dependable evolvable pervasive software engineerin

Multithreading in Java

1S-8

dependable evolvable pervasive software engineering

Flusso (thread) di esecuzione

* |In un programma sequenziale esiste un solo flusso di
esecuzione attivo

* In un programma concorrente esistono piu flussi di
esecuzione attivi (task)

« Scopo?
— Applicazioni interattive
— Server
* Thread vs Processi:
— Thread sono piu leggeri dei processi
— Sfruttano una comunicazione a memoria condivisa

dependable evolvable pervasive software engineering

Thread in Java—metodo “Thread”

1. Definire una classe che eredita da Thread e contiene il

metodo run()
class ListSorter extends Thread {

public void run() {
gli statements del thread che si vuol definire

)
)

2. Creare istanza della classe
ListSorter concSorter = new ListSorter(list1)

3. Invocare il metodo start(), che a sua volta chiama run()
concSorter.start(); \Iancia il thread e ritorna
immediatamente

dependable evolvable pervasive software engineering

Thread in Java—metodo “Runnable’

1. Definire una classe che implementa l'interfaccia Runnable,
eventualmente estende altra classe e che contiene il metodo run()

class ListSorter implements Runnable {

public void run() {
gli statements del thread che si vuol definire

)
)

2. Creare istanza
ListSorter concSorter = new ListSorter(list1);

3. Creare thread
Thread myThread = new Thread(concSorter);

4. Attivare metodo run, attraverso metodo start()
myThread.start()

dependable evolvable pervasive software engineering

Quale metodo utilizzare?

« Metodo Thread

— Vantaggi: piu intuitivo, permette di istanziare un solo
oggetto.

— Svantaggi: poco flessibile.
* Metodo Runnable

— Vantaggi: permette di avviare classi che estendono altre
classi come Thread. VVedremo piu avanti che esistono
meccanismi piu avanzati per la schedulazione di Thread
che preferiscono oggetti di tipo Runnable.

— Svantaggi: € un metodo piu complicato.

dependable evolvable pervasive software engineering

Non-Determinismo

class MyThread implements Runnable {
private String message;
public MyThread(String m) {
message = m;
}

public void run() {
for (int r = 0; r < 90000; r++)
System.out.println(message);
}
}
class ProvaThread {
public static void main(String[] args) {

Thread tl, t2;
MyThread rl, r2;

rl = new MyThread("primo thread");
r2 = new MyThread("secondo thread");
tl = new Thread(rl);

t2 = new Thread(r2);

tl.start();
} t2.start(); Quale sara l'output?

——0

dependable evolvable pervasive software engineering

Dati condivisi

* Puo essere necessario imporre che certe sequenze di
operazioni che accedono a dati condivisi vengano
esequite dai task in mutua esclusione

class ContoCorrente {
private float saldo;
public ContoCorrente (float saldoIniz)
{ saldo = saldolniz; }
public void deposito (float soldi)

{ saldo += soldi; } che succede se due
public void prelievo (float soldi) ~ Thread concorrent
{ saldo -= soldi; } cercano l'uno di
depositare e l'altro
} di prelevare?

dependable evolvable pervasive software engineering

Operazioni non atomiche

Saldo iniziale = 100

Thread 1 Thread 2

deposito(50) prelievo(50)
read(saldo) -> 100

read(saldo) -> 100
sum(50+100) -> 150

sub(100-50) -> 50

write(saldo) -> 50
write(saldo) -> 150

Saldo finale = 150

dependable evolvable pervasive software engineering

Operazioni atomiche

Saldo iniziale = 100

Thread 1 Thread 2

deposito(50) prelievo(50)

read(saldo) -> 100

sum(50+100) -> 150

write(saldo) -> 150
read(saldo) -> 150
sub(150-50) -> 100
write(saldo) -> 100

Saldo finale = 100

dependable evolvable pervasive so

ftware

engineeri

ng

Come rendere | metodi "atomici"

» La parola chiave "

synchronized"

class ContoCorrente {
private float saldo;
public ContoCorrente (float saldoIniz)
{ saldo = saldolniz; }

public sync
{ sa
public sync
{ sa

nronized void deposito (float soldi)
do += soldi; }
nronized void prelievo (float soldi)

do -= soldi; }

1S-8

dependable evolvable pervasive software engineering

Metodi synchronized

» Java associa un lock (monitor) a ciascun oggetto

— Solo un thread alla volta puo eseguire il codice
dell'oggetto

* Quando il metodo synchronized viene invocato

— se nessun metodo synchronized € in esecuzione, l'oggetto viene
bloccato (locked) e quindi il metodo viene eseguito

— se l'oggetto e bloccato, il task chiamante viene sospeso e
messo in coda fino a quando il task bloccante libera il lock

dependable evolvable pervasive software engineering

Metodi synchronized (2)

* Quando un metodo synchronized viene invocato da un
altro metodo synchronized appartenente al medesimo
oggetto, il thread chiamante non deve competere per |l
monitor, in quanto quest'ultimo e gia stato acquisito
durante l'invocazione del primo metodo (reentrant lock)

 L’accesso mutuamente esclusivo vale solo per | metodi
dichiarati synchronized: 'accesso attraverso gli altri

metodi non € mutuamente esclusivo, cioé puo avvenire
anche mentre un thread ha acquisito il monitor

dependable evolvable pervasive software engineering

Precondizioni per metodi synchronized

» Come evitare il prelievo se il conto va "in rosso"?

class ContoCorrente {
private float saldo;

.s.y./nchronized public void prelievo (float soldi) {
while (saldo-soldi<0) wait();

saldo -= soIdi;/V
by

) rilascia il lock sull'oggetto e sospende il task

dependable evolvable pervasive software engineering

Come risvegliare un task in wait?

class ContoCorrente {
private float saldo;
public ContoCorrente (float saldoIniz)
{ saldo = saldolniz; }
synchronized public void deposito (float soldi) {

saldo += soldi; . _ _
notify(); € risveglia un task sospeso in

Y wait, se esiste nondeterminismo

synchronized public void prelievo (float soldi) {
while (saldo-soldi<0) wait();
saldo -= soldi;
} Attenzione!
if (saldo-soldi<0) wait();
Non e sufficiente

dependable evolvable pervasive software engineering

Primitive di sincronizzazione

* Le primitive di sincronizzazione wait, notify e notifyAll sono
associate a ogni oggetto, in quanto definite nella classe Object.

 Consentono a un thread di sospendersi all'interno di un monitor
(wait), e di risvegliare uno (notify) o tutti (notifyAll) i thread sospesi.

* Tali primitive operano sul monitor associato all'oggetto, pertanto
possono essere invocate all'interno di un thread solo dopo che esso

ha acquisito il monitor:

— Cioe solo se il thread sta eseguento all'interno di un blocco o
metodo synchronized

— Se si invoca una di queste primitive su un oggetto per cui non si &
acquisito il monitor si ottiene una lllegalMonitorStateException

——0

dependable evolvable pervasive software engineering

I blocco synchronized

» Talvolta risulta necessario controllare I'accesso concorrente a porzioni di
codice con una granularita pit fine del metodo

— Piu e grande la porzione di codice sincronizzata, minore il parallelismo

* In questi casi e possibile impiegare il blocco synchronized
synchronized (obj) {
... codice critico ...

}

« La semantica del blocco synchronized e simile a quella dei metodi
synchronized, con la differenza che il monitor viene acquisito sull'oggetto
obj anziché su this.

void m() {

synchronized(this) {

void synchronized m() { ... codice critico ...

... codice critico ... }

} }

degpse-

dependable evolvable pervasive software engineering

Esempio: una coda fifo condivisa

* QOperazione di inserimento di elemento:

— sospende task se coda piena
* while (codaPiena()) wait();

— al termine
* notify();
* QOperazione di estrazione di elemento:
— sospende task se coda vuota
* while (codaVuota()) wait();

— al termine
* notify(); invece notifyAll risveglia tutti...
MA uno solo guadagna il lock

——0

dependable evolvable pervasive software engineering

Priorita e scheduling

* Assegnabile priorita (1-10) ai task (setPriority); default 5
* Alcune piattaforme supportano il "time slicing"

* |n assenza, un thread viene eseguito fino al
completamento, a meno che non diventi "blocked",
"waiting" o "dead"

» Compito dello scheduler € mandare in esecuzione il thread
con priorita piu alta

dependable evolvable pervasive software engineering

Alcuni metodi della classe Thread

void start() — Avvia il thread (eseguendo il metodo run())
void join() — Aspetta fino a quando il thread non termina
boolean isAlive() - Controlla se il thread € in esecuzione
static void sleep(int ms) — Aspetta ms millisecondi

static boolean holdsLock(Object obj) — Restituisce true se
il thread corrente ha acquisito un lock del monitor di obj

static void yield() — Sospende temporaneamente il thread
corrente per permettere I'esecuzione degli altri thread in
esecuzione

dependable evolvable

pervasive software engineering

Ciclo di vita di un thread

start

notify

notifyAll fine I/O

fine lock

blocked

dﬁ'&ﬂ%&/ 15-8

dependable evolvable pervasive software engineering

Esecutor

* Sono una famiglia di classi che implementano l'interfaccia
ExecutorService

» Si utilizzano come metodo alternativo per eseguire delle
classi che implementano Runnable (definite Task)

void submit(Runnable task) — Schedula 'esecuzione del task

void shutdown() — Impedisce all’esecutore di accettare nuovi task
boolean awaitTermination(long timeout, TimeUnit unit) — Attende la fine
dellesecuzione di tutti i task oppure il tempo specificato come timeout

dﬁﬁﬂr%ﬁ/

dependable evolvable pervasive software engineering

Esempio uso Esecutori

public class EsempioEsecutori
public static void main(String[] args) {
ExecutorService esecutore = Executors.newFixedThreadPool(2);
esecutore.submit(new TaskCheImpiegaTreSecondi("TaskA"));
esecutore.submit (new TaskCheImpiegaTreSecondi("TaskB"));

esecutore.submit (new TaskCheImpiegaTreSecondi("TaskC"));
esecutore.shutdown();

}
class TaskCheImpiegaTreSecondi implements Runnable {
private final String nome;

public TaskCheImpiegaTreSecondi(String nome) {
this.nome = nome;

@Override

public void run() {
Syst?m.out.println(nome + " avviato alle: " + new Date());
try

Thread.sleep(3000); .
} catch (InterruptedException e) {}
System.out.println(nome + " completato alle: " + new Date());

dﬁﬁﬂ%ﬁ/ A

dependable evolvable pervasive software engineering

Esempio uso Esecutori (2)

TaskA avviato alle: Sun Mar 25 08:30:52 CEST 2012
TaskB avviato alle: Sun Mar 25 08:30:52 CEST 2012
TaskB completato alle: Sun Mar 25 08:30:55 CEST 2012
TaskA completato alle: Sun Mar 25 08:30:55 CEST 2012
TaskC avviato alle: Sun Mar 25 08:30:55 CEST 2012
TaskC completato alle: Sun Mar 25 08:30:58 CEST 2012

Java offre degli ExecutorService predefiniti allinterno della classe Executors.

Executors.

newSingleThreadExecutor() Esegue al massimo un Task contemporaneamente
newFixedThreadPool(intn) Esegue al massimo n Task contemporaneamente

newCachedThreadPool() Esegue un numero illimitato di Task contemporaneamente

dependable evolvable pervasive software engineering

Vantaggi uso Esecutori

« Permettono di disaccoppiare il concetto di Thread dal concetto di Task.

— Uno stesso thread puo eseguire piu task in sequenza senza dover
essere distrutto e ricreato = aumenta le prestazioni

« Permettono di avere controllo sul numero di Thread in esecuzione
dando la possibilita di accodare | Task in eccesso

* Esistono Esecutori piu avanzati che permettono di schedulare
'esecuzione di task ripetuti o dopo un intervallo di tempo specificato.
Esempio:

— Interfaccia; ScheduledExecutorService

— Implementazione:
Executors.newScheduledThreadPool(int n)

dmms&/

——0

dependable evolvable pervasive software engineering

Deadlock

* |l deadlock e una situazione di stallo in cui due (o piu) processi (0
azioni) si bloccano a vicenda aspettando che uno esegua una certa
azione (es. rilasciare il controllo su una risorsa come un file, una

porta input/output ecc.) che serve all’altro e viceversa.

 Per evitare il deadlock e necessario non avere dipendenze circolari
per acquisire le risorse (lock)

— |l grafo delle risorse richieste non deve avere cicli!

« Esempio:
— |l'thread1 ha il lock su A e vuole acquisire anche il lock su B
— |l'thread2 ha il lock su B e vuole acquisire il lock su A

— Deadlock: entrambi i thread restano bloccati nella speranza di
acquisire il lock

dependable evolvable pervasive software engineering

Esempio Deadlock

class Oggetto A {
OggettoB b;

synchronized void esegui() { synchronized void test() {

class Oggetto B {
OggettoA a;

dependable evolvable pervasive software engineering

Bug Concorrenti

 Quando due thread diversi accedono a un oggetto
contemporaneamente, possono verificarsi dei problemi come la
comparsa di ConcurrentModificationException.

* Alcune di queste anomalie sono dette heisenbug, poiché tendono a
non essere riproducibili in un ambiente controllato (es. debugging).

— Heisenbug is a computer programming jargon term for a software
bug that seems to disappear or alter its behavior when one
attempts to study it. The term is a pun on the name of Werner
Heisenberg, the physicist who first asserted the observer effect of
quantum mechanics, which states that the act of observing a
system inevitably alters its state. (da Wikipedia)

dependable evolvable pervasive software engineering

Oggetti Thread-Safe

Un oggetto si definisce thread-safe quando permette 'accesso
contemporaneo a piu thread senza anomalie (cioe I'oggetto offre
soltanto operazioni atomiche).

dependable evolvable pervasive software engineering

Collezioni e Mappe Thread-Safe

 La maggior parte delle collezioni e mappe del package java.util NON
sono thread-safe!

* Nel package java.util.concurrent e possibile trovare delle versioni
thread-safe di tutte le collezioni e mappe che useremo. Ovviamente il
costo di questa possibilita si paga in termini di prestazioni inferiori.

Non thread-safe | Thread-safe (concurrent) | Thread-safe (synchronized)

ArrayList CopyOnWriteArrayList Collections.synchronizedList(new ArrayList())
LinkedList - Collections.synchronizedList(new LinkedList())
HashSet CopyOnWriteArraySet Collections.synchronizedSet(new HashSet())
TreeSet ConcurrentSkipListSet Collections.synchronizedSet(new TreeSet())
HashMap ConcurrentHashMap Collections.synchronizedMap(new HashMap())
TreeMap ConcurrentSkipListMap Collections.synchronizedMap(new TreeMap())

——0

dependable evolvable pervasive software engineering

Esercizio 1

Si scriva un programma che esegua 2 thread.

Il primo thread fa le seguenti operazioni 10 volte:

— Incrementa una variabile della classe che lo ha lanciato
— Stampa il valore di tale variabile

Il secondo thread fa le seguenti operazioni 10 volte:

— Decrementa la variabile della classe che lo ha lanciato
— Stampa il valore di tale variabile

Al termine del due thread viene stampato “Fatto!”.

dependable evolvable pervasive software engineering

Esercizio 2

* Un call center possiede 5 centralinisti. Nel momento di
maggior affluenza ci sono 100 clienti che chiamano. Una
conversazione dura mediamente tra 4 e 6 secondi (per
semplicita ...).

* Se tutti i centralinisti sono occupati il cliente resta in attesa.

» Sisimuli questa situazione con un programma Java in cul
si ha un Thread per ogni cliente.

* Al termine di ogni chiamata il cliente stampa su video |l
tempo totale della sua chiamata (attesa piu conversazione).

dependable evolvable pervasive software engineering

Esercizio 2 (estensioni)

« Estensione 1: si modifichi la soluzione dell’esercizio 2
utilizzando I'Esecutore Executors.newCachedThreadPool

 Estensione 2: si modifichi la soluzione dell’'esercizio 2
facendo in modo che i clienti messi in attesa per primi siano
| primi ad essere serviti.

