
Multithreading in Java

IS-8 1

Flusso (thread) di esecuzione
•  In un programma sequenziale esiste un solo flusso di

esecuzione attivo
•  In un programma concorrente esistono più flussi di

esecuzione attivi (task)
•  Scopo?

–  Applicazioni interattive
–  Server

•  Thread vs Processi:
–  Thread sono più leggeri dei processi
–  Sfruttano una comunicazione a memoria condivisa

IS-8 2

Thread in Java—metodo “Thread”
1.  Definire una classe che eredita da Thread e contiene il

metodo run()
class ListSorter extends Thread {

 …
 public void run() {
 gli statements del thread che si vuol definire
 }

}

2.  Creare istanza della classe
ListSorter concSorter = new ListSorter(list1)

3.  Invocare il metodo start(), che a sua volta chiama run()
concSorter.start();

IS-8 3

lancia il thread e ritorna
immediatamente

Thread in Java—metodo “Runnable”
1.  Definire una classe che implementa l'interfaccia Runnable,

eventualmente estende altra classe e che contiene il metodo run()
class ListSorter implements Runnable {

 …
 public void run() {
 gli statements del thread che si vuol definire
 }

}

2.  Creare istanza
ListSorter concSorter = new ListSorter(list1);

3.  Creare thread
Thread myThread = new Thread(concSorter);

4.  Attivare metodo run, attraverso metodo start()
myThread.start()

IS-8 4

Quale metodo utilizzare?

•  Metodo Thread
–  Vantaggi: più intuitivo, permette di istanziare un solo

oggetto.
–  Svantaggi: poco flessibile.

•  Metodo Runnable
–  Vantaggi: permette di avviare classi che estendono altre

classi come Thread. Vedremo più avanti che esistono
meccanismi più avanzati per la schedulazione di Thread
che preferiscono oggetti di tipo Runnable.

–  Svantaggi: è un metodo più complicato.

Non-Determinismo
class MyThread implements Runnable {!
 private String message;!
 public MyThread(String m) {!
 message = m;!
 }!
 public void run() {!
 for (int r = 0; r < 90000; r++)!
 System.out.println(message);!
 }!
}!
class ProvaThread {!
 public static void main(String[] args) {!
 Thread t1, t2;!
 MyThread r1, r2;!
 r1 = new MyThread("primo thread");!
 r2 = new MyThread("secondo thread");!
 t1 = new Thread(r1);!
 t2 = new Thread(r2);!
 t1.start();!
 t2.start();!
 }!
}!

Quale sarà l’output?

Dati condivisi
•  Può essere necessario imporre che certe sequenze di

operazioni che accedono a dati condivisi vengano
eseguite dai task in mutua esclusione

IS-8 7

class ContoCorrente {
 private float saldo;
 public ContoCorrente (float saldoIniz)
 { saldo = saldoIniz; }
 public void deposito (float soldi)
 { saldo += soldi; }
 public void prelievo (float soldi)
 { saldo -= soldi; }
 …

}

che succede se due
Thread concorrenti
cercano l'uno di
depositare e l'altro
di prelevare?

Operazioni non atomiche

Thread 1 Thread 2
deposito(50) prelievo(50)
read(saldo) -> 100

read(saldo) -> 100
sum(50+100) -> 150

sub(100-50) -> 50
write(saldo) -> 50

write(saldo) -> 150

Saldo iniziale = 100

Saldo finale = 150

Operazioni atomiche

Thread 1 Thread 2
deposito(50) prelievo(50)
read(saldo) -> 100
sum(50+100) -> 150
write(saldo) -> 150

read(saldo) -> 150
sub(150-50) -> 100
write(saldo) -> 100

Saldo iniziale = 100

Saldo finale = 100

Come rendere i metodi "atomici"

•  La parola chiave "synchronized"

IS-8 10

class ContoCorrente {
 private float saldo;
 public ContoCorrente (float saldoIniz)
 { saldo = saldoIniz; }
 public synchronized void deposito (float soldi)
 { saldo += soldi; }
 public synchronized void prelievo (float soldi)
 { saldo -= soldi; }
 …

}

Metodi synchronized

•  Java associa un lock (monitor) a ciascun oggetto
–  Solo un thread alla volta può eseguire il codice

dell’oggetto
•  Quando il metodo synchronized viene invocato

–  se nessun metodo synchronized è in esecuzione, l'oggetto viene
bloccato (locked) e quindi il metodo viene eseguito

–  se l'oggetto è bloccato, il task chiamante viene sospeso e
messo in coda fino a quando il task bloccante libera il lock

IS-8 11

Metodi synchronized (2)

•  Quando un metodo synchronized viene invocato da un
altro metodo synchronized appartenente al medesimo
oggetto, il thread chiamante non deve competere per il
monitor, in quanto quest’ultimo è già stato acquisito
durante l’invocazione del primo metodo (reentrant lock)

•  L’accesso mutuamente esclusivo vale solo per i metodi
dichiarati synchronized: l’accesso attraverso gli altri
metodi non è mutuamente esclusivo, cioè può avvenire
anche mentre un thread ha acquisito il monitor

IS-8 12

Precondizioni per metodi synchronized

•  Come evitare il prelievo se il conto va "in rosso"?

IS-8 13

class ContoCorrente {
 private float saldo;
 …
 synchronized public void prelievo (float soldi) {
 while (saldo-soldi<0) wait();
 saldo -= soldi;
 }
 …

}

rilascia il lock sull'oggetto e sospende il task

Come risvegliare un task in wait?

IS-8 14

class ContoCorrente {
 private float saldo;
 public ContoCorrente (float saldoIniz)
 { saldo = saldoIniz; }
 synchronized public void deposito (float soldi) {
 saldo += soldi;
 notify();
 }
 synchronized public void prelievo (float soldi) {
 while (saldo-soldi<0) wait();
 saldo -= soldi;
 }

 …

}

risveglia un task sospeso in
wait, se esiste nondeterminismo

Attenzione!
if (saldo-soldi<0) wait();
Non è sufficiente

Primitive di sincronizzazione

•  Le primitive di sincronizzazione wait, notify e notifyAll sono
associate a ogni oggetto, in quanto definite nella classe Object.

•  Consentono a un thread di sospendersi all’interno di un monitor
(wait), e di risvegliare uno (notify) o tutti (notifyAll) i thread sospesi.

•  Tali primitive operano sul monitor associato all’oggetto, pertanto
possono essere invocate all’interno di un thread solo dopo che esso
ha acquisito il monitor:
–  Cioè solo se il thread sta eseguento all’interno di un blocco o

metodo synchronized
–  Se si invoca una di queste primitive su un oggetto per cui non si è

acquisito il monitor si ottiene una IllegalMonitorStateException

Il blocco synchronized!
•  Talvolta risulta necessario controllare l’accesso concorrente a porzioni di

codice con una granularità più fine del metodo
–  Più è grande la porzione di codice sincronizzata, minore il parallelismo

•  In questi casi è possibile impiegare il blocco synchronized
synchronized (obj) {  
 ... codice critico ...  
}"

•  La semantica del blocco synchronized è simile a quella dei metodi
synchronized, con la differenza che il monitor viene acquisito sull’oggetto
obj anzichè su this.

void synchronized m() {  
... codice critico ...!
}!

void m() {  
 synchronized(this) {  
 ... codice critico ...!
 }!
}!

Esempio: una coda fifo condivisa
•  Operazione di inserimento di elemento:

–  sospende task se coda piena
•  while (codaPiena()) wait();

–  al termine
•  notify();

•  Operazione di estrazione di elemento:
–  sospende task se coda vuota

•  while (codaVuota()) wait();
–  al termine

•  notify();

IS-8 17

invece notifyAll risveglia tutti…
MA uno solo guadagna il lock

Priorità e scheduling

•  Assegnabile priorità (1-10) ai task (setPriority); default 5
•  Alcune piattaforme supportano il "time slicing"
•  In assenza, un thread viene eseguito fino al

completamento, a meno che non diventi "blocked",
"waiting" o "dead"

•  Compito dello scheduler è mandare in esecuzione il thread
con priorità più alta

IS-8 18

Alcuni metodi della classe Thread

void start() – Avvia il thread (eseguendo il metodo run())
void join() – Aspetta fino a quando il thread non termina
boolean isAlive() – Controlla se il thread è in esecuzione
static void sleep(int ms) – Aspetta ms millisecondi
static boolean holdsLock(Object obj) – Restituisce true se
il thread corrente ha acquisito un lock del monitor di obj
static void yield() – Sospende temporaneamente il thread
corrente per permettere l’esecuzione degli altri thread in
esecuzione

Ciclo di vita di un thread

IS-8 20

born

dead

ready

blocked

running

waiting

wait

notify
notifyAll

start

I/O

lock

fine I/O
fine lock

Esecutori

•  Sono una famiglia di classi che implementano l’interfaccia
ExecutorService

•  Si utilizzano come metodo alternativo per eseguire delle
classi che implementano Runnable (definite Task)

void submit(Runnable task) – Schedula l’esecuzione del task
void shutdown() – Impedisce all’esecutore di accettare nuovi task
boolean awaitTermination(long timeout, TimeUnit unit) – Attende la fine
dell’esecuzione di tutti i task oppure il tempo specificato come timeout
...

Esempio uso Esecutori
public class EsempioEsecutori {!
 public static void main(String[] args) {!
 ExecutorService esecutore = Executors.newFixedThreadPool(2);!
 esecutore.submit(new TaskCheImpiegaTreSecondi("TaskA"));!
 esecutore.submit(new TaskCheImpiegaTreSecondi("TaskB"));!
 esecutore.submit(new TaskCheImpiegaTreSecondi("TaskC"));!
 esecutore.shutdown();!
 }!
}!
!
class TaskCheImpiegaTreSecondi implements Runnable {!
!
 private final String nome;!

!!
 public TaskCheImpiegaTreSecondi(String nome) {!
 this.nome = nome;!
 }!

!!
 @Override!
 public void run() {!
 System.out.println(nome + " avviato alle: " + new Date());!
 try {!
 Thread.sleep(3000);!
 } catch (InterruptedException e) {}!
 System.out.println(nome + " completato alle: " + new Date());!
 }!
}!

Esempio uso Esecutori (2)
TaskA avviato alle: Sun Mar 25 08:30:52 CEST 2012
TaskB avviato alle: Sun Mar 25 08:30:52 CEST 2012
TaskB completato alle: Sun Mar 25 08:30:55 CEST 2012
TaskA completato alle: Sun Mar 25 08:30:55 CEST 2012
TaskC avviato alle: Sun Mar 25 08:30:55 CEST 2012
TaskC completato alle: Sun Mar 25 08:30:58 CEST 2012!

Java offre degli ExecutorService predefiniti all’interno della classe Executors.

Executors."
newSingleThreadExecutor() Esegue al massimo un Task contemporaneamente

newFixedThreadPool(int n) Esegue al massimo n Task contemporaneamente

newCachedThreadPool() Esegue un numero illimitato di Task contemporaneamente

Vantaggi uso Esecutori

•  Permettono di disaccoppiare il concetto di Thread dal concetto di Task.
–  Uno stesso thread può eseguire più task in sequenza senza dover

essere distrutto e ricreato à aumenta le prestazioni
•  Permettono di avere controllo sul numero di Thread in esecuzione

dando la possibilità di accodare i Task in eccesso
•  Esistono Esecutori più avanzati che permettono di schedulare

l’esecuzione di task ripetuti o dopo un intervallo di tempo specificato.
Esempio:
–  Interfaccia: ScheduledExecutorService!
–  Implementazione:
Executors.newScheduledThreadPool(int n)

Deadlock
•  Il deadlock è una situazione di stallo in cui due (o più) processi (o

azioni) si bloccano a vicenda aspettando che uno esegua una certa
azione (es. rilasciare il controllo su una risorsa come un file, una
porta input/output ecc.) che serve all’altro e viceversa.

•  Per evitare il deadlock è necessario non avere dipendenze circolari
per acquisire le risorse (lock)
–  Il grafo delle risorse richieste non deve avere cicli!

•  Esempio:
–  Il thread1 ha il lock su A e vuole acquisire anche il lock su B
–  Il thread2 ha il lock su B e vuole acquisire il lock su A
–  Deadlock: entrambi i thread restano bloccati nella speranza di

acquisire il lock

Esempio Deadlock

class Oggetto A {!

 OggettoB b;!

 ...!

 synchronized void esegui() {!

 ...!

 b.test();!

 ...!

 }!

}!

class Oggetto B {!

 OggettoA a;!

 ...!

 synchronized void test() {!

 ...!

 a.esegui();!

 ...!

 }!

}!

Bug Concorrenti

•  Quando due thread diversi accedono a un oggetto
contemporaneamente, possono verificarsi dei problemi come la
comparsa di ConcurrentModificationException.

•  Alcune di queste anomalie sono dette heisenbug, poiché tendono a
non essere riproducibili in un ambiente controllato (es. debugging).
–  Heisenbug is a computer programming jargon term for a software

bug that seems to disappear or alter its behavior when one
attempts to study it. The term is a pun on the name of Werner
Heisenberg, the physicist who first asserted the observer effect of
quantum mechanics, which states that the act of observing a
system inevitably alters its state. (da Wikipedia)

Oggetti Thread-Safe

Un oggetto si definisce thread-safe quando permette l’accesso
contemporaneo a più thread senza anomalie (cioè l’oggetto offre

soltanto operazioni atomiche).

Collezioni e Mappe Thread-Safe
•  La maggior parte delle collezioni e mappe del package java.util NON

sono thread-safe!
•  Nel package java.util.concurrent è possibile trovare delle versioni

thread-safe di tutte le collezioni e mappe che useremo. Ovviamente il
costo di questa possibilità si paga in termini di prestazioni inferiori.

Non thread-safe Thread-safe (concurrent) Thread-safe (synchronized)

ArrayList CopyOnWriteArrayList Collections.synchronizedList(new ArrayList())
LinkedList - Collections.synchronizedList(new LinkedList())
HashSet CopyOnWriteArraySet Collections.synchronizedSet(new HashSet())
TreeSet ConcurrentSkipListSet Collections.synchronizedSet(new TreeSet())
HashMap ConcurrentHashMap Collections.synchronizedMap(new HashMap())
TreeMap ConcurrentSkipListMap Collections.synchronizedMap(new TreeMap())

Esercizio 1

•  Si scriva un programma che esegua 2 thread.
•  Il primo thread fa le seguenti operazioni 10 volte:

–  Incrementa una variabile della classe che lo ha lanciato
–  Stampa il valore di tale variabile

•  Il secondo thread fa le seguenti operazioni 10 volte:
–  Decrementa la variabile della classe che lo ha lanciato
–  Stampa il valore di tale variabile

•  Al termine dei due thread viene stampato “Fatto!”.

Esercizio 2

•  Un call center possiede 5 centralinisti. Nel momento di
maggior affluenza ci sono 100 clienti che chiamano. Una
conversazione dura mediamente tra 4 e 6 secondi (per
semplicità ...).

•  Se tutti i centralinisti sono occupati il cliente resta in attesa.
•  Si simuli questa situazione con un programma Java in cui

si ha un Thread per ogni cliente.
•  Al termine di ogni chiamata il cliente stampa su video il

tempo totale della sua chiamata (attesa più conversazione).

Esercizio 2 (estensioni)

•  Estensione 1: si modifichi la soluzione dell’esercizio 2
utilizzando l’Esecutore Executors.newCachedThreadPool

•  Estensione 2: si modifichi la soluzione dell’esercizio 2
facendo in modo che i clienti messi in attesa per primi siano
i primi ad essere serviti.

