
Towards a High Dimensional Data Management System

Dong Deng† Lei Cao‡ Jiachen Liu? Runhui Wang†

†Rutgers University ‡MIT ?University of Michigan

dong.deng@rutgers.edu lcao@csail.mit.edu
amberljc@umich.edu rw545@scarletmail.rutgers.edu

ABSTRACT
High dimensional data is ubiquitous nowadays and plays an
important role in many artificial intelligence (AI) applications
such as face recognition, image retrieval, and knowledge base
construction. The semantics of images, video, documents,
and knowledge can be captured by meaningful high dimen-
sional feature vectors extracted from deep learning models.
Though there are many research in querying and indexing
high dimensional data, most of them are point solutions.
The high dimensional data, such as feature vectors, is still
largely managed by the application developers individually.
In this paper, we propose to manage the high dimensional
data in a systematical way and present the design of Saber,
an end-to-end high dimensional data management system.
Saber features scalability, high performance, and ease of
use and configure. It consists of several modules, including
data ingestion, storage management, index management, and
polystore query processing. We aim at integrating Saber
with the mature AI ecosystem and helping AI practitioners
reduce the burden of managing high dimensional data.

1. INTRODUCTION
High-dimensional data is ubiquitous nowadays and plays an

important role in many artificial intelligence applications such
as image retrieval [2], face recognition [4], and knowledge base
construction [9]. The semantics of images, video, documents,
and knowledge graphs (KG) can be captured by meaningful
high dimensional feature vectors extracted from deep learning
models [13]. Semantic related objects, such as synonyms and
edges of the same type/relationship in a KG tend to have
similar feature vectors [9]. Similarity search (a.k.a., nearest
neighbor search) is one of the most important query types on
high dimensional data, which has been extensively studied
in the last twenty years [1, 10, 13–15,22]. Various techniques
have been developed, such as the locality sensitive hashing
(LSH) [10,14], the product quantization [1,11], the proximity
graph [7,15], the sketch-based methods [12], etc. However,
most of them are point solutions and nowadays the high

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

dimensional data is still largely managed by application
developers individually. Without careful implementation,
querying high dimensional data can be extremely inefficient
and miss the high performance requirement in many real time
applications. Thus it is necessary to build an end-to-end high
dimensional data management system to ease the burden of
application developers, which is exactly the purpose of this
paper.

High dimensional data has the following characteristics.

• First, high dimensional data is big and grows fast.
For example, Youtube-8M1, one of the largest pub-
licly available datasets today, contains 1.9 billion 1024-
dimensional feature vectors extracted from 350,000
hours of video using the Inception network. In compar-
ison, as of May 2019, 720,000 hours of new video were
uploaded to YouTube per day2. The data is indeed in
big volume. As another example, BIGANN3, another
large publicly available dataset, contains 1 billion 128-
dimensional Scale-Invariant Feature Transform (SIFT)
feature vectors extracted from 1 million images, while
Instagram has more than 34 billion photos4. A coarse
estimation gives more than 34 trillion SIFT feature
vectors and many petabytes storage in raw. Thus it is
critical for our system to have good scalability.

• Second, there are many kinds of high dimensional data
with different sparsity, number of dimensionality, and
value domain. For example, the high dimensional fea-
ture vectors extracted by deep learning techniques are
usually dense, in real values, and ranges from tens
to thousands of dimensions. In contrast, the TF-
IDF weighed documents in information retrieval are
sparse vectors and in hundreds of thousands of dimen-
sions to millions of dimensions. Their value domain
is positive value. In recommendation systems, such
as the friend relationship in social networks and the
purchase/rate/click history, data can be represented
as ultra high dimensional (in hundreds of millions di-
mensions to billions of dimensions), extremely sparse,
binary vectors. In addition, various metrics are de-
signed to measure the similarity/distance between high
dimensional data. Among them, Euclidean distance
(Lp-Norm in general), cosine similarity, inner product,

1https://research.google.com/youtube8m/
2https://www.statista.com/statistics/259477/
hours-of-video-uploaded-to-youtube-every-minute/
3http://corpus-texmex.irisa.fr/
4https://www.statisticbrain.com/instagram-company-statistics/

https://research.google.com/youtube8m/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
http://corpus-texmex.irisa.fr/
https://www.statisticbrain.com/instagram-company-statistics/


and Jaccard similarity are the most widely used ones.
Note that, the cosine similarity can be inferred from
the Euclidean distance by normalizing all vectors to
unit vectors.

• Third, the high dimensional data is usually coupled
with other metadata information. For example, in
online e-commercial websites, feature vectors are ex-
tracted from product images, while these products also
have other structured information like names, price, rat-
ings, and inventory, as well as unstructured information
like descriptions and reviews.

Based on the characteristic of high dimensional data, we
design Saber, an end-to-end high dimensional data manage-
ment system, which features scalability, high performance,
and ease of use and configure. It consists of data inges-
tion, storage management, index management, and polystore
query processing components. The data ingestion module
extracts high dimensional feature vectors from the raw input
data. The high dimensional data, along with their metadata,
are stored in multiple different data stores. The polystore
query processing component coordinates these data stores
to process multi-modal queries [17]. Saber uses scalable
and ease to configure indexes. An index is designed for the
dense vectors. Saber also supports data and index updates.
Saber is designed to support the following three query types
for the high dimensional data.

1. Similarity Search. This is the same as the nearest neigh-
bor (NN) search query. Specifically, given a collection
of high dimensional vectors, a distance (or similarity)
metric, a query vector, and an integer k, similarity
search returns k vectors whose distance to the query
is smallest (or whose similarity to the query is largest)
under the given metric. A commonly used variant is
the range similarity search query where a threshold is
given instead of the integer k and all the vectors whose
distance to the query is smaller than the threshold
(or whose similarity to the query is larger than the
threshold) are returned.

2. Similarity Join. This is the analogy to the join query in
SQL. Given two collections of vectors (or one collection
in the self-join case), similarity join query returns all
the similar vector pairs under a given metric. The
same criteria as the similarity search query is used to
judge whether two vectors are similar. This can be
used to join two collections of objects (e.g., images and
documents).

3. Similarity GroupBy. This is the analogy to the groupby
query in SQL. Intuitively, this query deduplicates the
high dimensional vectors and returns clusters of sim-
ilar/duplicate vectors. This is useful when the users
want to deduplicate or aggregate the high dimensional
data (e.g., removing the duplicate products in product
search). Formally, given a collection of vectors, similar-
ity groupby query returns clusters of vectors such that
in any two clusters, none of their vectors are similar.
This definition guarantees the transitivity closure: if X
and Y are duplicate and Y and Z are duplicate, X are
Z must also be duplicates. For ease of understand, we
can build a graph where each vertex corresponds to a
vector and there is an edge if and only if two vectors on

Polystore
System

Preprocessing
PQ	Index

Storage

Data
Ingestion

Metadata	+	Vectors

RPC

TileDB

PostgreSQL

ElasticSearch

File System

Inverted	Index

Query	ProcessingIndex	Management

RPC

RPC

RPC

Query	Results

Data	&	Query

Figure 1: System architecture

the two ends are similar. Then each cluster corresponds
to a connected component in this graph.

Saber deals with sparse dense, real-value high dimen-
sional vectors and sparse, positive-value ultra high dimen-
sional vectors. These are two most interesting types of high
dimensional data. Many feature vectors (especially those
extracted from deep learning models) are dense, real-value
vectors while TF-IDF weighted documents (and ratings in
recommendation systems) are sparse, positive-value vectors.
For dense vectors, Euclidian distance and cosine similarity
are supported, while Jaccard similarity and cosine similarity
are supported for sparse data. We expect to support more
metrics and data types in the future.

The rest of the paper is organized as follows. In Section 2,
we present the architecture of Saber. Section 3 introduces
the data ingestion module and Section 4 discuss our novel
index structure for dense vectors. We discuss the ploys-
tore query processing in Section 5, review related work in
Section 6, and conclude the paper in Section 7.

2. SYSTEM ARCHITECTURE
The system architecture is shown in Figure 1. It consists

of the following components.

Data Ingestion. The application developers use Remote
Procedure Call (RPC) services to interact with the system,
such as the Google gRPC and the Apache Thrift. The data
and query (e.g., images, documents, video, knowledge graphs)
are first processed by a data ingestion module, which we
discuss in details in Section 3. This data ingestion module is
responsible for extracting high dimensional feature vectors
as well as the corresponding metadata (e.g., the location
and timestamp in a photo and the object class of an image
determined by a classifier) from the input. We also accept
plain high dimensional vectors as the input data and query.

Storage Management. The metadata and vectors gener-
ated from the data ingestion module are forwarded to the
storage module. As discussed before, the high dimensional
data is usually coupled with other structured and unstruc-
tured metadata. Saber utilizes multiple systems to store the
high dimensional vectors and the metadata. For example,
Saber stores the structured data in the relational database
management system (RDBMS) like PostgreSQL while the
semi-structured and unstructured data are stored in the full-
text search engine ElasticSearch. For the raw multimedia
data, a file system is employed to store them. Saber uses



Figure 2: Illustration of the multi-modal query [17].

TileDB to store the dense and sparse vectors. These sys-
tems provide fast, reliable, and scalable data read and write
services.

Index Management for High Dimensional Data. For
the structured, semi-structured, and unstructured data, their
corresponding data stores provide powerful indexing mecha-
nism and Saber use them as it is. For the high dimensional
vectors, Saber builds and manages its own index. Many
feature vectors (especially those extracted from deep learning
models) are dense, real-value vectors. We leverage product
quantization to compress the original dense vectors and build
novel (minimum spanning) tree index for the compressed
data. We also design strategies to deal with data and index
updates. The details will be given in Section 4.

For the sparse, positive-value vectors, we leverage the
inverted index and the filter-and-refine framework [5], such
as the prefix filtering [3], to process queries. A huge advantage
of these techniques is the ease of use and configure. Usually
there is few to no hyper-parameters to tune. These are
mature techniques and we leave out the details.

Polystore Query Processing. Our system has a poly-
store query processing module to coordinate the multi-modal
query against the data in multiple stores. Multi-modal query
involves data of different types, which is very common in
the real world. Figure 2 shows product search examples in
the work [17] from WalmartLab. We can issue the similar-
ity search query over the high dimensional feature vectors
extracted from the product photos in conjunction with the
keyword search query over the textual data. As another
example, surveillance applications usually only interests in
objects (such as people and cars) that appear in a specific
region or within a specific period of time. It can be expressed
as a multi-modal query across the structured data and the
high dimensional feature vectors. We discuss the details of
polystore query processing in Section 5.

3. FAST DATA INGESTION
The system provides a rich set of tools to facilitate the

users to ingest the input data in various types of formats
into high dimensional vectors that effectively represent the
key features of the raw input data. Based on the types of the
input that users can provide, the tools can be categorized
into the following types:

• Direct data loading. If the input data is already in the

format of high dimensional feature vectors, then our
system simply efficiently loads the data into data table
leveraging the existing tools ingesting structured data.

• Extract features from supervised model. If the input
data is in complex format, such as image or video,
simply treating each raw image file/video frame as a
high dimensional feature vector is not effective in sup-
porting similarity search. This is because even a small
rotation of image will dramatically change its represen-
tation. However, when the users are able to provide a
Convolutional Neural Network (CNN) that effectively
classifies the given image datasets/videos, our system
fully leverages the representation learning capability of
CNN and provides tools to extract features from the
neural network. Instead of directly extracting features
from a single layer close to the output, we design a
mechanism that aggregates the states of different layers
to better represent the image.

• Semi-supervised feature extraction. However, users
are not always able to provide a well trained classifica-
tion model due to the lack of abundant training data,
etc. Therefore, we design a semi-supervised feature
extraction method that uses a small set of examples to
learn the high dimensional representations of the raw
images/videos. The key idea is to leverage the observa-
tion that Generative Adversarial Networks (GAN) can
effectively capture the data manifold during the battle
of data generator and data discriminator [8]. Besides
requiring the GAN to separate the fake examples and
real examples, our semi-supervised method also uses
the small set of examples to guide the GAN to learn
a representation that can separate different classes of
real data, therefore more effective in representing the
raw input.

• Unsupervised feature extraction. In the case that the
users cannot provide any labeled example, we provide
multiple unsupervised tools to extract features from
the raw data. These tools either leverage the manifold
learning capacity of GAN similar to the semi-supervised
tool, or use Autoencoder that is shown to be effective
in learning representation without relying on any label.

• Feature extraction for text data. Besides the image/video
data, our system also provides tools to effective ex-
tract features from text data including TF-IDF and
word2vector [16], etc.

Leveraging the progress of AutoML, these tools save users
the efforts of tuning parameters. In most of cases, the users
only need to specify the dimension of the feature vector they
prefer. For the structured and unstructured metadata, we
use existing tools and the corresponding data store in the
system to digest them.

4. INDEX FOR DENSE VECTORS
In this section, we present our novel index for the dense,

real-value high dimensional vectors. We first introduce the
limitations of existing approaches in Section 4.1. Section 4.2
presents our novel tree-based index and Section 4.3 discusses
how to support distributed query processing. We design
strategies to deal with data and index updates in Section 4.4.



Part 1 · · · Part M
Centroid 1 0.45 · · · 1.24
· · · · · · · · · · · ·
Centroid k 0.88 · · · 0.82

Table 1: An example distance lookup table

(8,		6,		10,		23,		1,		39,		28,		65)

(8,		6,		10,		56,		1,		39,		28,		65)

PQ	code	A:

PQ	code	B:

Distance(Q,	B)	=	Distance(Q,	A)	+	Table[23][4]	- Table[56][4]

Distance(Q,	A)	=	Table[8][1]	+	Table[6][2]	+	…	+	Table[64][8]

Figure 3: Sharing computation between similar PQ codes.

4.1 Limitation of Existing Approaches
Similarity queries, including similarity search (a.k.a. near-

est neighbor search), similarity join, and similarity groupby,
play an important role in managing high dimensional data
and have enormous applications. However, it is rather chal-
lenge to process similarity queries at large scale and existing
approaches would all fail. Specifically, it is well known that
exact methods that guarantee to return completely accurate
results do not competitive with the brute-force linear scan of
the entire dataset due to the “curse of dimensionality” [10].
For example, the R-tree and K-D tree index become even
slower than the simple linear scan when data dimensional-
ity is larger than 10 [18]. Existing approximate algorithms
(including Locality Sensitive Hashing (LSH) based, proximity-
graph based, and vector quantization based methods) can
scale to higher dimension. However, they have problems
when the data cardinality is at large scale.

LSH based methods. In general, LSH based methods
employ many hash functions in a specific hash family to
partition high dimensional data such that nearby/similar
data points are more likely to be hashed to the same bucket
than faraway/dissimilar data points [10, 22]. However, to
achieve high accuracy, LSH based methods usually involve
excessively large number of hash tables and incur huge index
size and suboptimal efficiency.

Proximity-graph based methods. In proximity graphs,
each vertex corresponds to a data point. Nearby data points
are connected such that for any data point, one of its neigh-
bors must be closer to the query than the data point itself [15].
Then the best first search (such as the A* search) on the
proximity graph can find the nearest neighbor to a query.
However, building such a graph is very expensive and storing
the graph needs large space.

Another noticeable disadvantage of proximity-graph based
methods and LSH based methods is that they both need
to access the original data vectors to calculate their real
distance to the query. This incurs many expensive random
IOs and/or network communication (in distributed query
processing).

Quantization based methods. Vector quantization clus-
ters the data vectors into k clusters (using k-means for ex-
ample) and approximate each vector by its nearest centroid.
Product quantization evenly divides the D dimensional space

A

B

C

D

<4, 23, 56>

E

A

B

C

D

<4, 23, 56>

E

A

B

C

D

<4, 23, 56>

E

Q

Figure 4: A minimum spanning tree generated from the full
graph

into M disjoint D/M dimensional subspaces and applies vec-
tor quantization to every subspace independently [11]. Then
each vector is compressed to a Mlog k bit code to indicate the
M corresponding nearest centroids in the M subspaces. For
D=128, M=16, and k=64, the compression rate is 64. More
importantly, the distance to the query can be estimated using
only the code; i.e., the original vectors are never accessed
in query processing. However, existing product-quantization
based methods need to exhaustively scan all the codes or
search in an exponentially large space. This is too expensive
for large scale dataset where even the codes cannot fit in
memory.

4.2 Tree-based Index and Query Processing
The query processing engine for large scale high dimen-

sional data in Saber is built based on a novel tree index
structure. In a high level, we build a (wide-and-flat) tree
index for all the product quantization codes. By traversing
the tree, we can find the nearest neighbors to the query. The
computation will be shared between all parent and child
nodes. Moreover, for some tree nodes that satisfy certain
conditions, we can skip traversing the entire subtrees rooted
at these nodes. Same as other tree indexes like B-tree, we can
store the lower level nodes on disk or in different machines for
large scale dataset. The pruned branches will never be visited.
Thus, random IO accesses and/or network communication
in distributed computing setting will be reduced.

Sharing computation in similar PQ codes. More specif-
ically, as shown in Figure 1(a), PQ-based methods pre-
compute a lookup table containing the distances from all
centroids to the query in the M subspaces. The code of a
vector contains the indexes of the nearest centroids in the M
subspace. Then the distance from a vector to the query can
be estimated using M lookups. For example, in Figure 1(b),
the distance from a data vector A to the query Q can be
estimated by adding up the M=8 table lookups. We observe
that the distance computation between “similar” codes can
be shared. For example, as shown in Figure 1(b), the codes
A and B only differ in the 4-th part. Thus Distance(Q, B)
can be calculated by removing the differences in the 4-th part
from the previously computed Distance(Q, A). In this way,
only two lookups are needed instead of M=8 to calculate
Distance(Q, B).

The minimum spanning tree index. To share more
computation, we can (virtually) build a full graph for all the
codes, where the edge weight is the number of differences
between two codes. For example, as shown in Figure 2(a),
the edge between codes A and B has a weight of one as they



only differ in the 4-th part. Then the minimum spanning
tree generated from the graph, as shown in Figure 2(b), has
the minimum total number of differences. By traversing this
tree and using the differences to calculate distances, we can
get the nearest neighbor to the query.

Pruning computation by filtering subtrees. We ob-
serve that some subtrees can be skipped during tree travers-
ing. Specifically, for any node X in the subtree rooted at
node A, based on the triangle inequality

Distance(Q,X) ≥ Distance(Q,A) − sdDistance(A,X)

holds. Note Distance(A, X) is independent to the query
Q and can be pre-computed in the offline indexing phase.
Moreover, when A is visited during traversing, Distance(Q,
A) is calculated. Thus we have a lower bound of the distance
from any node in the subtree rooted at A to the query. If
this lower bound is no smaller than the threshold (i.e., the
distance from the query to the nearest neighbor visited so
far), the entire subtree rooted at A can be safely pruned as
it cannot yield any node closer to the query than the current
nearest one.

Similarity join and similarity group query. At this
point, Saber simply decomposes the similarity join and
similarity groupby queries into a bunch of similarity search
queries. In the future, we will design more sophisticated
algorithms to process these queries more efficiently.

Same as the inverted index, product quantization has few
to no hyper parameters to tune and is ease to use and con-
figure. In contrast, the LSH-based methods and proximity-
graph based methods involves multiple hyper parameters
and their performance is sensitive to those parameters.

4.3 Distributed Similarity Query Processing
To further improve the scalability of similarity query pro-

cessing, we propose to support distributed query processing.
A simple solution evenly distributes the data to all the ma-
chines. A coordinate machine is assigned to each similarity
search query. The query is processed in each individual ma-
chine and the results are returned to and aggregated by the
coordinate machine.
Saber supports another alternative solution which parti-

tions the tree index. Specifically, we first determine a few
inner nodes as the boundary nodes. All the ancestor nodes
of these boundary nodes consist a tree, which we name as
the filter tree. The filter tree is copied to every machine.
The subtrees rooted at these inner nodes are partitioned
and evenly distributed to all the machines. Each query is
randomly assigned a coordinate machine. The query is first
processed by the filter tree to prune unqualified subtrees as
discussed before. Then the query is sent to all those machines
with at least one qualified subtree. Finally, the results are
returned to and aggregated by the coordinate machine.

4.4 Data and Index Update
Dealing with continuously growing large scale datasets has

many applications. For example, the news searching system
that updates on hourly/daily basis, recommendation systems
based on users’ most recent behavior, and object detection in
video surveillance. However, existing methods for similarity
search are designed for static datasets, which lead to high
computational cost for adjusting indexes to accommodate
newly arrived data.

��������

��������

���������
�

���������
�

��

��

��

����

��

�� �� �� ��

�� ��

���
��
�	� �����������
����� ������

Figure 5: Hierarchical clustering for data and index updates.

Hierarchical clustering. To support efficient and accu-
rate index updates in Saber, we leverage the hierarchical
clustering (hierarchical k-means more specifically) for vector
quantization. Hierarchical k-means decomposition represents
an input dataset as a tree. The root of the tree points to the
centroid of the whole dataset. The decomposition process
iteratively divides the dataset into k sub-clusters using k-
means. Each sub-cluster is then associated to a child node of
the current tree node. The decomposition process continues
to the sub-clusters until the size of each sub-cluster is small
enough.

Index updating. Index updating is achieved by merging
and splitting specific sub-clusters whenever necessary. In a
high level, we merge two clusters when deleting data and
split clusters when inserting data if certain condition is met.
When merging clusters, we directly merge two clusters that
share the same parent tree node and update the centroid.
When splitting a cluster, we create two child nodes under the
specific tree node, split the specific cluster into two clusters,
and calculate the centroids.

If the number of points in a cluster is below certain thresh-
old, we merge it with its neighbor. In contrast, if the variance
of one cluster exceeds some threshold and the number of
points exceeds certain number, we perform split operation
since the quality of the cluster is low.

For example, as shown in Figure 5, the space is originally
split into four clusters. After inserting some new points (in
red color), since the variance inside cluster C3 barely changes,
the corresponding index remains untouched. In contrast, the
variance inside cluster C2 hugely changed. Thus we split this
cluster and update the index for both old and new data.

5. POLYSTORE QUERY PROCESSING
To support multi-modal query, our system uses consistent

IDs across different data stores, i.e., the same object has an
unique ID for information stored in different places. The
query is first decomposed into several sub-queries where each
sub-query involves data only in a single store. Then these
sub-queries are processed by their corresponding data stores.
Next, the results of the sub-queries are aggregated. Each
result corresponds to a set of object IDs. The results are in-
tersected for conjunction queries and unioned for disjunction
queries. Finally, the raw data corresponds to the object IDs
in the final result set is returned from the file system with
those projected attributions.

Joint Query Optimization. For disjunction multi-modal
queries like “find similar objects within a specific period of



time”, it may not be optimal to process all the sub-queries
simultaneously and aggregate the results. This is because
the similarity search sub-query on high dimensional data is
time-consuming and usually becomes the bottleneck. Thus
it may be much more efficient if the other sub-queries first
efficiently identify a small set of objects as candidates and
then the similarity search sub-query processes the small
set of candidates right after. Based on this observation,
Saber designs a joint query optimization module. It uses a
cost model to estimate the cost of different sub-queries and
determines the optimal execution order of the sub-queries.

Development Plan. We are still in the initial stage of
system implementation. The plan is to get a prototype ready
by next January. If this paper is accepted, we will demo
Saber during the conference presentation.

6. RELATED WORK
BigDAWG [6] is a polystore system. Silva et al. [19] propose

SimDB to support similarity query processing in relational
DBMS. Mu et al. [17] propose to index high dimensional data
in ElasticSearch so as to support multi-modal query. How-
ever, all these systems have poor performance and scalability
in processing high dimensional data. Silva et al. [20] and
Tang et al. [21] give several similarity groupby definitions on
numerical and multi-dimensional data, which is different from
our similarity groupby definition on high dimensional data.
Xu et al. [23] proposed an index structure that can handle
index updates. However, it only updates the index of the
newly arrived data and has constraints on the distribution
of new data to guarantee the accuracy of the updated index,
which is unstable with large change of data distribution.

7. CONCLUSION
In this paper, we present the design of our end-to-end high

dimensional data management system Saber. It consists of
data ingestion, storage management, index management, and
polystore query processing components. The data ingestion
module extracts high dimensional feature vectors from the
raw input data. The high dimensional data, along with
their metadata, are stored in multiple different data stores.
The polystore query processing component coordinates these
data stores to process the multi-modal query. We quantize
the dense high dimensional vectors into codes using product
quantization and index the codes using a tree index structure.
For the sparse high dimensional vectors, we employ the
inverted index structure and prefix filtering techniques to
process queries. We also design strategies to deal with data
and index updates.

8. REFERENCES
[1] F. André, A. Kermarrec, and N. L. Scouarnec. Cache

locality is not enough: High-performance nearest
neighbor search with product quantization fast scan.
PVLDB, 9(4):288–299, 2015.

[2] A. Babenko, A. Slesarev, A. Chigorin, and V. S.
Lempitsky. Neural codes for image retrieval. In ECCV,
pages 584–599, 2014.

[3] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In WWW, pages 131–140, 2007.

[4] Q. Cao, Y. Ying, and P. Li. Similarity metric learning
for face recognition. In ICCV, pages 2408–2415, 2013.

[5] D. Deng, G. Li, H. Wen, and J. Feng. An efficient
partition based method for exact set similarity joins.
PVLDB, 9(4):360–371, 2015.

[6] J. Duggan, A. J. Elmore, M. Stonebraker,
M. Balazinska, B. Howe, J. Kepner, S. Madden,
D. Maier, T. Mattson, and S. B. Zdonik. The bigdawg
polystore system. SIGMOD Record, 44(2):11–16, 2015.

[7] C. Fu, C. Xiang, C. Wang, and D. Cai. Fast
approximate nearest neighbor search with the
navigating spreading-out graph. PVLDB,
12(5):461–474, 2019.

[8] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. C. Courville, and
Y. Bengio. Generative adversarial nets. In NIPS, pages
2672–2680, 2014.

[9] A. Grover and J. Leskovec. node2vec: Scalable feature
learning for networks. In SIGKDD, pages 855–864,
2016.

[10] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. In STOC, pages 604–613, 1998.

[11] H. Jégou, M. Douze, and C. Schmid. Product
quantization for nearest neighbor search. IEEE Trans.
Pattern Anal. Mach. Intell., 33(1):117–128, 2011.

[12] P. Li, A. B. Owen, and C. Zhang. One permutation
hashing. In NIPS, pages 3122–3130, 2012.

[13] Y. Liu, H. Cheng, and J. Cui. PQBF: i/o-efficient
approximate nearest neighbor search by product
quantization. In CIKM, pages 667–676, 2017.

[14] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li.
Multi-probe LSH: efficient indexing for
high-dimensional similarity search. In VLDB, pages
950–961, 2007.

[15] Y. A. Malkov and D. A. Yashunin. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. CoRR, abs/1603.09320,
2016.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In NIPS, pages
3111–3119, 2013.

[17] C. Mu, J. Zhao, G. Yang, J. Zhang, and Z. Yan.
Towards practical visual search engine within
elasticsearch. In SIGIR 2018 Workshop On eCommerce,
2018.

[18] H. Samet. Foundations of multidimensional and metric
data structures. Morgan Kaufmann series in data
management systems. Academic Press, 2006.

[19] Y. N. Silva, A. M. Aly, W. G. Aref, and P. Larson.
Simdb: a similarity-aware database system. In
SIGMOD, pages 1243–1246, 2010.

[20] Y. N. Silva, W. G. Aref, and M. H. Ali. Similarity
group-by. In ICDE, pages 904–915, 2009.

[21] M. Tang, R. Y. Tahboub, W. G. Aref, M. J. Atallah,
Q. M. Malluhi, M. Ouzzani, and Y. N. Silva. Similarity
group-by operators for multi-dimensional relational
data. In ICDE, pages 1448–1449, 2016.

[22] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and
efficiency in high dimensional nearest neighbor search.
In SIGMOD, pages 563–576, 2009.

[23] D. Xu, I. W. Tsang, and Y. Zhang. Online product
quantization. TKDE, 30(11):2185–2198, 2018.


	introduction
	System Architecture
	Fast Data Ingestion
	Index for Dense Vectors
	Limitation of Existing Approaches
	Tree-based Index and Query Processing
	Distributed Similarity Query Processing
	Data and Index Update

	Polystore Query Processing
	Related Work
	Conclusion
	References

