tpp_bytes

is the compiled TPP, and sample_frequency is a non-negative in-
teger that indicates the sampling frequency: if it is N, then a packet
is stamped with the TPP with probability 1/N. If N = 1, all packets
have the TPP. The dataplane stores the list of all TPPs with each
filter: This ensures that multiple applications, which want to install
TPPs on (say) 1% of all IP packets, can coexist.

TPP-CP also configures the dataplane to enforce access
control policies. Each memory access policy is a tuple:
(appid,op,address_range). The value appid is a 64-bit num-
ber, op is either read or write, and address_range is an interval
denoting the start and end address. The TPPs are statically ana-
lyzed, to see if it accesses memories outside the permitted address
range; if so, the API call returns a failure and the TPP is never
installed.

4.2 Dataplane
The end-host dataplane is a software packet processing pipeline
that allows applications to inject TPPs into ongoing packets, pro-
cess executed TPPs from the network, and enforce access control
policies.

Interposition: The dataplane realizes the TPP-CP API add_tpp.
It matches outgoing packets against the table of filters and adds a
TPP to the first match, or sends the packet as such if there is no
match. Only one TPP is added to any packet. The interposition
modules in the dataplane also strips incoming packets that have
completed TPPs before passing the packet to the network stack, so
the applications are oblivious to TPPs.

Processing executed TPPs: The dataplane also processes incom-
ing packets from the network, which have fully executed. It
echoes any standalone TPPs that have finished executing back to
the packet’s source IP address. For piggy-backed TPPs, the data-
plane checks the table mapping the application ID to its aggregator,
and sends the finished TPP to the application-specific aggregator.

4.3 Security considerations
There is a great deal of software generating network traffic in any
datacenter, and most of it should not be trusted to generate arbitrary
TPPs. After all, TPPs can read and write a variety of switch state
and affect packet routing. This raises the questions of how to re-
strict software from generating TPPs, but also how to provide some
of the benefits of TPPs to software that is not completely trusted.
We now discuss possible mechanisms to enforce such restrictions,
under the assumption that switches are trusted, and there is a trusted
software layer at end hosts such as a hypervisor.

Fortunately, restricting TPPs is relatively simple, because it boils
down to packet filtering, which is already widely deployed. Just
as untrusted software should not be able to spoof IP addresses or
VLAN IDs, it should not able to originate TPPs. Enforcing this re-
striction is as easy as filtering based on protocol and port numbers,
which can be done either at all ingress switch ports or hypervisors.

In many settings, read-only access to most switch state is harm-
less. (A big exception is the contents of other buffered packets,
to which TPPs do not provide access anyway.) Fortunately, TPPs
are relatively amenable to static analysis, particularly since a TPP
contains at most five instructions. Hence the hypervisor could be
configured to drop any TPPs with write instructions (or write in-
structions to some subset of switch state). Alternatively, one could
imagine the hypervisor implementing higher-level services (such as
network visibility) using TPPs and expose them to untrusted soft-
ware through a restricted API.

At a high level, a compromised hypervisor sending malicious
TPPs is as bad as a compromised SDN controller. The difference is
that hypervisors are typically spread throughout the datacenter on
every machine and may present a larger attack surface than SDN
controllers. Hence, for defense in depth, the control plane needs
the ability to disable write instructions (STORE, CSTORE) entirely.
A majority of the tasks we presented required only read access to
network state.

4.4 TPP Executor
Although the default way of executing TPP is to execute at all hops
from source to destination, we have built a ‘TPP Executor’ library
that abstracts away common ways in which TPPs can be (i) exe-
cuted reliably, despite TPPs being dropped in the network, (ii) tar-
geted at one switch, without incurring a full round-trip from one
end-host to another, (iii) executed in a scatter-gather fashion across
a subset of switches, and many more. In the interest of space,
we defer a detailed discussion to the extended version of this pa-
per [28].

5 Implementation
We have implemented both hardware and software support needed
for TCPU: the distributed TCPU on the 10Gb/s NetFPGA platform,
and a software TCPU for the Open vSwitch Linux kernel module.
The NetFPGA hardware prototype has a four-stage pipeline at each
port, with 64 kbit block RAM and 8 registers at each stage (i.e. a
total of 1Mbit RAM and 128 registers). We were able to synthesize
the hardware modules at 160 MHz, capable of switching minimum
sized (64Byte) packets at a 40Gb/s total data rate.

The end-host stack is a relatively straightforward implementa-
tion: We have implemented the TPP-CP, and the TPP executor

11

Task NetFPGA ASICs
Parsing < 1 cycle 1 cycle
Memory access 1 cycle 2–5 cycles
Instr. Exec.: CSTORE 1 cycle 10 cycles
Instr. Exec.: (the rest) < 1 cycle 1 cycle
Packet rewrite < 1 cycle 1 cycle
Total per-stage 2–3 cycles 50–100 cycles†

Table 3: Summary of hardware latency costs. †The ASIC’s per-
stage cost is estimated from the total end-to-end latency (200–
500ns) and dividing it by the number of stages (typically 4–5). This
does not include packetization latency, which is another ∼50ns for
a 64Byte packet at 10Gb/s.

(with support only for the reliable and scatter-gather execution pat-
tern) as Python programs running in userspace. The software dat-
aplane is a kernel module that acts as a shim between the network
stack and the underlying network device, where it can gain access
to all network packets on the transmit and receive path. For filter-
ing packets to attach TPPs, we use iptables to classify packets
and tag them with a TPP number, and the dataplane inserts the ap-
propriate TPP by modifying the packet in place.

6 Evaluation
In §2 we have already seen how TPPs enable many dataplane ap-
plications. We now delve into targeted benchmarks of the perfor-
mance of each component in the hardware and software stack.

6.1 Hardware
The cost of each instruction is dominated by the memory access
latency. Instructions that only access registers complete in less than
1 cycle. On the NetFPGA, we use a single-port 128-bit wide block
RAM that has a read (or write) latency of 1 cycle. We measured
the total per-stage latency by sending a hundreds of 4 instruction
TPP reading the clock from every stage, and found that the total
per-stage latency was exactly 2 cycles: thus, parsing, execution,
and packet rewrite all complete within a cycle, except for CSTORE,
which takes 1 cycle to execute (excluding the time for accessing
operands from memory).

The latency cost is different in a real switch: From personal com-
munication with multiple ASIC designers [6, 8], we learned that
1GHz ASIC chips in the market typically use single-port SRAMs
32–128bits wide, and have a 2–5 cycle latency for every operation
(read/write). This means that in the worst case, each load/store
instruction adds a 5 cycle latency, and a CSTORE adds 10 cycles.
Thus, in the worst case, if every instruction is a CSTORE, a TPP
can add a maximum of 50ns latency to the pipeline; to avoid losing
throughput due to pipeline stalls, we can add 50ns worth of buffer-
ing (at 1Tb/s, this is 6.25kB for the entire switch). However, the
real cost is likely to be smaller because the ASIC already accesses
memory locations that are likely to be accessed by the TPP that is
being executed: For instance, the ASIC always looks up the flow
entry, and updates queue sizes for memory accounting, so those
values needn’t be read twice.

Though switch latency costs are different from that of the Net-
FPGA, they do not significantly impact packet processing latency,
as in a typical workload, queueuing and propagation delays dom-
inate end-to-end latency and are orders of magnitude larger. Even
within a switch, the unloaded ingress-egress latency for a commer-
cial ASIC is about 500ns per packet [3]. The lowest-latency ASICs
are in the range of about 200ns per packet [16]. Thus, the extra
50ns worst-case cost per packet adds at most 10–25% extra latency
to the packet. Table 3 summarizes the latency costs.

Resource Router +TCPU %-extra
Slices 26.8K 5.8K 21.6%
Slice registers 64.7K 14.0K 21.6%
LUTs 69.1K 20.8K 30.1%
LUT-flip flop pairs 88.8K 21.8K 24.5%

Table 4: Hardware cost of TPP modules at 4 pipelines in the Net-
FPGA (4 outputs, excluding the DMA pipeline).

1 10 20 ∞
Sampling Frequency

2
3
4
5
6
7
8
9

10

TC
P

go
od

pu
t(

G
b/

s) 1 flows
10 flows
20 flows

1 10 20 ∞
Sampling Frequency

2
3
4
5
6
7
8
9

10

Th
ro

ug
hp

ut
(G

b/
s)

Figure 9: Maximum attainable application-level and network
throughput with a 260 byte TPPs inserted on a fraction of pack-
ets (1500Byte MTU and 1240Byte MSS). A sampling frequency of
∞ depicts the baseline performance as no TPPs are installed. Error
bars denote the standard deviation.

Die Area: The NetFPGA costs are summarized in Table 4. Com-
pared to the single-stage reference router, the costs are within
30.1% in terms of the number of gates. However, gate counts by
themselves do not account for the total area cost, as logic only ac-
counts for a small fraction of the total area that is dominated by
memory. To assess the area cost for a real switch, we use data from
Bosshart et al. [7]. In their paper, the authors note that the extra
area for a total of 7000 processing units—which support instruc-
tions that are similar to the TCPU—distributed across all match-
action stages, accounts for less than 7% of the ASIC area [7, §5.4].
We only need 5× 64 = 320 TCPUs, one per instruction per stage
in the ingress/egress pipelines; therefore, the area costs are not sub-
stantial (0.32%).

6.2 End-host Stack
The critical component in the end-host stack is the dataplane. In
the transmit side, the dataplane processes every packet, matches
against a list of filters, and attaches TPPs. We use a 4-core Intel
core i7 machine running Linux 3.12.6.

Figure 9 shows the baseline throughput of a single TCP flow,
without segmentation offloads, across a virtual ethernet link, which
was able to push about 4Gb/s traffic with one TCP flow, and about
6.5Gb/s of traffic with 20 flows. After adding TPPs, the throughput
of the TCP flow reduces, depending on the (uniform random) sam-
pling frequency. If the sampling frequency is infinite, none of the
packets have TPPs, which denotes the best possible performance in
our setup. As we can see, the network throughput doesn’t suffer
much, which shows that the CPU overhead to add/remove TPPs is
minimal. However, application throughput reduces proportionally,
due to header overheads. Table 5 shows the impact on the number
of filters in the dataplane, and its effect on network throughput, un-
der three different scenarios: (i) ‘first’ means we create flows that
always match the first rule, (ii) ‘last’ means flows always match the

Match # Rules
0 1 10 100 1000

First 8.8 8.7 8.6 7.8 3.6
Last 8.8 8.7 8.6 7.7 3.6
All 8.8 8.7 8.3 6.7 1.4

Table 5: Maximum attainable network throughput in Gb/s with
varying number of filters (1500Byte MTU). The numbers are the
average of 5 runs.

12

last rule, and (iii) ‘all’ means there is at least one flow that matches
each rule. In ‘first’ and ‘last,’ there are 10 TCP flows. In ‘all,’ there
are as many flows as there are number of rules (with at least 10
flows). Each rule matches on a TCP destination port. As we can
see, there is little loss in throughput up to 10 rules. With more rules,
throughput does drop, but there is no difference between matching
on the first (best case) and last rule (worst case) in the filter chain.
With 1000 flows, other overheads (context switches) result in much
lower throughput.

7 Limitations
Though TPPs help in a wide variety of tasks that were discussed
in §2, they are not a panacea to implement any arbitrary function-
ality due to two reasons: (i) the restricted instruction set, and (ii)
restricted programming model in which end-hosts initiate tasks. As
we have not presented a formal theory of “network tasks,” the clas-
sification below is neither complete nor mutually exclusive; it is
only meant to be an illustration.

Tasks that require per-packet computation: The read and write
instructions in TPPs limit end-hosts to high throughput network up-
dates, but not arbitrary network computation. As an example, con-
sider the task of implementing an active queue management scheme
such as Stochastic Fair Queueing, static priority, dynamic priority
queueing (e.g. pFabric [2]), and fair queueing. These tasks require
fine-grained control over per-packet transmit and drop schedules,
which is better realized using dedicated hardware or FPGAs [34].
In a similar vein, TPPs are not expressive enough to scan packets
for specific signatures (e.g., payload analysis using deep packet in-
spection). Such tasks are better served by other approaches (e.g.,
middlebox software, or custom packet processors).

Tasks that are event-driven: In the examples we discussed, all
TPPs originate at end-hosts. This limits end-hosts from implement-
ing tasks that require precisely timed notifications whenever there is
some state change within the network. For instance, TPPs by them-
selves cannot be used to implement flow control mechanisms (e.g.,
priority flow control, or PFC [15]), or reactive congestion notifi-
cations such as Quantized Congestion Notification [30] and Fast-
Lane [38]. Such tasks require the network to send special packets
when the queue occupancy reaches a certain threshold. However,
this isn’t a show-stopper for TPPs, as end-hosts can proactively in-
ject TPPs on a subset of packets and be notified quickly of network
congestion.

8 Discussion
In §2, we showed how TPPs enable end-hosts to access network
state with low-latency, which can then act on this state to achieve
a certain functionality. This is attractive as it enables interesting
functionality to be deployed at software-development timescales.
We now discuss a number of important concerns that we haven’t
covered.

Handling Device Heterogeneity: There are two issues here: in-
struction encoding, and statistics addressing. First, instructions are
unlikely to be implemented in an ASIC as hardwired logic, but us-
ing microcodes, adding a layer of indirection for platform specific
designs. Second, we recommend having two address spaces: (i)
a standardized address space where a majority of the important
statistics are preloaded at known locations, such as those identi-
fied by the OpenFlow standard [29], and (ii) a platform-specific ad-
dress space through which additional statistics, specific to vendors
and switch generations can be accessed. For dealing with multiple
vendors, TPPs can support an indirect addressing scheme, so that

the the compiler can preload packet memory with platform spe-
cific addresses. For example, to load queue sizes from a Broadcom
ASIC at hop 1, and an Intel ASIC at hop 2, the compiler generates
the TPP below, loading the word from 0xff00 for Broadcom, and
0xfe00 for Intel, obtained out-of-band. For safety, the entire TPP
is wrapped around a CEXEC as follows:

CEXEC [Switch:VendorID], [Packet:Hop[0]]

LOAD [[Packet:Hop[1]], [Packet:Hop[1]]

PacketMemory:

Hop1: $BroadcomVersionID, 0xff00 (* overwritten *)

Hop2: $IntelVersionID, 0xfe00

The TPP compiler can query the ASIC vendor IDs from time to
time and change the addresses if the devices at a particular hop
suddenly change. However, indirect addressing limits the extent to
which a TPP can be statically analyzed.

MTU issues: Piggy-backed TPPs are attached to packets at the
edge of a network (end-host or a border router). Thus, if the in-
coming packet is already at the MTU size, there would be no room
to add a TPP. This is fortunately not a big issue, as many switches
support MTUs up to 9000 bytes. This is already being done today
in overlay networks to add headers for network virtualization [1].

9 Related Work
TPPs represent a point in the broad design space of programmable
networks, ranging from essentially arbitrary in-band programs as
formulated by Active Network proposals [33, 36], to switch-centric
programmable dataplane pipelines [4, 7, 17, 25], to controller-
centric out-of-band proposals such as OpenFlow [27] and Simple
Network Management Protocol (SNMP). We do not claim that the
TPP approach is a fundamentally novel idea, as it is a specific re-
alization of Active Networks. However, we have been ruthless in
simplifying the interface between the end-hosts and switches to a
bare minimum. We believe TPPs strike a delicate balance between
what is possible in switch hardware at line rate, and what is suffi-
ciently expressive for end-hosts to perform a variety of useful tasks.

TPPs superficially resemble Sprocket, the assembly language in
Smart Packets [33]. However, Sprocket represents a far more ex-
pressive point in the design space. It allows loops and larger pro-
grams that would be hard to realize in hardware at line rate. By
contrast, a TPP is a straight-line program whose execution latency
is deterministic, small, and known at compile time. TPPs fully
execute on the fast-path (i.e., router ASIC), whereas Sprocket ex-
ercises the slow-path (router CPU), which has orders of magnitude
lower bandwidth. TPPs also resemble the read/write in-band con-
trol mechanism for ATM networks as described in a patent [5];
however, we also focus extensively on how to refactor useful data-
plane tasks, and a security policy to safeguard the network against
malicious TPPs. Wolf et al. [37] focus on designing a high per-
formance Active Network router that supports general purpose in-
structions. It is unclear whether their model allows end-hosts to
obtain a consistent view of network state. Moreover, it is unlikely
that ASICs can take on general purpose computations at today’s
switching capacities at a reasonable cost. Furthermore, out-of-band
control mechanisms such as OpenFlow and Simple Network Man-
agement Protocol (SNMP) neither meet the performance require-
ments for dataplane tasks, nor provide a packet-consistent view of
network state.

There have been numerous efforts to expose switch statistics
through the dataplane, particularly to improve congestion manage-
ment and network monitoring. One example is Explicit Congestion

13

Notification in which a router stamps a bit in the IP header when-
ever the egress queue occupancy exceeds a configurable thresh-
old. Another example is IP Record Route, an IP option that en-
ables routers to insert the interface IP address on the packet. Yet
another example is Cisco’s Embedded Logic Analyzer Module
(ELAM) [10] that traces the packet’s path inside the ASIC at layer 2
and layer 3 stages, and generates a summary to the network control
plane. Instead of anticipating future requirements and designing
specific solutions, we adopt a more generic, protocol-independent
approach to accessing switch state.

10 Conclusion
We set out with a goal to rapidly introduce new dataplane func-
tionality into the network. We showed how, by presenting a pro-
grammatic interface, using which end-hosts can query and manip-
ulate network state directly using tiny packet programs. TPPs sup-
port both a distributed programming model in which every end-
host participates in a task (e.g., RCP* congestion control), and a
logically centralized model in which a central controller can mon-
itor and program the network. We demonstrated that TPPs enable
a whole new breed of useful applications at end-hosts: ones that
can work with the network, have unprecedented visibility nearly
instantly, with the ability to tie dataplane events to actual pack-
ets, umambiguously isolate performance issues, and act on network
view without being limited by the control plane’s ability to provide
such state in a timely manner.

Acknowledgments
Vimalkumar thanks Brandon Heller, Kok-Kiong Yap, Sarang
Dharmapurikar, Srinivas Narayana, Vivek Seshadri, Yiannis Yi-
akoumis, Patrick Bosshart, Glen Gibb, Swarun Kumar, Lavanya
Jose, Michael Chan, Nick McKeown, Balaji Prabhakar, and Navin-
dra Yadav for helpful feedback and discussions that shaped this
work. The authors also thank our shepherd John Wroclawski and
the anonymous SIGCOMM reviewers for their thoughtful reviews.

The work at Stanford was funded by NSF FIA award CNS–
1040190. Opinions, findings, and conclusions do not necessarily
reflect the views of NSF or other sponsors.

References
[1] Mohammad Alizadeh, Tom Essall, Sarang Dharmapurikar,

Ramanan Vaidyanathan, Kevin Chu, Andy Fingerhut, Terry Lam,
Francis Matus, Rong Pan, Navindra Yadav, and George Varghese. “CONGA:
Distributed Congestion-Aware Load Balancing for Datacenters”. In:
SIGCOMM (2014).

[2] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti,
Nick McKeown, Balaji Prabhakar, and Scott Shenker. “pFabric: Minimal
Near-Optimal Datacenter Transport”. In: SIGCOMM (2013).

[3] Arista Networks – 7100 Series Performance Results.
http://www.aristanetworks.com/media/system/pdf/7148sx-rfc
2889-broadcast-with-latency.pdf, Retrieved January 23, 2014.

[4] Eric A Baden, Mohan Kalkunte, John J Dull, and Venkateshwar Buduma.
Field processor for a network device. US Patent 7,787,471. 2010.

[5] A.D. Berenbaum, Alexander Gibson Fraser, and Hubert Rae McLellan Jr.
In-band device configuration protocol for ATM transmission convergence
devices. US Patent 08/939,746. 2001.

[6] Pat Bosshart and Glen Gibb. Personal communication, 2014-01-27.
[7] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,

Martin Izzard, Fernando Mujica, and Mark Horowitz. “Forwarding
Metamorphosis: Fast Programmable Match-Action Processing in Hardware
for SDN”. In: SIGCOMM (2013).

[8] Sarang Dharmapurikar. Insieme Networks, Personal communication,
2013-07-18.

[9] Nandita Dukkipati and Nick McKeown. “Why Flow-Completion Time is the
Right metric for Congestion Control”. In: SIGCOMM CCR (2006).

[10] ELAM Overview.
http://www.cisco.com/c/en/us/support/docs/switches/nexus-
7000-series-switches/116648-technote-product-00.html,
Retrieved March 13, 2014.

[11] Dongsu Han, Robert Grandl, Aditya Akella, and Srinivasan Seshan. “FCP: a
flexible transport framework for accommodating diversity”. In: SIGCOMM
(2013).

[12] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and
Nick McKeown. “Reproducible network experiments using container-based
emulation”. In: CoNEXT (2012).

[13] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières,
and Nick McKeown. “I Know What Your Packet Did Last Hop: Using
Packet Histories to Troubleshoot Networks”. In: NSDI (2014).

[14] Danny Yuxing Huang, Kenneth Yocum, and Alex C Snoeren. “High-Fidelity
Switch Models for Software-Defined Network Emulation”. In: HotSDN
(2013).

[15] IEEE 802.1Qbb – Priority-based Flow Control.
http://www.ieee802.org/1/pages/802.1bb.html, Retrieved April 1
2014.

[16] Intel Fulcrum FM4000 ASIC.
http://www.intel.com/content/dam/www/public/us/en/document
s/datasheets/ethernet-switch-fm4000-datasheet.pdf, Retrieved
July 1, 2013.

[17] Intel Fulcrum FM6000 ASIC. http:
//www.ethernetsummit.com/English/Collaterals/Proceedings/2
013/20130404_S23_Ozdag.pdf, Retrieved July 1, 2013.

[18] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski,
Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al.
“B4: Experience with a globally-deployed software defined WAN”. In:
SIGCOMM (2013).

[19] Vimalkumar Jeyakumar, Mohammad Alizadeh, Changhoon Kim, and
David Mazières. “Tiny Packet Programs for low-latency network control and
monitoring”. In: HotNets (2013).

[20] Dina Katabi, Mark Handley, and Charlie Rohrs. “Congestion control for high
bandwidth-delay product networks”. In: SIGCOMM (2002).

[21] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese,
Nick McKeown, and Scott Whyte. “Real Time Network Policy Checking
using Header Space Analysis”. In: NSDI (2013).

[22] Frank Kelly, Gaurav Raina, and Thomas Voice. “Stability and fairness of
explicit congestion control with small buffers”. In: SIGCOMM CCR (2008).

[23] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
P Brighten Godfrey. “VeriFlow: Verifying Network-Wide Invariants in Real
Time”. In: NSDI (2013).

[24] Changhoon Kim. Windows Azure, Personal communication, 2014-01-26.
[25] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and

M Frans Kaashoek. “The Click modular router”. In: TOCS (2000).
[26] Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang Zhou, Tong Yuan,

Haitao Wu, Yongqiang Xiong, Rui Gao, and Yongguang Zhang.
“ServerSwitch: a programmable and high performance platform for data
center networks”. In: NSDI (2011).

[27] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
“OpenFlow: Enabling Innovation in Campus Networks”. In: SIGCOMM
CCR (2008).

[28] Millions of Little Minions: Using Packets for Low Latency Network
Programming and Visibility (extended version).
http://arxiv.org/abs/1405.7143. 2014.

[29] OpenFlow Switch Specification, version 1.4.
https://www.opennetworking.org/images/stories/downloads/sd
n-resources/onf-specifications/openflow/openflow-spec-v1.
4.0.pdf, Retrieved April 1, 2014.

[30] Rong Pan, Balaji Prabhakar, and Ashvin Laxmikantha. “QCN: Quantized
congestion notification”. In: IEEE802 1 (2007).

[31] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and
Scott Shenker. “Extending Networking into the Virtualization Layer.” In:
HotNets (2009).

[32] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and
David Walker. “Abstractions for Network Update”. In: SIGCOMM (2012).

[33] Beverly Schwartz, Alden W Jackson, W Timothy Strayer, Wenyi Zhou,
R Dennis Rockwell, and Craig Partridge. “Smart packets for active
networks”. In: Open Architectures and Network Programming Proceedings
(1999).

[34] Anirudh Sivaraman, Keith Winstein, Suvinay Subramanian, and
Hari Balakrishnan. “No silver bullet: extending SDN to the data plane”. In:
HotNets (2013).

[35] Ao Tang, Jiantao Wang, Steven H Low, and Mung Chiang. “Equilibrium of
heterogeneous congestion control: Existence and uniqueness”. In: IEEE TON
(2007).

[36] David L Tennenhouse and David J Wetherall. “Towards an Active Network
Architecture”. In: DARPA Active Nets. Conf. and Exposition (2002).

[37] Tilman Wolf and Jonathan S Turner. “Design Issues for High Performance
Active Routers”. In: IEEE Journal on Sel. Areas in Comm. (2001).

[38] David Zats, Anand Padmanabha Iyer, Randy H Katz, Ion Stoica, and
Amin Vahdat. “FastLane: An Agile Congestion Signaling Mechanism for
Improving Datacenter Performance”. In: Technical Report
UCB/EECS-2013-113 (2013).

14

http://www.aristanetworks.com/media/system/pdf/7148sx-rfc2889-broadcast-with-latency.pdf
http://www.aristanetworks.com/media/system/pdf/7148sx-rfc2889-broadcast-with-latency.pdf
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/116648-technote-product-00.html
http://www.cisco.com/c/en/us/support/docs/switches/nexus-7000-series-switches/116648-technote-product-00.html
http://www.ieee802.org/1/pages/802.1bb.html
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-switch-fm4000-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-switch-fm4000-datasheet.pdf
http://www.ethernetsummit.com/English/Collaterals/Proceedings/2013/20130404_S23_Ozdag.pdf
http://www.ethernetsummit.com/English/Collaterals/Proceedings/2013/20130404_S23_Ozdag.pdf
http://www.ethernetsummit.com/English/Collaterals/Proceedings/2013/20130404_S23_Ozdag.pdf
http://arxiv.org/abs/1405.7143
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

	Introduction
	Goals
	Summary of Results

	Example Programs
	Micro-burst Detection
	Rate-based Congestion Control
	Network Troubleshooting Framework
	Distributed Load Balancing
	Other possibilities

	Design of TPP-Capable Switches
	Background on a Switch Pipeline
	TPP Semantics
	TPP Execution Model
	Unified Memory-Mapped IO
	Addressing Packet Memory
	Synchronization Instructions

	Parsing: TPP Packet Format
	Putting it together: the TCPU

	End-host Stack
	Control plane
	Dataplane
	Security considerations
	TPP Executor

	Implementation
	Evaluation
	Hardware
	End-host Stack

	Limitations
	Discussion
	Related Work
	Conclusion

