Dynamic Identification of Shared Transactional Locations

(Extended Abstract)

Alexander Matveev

Ori Shalev

Nir Shavit

Tel-Aviv University, Tel-Aviv 69978, Israel
{matveeva,orish,shanir}@post.tau.ac.il

Abstract

Hardware TM systems execute user code within an atomic{} de-
limiter without any instrumentation. Software transactional mem-
ory systems require complex sequences of operations to be exe-
cuted on the memory locations shared by transactions, but typically
not on unshared locations, even if these are accessed within the
scope of a transaction. Lack of identification of such instructions
introduces a large performance overhead. The problem of identify-
ing if an instruction is accessing a location which is shared, even
if these locations are declared in advance, is a dynamic runtime
problem, i.e. not solvable effectively through the use of a compiler.

In the spirit of the new trend towards hardware assisted STMs
(HASTMs), we show how one can add a simple hardware element,
the Virtual Memory Filter (VMF), that provides dynamic identifica-
tion and execution of STM functions on transactionally shared lo-
cations. The VMF will provide STMs with the simplicity of HTMs:
atomic{} code can execute “as is.” Its introduction into commer-
cial CPUs will eliminate the need to use a compiler to transactify
user code, a benefit currently claimed only by full fledged HTM
systems. Our preliminary empirical evidence shows that the VMF
component has virtually no performance penalty.

1. Introduction

Modern software transactional memory (STM) schemes still have
a way to go on the path to being widely adopted. A major obstacle
on this path is the effective application of the transactional inter-
face to code. In a sound byte, the transactional interface is a delim-
iter such as atomic{(instructions of transaction)} that wraps the
instructions within the scope of a given transaction. One of the ad-
vantages of hardware transactional memory (HTM) systems, is that
the code within the atomic delimiters is executed “as is”, without
any need to instrument the memory accesses.

Unfortunately, STMs require instrumentation, yet none of the
existing instrumentation techniques is both simple for the user and
efficient in the performance it provides. In a typical application
of the transactional interface to code, operations on both shared
and unshared memory locations are included by the programmer
within a transaction’s scope. There is no way to avoid this. Dynamic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. .. $5.00

transactions, and especially unbounded ones, must include local
variables, library calls, etc, and any TM implementation is required
to execute both as part of the transaction’s flow. However, within
this code, shared locations must be accessed in a transactional
manner running specialized TM code, while unshared ones can
run in a non-transactional manner, that is, with a minimal set
of added TM operations. Typically, TM schemes, even the most
efficient of them, introduce an overhead in transactional accesses.
It is therefore crucial to identify which instructions need to be
executed transactionally since the performance of the whole TM
based implementation is affected by this overhead [1, 7]. This
has lead researchers to show interest in finding efficient ways to
dynamically separate non-shared memory accesses from shared
ones [6, 7].

Compilers can help mitigate the problem to some extent [3]. In
general, however, the process of identifying which instructions in
the code access shared locations, and which do not, is complicated
since many of these accesses are determined only at run time. Dur-
ing a program’s lifetime, a variable may repeatedly switch between
pointing to unshared locations and shared ones. In other words, it
is not obvious how to efficiently instrument code to eliminate un-
necessary transactional accesses. As we show in the performance
section (see Figure 4), adding even minimal instrumentation (a test
consisting of a jump and a compare) to every non-shared access in
a C program using the TL2 STM, resulted in unacceptable perfor-
mance penalties. In Section 5 we explain how state-of-the-art TM
systems currently deal with the memory identification problem.

This paper joins the recent trend of providing hardware assisted
STMs (HASTM) [28, 29, 33, 27]: building simple hardware com-
ponents into processors in order to make STMs behave like HTMs,
without the design costs and limitations of an HTM. We show how
to effectively solve the shared access identification problem, us-
ing a simple hardware mechanism. We introduce the virtual mem-
ory filter (VMF), a simple hardware mechanism that can be added
before the standard virtual memory translation mechanism (of vir-
tual addresses to physical addresses) in commercial processors. The
programmer will only be required to declare which locations are
shared and which are unshared. We believe this is a simple require-
ment that will become acceptable and perhaps standard in program-
ming languages as shared memory multiprocessors become com-
monplace (not just for purposes of TM performance but also as
aids in GC, security, etc).

The VMF will allow any STM, Hybrid TM, or HASTM, to dy-
namically identify instructions accessing shared memory and exe-
cute the appropriate transactional actions. Transactional reads and
writes will not need to be declared by explicit API calls or instru-
mented in any way (see example in Section 2). This means that
the source code will stay “clean” and can be compiled with any

standard compiler (i.e. no compiler or pre/post compiler modifi-
cations are required). We believe this benefit is very important in
making STM programming broadly accepted. Moreover, because
shared read and write accesses will be detected dynamically, trans-
actions will be able to easily access precompiled code (such as a
library) as long as it is abortable.

Being software people, our VMF design may lack various prop-
erties that would not escape a hardware designer. However, we be-
lieve it is important to put forth such a mechanism, with the hope
that computer architecture designers will pick up on the general
benefits of the VMF approach and perhaps come up with a stream-
lined architectural element fitting modern day processors.

1.1 Leveraging Existing Virtual Memory Hardware

To give the reader a feel of our approach, we first present a solution
to the identification problem that runs on today’s machines. It will
use the processor’s existing hardware virtual memory (VM) mech-
anism. We will call this solution virtual memory STM (VMSTM).
This solution is not in itself viable because of the VMs limitations,
but serves to show how effective a solution using our suggested
hardware VMF component might be. Here is how it works.

To define a transaction in VMSTM, the programmer will only
need to declare which range of memory is transactional, perform
the shared operations on that range (for example transactional al-
locations [4]), and place begin-transaction and end-transaction de-
limiters in the code to mark the transaction’s scope. No other code
modifications are necessary!

The VMSTM system will use the virtual memory paging and
OS exception mechanisms to dynamically detect access to the
transactional range. The system wraps the transaction with a try/ex-
cept block and executes it on a “shadow copy” of the transactional
range. The shadow copy is a reserved virtual memory range of
the same size as the real range whose pages are not committed.
Upon first access to a page in the shadow copy range an excep-
tion is raised, the page is committed, it’s data is copied from the
real range, and the execution is resumed (See Figure 1). Subse-
quent accesses to the same page will not generate an exception.
Upon committing of the transaction, the modified pages from the
shadow copy are copied to the actual memory range. Thus, the
trapped STM code is only executed when the transaction begins,
on the very first access to any page, and when the transaction ends.
The burden of dynamic shared memory detection for every given
instruction is thus transferred to the hardware VM detection mech-
anism, and involves no exception handling in the common case.
The only performance penalty it incurs is that of a context switch
due to an interrupt upon every first page access.

Unfortunately, the granularity of VMSTM is page size only.
Thus, for example, if it uses the TL2 STM algorithm [5], locking
will be at page granularity, which is a major drawback. We could
not find in the literature on existing processor hardware a mecha-
nism that we could leverage in a similar way to reduce the access
granularity unless we were willing to allow code rewriting at run-
time. Code rewriting is problematic since it typically cannot be ap-
plied to shared libraries, and in any case requires complex changes
to the program and OS code.

1.2 The Virtual Memory Filter

Our main proposal is a simple new hardware protocol, the virtual
memory filter (VMF), which solves the problem of shared mem-
ory identification at any level of granularity while requiring mini-
mal changes to the CPU. The VMF is not limited to one particular
STM algorithm: it can serve as a basis for effectively running many
types of commit-time [20, 8] STM protocols. The idea is to add
a small hardware filter before the existing VM translation mecha-
nism of virtual addresses to physical addresses. This detector will

VM Address Space
—>
shadéw copy real buffer
_try{ regular access page page
) —> < —
page is copied
. Tx access on first access
Code
regular access
__except (...) {
}
L

Figure 1. The VMSTM executing a transaction wrapped by a
try/except accessing different types of memory. First a regular
access is performed. Then a first transactional access to page 2 of
the shadow copy triggers a page copy from the real buffer. Then,
another standard access is performed.

identify which accesses are to the transactional (shared) range and
which to the non-transactional (unshared) range. For each identi-
fied shared address, it will map it to shadow copy of the shared
range and invoke an appropriate software handler. A different soft-
ware handler or direct memory store operations can also be invoked
for unshared locations. This will allow fine-grained memory access
tracing, which in turn will allow an STM running on top of this
mechanism to run at any granularity. Figure 2 illustrates the gen-
eral idea of the VMF.

STM functionality is only one of the tasks that can be enhanced
using the VMF filter, as it is a general mechanism for performing
different actions for different VM space ranges. The VMF can be
used to profile memory accesses, control memory accesses, trans-
late memory accesses to different addresses, and perform advanced
memory debugging in our case.

As we will show, the VMF hardware filter can be added on the
virtual memory controller level and does not touch any key CPU
structures. Also, its logic is very simple and if we add to it a tiny
private cache it can be made even faster.

The closest technologies to VMF are that of the hardware Vir-
tual Memory (VM) and Exception Handling (EH) mechanisms
available on most commercial CPUs. However, these two tech-
niques are quite different from VMF and cannot be leveraged for
memory identification as is. As explained earlier, the VM is not use-
ful because it is limited to page granularity. In EH the invocation
of the exception handler requires OS intervention. This involves a
context switch trapping to the kernel on every invocation, incurring
a significant performance penalty. In VMF we don’t have a trap or
OS intervention. Upon detection of memory access that requires a
software handler invocation, a “jump” instruction will be simulated
by changing the program counter to the start address of the software
handler. The penalty for this is at most that of a pipeline flush.

1.3 Performance

As a preliminary test to show its efficacy, instead of fully emulating
our new VMF (which will be performed for the full version), we
will show that a software mechanism that emulates it in a crude
way using the VM mechanism provides good performance. This

VM Address Space
regular range
VMF Block
—try { regular access
) If regular shared range
If shared ~ access . B
Code Txaccess
regular access
software
. handler
__except (...) { shadéw copy

}

Figure 2. The VMF block flow of actions for a regular (non-
shared) access and a shared access. The regular accesses are not
effected by the block. Transactional accesses on the other hand
trigger a software handler and are mapped to a shadow copy of
the shared range. The software handler invocations allow tracing of
shared accesses. An address mapping to the shadow copy works on
the copy and not on the real data.

emulated VMF based STM is at least as costly as any hardware
implementation of VMF would be. We compared code running
the the emulated VMF using TL2 to code modified using standard
the TL2 STM, varying the number of threads and the amount of
non-shared accesses. In both cases, the emulated VMF had nearly
the same behavior as the original hand instrumented code. This
is encouraging since the a real VMF hardware can perform only
better.

2. The Virtual Memory STM Algorithm

We begin by introducing the virtual memory STM (VMSTM), an
STM with a memory identification scheme using existing hardware
support for virtual memory. To use the VMSTM, a programmer re-
serves a transactional range in memory (this is not a special hard-
ware buffer, just a reserved section of existing memory). Transac-
tional allocations of shared memory and subsequent accesses will
happen in this range. For example:

but it is a transactional one. %/

EndTx(hTxContext);

int main ()

{ VMSTM HANDLE hVMStm = NULL;
hVMStm = VMSTM_InitBuf(10 * PAGE_SIZE);
StartThreads (1..N);

}

}nt ThreadFunc (VMSTM_ HANDLE hVMStm)

PVOID pStmBuf = NULL;
VMSTM_.THREAD HANDLE hTxContext = NULL;

hTxContext = VMSTM_OpenThreadHandle (hVMStm) ;
pStmBuf = StartTx (hTxContext);

/% Here pStmBuf pointer is used as
standard pointer to a buffer

The transactional range is allocated by reserving and commit-
ting the requested number of pages in virtual memory. Every thread
opens a “handle” to the transactional range and executes trans-
actions by wrapping a block of code with StartTx(hTxContext)
and EndTx(hTxContext) calls. The code block itself is not modi-
fied. Opening a "handle” in some thread causes the creation of a
shadow copy of the transactional range which is a reserved range
of the same size but whose pages are not committed (See Figure 1).
Pointer to base of the shadow copy is returned to the user when
the transaction starts. Then, the transaction accesses the pointer as
it would access any standard buffer. To handle these accesses cor-
rectly, we use the paging mechanism combined with the OS excep-
tion mechanism. StartEx and EndEx are macros which expand to
try .. except (..) .. block and upon access violation to shadow copy
the following is applied:

1. Commit Check: If access address’s page is not committed
then, commit the page, initialize it by matching the page’s data
from the transactional range.

2. Access Check: If access was a read, then set page access to
read-only. Otherwise, set the page access to read-write.

3. Resume: Resume the execution from the instruction that caused
the access violation.

This combination of paging with exception handling allows us
to trace memory accesses at page granularity. We get an exception
for every first access for a read or a write for every page. Therefore,
the read-set and write-set granularity, and hence the lock granu-
larity, can be only per page. For example, in our benchmarks we
implemented the TL2 STM [5] algorithm on top of the VMSTM
using a version-lock per page.

The benchmark of VMSTM based on TL2 showed bad results
relative to standard TL2. That’s because the usage of paging and
exception mechanisms which are an OS services. Using them re-
quires interrupts to the kernel a fact introducing a high performance
penalty. We tried to minimize the overall number of exceptions and
paging API usage by using caching for read-set and write-set. This
improved the single-threaded performance but did not give us a
scalable solution. That’s because when conflicts occur the caches
need to be updated and again the exception and paging mechanisms
are used.

Memory trace granularity can be reduced by raising an excep-
tion for every access to the shadow copy. This however is very inef-
ficient. Unfortunately, on current CPU and memory architectures,
we did not find any other CPU element that could be leveraged in a
similar way at a granularity below that of complete pages.

3. The Virtual Memory Filter

We propose adding a simple independent hardware element, the
virtual memory filter (VMF) before the virtual to physical memory
translation circuitry. First we will describe the general VMF archi-
tecture and then the specific implementation for our STM needs.
A general VMF hardware element architecture would be to in-
stall it before the MMU (virtual to physical memory translation
unit) in order to intercept the VM space access addresses. So, it’s
input and output is a VM space address. VMF logically divides
the VM space to a constant number of disjoint ranges a union of
which is a whole VM space. To implement this a constant num-
ber of [base_reg, len_reg] register pairs can be used to describe the
VM ranges. For a given input address it identifies to which range

it belongs and performs “‘actions™’ related to that range. Those ac-
tions can be of various types. For instance it can be updating some
memory address or a register (directly without interfering with the
current instruction stream), software handler invocation by pipeline
flush, software or hardware signal, arithmetic manipulations of the
VMF output and so on. For example, consider dividing the VM
space to three disjoint ranges called the red, green and blue range
(union of the three is a whole VM space). For every input address
from the red range, VMF won’t do anything. For every address
from the green range it will invoke a software handler (by pipeline
flush) and manipulate the output. Finally, for addresses of the blue
region it will increment a hardware register called reg_counter. As
a result the VMF code would be as follows:

VMF(VM_Addr):
1. if base_reg.red <= VM.Addr and
VM_Addr < len_reg_red then:
1.1 return VM_Addr // do nothing

2. if base_reg_green <= VM_Addr and
VM_Addr < len_reg_green then:
2.1 Flush the pipeline and
set PC to the software handler start
2.2 Resume execution at PC.
(next step will execute
after the function finished)
2.3 return VM_Addr / 32

3. else, // blue range
3.1 reg_counter = reg_counter + 1
3.2 return VM_Addr

As we can see VMF enables us to perform different actions for
different VM space ranges. So, VMF can be used to profile memory
accesses, control memory accesses, translate memory accesses to
different addresses, perform advanced memory debugging and, in
our case, used for STM purposes. In case of memory profiling
VMF actions for the different ranges can be done in parallel to the
instruction execution stream. Therefore VMF actions will be only
to ”‘mark for execution™ and the ”‘big actions’ will be done in
software by a seperate threads. So VMF won’t need to interfere
with the instruction stream and the profiling will be done with
virtually no penalty. VMF can be made as reprogrammable chip
in order to support different semantics according to program needs.
Now we will describe specific implementation of the VMF for the
STM algorithms.

The idea behind the VMF element for STM is very simple:

1. Filter: If a current memory access address is inside the transac-
tional range then continue to next step. Otherwise do nothing.

2. Handle: Invoke a software handler, passing it the memory
access address.

3. Resume: Resume the interrupted memory access instruction.

This may seem the same as raising an exception for every
memory access to the transactional range. It is not. The handle
step is executed only on the first access for read or write for every
section (of a predecided granularity) of the transactional range. It is
like VMSTM, just for sections smaller than a page size. In addition,
these three steps do not need to generate an interrupt (like with the
exception handler) and can be highly optimized, for example, by
using a small cache.

Now we will introduce a detailed description of how the VMF
block combines with an STM. Suppose we have a commit-time
STM algorithm: one that constructs the read-set and write-set dur-
ing a transaction’s execution and then uses this information to per-
form the commit. For example, one can use a commit-time version
of the TL2 STM. We will use the VMF block to dynamically con-

struct the read-set and write-set of an STM running at granularity
block_size on a buffer of size stm_buf_size in the following way:

1. Open a Handle to the Transactional Range: First a thread
will open a handle to the transactional range. This action will
create the shadow copy (as in VMSTM) and additionally will

allocate an array flags/] of size blocks_num = stm_buf_size/block_size.

The flags[i] array entry contains the flags for block i in the
shadow copy.

2. Start the Transaction: Initialize the VMF block context to the
given transactional range handle context. This will tell the VMF
block where the transactional range, the shadow copy, and the
flags array are located. In addition, execute the STM’s specific
start code.

3. Run Through a Virtual Execution: During the execution,
every access to an address inside the transactional range will
trigger the VMF block. VMF block will do the following:

(a) Check the Cache: The cache will store for every accessed
block in the transactional buffer a pair of [block_address,
access type]. The block_address is calculated by perform-
ing shift right of access_address value by log(block_size).
The access type can be a read or write. If current, the
[block_address, access type] pair will already be in the cache
s0 go to step (¢). Otherwise, go to step (b). This added cache
is not necessary algorithmically and is added to optimize
transaction performance.

(b) Execute the Software Handler: Invoke the software han-
dler (registered by the user). The software handler will
check if access address’s page is committed in the shadow
copy and commiit it if required. Then it will update the flags
of block accessed: flags/ (access_address - real_buffer_base)
/ block_size]. The flags can hold the information about the
block’s page commit state, read access status, write access
status and more. In addition, the software handler will ex-
ecute the STM’s specific code, which can indicate transac-
tion failure. In this case the software abort handler will be
executed (registered by user).

(¢) Translate the Address: Translate the access address to a
matching address in the shadow copy: shadow_copy_address
= shadow_copy_base + access_address - real_buffer_base.
Perform the instruction action (read or write) from/to
shadow_copy_address. It is important to note that the in-
struction itself is being cheated, it “thinks” it accessed the
real buffer but actually only the shadow copy was accessed.
This cheating is achieved by putting the VMF block be-
fore virtual-to-physical address translation circuitry. The
behavior is transparent for the running code. In some way it
resembles how virtual memory works.

4. End the Transaction: Read the flags array to determine the
transaction’s read-set and write-set. Execute the STM’s commit
code given those read/write sets. If the transaction fails, execute
the abort handler (user defined).

From the described algorithm we can see that the VMF block
performs simple arithmetic based on a constant number of parame-
ters: the real buffer base address, the shadow copy base address, the
block size value and so on. All these can be implemented as regis-
ters in the VMF block, which will be initialized when each transac-
tion starts. To support these calculations, the VMF block requires
only a couple of registers. In addition, it needs to invoke a soft-
ware handler. This can be done by simulating a jump to a function:
the program counter is changed to the software handler start line
while discarding currently executed instructions in the pipeline.

In other words, execute a pipeline flush. So the maximum perfor-
mance overhead per handler invocation will be a pipeline flush.

3.1 Handling Unshared Locations

The so far described VMF algorithm does nothing for accesses to
the unshared range. But locations in unshared ranges can be filtered
and handled in the same fashion as shared ones. This is useful,
for example, in STM algorithms, if one wants to allow rollback
of local operations within a transaction that spans a block that is
not a complete method call (typically transactions that span method
calls will be aborted by popping the stack so all unshared accesses
will be undone immediately and there is no need for a rollback
mechanism). For example, we can execute a backup operation for
non-shared accesses to more easily support transaction rollback.
In this example backup operation does not require a pipeline flush
only that a backup will be done before the new value written.
Therefore, the handling of un-shared locations can be very efficient.

Suppose we have a thread for which we want to filter and handle
aun-shared locations. First we would tell VMF about the un-shared
range by initializing a [base_non_shared_reg, len_non_shared_reg]
registers pair. Second, we would define the actions for this range.
This actions would be added to the above described algorithm’s
step of “Run Through a Virtual Execution” and is defined as fol-
lows: For every write access to the non-shared range:

1. Check the non-shared range Cache: The cache will store for
every accessed block in the non-shared range a [block_address].
The block_address is calculated by performing shift right
of access_address value by log(block_size). If current, the
[block_address] will already be in the cache so go to step (c).
Otherwise, go to step (b). This added cache is not necessary
algorithmically and is added to optimize the transaction perfor-
mance. Also, one can make one cache for shared and un-shared
range or one for every range.

2. Perform the backup and execute the write: In order to per-
form the backup we would store for the un-shared range a
shadow un-shared range of same size in the VM space. So, this
step would generate a memory write operation of the accessed
block to the shadow non-shared range in the respective place as
in the non-shared range. This memory write will be generated
before the current memory write. Also, the backup scheme can
be implemented in couple of ways. We can make the backup to
the shadow range and work on the non-shared range or we can
copy the block from the non-shared range to the shadow and
work on the shadow range. In case one, if transaction fails we
need to restore the backup data but for the commit we only dis-
card the backup. In case two, if transaction succeeded we need
to copy the shadow updated places to the non-shared range, but
for failure we only discard the shadow new values.

3.2 Optimizations

We can optimize the VMF algorithm in a number of ways. As noted
earlier, to optimize the process of transactional access by the VMF,
we can add a small cache to the VMF block. This cache will hold
the [block_address, access type] pairs.

Another optimization has to do with the flag array. On commit,
when the STM determines the read and write sets, it will scan the
flags array. The size of the flags array is the number of blocks and
a block is of granularity size. Therefore, number of blocks can be
large. For example, a real buffer of size 20 * 4096 with a granularity
of 32 bytes has 2560 blocks. To avoid scanning the entire array, the
software handler invoked by the VMF can store the accessed blocks
numbers in a software array or list. In our hand crafted emulation of
VMESTM using the TL2 algorithm, we succeeded to perform the
addition to the list in O(1) (no need to check if item already exists).

VM Address Space

| real buffer
—try{ regular accdss

page page
y M filter| VIMIF | !f cached >
Code
regular access

shadow copy

flags array

Block

If not|cached

__except (...){
. commit and copy the page
} (if required)

update(flags

software
handler

Figure 3. VMF detection and handling of a transactional memory
access. The VMF block is triggered only for a transactional access.
Upon such an access, the cache is checked to see if it is a first-
time access to the given block (the cache contains block addresses).
On a first access, the software handler is triggered. Otherwise,
nothing is done. The software handler will handle the first-time
access by committing the page holding the block to memory, if
required, copying the data from the real buffer to the shadow copy,
performing the STM code, and updating the flags of the accessed
block to record the access. In this way, the flags array monitors the
read-set and write-set of the transaction executed and the shadow
copy holds its new values.

Another optimization can reduce page copying. If a transaction
aborts, the shadow copy’s committed pages can remain committed
through the next execution attempt. Most likely the transaction
will access the same pages as it did before. Upon a successful
transaction commit, one can un-commit and fully free the shadow
copy.

In summary, the VMF hardware is a simple independent block
of circuitry that can be added without to any current CPU archi-
tecture and allow support of efficient dynamic memory traces. It
allows dynamic detection of transactional accesses and construc-
tion of read and write sets without performing any explicit STM
API calls or code and compiler modifications.

4. Performance

We present here a comparison of the TL2 algorithm [5] running
under the VMSTM and VMFSTM algorithms, to state-of-the-art
STM algorithms. The data structure we used for testing is a stan-
dard skiplist.

The skiplist [23] is a probabilistic structure which behaves like
a balanced tree. Our implementation is derived from LibLTX that
includes the original Fraser and Harris lockfree-lib package [10]. It
exposes the standard put, remove, and lookup API functions.

We began with a benchmark to prove to ourselves that the
dynamic memory identification problem is indeed a problem, that
is, that testing dynamically, in software, if a given memory location
is shared or not, is not an acceptable solution (at least not in C
programs). To this end, we ran a benchmark comparing versions
of TL2 in which we left the non-shared accesses un-instrumented
(TL2 NS NI) versus one in which the non-shared accesses are
instrumented (TL2 NS I). A TL2 instrumented access starts by
checking if the accessed location is shared, and so incurs a jump

Non-Shared Access Impact - TL2

1.60E+06

——TL2NS |
1.40E+06

=¥=TL2 NS NI
1.20E+06

1.00E+06

8.00E+05

ops/sec

6.00E+05

4.00E+05

2.00E+05

0.00E+00

100 500 1000 5000 10000
amount of non-shared accesses

Non-Shared Access Impact - VMFTL2

1.60E+06

——VMFTL2
1.40E+06

—#=TL2 NS NI
1.20E+06

1.00E+06

8.00E+05

ops/sec

6.00E+05

4.00E+05

2.00E+05

0.00E+00

100 500 1000 5000 10000
amount of non-shared accesses

Figure 4. TL2 NS I (non-shared instrumented) versus 7L2 NS NI
(non-shared not instrumented). All transactions have about 1000
shared operations. We can see that the performance penalty for
instrumenting non-shared accesses grows as their fraction of all
instructions increases.

and a comparison for non-shared locations. Figure 4 shows the
results of our benchmark. The skiplist transactions always have
about 1000 shared operations and we vary the number of non-
shared ones from 100 to 10,000. We can see that when the ratio
of shared to unshared operations is the same, TL2 with the non-
shared section instrumented is three times slower than its non-
instrumented counter-part.

Having established that there indeed is a problem, we conducted
a set of benchmarks to compare the proposed solutions. The general
form of tests we conducted declares a transactional range, allocates
the skiplist data structure, and spawns a given number of threads
to operate on that range. Every thread loops until it is signaled to
stop. In every loop iteration we randomly choose between the put,
remove, and lookup operations. After a given time all the threads
are signaled to stop, and the total number of operations performed
by them is calculated.

For our experiments we used Inte]™ Core 2 Quad Q6600 2 x
4MB L2 Cache processor running Windows Vista™.

The benchmarked algorithms included:

TL2-Page: This is an implementation of the TL2 STM algorithm
running on a stripped-range. The stripe size is the page size
(4K). The read-set and write-set construction was fully opti-
mized. No heap allocations were performed during the execu-
tion and the read-set/write-set lookup was done in O(1) by pre-
allocating tables.

VMSTM: An implementation of TL2 on top of VMSTM, which
uses VM paging and exception handling to perform the read-set
and write-set construction. It runs the TL2 on page granularity.
In addition, it also has read and write set optimizations for
reducing the number of page allocations and searching in O(1).

TL2: The same as TL2 Page with a fine-granularity. The granular-
ity of this algorithm is the skiplist node size.

Emulated VMFTL2: An emulation of the VMFTL?2 scheme for
running the TL2 STM. Instead of a cycle by cycle simulation of
the VMF, we created a hand crafted version of the VMFTL2 in
software, a version that is at least as expensive as a VMF hard-
ware component would be. We hand-instrumented the code to
make every transactional access perform a function call (a soft-
ware handler call) and to perform the translation. Performing
the translation and function call for every transactional access

Figure 5. VMFTL2 versus TL2 NS NI (non-shared not instru-
mented) give us the same performance.

has a higher performance penalty then doing it in real hardware.
Unlike in the VMF to which one can add a cache so the soft-
ware handler is not always called, here the handler is always
called.

In Figure 5 we present a non-shared access impact bench-
mark of VMFTL2 versus TL2 with non-shared accesses not in-
strumented. As expected, they have they same results because
VMFTL2 has no overhead for non-shared accesses.

In Figure 6 we present two skiplist benchmarks performed using
two different key ranges and two sets of operation distributions.
The key range of 27 = 128 (small) keys generates a small structure
while a range of 2'* = 16384 (large) keys creates a larger skip-
list, imposing larger transaction size for the set operations. The
different operation distributions represent two type of workloads,
one dominated by reads (5% puts, 5% deletes, and 90% gets) and
in the other (30% puts, 30% deletes, and 40% gets) most operations
are writes.

As we can see, the Emulated-VMFTL2, TL2, and TL2-Page
algorithm’s performance improve as the number of threads in-
creases. For more than 4 threads the performance degrades because
contention increases with no added throughput. We can see that
VMFTL2 and TL?2 performance are nearly the same. In addition, as
smaller the data structure and as more contention/threads is added
the more impact on performance it does. Therefore on small skiplist
the degradation is much faster than on the large one. From the same
reason the difference between write work-load and read work-load
for smaller data structure is higher than for the larger one.

We initially expected that the performance of VMSTM and
TL2-Page would be the same. Unfortunately, VMSTM is signif-
icantly slower. To understand why we conducted several bench-
marks which we do not describe here, and discovered that the cause
is the overhead of the exception handler and kernel API calls as
VMSTM makes user-kernel mode transfers which involve inter-
rupts and OS code running. Unlike TL2-Page, VMSTM has at-least
one context-switch for every transaction executed.

In contrast to the gap between VMSTM and TL2-Page, there is
no gap between Emulated-VMFTL2 and TL2: they perform nearly
the same. This is encouraging as Emulated-VMFTL2 simulates the
VMF block using a costly function call, implying that VMF in
hardware would behave as well as, if not better-than, the standard
TL2 hand-instrumented algorithm.

Small Skip-List - VMFTL2

—=—VMFTL2 30/30/40
—&—VMFTL2 05/05/90
—TL230/30/40
—¥—TL2 05/05/90

2.50E+06

2.00E+06

1.50E+06

ops/sec

1.00E+06

5.00E+05

0.00E+00

1 2 3 6 8 10
threads number

Small Skip-List - VMSTM

—=—VMSTM 30/30/40
—¥=VMSTM 05/05/90
—A—TL2Page 30/30/40
—TL2Page 05/05/90

1.20E+06

1.00E+06

8.00E+05

ops/sec

6.00E+05

4.00E+05

2.00E+05

A « "

ops/sec

ops/sec

Large Skip-List - VMFTL2

—¥—VMFTL2 30/30/40
—8—VMFTL2 05/05/90
—&—T1230/30/40
—=TL2 05/05/90

1.40E+06

1.20E+06

1.00E+06

8.00E+05

6.00E+05

4.00E+05

2.00E+05

0.00E+00
1 2 4 6 8 10
threads number

Large Skip-List - VMSTM

—%=VMSTM 30/30/40
—=—VMSTM 05/05/90
—A—TL2Page 30/30/40
—=TL2Page 05/05/9

3.00E+05

2.50E+05

2.00E+05

1.50E+05

1.00E+05

5.00E+04

— ..

———x

0.00E+00

1 2 4 6 8 10

threads number

0.00E+00 S

1 2 4 6 8 10
threads number

Figure 6. The top two graphs show the throughput of skiplist using VMFTL2 and TL2 with 5% puts and 5% deletes and 30% puts, 30%
deletes. The bottom two graphs show this for VMSTM and TL2. We can see that VMFTL?2 and TL2 behave nearly the same, while the

VMSTM incurs significant overheads relative to the TL2.

5. The State-of-the-Art

Let us understand how the state-of-the-art TM systems deal with
code instrumentation to support a transactional interface. These
include (1) hardware transactional memories HTM that support
execution of code in hardware without instrumentation, (2) library
based STMs such as [5, 10, 9, 11, 12, 13, 14, 19, 20, 21, 15, 16,
17, 18, 6] that require the programmer to instrument the code by
hand, changing load and store instructions into transactional loads
and stores, using on-the-fly tests to check whether a memory word
or block should be used by the transaction, or by defining rules on
the language usage, and (3) compiler supported STMs [35, 8] that
use a compiler to perform code instrumentation.

HTM implementations eliminate the need to instrument code
because they perform detection of shared and unshared locations
efficiently in hardware during the execution. However, hardware
transactions, at least in the foreseeable future, will most likely be
limited in their size and their semantics. Thus, many researchers
are focusing on hybrid (HyTM) [35, 34, 30, 32, 24, 36, 37, 38, 25,
26, 29] systems, and more recently on hardware supported STMs
(HSSTM) [33, 31], as the right way to provide unbounded size
transactions with limited hardware support. HyTMs attempt to run
the transaction fully in hardware and default to software if the trans-
action overflows, while HSSTMs provide partial hardware support
for a system that is executed fully in software. The mechanism we
propose here is a novel hardware support element that will solve
the memory identification problem in HyTM and HSSTMs. It will
allow, to a large extent, to eliminate the need to use a compiler to

transactify the memory access instructions in user code, a benefit
currently available only on full fledged HTM systems..

There is a class of STMs, including many existing experimental
STMs, that require the programmer instrument the code by hand.
This has the advantage of the programmer knowing to which in-
structions need to be transactional and which not. However, it puts
an unacceptable burden on the programmer, it is our claim that pro-
grammers cannot be expected to change their programming habits
and instrument code by hand. As we show in the performance sec-
tion, adding on-the-fly tests to check if the code includes instruc-
tions that dynamically change between shared and unshared loca-
tions, introduces an unacceptable performance penalty.

The final class of STMs are ones that use a compiler to dif-
ferentiate shared accesses from the unshared ones [2, 34, 31, 1].
However, even if a compiler detects many of the shared static ac-
cesses, it cannot detect when code instructions dynamically change
between shared and unshared locations, or access libraries it can-
not compile. This implies that there are many instructions that are
either undetected or must be pessimistically accessed transaction-
ally even though they are not shared most of the time. Techniques
such as dynamic escape analysis [3] can be used in the context of
languages like Java to reduce this penalty, but in the end, all these
approaches add significant overheads to the original program code.
As we show in the performance section, adding even minimal in-
strumentation (a jump and a compare) to every non-shared access,
when there are 50% shared and 50% unshared accesses, can result
in a 3 fold slowdown.

Finally, many software vendors that have large bodies of ex-
isting C or C++ code and have already settled on the compilers
that they use with this code for various business reasons. They will
therefore not easily agree to use a new specialized transactional
compiler, and STM adoption will benefit from a mechanism that
eliminates the need to add complex functionality to existing com-
pilers.

6. Conclusions

We showed a novel VMF mechanism that automatically detects all
types of shared transactional accesses and separates them from non-
transactional ones. It simplifies programming in that transactional
code can be executed in an unmodified manner, effectively remov-
ing the need for a compiler to transactify the code in order to apply
the transactional interface. The scheme is not limited to one partic-
ular STM algorithm: it can serve as a basis for effectively running
many types of commit-time [20, 8] STM protocols.

‘We note that the mechanism is not limited to transactions, and
expect that in the future it will find applications in the detection of
shared vs. non-shared memory in other multiprocessor applications
as well. For example, debuggers can use it to detect shared mem-
ory accesses, profiling applications can use it to detect hot-spots,
security mechanisms can use it to apply security policies at a fine
granularity on memory regions [22] and so on.

Acknowledgments

This paper was supported in part by grants from Sun Microsystems,
Intel Corporation, Microsoft Inc, as well as a grant 06/1344 from
the Israeli Science Foundation and European Union grant FP7-ICT-
2007-1 (project VELOX).

References

[1] Ulrich Muller. Introducing the atomic Keyword into C/C++ using
Assembler Code Instrumentation and Software Transactional Memory.
Systems Engineering Group Department of Computer Science Dresden
University of Technology May 2006. http://www.hackshack.de/index.html

[2] Pascal Felber and Christof Fetzer and Ulrich Mueller and Torvald
Riegel and Martin Suesskraut and Heiko Sturzrehm. Transactifying
Applications using an Open Compiler Framework. TRANSACT, 2007.

[3] Tatiana Shpeisman and Vijay Menon and Ali-Reza Adl-Tabatabai and
Steven Balensiefer and Dan Grossman and Richard L. Hudson and
Katherine F. Moore and Bratin Saha Enforcing isolation and ordering in
STM PLDI *07: Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation

[4] Richard L. Hudson and Bratin Saha and Ali-Reza Adl-Tabatabai and
Benjamin C. Hertzberg McRT-Malloc: a scalable transactional memory
allocator ISMM ’06: Proceedings of the Sth international symposium on
Memory management

[5] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. Proc.
of the 20th International Symposium on Distributed Computing (DISC
2006), pages 194-208, Stockholm, Sweden, September, 2006.

[6] Martin Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, Michael
Isard Dynamic Separation for Transactional Memory MSR-TR-2008-
43, March 2008

[7] Luke Yen, Stark C. Draper, and Mark D. Hill Notary: Hardware
Techniques to Enhance Signatures 41st International Symposium on
Microarchitecture (MICRO), November 2008

[8] Bratin Saha and Ali-Reza Adl-Tabatabai and Richard L. Hudson and
Chi Cao Minh and Ben Hertzber. A High Performance Software
Transactional Memory System For A Multi-Core Runtime. In PPoPP
2006

[9] Pascal Felber, Torvald Riegel and Christof Fetzer Dynamic Perfor-
mance Tuning of Word-Based Software Transactional Memory To
appear in PPoPP 2008.

[10] Tim Harris and Keir Fraser. Concurrent programming without locks.
[11] Herlihy, M. The SXM software package,

[12] Ennals, R. Software transactional memory should not be obstruction-
free. www.cambridge.intel-research.net/srennals/notlockfree.pdf.
www.cambridge.intel-research.net/ rennals/notlockfree.pdf.

[13] Tim Harris and Keir Fraser. Language support for lightweight trans-
actions. In Proc. of the 18th SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Application (OOPSLA), Oct.
2003.

[14] Maurice Herlihy, Victor Luchangco, Mark Moir, and William Scherer
III. Software Transactional Memory for Dynamic-Sized Data Structures.
In Twenty-Second ACM Symp. on Principles of Distributed Computing,
Boston, Massachusetts, Jul. 2003.

[15] Marathe, V. J., Scherer, W. N., and Scott, M. L. Design tradeoffs
in modern software transactional memory systems. In Proceedings of
the 7th Workshop on Languages, Compilers, and Run-time Support for
Scalable Systems (LCR04) (2004).

[16] Saha, B., Adl-Tabatabai, A.-R., Hudson, R. L., Minh, C. C., and
Hertzberg, B. A high performance software transactional memory
system for a multi-core runtime. In PPoPP 2006.

[17] Shalev, O., and Shavit, N. Predictive log-synchronization. In EuroSys
2006.

[18] Welc, A., Jagannathan, S., and Hosking, A. L. Transactional monitors
for concurrent objects. In Proceedings of the European Conference on
Object-Oriented Programming (2004), vol. 3086 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 519542.

[19] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software
Transactional Memory. Technical Report 868, Computer Science
Department, University of Rochester, 2005.

[20] D. Dice and N. Shavit. What Really Makes Transactions Faster? Proc.
of the 1st TRANSACT 2006 workshop, Ottawa, Canada, March 2006
(Transact06).

[21] Nir Shavit and Dan Touitou. Software Transactional Memory.
In Fourteenth ACM Symp. on Principles of Distributed Computing,
Ottawa, Ontario, Canada, pages 204213, Aug. 1995.

[22] Emmett Witchel, Josh Cates, Krste Asanovic. Mondriaan Memory
Protection. ASPLOS °02.

[23] Pugh, W. A skip list cookbook. Tech. rep., College Park, MD, USA,
1990

[24] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John
D. Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos
Kozyrakis, and Kunle Olukotun. Transactional Memory Coherence
and Consistency. In Proc. of the 31st Annual Intl. Symp. on Computer
Architecture, June 2004.

[25] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory:
Architectural Support for Lock-Free Data Structures. In Proc. of the
20th Annual Intl. Symp. on Computer Architecture, pages 289300, May
1993.

[26] Ravi Rajwar and Philip A. Bernstein (Oct 2003). Atomic Transac-
tional Execution in Hardware: A New High-Performance Abstraction
for Databases. In: Position paper for the 10th International Workshop
on High Performance Transaction Systems.

[27] Torvald Riegel and Christof Fetzer and Pascal Felber Time-based
Transactional Memory with Scalable Time Bases 19th ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA), 2007.
http://wwwse.inf.tu-dresden.de/presentations/slides-riegel20071sart.pdf

[28] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson Architectural Support
for Software Transactional Memory In Proceedings of the 39th
International Symposium on Microarchitecture Orlando, FL: IEEE,
2006, pp. 185-196.

[29] Chi Cao Minh and Martin Trautmann and JaeWoong Chung and
Austen McDonald and Nathan Bronson and Jared Casper and Christos
Kozyrakis and Kunle Olukotun (Jun 2007). An Effective Hybrid
Transactional Memory System with Strong Isolation Guarantees. In:

Proceedings of the 34th Annual International Symposium on Computer
Architecture.

[30] Ananian, C. S., and Rinard, M. Efficient software transactions for
object-oriented languages. In Proceedings of Synchronization and
Concurrency in Object-Oriented Languages (SCOOL) (2005), ACM.

[31] Peter Damron and Alexandra Fedorova and Yossi Lev and Victor
Luchangco and Mark Moir and Daniel Nussbaum. Hybrid transactional
memory. ASPLOS-XII: Proceedings of the 12th international conference
on Architectural support for programming languages and operating
systems.

[32] Shriraman, Arrvindh and Marathe, Virendra J. and Dwarkadas,
Sandhya and Scott, Michael L. and Eisenstat, David and Heriot,
Christopher and Scherer III, William N. and Spear, Michael F. Hardware
Acceleration of Software Transactional Memory ACM SIGPLAN
Workshop on Transactional Computing

[33] Dave Dice. http://blogs.sun.com/dave/

[34] Kumar, S., Chu, M., Hughes, C., Kundu, P., and Nguyen, A. Hybrid
transactional memory. In PPoPP 2006.

[35] Moir, M. HybridTM: Integrating hardware and software transactional
memory. Tech. Rep. Archivist 2004-0661, Sun Microsystems Research,
August 2004.

[36] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E.
Leiserson, and Sean Lie. Unbounded Transactional Memory. In Proc. of
the Eleventh IEEE Symp. on High-Performance Computer Architecture,
Feb. 2005.

[37] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing
Transactional Memory. In Proc. of the 32nd Annual Intl. Symp. on
Computer Architecture, Jun. 2005.

[38] Kevin E. Moore and Jayaram Bobba and Michelle J. Moravan and
Mark D. Hill and David A. Wood. LogTM: Log-based Transactional
Memory. In: Proceedings of the 12th International Symposium on
High-Performance Computer Architecture. pp. 254-265.

