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ABSTRACT

Multi-banked embedded DRAM (eDRAM) has become increas-
ingly popular in high-performance systems. However, the data
retention problem of eDRAM is exacerbated by the larger num-
ber of banks and the high-performance environment in which it is
deployed: The data retention time of each memory cell decreases
while the number of cells to be refreshed increases. For this, multi-
bank designs offer a concurrent refresh mode, where idle banks
can be refreshed concurrently during read and write operations.
However, conventional techniques such as periodically scheduling
refreshes—with priority given to refreshes in case of conflicts with
reads or writes—have variable performance, increase read latency,
and can perform poorly in worst case memory access patterns.

We propose a novel refresh scheduling algorithm that is low-
complexity, produces near-optimal throughput with universal guar-
antees, and is tolerant to bursty memory access patterns. The cen-
tral idea is to decouple the scheduler into two simple-to-implement
modules: one determines which cell to refresh next and the other
determines when to force an idle cycle in all banks. We derive nec-
essary and sufficient conditions to guarantee data integrity for all
access patterns, with any given number of banks, rows per bank,
read/write ports and data retention time. Our analysis shows that
there is a tradeoff between refresh overhead and burst tolerance
and characterizes this tradeoff precisely. The algorithm is shown
to be near-optimal and achieves, for instance, 76.6% reduction in
worst-case refresh overhead from the periodic refresh algorithm for
a 250MHz eDRAM with 10µs retention time and 16 banks each
with 128 rows. Simulations with Apex-Map synthetic benchmarks
and switch lookup table traffic show that VR can almost completely
hide the refresh overhead for memory accesses with moderate-to-
high multiplexing across memory banks.

Categories and Subject Descriptors: B.3.1 [Memory Structures]:
Semiconductor Memories—Dynamic memory (DRAM); C.4 [Per-

formance of Systems]: Design studies

General Terms: Algorithms, Design, Performance

Keywords: Embedded DRAM, Multi-banked, Memory Refresh
Scheduling
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1. INTRODUCTION
Multi-banked embedded DRAM (eDRAM) is widely used in

high-performance systems; for example, in packet buffers and con-
trol path memories in networking [24], L3 caches in multi-processor
cores [8, 1], and internal memories for select communication and
consumer applications [19, 23]. Multi-banked eDRAM offers higher
performance, lower power and smaller board footprint in compar-
ison to embedded SRAM and discrete memory solutions [21, 9,
10]. For instance, a typical 1Mb SRAM running up to 1GHz occu-
pies 0.5mm2-1mm2 in area, and consumes 70-200mW in leakage
power on a 45nm process node. Both the low density and high
leakage power limit the total amount of SRAM that can be em-
bedded on-chip. In contrast, eDRAMs run at about 1/2-1/3rd the
speed of SRAMs, but are two to three times as dense, and have an
order of magnitude lower leakage per bit as compared to SRAMs.
For instance, a typical 1Mb eDRAM running up to 500 MHz oc-
cupies 0.15mm2-0.25mm2 in area, and consumes 6mW-10mW in
leakage power on a 45nm process node. Currently, eDRAMs are
offered by a number of leading ASIC and foundry vendors, such as
IBM, TSMC, ST and NEC.

However, eDRAMs have a memory retention problem: The data
in each memory cell wears out over time and needs to be refreshed

periodically to avoid loss. This is not specific to eDRAMs; the
retention issues with discrete DRAMs are also well-known. Tra-
ditionally, memory refresh is handled by using an internal counter
to periodically refresh all the cells within a particular eDRAM in-
stance. This is done by forcing a refresh operation and giving it
highest priority causing conflicting reads or writes to the same bank
to be queued. The policy is widespread due to its simplicity. Histor-
ically, the penalties due to refresh were low enough to not warrant
additional complexity.

However, the memory retention problem is getting worse over
time and is exacerbated by the multi-banked design of eDRAMs
and the high-performance environments in which they are deployed:

1. Shorter data retention time. The typical data retention time
of eDRAM cells at 75◦C-85◦C is 50µs-200µs, during which every
memory cell needs to be refreshed. With high performance appli-
cations such as networking, the operating temperature increases to
about 125◦C and consequently the data retention time decreases
super-linearly to 15µs-100µs. Also, shrinking geometry means
less capacitance on an eDRAM bit cell which further lowers the
data retention time. As refreshing a memory cell prevents concur-
rent read or write accesses, shorter data retention time results in
more throughput loss.

2. Larger number of memory cells. Multi-banked eDRAMs
achieve high density by assembling multiple banks of memory with
a common set of I/O and refresh ports. This drastically increases
the potential refresh overhead as an order of magnitude more mem-



ory cells need to be refreshed sequentially within the same data
retention time. In addition, the manufacturing of memory banks
with a larger number of rows (for higher density) increases refresh
overhead even further.

In this paper we propose a novel refresh scheduling algorithm,
Versatile Refresh (VR), which is simple to implement, provides
universal guarantees of data integrity and produces near-optimal
throughput. VR exploits concurrent refresh [11], a capability in
multi-banked eDRAM macros that allows an idle bank to be re-
freshed during a read/write operation in other banks. The central
idea in VR is to decouple the scheduler into two separate modules,
each of which is simple to implement and complements each other
to achieve high-throughput scheduling. The “Tracking” module
consists of a small number of pointers and addresses the question
which cells to refresh next. The “Back-pressure” module consists
of a small bitmap and addresses the question when to force an idle
cycle in all banks by back-pressuring memory accesses. In order
to provide worst-case guarantees with a low-complexity algorithm,
we ask the question:

Given a fixed number of slots (Y ), how many (X) idle cycles in

every consecutive Y slots are necessary and sufficient to guarantee

data integrity, that is, all memory cells are refreshed in time?

The X idle cycles include those resulting from the workload it-
self when there are no read/write operations, as well as the idle
cycles forced by the scheduler. A larger Y increases the flexibility
of placement of the X idle cycles and helps improve the goodput
of bursty workloads by deferring refresh operations longer.

Our main contributions are as follows:

(i) We give an explicit expression of the relationship ofX and Y
to the question above for the VR algorithm in a general set-
ting, that is, for any given number of banks, rows per bank,
read/write ports and data retention time. This allows an ef-
ficient scheduling algorithm with a worst-case guarantee on
the refresh overhead.

(ii) We lower-bound the worst-case refresh overhead of any re-
fresh scheduling algorithm that guarantees data integrity and
show that the proposed algorithm is very close to optimal.
It achieves, for instance, 76.6% reduction in worst-case re-
fresh overhead compared to the conventional periodic refresh
algorithm for a 250MHz eDRAM with 10µs retention time
and 16 banks each with 128 rows.

(iii) The VR algorithm displays a tradeoff between worst-case re-
fresh overhead and burst tolerance: To tolerate larger bursts
(allow refreshes to be deferred longer), a higher worst-case
refresh overhead is necessary. We analytically characterize
this tradeoff and provide guidelines for optimizing the algo-
rithm for different workloads.

(iv) We simulate the algorithm with Apex-Map [17] synthetic
benchmarks and switch lookup table traffic. The simulations
show that VR has almost no refresh overhead for memory
access patterns with moderate-to-high multiplexing across
memory banks.

Organization of the paper. We describe the refresh scheduling
problem in §2, and present the VR algorithm for a single read/write
port in §3 and its analysis in §4. The algorithm and analysis are
generalized for multiple read/write ports in §5. We independently
corroborate our analytical results using a formal verification prop-
erty checking tool in §6. Our performance evaluation using simu-
lations is presented in §7. We discuss the related work in §8 and
conclude in §9.
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Figure 1: Schematic diagram of a generic eDRAM macro with

concurrent refresh capability. Note that in every time slot, each

bank can be accessed by only one read/write or refresh port.

2. REFRESH SCHEDULING PROBLEM
In this section we describe the refresh scheduling problem and

the main requirements for a refresh scheduling algorithm.

2.1 Setup
We consider a generic eDRAM macro composed of B ≥ 2

banks, each with R rows,1 as shown Figure 1. The macro has
1 ≤ m < B read/write ports and one internal refresh port (typ-
ically m = 1, . . . , 4 in practice). A row loses its data if it is not
refreshed at least once in every W time slots (W is equal to the
retention time, tREF, times the clock frequency). In each time
slot, the user may read or write data from up to m rows in different
banks. All read/write and refresh operations take one time slot.

A bank being accessed by a read/write port is blocked, meaning it
cannot be refreshed. In this case, the memory controller can refresh
a row from a non-blocked bank using the internal refresh port. This
is called a concurrent refresh operation. Alternatively, the mem-
ory controller may choose to back-pressure user I/O and give pri-
ority to refresh. This forces pending memory accesses to be sus-
pended/queued until the next time slot. Back-pressure effectively
results in some loss of memory bandwidth and additional latency
when a read operation gets queued. Write latency can sometimes
be hidden since writes can typically be cached or posted later, but
we do not consider such optimizations in this paper since we are
designing for the worst case (all accesses may be reads).

Remark 1. It is important to note that our model is for a typical
eDRAM with a SRAM-like interface [20, 2]. Conventional discrete
DRAM chips are more complex and have a large number of timing
constraints that specify when a command can be legally issued [6].
For example, a refresh operation usually takes more than one clock
cycle in DRAMs [18].

2.2 Requirements
There are three main requirements for a refresh scheduling algo-

rithm:

• Data Integrity: This is the most important requirement. Re-
freshes must always be in time so that no data is lost.

• Efficiency: The algorithm must make judicious use of back-
pressure so that the throughput (and latency) penalty associ-
ated with refresh is low.

1Memory vendors sometimes bunch multiple physical rows into
one ‘logical’ row which are all refreshed in one operation [14]. In
this paper, R refers to the number of ‘logical’ rows.



• Low Complexity: It is not uncommon for large chips to have
hundreds of embedded memory instances, all of which will
require their own refresh memory controller. Therefore, it is
crucial that the algorithm be lightweight in terms of imple-
mentation complexity.

Periodic Refresh. In anticipation of our proposed solution, we
briefly consider a conventional refresh scheduling algorithm, hence-
forth referred to as Periodic Refresh. The algorithm schedules re-
freshes to all the rows according to a fixed periodic schedule. Re-
freshes are done, in round-robin order across banks, every W/RB
time slots to ensure that all RB rows are refreshed in time. Since
refresh is a blocking operation, memory accesses to that particular
bank are back-pressured. Note that concurrent accesses to other
idle banks are allowed.

This is the most straight-forward refresh scheduling algorithm
and is commonplace due to its very low implementation complex-
ity. However, since all refresh operations can result in back-pressure
in case of conflict with memory accesses, the throughput loss with
Periodic Refresh is as high as RB/W in the worst case. Histori-
cally, this hasn’t been much of a concern since the memory band-
width lost has typically been ∼1-3%. However, as previously de-
scribed (§1), because of decreasing retention time (smallerW ) and
increasing density (larger B and R), the memory bandwidth loss
can be unacceptably large in high-performance eDRAM macros.

3. VERSATILE REFRESH
In this section we describe the Versatile Refresh (VR) algorithm.

The VR algorithm provides very high throughput (in fact, it is prov-
ably close to optimal) and it has a low implementation complexity.

3.1 Basic Design
The VR algorithm simplifies managing refreshes by decoupling

the refresh controller into two separate components: The Track-

ing and the Back-pressure modules. The Tracking module keeps
track of which row needs to be be refreshed in each time slot. It
operates under the assumption that the memory access pattern con-
tains (at least) X idle slots where no bank is being accessed in
any Y consecutive time slots (X and Y are parameters of the al-
gorithm). This condition is enforced by the Back-pressure module
which back-pressures memory accesses whenever necessary.

In the following, we describe the two modules in detail.

3.1.1 Back-pressure module

The Back-pressure module simply consists of a bitmap of length Y
and a single counter that sums the 1’s in the bitmap. At any time,
the bits that are 1 correspond to the idle slots and the counter pro-
vides the total number of idle slots in the last Y slots. The Back-
pressure module guarantees that there are at leastX idle slots in any
consecutive Y slots by back-pressuring pending memory accesses
if the value of the counter is about to drop below X .

Flexibility. It is important to note that the Back-pressure module
imposes no restrictions on the exact placement of the idle slots; so
long as there are X idle slots anywhere in every sliding window of
Y slots, the memory access pattern is valid. In particular, if the user
memory access pattern itself satisfies this constraint, back-pressure
is not needed. This affords the user of the memory the flexibility to
supply idle slots when a memory access is not needed, and, conse-
quently, access the memory in bursts without any stalls for refresh.
In fact, largerX and Y imply more freedom in distributing the idle
slots. For example, the constraint X = 10, Y = 100 has the same
fraction of idle slots as X = 1, Y = 10. However, the former
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Figure 2: Block diagram of the VR Tracking module. In this example,

bank B2 has a deficit of one refresh.

constraint allows for much longer bursts of consecutive memory
accesses (up to 90 slots) than the latter (up to 9 slots).

3.1.2 Tracking module

The Tracking module determines the schedule at which rows are
refreshed. In normal operations, it attempts to refresh the rows in a
round-robin order. If a row is blocked and cannot be refreshed on
its turn, a deficit counter is incremented for that row’s bank. The
algorithm gives priority to refreshes for the bank with deficit, until
its deficit is cleared.

We now formally describe the algorithm. For simplicity, we as-
sume the case of a single read/write port (m = 1; see Figure 1).
The general version of the algorithm for any m is given in §5.1.
The Tracking module maintains the following state:

• A row pointer per bank, 1 ≤ RPi ≤ R (for i = 1, . . . , B).

• A single bank pointer, 1 ≤ BP ≤ B.

• A deficit register, D, which consists of a counter, 0 ≤ Dc ≤
DMAX , and a bank pointer 1 ≤ Dp ≤ B.

The row pointers move in round-robin fashion across the rows
of each bank and the bank pointer moves round-robin across the
banks. These pointers keep track of which row is to be refreshed
next according to round-robin order, skipping the refreshes that are
blocked due to a conflicting memory access. The deficit register,
D, records which bank, if any, has a deficit of refreshes and its
deficit count (see Figure 2 for an illustration). The value of the
deficit counter is capped at:

DMAX = X + 1, (1)

where X is the parameter from the constraint imposed on memory
accesses by the Back-pressure module (at least X idle slots in ev-
ery Y slots). This choice for the maximum deficit is based on the
analysis of the algorithm that is presented in §4.

In each time slot, the bank that should be refreshed, B∗, is cho-
sen according to Algorithm 1. The algorithm first checks whether
the bank with a deficit (if one exists) is idle, and if so, it chooses
this bank to refresh and decrements the deficit counter (Lines 1-3).
Next, the algorithm tries to refresh the bank BP which is next in
round-robin order (Lines 4-6). Finally, if the bank BP is blocked,
it is skipped over, the deficit register is associated with it, and the
deficit counter is incremented (Lines 7-11). Note that the deficit
register may already be associated with bank BP in which case
Line 9 is superfluous.

Once a bank B∗ is chosen for refresh, its row pointer RPB∗

determines which of its rows to refresh. After the refresh, RPB∗ is
incremented. All increments to row and bank pointers are modulo
R and B respectively.



Algorithm 1 Versatile Refresh Scheduling Algorithm (m = 1)

Input: BP , D, currently blocked bank B̂.
Output: B∗, the bank from which a row should be refreshed in

this time slot.
1: if Dc > 0 and Dp 6= B̂ then

2: B∗ ← Dp {Refresh the bank with deficit.}
3: Dc ← Dc − 1
4: else if BP 6= B̂ then

5: B∗ ← BP {Refresh the bank in round robin order.}
6: BP ← BP + 1
7: else

8: B∗ ← BP + 1 {Skip blocked bank and increment deficit.}
9: Dp ← BP

10: Dc ← min(Dc + 1, DMAX )
11: BP ← BP + 2
12: end if

A simple but important property is that at most one bank can
have a deficit of refreshes at any time. Therefore, only a single
deficit register is required. This is because with one read/write port
(m = 1), at most one bank can be blocked in each time slot. In
general, m deficit registers are required (§5.1).

Example. The timing diagram in Figure 3 shows an example of the
operation of the refresh scheduling algorithm with B = 4, X = 1,
and Y = 7. During the first 6 clock cycles, bankB2 is continuously
accessed and the algorithm chooses B∗ in round-robin order, skip-
ping over B2 at time slots t = 2 and t = 5. The deficit counter,
Dc, is also incremented at these time slots and Dp points to B2.
Time slot t = 7 is an idle slot,2 and subsequently, bank B3 is ac-
cessed. Hence, the algorithm refreshes bank B2 at time slots t = 7
and t = 8 reducing its deficit to zero. Note that in these time slots,
the bank pointer, BP , does not advance. With the deficit counter at
zero, the refreshes continue in round-robin order according to BP .

3.2 Enhancement
In the basic design, we required that the Back-pressure module

guarantee (at least) X idle time slots in every sliding window of
Y time slots. Here, we briefly discuss a simple enhancement that
allows us to relax this requirement and improve system throughput.

In each time slot, the Tracking module has a bank that it prefers

to refresh, ignoring potential conflicting memory accesses. The
preferred bank is either the bank with a deficit, if one exists, or the
bank pointed to by the bank pointer. Now the main observation
is that any time slot with a memory access to a bank other than the
preferred bank is equivalent to an idle slot for the refresh scheduling
algorithm. In both cases, the preferred bank is refreshed. We refer
to such time slots as no-conflict slots. For example, in Figure 3,
time slot t = 8 is a no-conflict even though there is a memory
access to bank B3, because the preferred bank, B2, is idle. In fact,
all the time slots t = 1, 2, 7, 8, 9, 10 are no-conflict slots in this
example.

Therefore, instead of requiring the Back-pressure module to en-
force idle slots, it suffices that it guarantee that there are (at least)
X no-conflict slots in every Y consecutive slots. This can be done
using exactly the same bit-map structure as before. The only differ-
ence is that the Tracking module needs to inform the Back-pressure
module which slots are no-conflict slots. The memory access is
back-pressured only if the number of no-conflict slots in the last Y

2Note that this is necessary (and will be enforced by the Back-
pressure module) to ensure that there is at least X = 1 idle slot in
every Y = 7 slots.
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Figure 3: Timing diagram for the VR algorithm with B = 4, X = 1,

and Y = 7. The algorithm chooses bank B
∗ for refresh in each cycle.

cycles is about to drop below X .
This enhancement can greatly reduce the amount of back-pressure

required for workloads that multiplex memory accesses across mul-
tiple banks, because even without idle slots, there may be adequate
no-conflict slots. In fact, as our simulations in §7 show, even with
moderate levels of multiplexing, the overhead of refresh can almost
entirely be hidden.
Note: In the rest of the paper, we always consider Versatile Refresh
with the ‘no-conflict’ enhancement.

Remark 2. It is important to note that a strong adversary who
knows the internal state of the algorithm at each step can always
create conflicts by accessing the preferred bank. In this case, the
no-conflict slots are exactly the idle slots that are enforced by back-
pressure and the enhancement does not provide any benefits. Hence,
in the worst case, there are exactly X back-pressures required in
every Y cycles.

3.3 Implementation Complexity
The VR algorithm has a very low state requirement. The track-

ing module needs B + 1 pointers (B row pointers and one bank
pointer), and an extra counter and pointer for tracking deficits. The
implementation of Algorithm 1 is a simple state-machine. The
back-pressure module also requires a Y -bit bitmap and a counter.
Overall, the complexity is O(B + Y ). (The next section discusses
the choice of X and Y in detail). We estimate that a typical instan-
tiation of VR requires∼10K gates and occupies ∼0.02mm2 in area
on a 45nm process node. Even on a relatively small instantiation
with say 1Mb eDRAM, this is only ∼2.5% of the eDRAM area.

4. ANALYSIS OF THE VERSATILE

REFRESH ALGORITHM
In this section we provide a mathematical analysis of the VR

algorithm. The aim of our analysis is to determine the conditions
under which the algorithm can guarantee data integrity—always re-
fresh all rows in time—for any input memory access pattern. By
virtue of our analysis, we discuss how the parameters X and Y
should be chosen based to the macro configuration and the work-
load characteristics. We further show that the VR algorithm is
nearly optimal in the sense of worst-case refresh overhead by prov-
ing a lower-bound on the refresh overhead of any refresh schedul-
ing algorithm that ensures data integrity.

Notation: In this paper, ⌊x⌋ and ⌈x⌉ denote the floor and ceiling
functions respectively. Also, 1(·) is the indicator function.

4.1 Data integrity for the VR algorithm
As previously mentioned, the back-pressure module ensures that

there are (at least) X no-conflict slots in any Y consecutive time
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Figure 4: Worst case refresh overhead and burst tolerance for VR algorithm in Example 1. Note the different scales of the y-axes in the plots.

slots. The analysis proceeds by considering arbitrarily fixed X and
Y , and finding the smallest W for which the algorithm can ensure
each row is refreshed at least once in every W time slots.

Theorem 1. Consider the VR algorithm with parametersX and

Y . Let R = aX + b, where 1 ≤ b ≤ X . Then W ≥ WVR is

necessary and sufficient for the VR Algorithm to refresh all rows in

time, where:

WV R =

{

RB + Y −X + ⌈Y −X
B−1
⌉ if Y ≤ BX,

(a+ 1)Y + bB + 1 if Y > BX.
(2)

The proof of Theorem 1 is given in §4.3.

4.1.1 Choosing the parametersXXX and YYY

In practice, we are typically given B and R. The amount of time
we have to refresh each row, W , can also be determined using the
retention time specifications of the eDRAM (this typically depends
on the vendor, the technology, and the maximum operating temper-
ature). We need to choose X and Y for the VR algorithm.

We consider the following two performance metrics:
(i) Worst-case Refresh Overhead: OV = X/Y. Since there are
at mostX back-pressures in every Y consecutive slots, the through-
put loss due to refresh is at most OV .
(ii) Burst Tolerance: Z = Y −X. This is the longest burst of
memory accesses to a particular bank without back-pressure. It is a
measure of the flexibility the algorithm has in postponing refreshes
during bursts of memory accesses.

Ideally, we want a small refresh overhead and a large burst tol-
erance. However, we will see that there is a tradeoff between these
two metrics.

For any choice of X , we can use Theorem 1 to find the largest
Y for which the VR algorithm can successfully refresh the banks.
Denote this by Y ∗. Using Eq. (2), we can derive:

Y ∗ =















W − (B − 1)R −

⌈

W

B

⌉

+X if RB ≤W ≤ (R +X)B,
⌊

W − bB − 1

a+ 1

⌋

if W > (R +X)B.

(3)
Note that for a given X , OVX = X/Y ∗ is the smallest refresh
overhead, and ZX = Y ∗ −X is the largest burst tolerance.

Refresh Overhead vs Burst Tolerance tradeoff. Our analysis in-
dicates that, overall, the flexibility afforded in postponing refreshes

by having a large burst tolerance results in a larger worst-case re-
fresh overhead. The parameter X controls this tradeoff. We briefly
summarize our findings. The derivation of these facts is simple and
omitted.

• Minimizing Refresh Overhead: The refresh overhead is not
a monotone function of X in general. However, the overall
trend is that the refresh overhead is higher for large values of
X . In fact, the refresh overhead with X = 1, given by:

OV1 =











1

W −BR
if RB < W ≤ (R + 1)B,

1

⌊(W −B − 1)/R⌋
if W > (R + 1)B,

(4)
is very close to the smallest possible value.3

• Maximizing Burst Tolerance: The burst tolerance increases
with X and attains its largest value for all Xc ≤ X ≤ R,
where:

Xc = min{R, ⌈
W

B
⌉ −R}. (5)

In fact, X > Xc only results in higher refresh overhead,
without any benefit in burst tolerance and should not be used.
The maximum value of burst tolerance is given by:

max{W −R(B + 1)− 1,W −R(B − 1)− ⌈
W

B
⌉}. (6)

Example. Consider two eDRAM macros with B = 16 and B = 8
banks. Each bank has R = 128 rows. The rows must be refreshed
at most every 10µs. Assume clock frequency 250MHz, corre-
sponding to every row requiring a refresh every W = 2500 time
slots. Note that the first macro corresponds to scenarios with W
slightly larger than RB = 2048, while the second macro corre-
sponds to scenarios with W moderately larger than RB = 1024.
We vary X from 1 to 150 (corresponding to increasing levels of
flexibility in the refresh pattern), and use Eq. (3) to determine the
best Y , and the worst-case refresh overhead and burst tolerance in
each case. The results are shown in Figure 4.

Overall, the refresh overhead and burst tolerance both increase as
X increases. For the case B = 16, the refresh overhead increases

3It is easy to show that the refresh overhead of any X is bounded
by: OVX ≥ OV1/(1 +OV1).
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as W varies.

from 5.3% to over 25%, and the burst tolerance increases from 18 to
423 cycles, as X varies from 1 to 150. Note that at X = Xc = 29,
the burst tolerance reaches its maximum (see Eq. (5)). Also, the
refresh overhead at X = 29 is 6.4%, only 1.1% higher than at
X = 1. Therefore, unless the lowest refresh overhead is crucial,
X = 29 is a good choice in this case. For B = 8, the refresh
overhead is smallest for X = 4 at 5.19%; it is 5.26% at X = 1.
The largest value of the burst tolerance (1347 cycles) is achieved at
X = Xc = 128, which has a refresh overhead of 8.68%.

Recall that the refresh overhead for the Period Refresh algorithm
(§2.2) is as high as RB/W in the worst case, amounting to 81.9%
of memory bandwidth in theB = 16 case, and 40.9% in theB = 8
case. Hence, compared to Periodic Refresh, the refresh overhead
for the VR algorithm (in the best setting) is 76.6% lower in the
B = 16 case, and 35.71% lower in the B = 8 case.

4.2 Near-optimality of the VR algorithm
In this section we demonstrate that the VR algorithm is near-

optimal in the sense of worst-case refresh overhead. The following
theorem provides a lower bound for the worst-case refresh over-
head of any algorithm that guarantees data integrity. This allows us
to quantify how far the VR algorithm is from the ‘optimal’ algo-
rithm.

Theorem 2. The worst-case refresh overhead for any algorithm

that ensures data integrity is lower bounded by :

OVLB = max
{ 1

W −BR+ 1
,

R

W −B + 1

}

. (7)

The proof of Theorem 2 is deferred to Appendix E. Comparing
Eq. (7) with Eq. (4) shows that the VR algorithm with X = 1
(small X) achieves a near-optimal worst case overhead.

Figure 5 illustrates the behavior of the necessary refresh over-
head (the lower bound), and the overhead of the VR algorithm for
different choices of X as we vary W . Note that this plot is for a
fixed B, and R. An obvious requirement to refresh all the rows in
time is W ≥ RB. It is important to note the two distinct regimes
for W : (i) RB ≤W ≤Wc and (ii) W > Wc, where:

Wc = RB +B − 1. (8)

ForRB ≤W ≤Wc, the necessary refresh overhead rapidly drops
to 1/B. For larger W , the necessary overhead decreases much
more gradually and is very close to the trivial bound of R/W (the
required refresh overhead when a single bank is always read.). Ob-
serve that for small values of X , the refresh overhead of the VR
algorithm is close to the necessary lower bound for any algorithm.
Larger values of X increase the worst-case refresh overhead of the

algorithm. However, they also increase the burst tolerance, allow-
ing larger burst of memory accesses without back-pressure. We
explore this tradeoff in choosing the value of X further in §7 using
simulations.

4.3 Proof of Theorem 1
In order to prove that W ≥ WVR is necessary, we introduce a

special (adversarial) memory access pattern and prove that W ≥
WV R is necessary to refresh all rows in time for this pattern. The
details are provided in Appendix A.

In the following, we prove that W ≥WV R is sufficient. We first
establish some definitions and lemmas.

Definition 1. The bank pointer progress during an interval J ,

denoted by P (J), is the total number of bank positions it advances

in the interval. For example, if the bank pointer is at bank 1 at

the start of J , and ends at bank 2 after one full rotation across the

banks, P (J) = B +1. Furthermore, the number of times the bank

pointer passes some bank B̃ is denoted by pB̃(J). In the previous

example, p1(J) = 2 and pB̃(J) = 1 for 2 ≤ B̃ ≤ B.

The following lemma is the key ingredient in the proof. It pro-
vides a precise characterization of the number of refreshes to each
bank in a given time interval.

Lemma 1. Consider an interval J , spanning T ≥ 1 time slots.

Let C0 and C1 be the initial and final values of the deficit counter

for J , and assume these deficits correspond to banks B0 and B1

respectively. If the deficit counter does not reach DMAX = X +1
at any time during J , then:

P (J) = T + C1 − C0. (9)

Furthermore, the number of refreshes to any bank, B̃, during J is

exactly:

fB̃(J) = pB̃(J) + C01{B̃ = B0} − C11{B̃ = B1}. (10)

PROOF. In each time slot, the bank pointer advances by either
zero, one, or two positions. LetN0, N1, and N2 denote the number
of times each of these occur in the interval J . Hence,

N0 +N1 +N2 = T. (11)

Since the deficit counter never reaches DMAX during J , it is in-
cremented exactly N2 times and decremented exactly N0 times.
Therefore, we must have:

C0 +N2 −N0 = C1. (12)

Using (11) and (12), we obtain:

P (J) = N1 + 2N2 = T + C1 − C0.

Now consider an arbitrary bank, B̃. Note that the deficit for B̃
varies from C01{B̃ = B0} to C11{B̃ = B1} during J . In each

of the pB̃(J) times the bank pointer passes B̃, it either skips over
it (if it’s blocked), or refreshes it. Let s be the number of times it
skips over it. The deficit for bank B̃ is incremented exactly s times
(since it never reaches DMAX ). Therefore, it must also have been
decremented exactly C01{B̃ = B0}+ s− C11{B̃ = B1} times.

Note that the refreshes which decrement the deficit for B̃ are
different from those due to the bank pointer passing B̃, since the
bank pointer does not advance in the former while it advances in
the latter. As discussed, bank B̃ is refreshed C01{B̃ = B0} +

s − C11{B̃ = B1} times in the first manner. Also, it is refreshed
(pB̃ − s) times in the second manner. This results in a total of

pB̃(J) + C01{B̃ = B0} − C11{B̃ = B1} refreshes to bank B̃
during J .



The gist of the proof of Theorem 1 is to divide the evolution
of the system into appropriate intervals, so that Lemma 1 can be
applied to bound the number of refreshes for a given bank, relative
to the length of each interval. For the rest of the proof, we focus on
an arbitrary bank, B̃.

Definition 2. At time t, the state of the VR scheduling system,

S(t), is the current values of the bank pointer and deficit register;

i.e., S(t) = (BP (t), Dp(t), Dc(t)). The system is in state SD (for

Deficit State), if bank B̃ has a positive deficit: Dp(t) = B̃ and

Dc(t) > 0. The system is in state SND (for No Deficit State),

if bank B̃ does not have a deficit and is next in turn for a refresh

according to the bank pointer: either Dc(t) = 0 or Dp(t) 6= B̃,

and BP (t) = B̃.

Definition 3. Assume at time t0, the system is in one of the

states SD or SND . An epoch, starting at t0, proceeds until bank

B̃ either gets at least one refresh and the system is in state SND ,

or bank B̃ gets X refreshes and the system is in SD. Hence, the

duration of the epoch, starting at t0 = 0 is given by:

T = min{t ≥ 1|f(t) ≥ 1, S(t) = SND;

or f(t) = X,S(t) = SD},
(13)

where f(t) is the number of refreshes to bank B̃ until time t.

First note that T is finite. To see this, assume T =∞, and consider
the time slot t such that f(t) = X . There are two cases: (i) The

system is currently at state SD. (ii) Dc(t) = 0 or Dp(t) 6= B̃.

In the latter case, when bank B̃ is met by BP for the next time, it
still has no deficit and the system reaches the state SND . There-
fore, after a finite time, there is a transition either to SD or SND ,
showing that T is finite. Second, the same argument implies that
the number of refreshes to bank B̃ in each epoch is at most X . In
the following lemma, we use Lemma 1 to bound the duration of an
epoch relative to how many refreshes occur to bank B̃. We defer
its proof to Appendix B.

Lemma 2. Consider an epoch starting at stateS0 ∈ {SD, SND}
and ending at state S1 ∈ {SD, SND}. Let C0 and C1 be the val-

ues of the deficit counter at the beginning and the end of the epoch

respectively. Also, let δ be the epoch duration and f be the number

of refreshes to bank B̃ during this epoch. Then f and δ satisfy:

f ∈ {1, . . . , X} δ ≤ C0 + fB −C1 if (S0, S1) = (SND, SND),

f = X δ ≤ C0 + Y if (S0, S1) = (SND, SD),

f ∈ {1, . . . , X} δ ≤ fB − C1 if (S0, S1) = (SD, SND),

f = X δ ≤ Y if (S0, S1) = (SD, SD).

The following lemma extends the result of Lemma 2 to a sequence
of consecutive epochs.

Lemma 3. Consider a sequence of consecutive epochs starting

at state S0 ∈ {SD, SND}. Let Sl ∈ {SD, SND} be the state of

the system and Cl be the value of the deficit counter at the end of

the lth epoch. Also, let Fl be the total number of refreshes to bank

B̃ and ∆l be the total number of slots during the first l epochs. If

Fl = ψlX + ξl, where 0 ≤ ξl ≤ X − 1. Then:

∆l ≤

{

C0 + FlB − Cl1{Sl = SND} if Y ≤ BX,

C0 + ψlY + ξlB − Cl1{Sl = SND} if Y > BX.

(14)

The proof of Lemma 3 is straight forward by induction and is given
in Appendix C. The following lemma provides a tight bound on
the maximum value of the deficit counter. Its proof is given in
Appendix D.

Lemma 4. At any time, the deficit counter satisfies the bound:

Dc(t) ≤

{

⌈Y −X
B−1
⌉ if Y ≤ BX,

X + 1 if Y > BX.
(15)

We are now ready to prove the theorem.

PROOF OF THEOREM 1 (SUFFICIENCY). We will show that at
any time, the number of slots it takes for all the rows of B̃ to get
refreshed (equivalently, for B̃ to get R refreshes) is at most WV R.
Since B̃ is an arbitrary bank, this proves the sufficiency part.

Assume the system is in an arbitrary initial state and the value of
the deficit counter is Ci. It is easy to see that it takes

∆i ≤ Ci +B − 1− C0 (16)

slots for the system to enter state S0 ∈ {SD, SND} for the first
time, where C0 is the value of the deficit counter in S0. Now con-
sider a sequence of epochs beginning in state S0, and define Fl and
∆l as in Lemma 3. Let

l∗ = max{l|Fl < R}. (17)

Since the number of refreshes to bank B̃ in one epoch is at most
X , we have Fl∗ = R − e, where 1 ≤ e ≤ X . Let

b+X − e = uX + v, (18)

where u ∈ {0, 1} and 0 ≤ v ≤ X − 1. We obtain:

Fl∗ = (a− 1)X + b+X − e = (a+ u− 1)X + v. (19)

Now, invoking Lemma 3, we can bound the total number of slots
for the l∗ epochs as:

∆l∗ ≤
{

C0 + (R − e)B − Cl∗1{Sl∗ = SND} if Y ≤ BX,

C0 + (a+ u− 1)Y + vB − Cl∗1{Sl∗ = SND} if Y > BX.

(20)

Bank B̃ has received R − e refreshes until the end of the (l∗)th

epoch. We only need to bound how long it takes for it to receive
the next e refreshes. Let this take ∆e slots. By definition of l∗ (see
Eq. (17)), all e refreshes must occur during the (l∗ + 1)th epoch.

This implies that the deficit for bank B̃ cannot be zero after it gets
refresh j < e during epoch l∗ + 1. Otherwise, the next time BP
meets B̃, the system transits to SND , and the (l∗ + 1)th epoch
contains only j refreshes. Therefore, if Sl∗ = SD , then the next e
subsequent no-conflict slots will refresh bank B̃. If Sl∗ = SND ,
at most Cl∗ slots can be initially spent reducing the deficit of some
bank other than B̃ before the first refresh to bank B̃ occurs. (Note
that BP (l∗) = B̃). Afterward, any subsequent no-conflict slots

will refresh bank B̃ until its eth refresh. Since it takes at most
Y −X + e slots to get e no-conflict slots, we have:

∆e ≤ Cl∗1{Sl∗ = SND}+ Y −X + e. (21)

The total number of slots for bank B̃ to receive R refreshes is
bounded using (16), (20), (21) by:

∆i +∆l∗ +∆e ≤










Ci +RB + Y −X + (B − 1)(1− e) if Y ≤ BX,

Ci + (a+ 1)Y + bB −X if Y > BX.

+(u− 1)(Y −BX) + (B − 1)(1− e)

(22)

For the Y > BX case in the above, we have used (18) to write
v = b− e− (u− 1)X .

Consider the two cases separately:



1)Y ≤ BX : Using (B − 1)(1 − e) ≤ 0 (because 1 ≤ e ≤ X),
and Lemma 4 to bound Ci, we have:

∆i +∆l∗ +∆e ≤ RB + Y −X + ⌈
Y −X

B − 1
⌉ =WV R. (23)

2)Y > BX : Using (u − 1)(Y − BX) ≤ 0 (since u ∈ {0, 1}),
and (B − 1)(1− e) ≤ 0, and Lemma 4, we have:

∆i +∆l∗ +∆e ≤ (a+ 1)Y + bB + 1 =WV R. (24)

Therefore, it takes at mostWV R slots for bank B̃ to getR refreshes.
Since bank B̃ was arbitrary, W ≥ WVR is sufficient for the VR
algorithm to refresh all the rows in time.

5. GENERALIZATION TO MULTIPLE

READ/WRITE PORTS
We describe how the VR algorithm can be modified for the gen-

eral setting withm > 1 read/write ports, and extend our analysis to
derive the conditions under which the algorithm can refresh all rows
in time for any input memory access pattern using m read/write
ports (extension of Theorem 1). We also lower bound the worst
case refresh overhead of any algorithm (extension of Theorem 2)
in this setting to the determine the optimality gap of the General-
ized VR (GVR) algorithm.

5.1 VR with multiple read/write ports
With 1 < m < B read/write ports, the user can potentially block

multiple banks at each time slot. The GVR algorithm is obtained by
modifying VR as follows. The Tracking module maintains the state
of m deficit registers, D(1), · · · , D(m). The registers keep track of
which banks have been recently blocked and have a deficit of re-
freshes. In addition, a new pointer, CP , is needed to choose which
bank to refresh. At any time, CP points to one of the banks with
a positive deficit (if one exists). The bank that should be refreshed,
B∗, is chosen as follows:

• If the bank that CP points to is blocked, then B∗ is chosen
according to the BP pointer.

• If the bank that CP points to is not blocked, then it is re-
freshed and its deficit is decremented. The pointer CP then
advances to the next bank (in round robin order) with a deficit.
This bank is found by consulting the deficit registers.

The Back-pressure module ensures that there are (at least) X no-
conflict slots in every Y consecutive slots, similar to the casem = 1.

The following properties of the algorithm are worth noting:

(i) If at a time slot the banks BP,BP + 1, · · · , BP + j − 1 are
blocked (1 ≤ j ≤ m), then BP advances by j + 1 positions and
each of the corresponding deficit counters are incremented in that
time slot.

(ii) At each time slot, the preferred bank for refresh is the bank
pointed to by CP , if one exists, or the bank pointed to by the bank
pointer, BP . Then, a no-conflict slot is a slot that the preferred
bank is not blocked by any of the m read/write ports.

(iii) While a bank has a positive deficit, it is guaranteed to be re-
freshed at least once in every m no-conflict slots. This is because
every no-conflict slot advances the CP pointer to the next bank
with a deficit in round-robin order, and there are at most m such
banks at any time.

5.2 Analysis
The following theorem provides a sufficiency condition for the

GVR algorithm to ensure data integrity. Its proof proceeds along
the same lines as for the case m = 1 (Theorem 1) and is omitted.

Theorem 3. Consider the GVR algorithm with parameters X
and Y . Let mR = aX + b, b = pm+ q, and m = gX +h, where

1 ≤ b ≤ X , 1 ≤ q ≤ m and 1 ≤ h ≤ X . Then W ≥ WVR is

sufficient for the GVR Algorithm to refresh all rows in time, where:

WV R =







































RB + (g + 1)Y −X +
B

m
(h− 1) if mY ≤ BX ,

+m⌈
Y −X

B −m
⌉+m− 1

(a+ 1)Y + (p+ 1)B −X if mY > BX .

+
B

m
(q − 1) +m(X + 1)

(25)

Note that the lower bound obtained on W in Theorem 1 (case
m = 1) is both necessary and sufficient. However, for multiple
read/write ports, Theorem 3 only provides a sufficiency bound.

We can use Theorem 3 to determine the largest Y for a given X
such that the GVR algorithm can ensure data integrity, following
the same approach discussed in §4.1.1 for the m = 1 case. Also,
the parameter X controls the same tradeoff between worst-case re-
fresh overhead and burst tolerance as before.

Lower bound on refresh overhead of any algorithm. The result
of Theorem 2 can also be extended for the setting of m read/write
ports. This allows us to quantify the gap between the refresh over-
head of the GVR algorithm and the optimal refresh overhead.

Theorem 4. The worst case refresh overhead of any algorithm

that ensures data integrity is lower bounded by:

OVLB = max{
m

W −BR +m
,

mR

W −B +m
}. (26)

For any choice of X , the worst case refresh overhead of the
GVR algorithm can be found using Theorem 3. For example, with
X = 1, after some simple algebraic manipulations, we have:

OV1 ≤ max
{ 1

⌊W−RB
m
⌋ − 2

,
1

⌊W−B−2m+1
mR

⌋

}

. (27)

By comparing Eqs. (26) and (27), it is evident that the GVR al-
gorithm withX = 1 (more generally, small X) achieves a near op-
timal worst case refresh overhead; especially whenW−RB ≫ m,
which is the case in practice.

6. FORMAL VERIFICATION
In this section we use the formal property checking tool Magel-

lan [3] to independently verify our analytical results for an imple-
mentation of the VR algorithm. Magellan formally verifies user-
specified properties for a given design. Properties are specified us-
ing SystemVerilog [15] assertions and Magellan’s formal property
checkers try to mathematically prove whether the behavior of a par-
ticular design conforms to the given assertions. If the assertions are
static properties (i.e. invariants) of the design, and if Magellan can
validate that these properties are universally true (irrespective of the
input parameters), then this leads to a formal proof that a particular
design works.

The tool either returns a Proven or Falsified outcome when
it converges. The Proven outcome means that the design has
the correct behavior for any input satisfying the assertions. The
Falsified outcome returns a counter example in which the de-
sign violates the given property. However, if the state space is large,
the formal tool may not converge. The key is to identify and iso-
late static properties that are independent of each other in order to
facilitate convergence.



Y 1 2 3 4 5 6 7 8 9 10 11 12
Formal tool (m=1) 128 130 131 132 133 134 135 136 153 169 185 201

Analysis (m=1) 128 130 131 132 133 134 135 136 153 169 185 201

Formal tool (m=2) 128 133 135 138 171 203 235 267 299 331 363 395
Analysis (m=2) 130 134 136 138 171 203 235 267 299 331 363 395

Table 1: Comparison of the smallest feasible W for the VR algorithm derived by the Formal tool and analysis. The parameters used

are B = 8, R = 16, X = 1, m = 1, 2 and Y = 1, . . . , 12.

For the VR algorithm, we isolate the behavior of one row and
one bank. We create an abstract model for memory, and track the
time since the last refresh for every memory row in every bank. In
our particular example, we consider a macro with B = 8 banks,
R = 16 rows per bank, and m = 1 or 2 read/write ports. We
develop RTL for the VR algorithm with X = 1 in Verilog. For a
given value of Y and W , the formal tool verifies whether the RTL
satisfies the constraint that each row is refreshed in every W cycles
(as well as several intermediate constraints).

We use the formal tool to determine the smallest value of W for
which the VR algorithm, withX = 1 and Y = 1, . . . , 12, can suc-
cessfully refresh the banks in time for any memory access pattern.
This is done by sweeping W for each Y and finding the W for
which the formal tool returns Proven with W , and Falsified
withW−1. In Table 1, we compare the results from the formal tool
with the bound obtained by our analysis (Theorems 1 and 3). The
results of the formal tool agree with the predictions from analysis.
As previously discussed, with m = 1, the bound in Eq. (2) is tight
(both necessary and sufficient). With m = 2, in some cases, our
analysis gives a slightly larger lower bound for W than necessary,
as proven by the formal tool.

Remark 3. The formal tool cannot be used to verify VR when the
state space is large (e.g., large X or Y ). For example, the formal
tool did not converge even after 48 hours for Y ≥ 13 in this design.
This highlights the usefulness of having an exact formula that im-
mediately shows whether a design is feasible, greatly simplifying
the design process and reducing verification time.

7. PERFORMANCE EVALUATION
The analytical results of the previous sections determined the

worst-case refresh overhead of the VR algorithm and showed that
for small values of X , it is very close to a lower bound for any
algorithm. It was also shown that increasing X results in an in-
crease in the worst case refresh overhead, but provides tolerance to
larger bursts of memory accesses because of increased flexibility in
postponing refreshes. In this section we use simulations to explore
the consequences of this tradeoff in choosing the value of X for a
number of (non-adversarial) synthetic and trace-driven workloads.

7.1 Apex-Map Synthetic Benchmarks
Apex-Map [17] is a synthetic benchmark that generates memory

accesses with parametrized degrees of spatial and temporal local-
ity. Spatial locality is the tendency to access memory addresses
near other recently accessed addresses and temporal locality refers
to accessing the same memory addresses that have been recently
referenced [22]. Apex-Map has been used to characterize various
scientific and HPC workloads [16, 5].

The workload generated by Apex-Map is based on a stochastic
process defined using two parameters, L and α. These parameters
respectively control the degree of spatial and temporal locality, and
can be varied independently between extreme values. Memory ac-
cesses occur in strides (contiguous blocks) of length L. When one
stride is complete, a new one begins at a random starting address

sampled from the distribution:

X =Mu
1

α , (28)

where M is the total memory size and u is uniform on (0, 1). Note
that with α = 1, the starting addresses are uniformly spread, and as
α → 0 they become increasingly clustered near address 0, leading
to higher temporal locality.

Simulation Setup. We consider a 1Mb eDRAM macro organized
as B = 8 banks of R = 128 rows. Each row has 8 words of 128
bits. The macro has M = 8192 words in total. The eDRAM oper-
ates at 250MHz and has a retention time of 10µs, givingW = 2500
cycles. We generate memory access patterns according to Apex-
Map with L = 1, 64, 4096 and α = 0.001, 0.01, 0.1, 0.25, 0.5, 1.
Each simulation continues until 100,000 memory accesses have
been completed. We measure the total memory overhead for refresh
(the fraction of cycles with a back-pressure). The results presented
in each case are the average of 20 runs.

Schemes Compared. As a baseline, we consider the conventional
Periodic Refresh scheme which periodically performs a high-priority
refresh operation (see §2.2). We use two configurations for Ver-
satile Refresh: X = 4, Y = 77 and X = Xc = 128, Y =
1475. These values are derived based on the analysis in §4.1.1.
The first configuration gives the lowest worst-case refresh over-
head of 5.19%. The second configuration has a refresh overhead
of 8.68% in the worst-case, but maximizes the burst tolerance by
allowing refreshes to be postponed the longest.

The results are shown in Figure 6. The refresh overhead for Pe-
riodic Refresh is fairly consistent around 6.25%. VR with X = 4
achieves a lower refresh overhead than Periodic Refresh in all cases
(at most 5.19%). VR with X = 128 has a higher refresh overhead
than the other schemes when memory accesses are highly concen-
trated on a single bank, but has the lowest overhead when memory
accesses are (even moderately) multiplexed across banks. For ex-
ample, with α = 0.001 and L = 1, 64, essentially all memory
accesses are to the first bank and the refresh overhead for both VR
schemes is almost the same as the worst case overhead. But with
α ≥ 0.1 or L = 4096, VR with X = 128 shows almost no re-
fresh overhead. This is because with X = 128, VR can tolerate
up to 1347 consecutive memory accesses to a single bank with-
out back-pressuring. (For X = 4, a back-pressure is forced after
only 73 consecutive memory accesses to one bank.)
Note: The Apex-Map memory access patterns do not cause the
worst-case refresh overhead for the Periodic Refresh algorithm. In-
deed, the worst-case overhead for Periodic Refresh occurs if mem-
ory accesses become synchronized with the periodic refreshes, re-
quiring a back-pressure for each refresh. In this case, the refresh
overhead of Periodic Refresh would be RB/W ≈ 41%, while the
overhead with VR is always at most 5.19% withX = 4, and 8.68%
with X = 128.

Remark 4. Conventional DRAMs exploit locality in memory ac-
cesses by using a Fast page mode (or page mode), where a row can
be kept “open” in a row buffer so that successive reads or writes
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Figure 6: Apex-Map synthetic benchmark results. The results are the average of 20 runs and are within 0.1% of the true value with 95% confidence.

Note that in some experiments the refresh overhead is zero and the bar is not visible.

within the row do not need to access the DRAM core and, there-
fore, do not suffer the delay of precharge. However, because of the
wide IO typically used in eDRAM (128 bits or more), page mode is
less effective and is not supported in recent eDRAM macros [10].
Therefore, we do not consider page mode in our simulations.

7.2 Switch Lookup Table
Embedded DRAM is extensively used in networking gear for

packet buffers and lookup tables [24, 9, 10]. In this section we
evaluate the performance implications of refresh for a lookup ta-
ble stored in eDRAM in a high speed switch. We consider a 1Mb
macro similar to the previous section (B = 8, R = 128,W =
2500), and use publicly available enterprise packet traces [12] to
derive the memory access pattern. We assume a simple L2 lookup
based on destination MAC address. For each packet, the destina-
tion MAC address is hashed to get the address that needs to be read
from the lookup table.

The entire trace consists of 125,244,082 packets. We choose 10
random blocks of 1 million consecutive packets, and simulate the
corresponding memory accesses. We assume one packet arrives ev-
ery clock cycle requiring a lookup and measure the total overhead
for refreshes (the fraction of cycles with a back-pressure) over each
block. Table 2 shows the results with Periodic Refresh and Versa-
tile Refresh with X = 4 and X = 128. The VR algorithm shows
almost no refresh overhead. As suggested by the Apex-Map bench-
mark (§7.1), this is because the packet lookups are sufficiently mul-
tiplexed across the memory banks to allow VR to hide the refreshes.
In fact, with X = 128, we did not observe even a single back pres-
sure for the 10 million packet lookups simulated.

Periodic Refresh VR (X = 4) VR (X = 128)

Refresh Overhead 6.65% 0.39% 0%

Table 2: Lookup table memory refresh overhead.

8. RELATED WORK
The research literature has mostly focused on the problems asso-

ciated with refresh for DRAMs. We briefly discuss the most rele-
vant work.

Concurrent refresh. Kirihata et. al. proposed concurrent re-
fresh [11] to allow simultaneous memory access and refresh opera-
tions at different banks of an eDRAM. They also describe a concur-
rent refresh scheduler for a macro with 16 banks and one read/write

port. However, the refresh scheduling algorithm is not fully ana-
lyzed and not readily generalizable to arbitrary configurations (e.g.
multiple read/write ports). Moreover, the algorithm relies on a pe-
riodic external refresh signal to guarantee data integrity, which may
unnecessarily increase refresh overhead. In contrast, VR is flexible
in the placement of refreshes and allows configurable burst toler-
ance through the parameter X .

Delayed refresh. The JEDEC DDRx standards allow flexibility in
the spacing of refresh operations. In the current DDR3 standard, it
allows a maximum of eight refresh operations to be delayed [13] as
long as the average refresh rate is maintained. Elastic Refresh [18]
takes advantage of the flexibility and improves performance by de-
laying refreshes based on the predicted workload; it also uses the
rule of thumb given in the standard for maximum number of re-
freshes. Our algorithm allows similar flexibility in refreshes to
avoid clashes with read/write operations, while prescribing univer-
sal bounds on necessary number of refreshes and giving worst-case
guarantees. Hence it improves performance by optimizing the min-
imum number of refreshes.

Per-word monitoring. Another approach to reducing refresh over-
head is to monitor each memory cell, or a combination of cells, to
decide a refresh schedule. For instance, Smart Refresh [4] keeps a
time-out counter next to each memory row to monitor its urgency
for refreshes. It uses this to eliminate unnecessary refreshes to rows
that are automatically refreshed during a recent read or write oper-
ation. ESKIMO [7] uses program semantics information to decide
which memory rows are inconsequential to the correct execution
of the program (e.g. have been freed) and avoid refreshing them.
These methods can improve throughput or save power for specific
workloads, but require complex memory cell monitoring and ap-
plication analysis. Our algorithm is orthogonal to these approaches
and can benefit all workloads.

9. FINAL REMARKS
We introduced the Versatile Refresh (VR) algorithm, which ex-

ploits concurrent refresh to solve the eDRAM refresh scheduling
problem. Our work can potentially be extended in a number of di-
rections: (i) We could consider its applicability for DRAMs. This
would mean adapting it to fit within the instantaneous power budget
of a DRAM, and possibly slowing down the rate at which VR per-
forms concurrent refreshes. (ii) We could consider the case where
the refresh takes more than one cycle (as is common in current
DRAMs). This can be easily incorporated in our analysis.

Our work lays a mathematical foundation in understanding the
memory refresh scheduling problem. It can be used as an addi-



tional analytical tool by design engineers to complement system
performance evaluation using simulations and workload analyses.
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APPENDIX

A. PROOF OF THEOREM 1 (NECESSITY)

PROOF. We construct an adversarial memory access pattern con-
taining (at least) X idle slots in any Y consecutive time slots.
Clearly, the Back-pressure module does not enforce any back-pressure
for this pattern (since it satisfies the X no-conflict slots in every Y
slots requirement). The adversarial pattern is as follows (see Fig-
ure 7 for an illustration). Up to time slot t0, it consists of period-
ically X consecutive idle slots followed by Y −X non-idle slots.
The adversary blocks bank B1 (by reading a row from it) in all
non-idle slots up to time t0. Choose t0 sufficiently large such that
the deficit counter has its maximum possible value at time t0. It
is immediate to see that the maximum value of Dc is ⌈Y −X

B−1
⌉ for

Y ≤ BX , and X + 1 for Y > BX (see also Lemma 4). We can
further assume that t0 is the last time slot in a block of non-idle
slots.

For a fixed (arbitrary) k, the adversary does not block any bank
for time slots t = t0 + 1, · · · , t0 + m, where m = Dc(t0) +
B(R − k) + 1. Note that the V R algorithm uses the idle slots
t0 +1, · · · , t0 +Dc(t0) to reduce the deficit counter, and the bank
pointer does not advance in these slots. Hence, the bank pointer
advances by at most B(R − k + 1) − 1 in total over the interval
[t0 − (B − 3), · · · , t0 + m]. The banks different from B1 are
refreshed in this interval only when the bank pointer meets them.
Since the bank pointer moves in a round robin fashion, there exists
a bank (different from B1), say B∗, which is refreshed at most
R − k times in this interval. In other words, there are at least k
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Figure 7: The adversarial memory access pattern in the proof of Theorem 1 (necessity part).

rows in bank B∗ which are not refreshed in the interval [t0− (B−
3), · · · , t0 + m], and all of them have age at least m + B − 2 at
the end of the interval. Denote the set of these rows by A.

After time slot t0 + m, the input pattern again consists of pe-
riodically Y − X consecutive non-idle slots followed by X idle
slots, and the adversary blocks bank B∗ in all subsequent non-idle
slots. Therefore, the rows in set A are refreshed only at idle slots.
We proceed by finding the largest subsequent interval with k − 1
idle slots. Since A has at least k elements, one of its rows is not
refreshed in this interval, whence we obtain a lower bound on W .

Let k = kqX+kr with 1 ≤ kr ≤ X . Note that the kth idle slot
arrives in n(k) slots after t0 +m, where

n(k) = (kq + 1)Y −X + kr. (29)

Therefore, the interval [t0 +m+ 1, t0 +m + n(k) − 1] contains
exactly k − 1 idle slots, and one of the rows in A is not refreshed
during this interval. Recall that all rows in set A have age at least
m+B− 2 at time slot t0 +m. Hence, for this row to be refreshed
in time, we must have:

(m+B − 2) + n(k) − 1 ≤W − 1. (30)

The above inequalities must hold for any 1 ≤ k ≤ R. Plugging
in (29) and rearranging, we obtain:

W ≥ RB + Y −X + kq(Y −BX)

+ (B − 1)(1− kr) +Dc(t0),
(31)

for (kq, kr) ∈ Γ, where

Γ = {(kq , kr) : 1 ≤ kr ≤ X, 1 ≤ kqX + kr ≤ R}. (32)

It is easy to see that the right hand side of (31) is maximized for
(kq , kr) = (0, 1) if Y ≤ BX , and (kq, kr) = (a, 1) if Y > BX .
Using these values of kq and kr, and the value ofDc(t0), we obtain
the expression for WV R.

B. PROOF OF LEMMA 2
We prove the statement for the case S0 = SD. The case S0 =

SND is similar. With S0 = SD, the deficit is initially C0 ≥ 1 for
bank B̃. Consider the following cases.
• Case 1: The f th refresh to bank B̃, with f ≤ X , reduces its

deficit to zero. (Note that C0 ≤ f ). Assume this occurs at the tth

time slot of the epoch. In this case, the next time B̃ is met by BP ,
the system transits to S1 = SND . Let δ be the epoch duration.
Firstly, note that although the deficit for bank B̃ is zero at the end
of the epoch, some other bank may have non zero deficit, i.e., C1.
Secondly, the deficit counter did not reachDMAX = X+1 during
the epoch; otherwise, f ≤ X refreshes were not adequate to reduce
the deficit for bank B̃ to zero. Hence, we can apply Lemma 1 to
the epoch. Using (9), the progress of the bank pointer during the
epoch is:

P = δ + C1 − C0. (33)

Also, using (10), we have:

f = pB̃ + C0, (34)

where pB̃ is the number of times the bank pointer passes bank B̃.
This implies P ≤ (f − C0)B + B − 1, since if P ≥ (f − C0 +

1)B, the bank pointer will pass B̃ at least f − C0 + 1 times; i.e.,
pB̃ ≥ f − C0 + 1, which along with (34) leads to a contradiction.
Therefore, using (33), we have:

δ = P + C0 − C1

≤ (f − C0)B +B − 1 + C0 − C1,

= fB − C1 + (B − 1)(1− C0),

≤ fB − C1,

(35)

proving the desired result.
•Case 2: The deficit for bank B̃ remains positive, up to and after

it receives its Xth refresh in the epoch. Then S1 = SD and the
epoch ends right after the Xth refresh to B̃. Hence, f = X . Also,
every no-conflict slot during the epoch is guaranteed to refresh B̃
because it has positive deficit. Since there are at leastX no-conflict
slots in every Y time slots, δ ≤ Y . The result follows.

C. PROOF OF LEMMA 3
The proof is by induction on l. For l = 1 the statement follows

from Lemma 2. Assume it’s true for l ≥ 1, we prove it for l + 1.
Let δ be the duration of the (l+1)th epoch, and f be the number

of refreshes to bank B̃ in this epoch. Consider the following two
separate cases.
1)Y ≤ BX : Clearly, Fl+1 = Fl + f . Also, the values of the
deficit counter at the beginning and the end of (l + 1)th epoch are
respectively Cl and Cl+1. Applying Lemma 2 in conjunction with
the assumption Y ≤ BX yields

δ ≤ Cl1{Sl = SND}+ fB − Cl+11{Sl+1 = SND}. (36)

Therefore:

∆l+1 ≤ ∆l + δ

≤ C0 + (Fl + f)B − Cl+11{Sl+1 = SND}

= C0 + Fl+1B − Cl+11{Sl+1 = SND}.

(37)

2)Y > BX : Let f + ξl = uX + v, with 0 ≤ v ≤ X − 1. Note
that Fl+1 = Fl + f = ψl+1X + ξl+1, where ψl+1 = ψl + u and
ξl+1 = v. There are two cases:

• Sl+1 = SD : In this case f = X , u = 1, v = ξl. Therefore:
ψl+1 = ψl + 1, ξl+1 = ξl. Also, using Lemma 2, δ ≤
Cl1{Sl = SND}+ Y . Hence:

∆l+1 ≤ ∆l + δ

≤ C0 + ψlY + ξlB −Cl1{Sl = SND}

+ Cl1{Sl = SND}+ Y

= C0 + (ψl + 1)Y + ξlB

= C0 + ψl+1Y + ξl+1B.

(38)

• Sl+1 = SND : In this case δ ≤ Cl1{Sl = SND} + fB −



Cl+1, and we have:

∆l+1 ≤ ∆l + δ

≤ C0 + ψlY + (ξl + f)B − Cl+1

= C0 + ψlY + uBX + vB − Cl+1

≤ C0 + (ψl + u)Y + vB − Cl+1

= C0 + ψl+1Y + ξl+1B − Cl+1.

(39)

In all cases, we have shown (14) holds for l + 1.

D. PROOF OF LEMMA 4
Consider the evolution ofDc(t). Its value starts from zero and is

always nonnegative. Assume an interval of time slots, J = [t0, t1],
such that Dc(t0) = 0 and Dc is (strictly) positive for t0 < t ≤ t1.
Clearly, it suffices to prove the bound only for t ∈ J , since the
timeline can be partitioned into so many of these intervals. We
further assume that t0 = 0, and Dp = B1 during J , with no loss
of generality.

For 0 < t ≤ t1, let I(t) be the number of no-conflict slots
in [1, t]. In the following, we bound the number of increments and
decrements toDc in the interval [1, t] separately, whence we obtain
a bound on the value of Dc(t).

Since D.c is positive over the interval [1, t], any no-conflict slot
in this interval is used to reduce the deficit counter. Therefore, there
are at most t − I(t) slots in which Dc is potentially increased. To
get a bound on the maximum increments to Dc, we track the bank
pointer. Since the bank pointer does not advance in the no-conflict
slots, we confine ourselves to the t − I(t) slots. In these slots, Dc

is increased by one every time the bank pointer meets B1 and it is
blocked. Since the bank pointer advances in a round robin fashion,
it skips bank B1 at most once in every B − 1 slots. Consequently,
Dc is increased at most once in every B − 1 slots, implying that

the maximum increments to Dc is ⌈ t−I(t)
B−1

⌉. On the other hand,

since Dc is always positive in the interval [1, t1], any no-conflict
slot yields a decrease in the value of Dc. Accordingly, the value of
counter at time t is bounded as follows.

Dc(t) ≤

⌈

t− I(t)

B − 1

⌉

− I(t) =

⌈

t−BI(t)

B − 1

⌉

. (40)

Let I(t) = k, and write k + 1 = kqX + kr with 1 ≤ kr ≤ X .
Note that the (k + 1)th no-conflict slot occurs by the n(k + 1)th

slot, where:

n(k + 1) = (kq + 1)Y −X + kr. (41)

This is because there are at least X no-conflict slots in every Y
consecutive time slots. Hence, we have

t ≤ n(k + 1)− 1. (42)

Otherwise, we get I(t) ≥ k + 1. Substituting for t and I(t) in
Eq. (40), we obtain

Dc(t) ≤

⌈

(Y −X) + kq(Y −BX)− (B − 1)(kr − 1)

B − 1

⌉

.

If Y ≤ BX , the above bound is clearly at most ⌈Y −X
B−1
⌉. For the

case Y > BX , we have the trivial bound X + 1 on Dc(t) as set
by the algorithm. The result follows.

E. PROOF OF THEOREM 2
We propose two adversarial patterns each of which provides a

lower bound on the worst case refresh overhead. Throughout, t0 is
sufficiently large such that all the rows have distinct ages from t0

onward.

First pattern: At time slot t0, consider the youngest row in each
bank. Denote the oldest row among them by r∗ and its bank byB∗.
Clearly, Age(r∗) ≥ B − 1. The adversary blocks bank B∗ in the
subsequent slots. By time t1 = t0+W−B+1, the algorithm must
back pressure the memory at least R times. Otherwise, one of the
rows in bankB∗ is not refreshed in the interval [t0, t1], and loses its
data by time t1. (Note that all the rows in bank B∗ have age at least
Age(r∗) ≥ B− 1 at time slot t0). Now, repeat this pattern starting
at the first time slot t̂0 ≤ t1 that bank B∗ is refreshed R times.
At time slot t̂0, let r∗ be the oldest row in the set of the youngest
rows in each bank, and let B∗ be its bank. By a similar argument
to the above, the memory is back pressured at least R times within
the next W −B+1 time slots, and so on. Accordingly, the refresh
overhead for this input read pattern is at least R/(W −B + 1).

Second pattern: At time slot t0, let r∗ be the oldest row and letB∗

be its bank. Therefore, Age(r∗) ≥ BR− 1. The adversary blocks
bankB∗ in the following slots. By time t1 = t0+W−BR+1, the
algorithm must back pressure the memory at least once. Otherwise,
r∗ loses its data. Now, repeat this pattern starting at the first time
slot t̂0 ≤ t1 that row r∗ is refreshed. At time slot t̂0, consider the
oldest row, r∗, and its bank B∗. The adversary blocks bank B∗ in
the subsequent slots. Therefore, the memory is back pressured at
least once within the next W −BR+1 slots, and so on. Hence, the
refresh overhead for this input pattern is at least 1/(W −BR+1).

A refresh scheduling algorithm that ensures data integrity for any
input pattern must satisfy both bounds, completing the proof.


