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Let P ⊂ R
d be a polytope. We want to compute (exactly or approximately) the

number |P ∩ Z
d| of integer points in P .

P
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PART I: EXACT COUNTING IN FIXED DIMENSION

Rational polyhedra

P =



(ξ1, . . . , ξd) :

d∑

j=1

aijξj ≤ bi, i = 1, . . . , n



 ,

where aij , bi ∈ Z.

The input size of P :

L(P ) = n(d+ 1) +
∑

ij

⌈log2(|aij|+ 1)⌉+
∑

i

⌈log2(|bi|+ 1)⌉,

the number of bits needed to define P .
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Generating functions

P

m

xm

We consider the sum

∑

m∈P∩Zd

xm, where

xm = xµ1

1 · · ·xµd

d for m = (µ1, . . . , µd)

The motivating example

n∑

m=0

xm =
1− xn+1

1− x

m

0

x

nm

The sum over the integer points on an interval.
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Theorem. Let us fix d. There exists a polynomial time algorithm, which, given a
rational polyhedron P ⊂ R

d without lines, computes the generating function

f(P,x) =
∑

m∈P∩Zd

xm

in the form

f(P,x) =
∑

i∈I

ǫi
xvi

(1− xui1) · · · (1− xuid)
,

where ǫi ∈ {−1, 1}, vi ∈ Z
d, uij ∈ Z

d \ {0}.
The complexity of the algorithm is LO(d), where L = L(P ) is the input size of

P .

In particular, |I| = LO(d).

Proved in 1993 (with LO(d2) bound) and then again in 1999.
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Applications

Having computed

f(P,x) =
∑

m∈P∩Zd

xm,

we can

1) efficiently count |P ∩ Z
d|, the number of integer points in a given rational

polytope P . Carefully substitute x1 = . . . = xd = 1 into f(P,x);

2) solve integer programming problems of optimizing a given linear function on
the set P ∩ Z

d of integer points in P .

There are at least two implementations:
LattE (lattice point enumerator) by J. De Loera et al., now subsumed by LattE

macchiato by M. Köppe, and barvinok by S. Verdoolaege

http://www.math.ucdavis.edu/∼latte

http://www.kotnet.org/∼skimo/barvinok
http://freshmeat.net/projects/barvinok/
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Some ideas of the proof

Reducing polyhedra to cones

We can represent the polyhedron as a hyperplane section of a higher-dimensional
cone.

0

P P

K

We have P = K ∩ H, where P ⊂ R
d, K ⊂ R

d+1, and H ⊂ R
d+1 is an affine

hyperplane identified with R
d.

Consequently, we have

f(P,x) =
∂

∂xd+1
f(K, x̂)

∣∣∣
xd+1=0

, where x̂ = (x, xd+1).
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Dealing with cones: unimodular cones

A cone K ⊂ R
d generated by a basis u1, . . . , ud of Zd is called unimodular. For

such a cone, we have

f(K,x) =
∑

m∈K∩Zd

xm =
1

(1− xu1) · · · (1− xud)
.

0

P

Integer points in the non-negative orthant.

∑

m∈Z
d

+

xm =
1

(1− x1) · · · (1− xd)
.

A unimodular cone differs from the non-negative orthant by a unimodular trans-
formation.

The main construction (1993):
For any fixed d there is a polynomial time algorithm which decomposes a given
rational cone K ⊂ R

d into a combination of unimodular cones Ki:

[K] =
∑

i∈I

ǫi[Ki],

where ǫi ∈ {−1, 1}, Ki are unimodular cones, and

[A] : Rd −→ R, [A](x) =

{
1 if x ∈ R

d

0 otherwise

is the indicator of a set A.
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Example: continued fractions in dimension 2

Suppose that K ⊂ R
2 is generated by (1, 0) and (31, 164).

First, we compute

164

31
= 5 +

9

31
= 5 +

1

3 +
4

9

= 5 +
1

3 +
1

2 +
1

4.

Hence 164/31 = [5; 3, 2, 4]. Now we compute the convergents:

[5; 3, 2] = 5 +
1

3 +
1

2

=
37

7
, [5; 3] = 5 +

1

3
=

16

3
, [5] =

5

1
.
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Then we do cutting and pasting of cones:

(31, 164) (31, 164) 

1

(3, 16)
(1, 5)

(7, 37) 

+

+

0

1

1

−
0

1
(1, 5)

0

−

0

(3, 16)

(7, 37) 

0

=

0

Let K0 be the cone generated by (1, 0) and (0, 1).

Starting with K0, we

cut the cone generated by (0, 1) and (1, 5);

paste the cone generated by (1, 5) and (3, 16);

cut the cone generated by (3, 16) and (7, 37);

paste the cone generated by (7, 37) and (31, 164)

to finally get K generated by (1, 0) and (31, 164).

The four cones we cut and paste are unimodular.
So we get

f(K,x) =
1

(1− x1)(1− x2)
−

1

(1− x2)(1− x1x
5
2)

+
1

(1− x1x5
2)(1− x3

1x
16
2 )

−
1

(1− x3
1x

16
2 )(1− x7

1x
37
2 )

+
1

(1− x7
1x

37
2 )(1− x31

1 x164
2 )

.
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Higher dimensions

For K generated by linearly independent u1, . . . , ud ∈ Z
d, let indK be the

volume of the parallelepiped spanned by u1, . . . , ud (so indK = 1 if and only if K
is unimodular).

Using Minkowski’s Convex Body Theorem, compute w ∈ Z
d \ {0} such that

w =

d∑

i=1

αiui where |αi| ≤ (indK)
−1/d

.

Let Ki be the cone generated by u1, . . . , ui−1, w, ui+1, . . . , ud. Then

[K] =

d∑

i=1

ǫi[Ki] + indicators of lower-dimensional cones,

where ǫi ∈ {−1, 1} and

indKi ≤ (indK)
d−1

d .

Now iterate.

’

u
1
’

u
3

+ − − +=
0 0 0 0 0 0

u
1

u 2

u3

u 1
u

2 w
u 2

w

u
3

u1
w

u
3

u
2 w

u
1

u
3

= + − − +
u
1
’

u
2
’

w’

u3
’

u
1’ w’

u
2
’ u

2
’

w’

u
3

u
1
’ w’

u
3
’’ u

2
’

w’

10



PART II : APPROXIMATE COUNTING IN HIGHER DIMENSIONS

We assume that P is defined by a system of linear equations

Ax = b

and inequalities
x ≥ 0,

so the picture looks more like this

P

Here A = (aij) is an integer k × n matrix of rank k < n and b is an integer
n-vector.

k
* *

* * * *

* *

* * * *

integer entries

n

A

Let Λ = Ax : x ∈ Z
n be the lattice in Z

k. Unless b ∈ Λ, we have P ∩ Z
n = ∅.
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The Gaussian formula

Joint work with J.A. Hartigan (Yale).
Let us consider the function

g(ξ) = (ξ + 1) ln(ξ + 1)− ξ ln ξ for ξ ≥ 0.

0

1

2

3

2 4 6 8 10x

Let us solve the optimization problem:

Find max g(x) =

n∑

j=1

g (ξj)

Subject to: x = (ξ1, . . . , ξn) ∈ P.

Since g is strictly concave, the maximum point

z = (ζ1, . . . , ζn)

is unique and can be found efficiently by interior point methods, for example. Com-
puting z is easy both in theory and in practice.

Let us compute a k × k matrix Q = (qij) by

qij =

n∑

m=1

aimajm
(
ζ2m + ζm

)
.

We approximate the number of integer points in P by

|P ∩ Z
n| ≈

eg(z) det Λ

(2π)k/2 (detQ)
1/2

.
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A couple of examples

Let us compute the number of 4×4 non-negative integer matrices with row sums
220, 215, 93 and 64 and column sums 108, 286, 71 and 127.

127

* * * *

* * * *

* * * *

* * * *

215

220

93

64

108 286 71

The number of such matrices is

1225914276768514 ≈ 1.23× 1015.

We have n = 16 variables and k = 7 equations (one equation can be thrown out).
The Gaussian formula overestimates by about 6%.
J. De Loera computed more examples. Here is one of them: the exact number

of 3× 3× 3 arrays of non-negative integers with the sums

[31, 22, 87],

[50, 13, 77],

[42, 87, 11]

along the affine coordinate hyperplanes is

8846838772161591 ≈ 8.84× 1015.

The Gaussian formula gives the relative error of 0.185%.

11

31 22 87

50

13

77

42
87

Here we have n = 27 variables and k = 7 equations (two equations can be thrown
out).
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The (first level of) intuition

A random variable x is geometric if

Pr
{
x = m

}
= pqm for m = 0, 1, . . .

where p+ q = 1 and p, q > 0. We have

Ex =
q

p
and varx =

q

p2
.

Conversely,

if Ex = z then p =
1

1 + z
, q =

z

1 + z
and varx = z2 + z.

Theorem. Let P ⊂ R
n be a polytope that is the intersection of an affine subspace

in R
n and the non-negative orthant Rn

+. Suppose that P has a non-empty interior
(contains a point with strictly positive coordinates).

Then the strictly concave function

g(x) =

n∑

j=1

(
(ξj + 1) ln (ξj + 1)− ξj ln ξj

)

attains its maximum on P at a unique point z = (ζ1, . . . , ζn) with positive coordi-
nates.

Suppose that x1, . . . , xn are independent geometric random variables with expec-
tations ζ1, . . . , ζn and let X = (x1, . . . , xn). Then the probability mass function of
X is constant on P ∩ Z

n and equal to e−g(z) at every x ∈ P ∩ Z
n. In particular,

|P ∩ Z
n| = eg(z)Pr

{
X ∈ P

}
.
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Now, suppose that

P =
{
x : Ax = b, x ≥ 0

}
.

Let Y = AX , that is, Y = (y1, . . . , yk), where

yi =

n∑

j=1

aijxj .

Theorem implies that
|P ∩ Z

n| = eg(z)Pr
{
Y = b

}
.

We note that
EY = b

and that

cov (yi, yj) =
n∑

m=1

aimajmvarxk =
n∑

m=1

aimajm
(
ζ2m + ζm

)
.

Now, we observe that Y is the sum of n independent random vectors xjAj , where Aj

is the j-th column of A, so we make a leap of faith and assume that the distribution
of Y in the vicinity of its expectation is close to the distribution of a Gaussian
random vector Y ∗ with the same expectation b and the covariance matrix Q.

b

Hence it is not unreasonable to assume that

Pr
{
Y = b

}
≈ Pr

{
Y ∗ ∈ b+ fundamental domain of Λ

}

≈
det Λ

(2π)k/2 (detQ)
1/2

.
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More intuition from statistics and statistical physics

In 1957, E.T. Jaynes formulated a general principle. Let Ω be a large but finite
probability space with an unknown measure µ, let f1, . . . , fk : Ω −→ R be random
variables with known expectations

E fi = αi for i = 1, . . . , k

and let g : Ω −→ R be yet another random variable. Then to compute or estimate
E g one should assume that µ is the probability measure on Ω of the largest entropy
such that that E fi = αi for i = 1, . . . , k.

Works great for the Maxwell-Boltzmann distribution.
In 1963, I.J. Good argued that the “null hypothesis” concerning an unknown

probability distribution from a given class should be the one stating that the dis-
tribution is the maximum entropy distribution in the class.

In our case, Ω is the set Z
n
+ of non-negative integer vectors, fi are the linear

equations defining polytope P , and µ is the counting probability measure on P∩Zn
+.

We approximate µ by the maximum entropy distribution on Z
n
+ subject to the

constraints E fi = αi, where fi are the linear equations defining P .

Fact: Among all distributions on Z+ with a given expectation, the geometric
distribution has the maximum entropy. The entropy of a geometric distribution
with expectation x is

g(x) = (x+ 1) ln(x+ 1)− x lnx.

A

S

Let us choose a maximum entropy distribution among all probability distribu-
tions on a given set S ⊂ R

n with the expectation in a given affine subspace A. It
is not hard to argue that the conditional distribution on S ∩ A must be uniform.
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Multi-way transportation polytopes
and multi-way contingency tables

Transportation polytopes. Let us choose positive r1, . . . , rm and c1, . . . , cn such
that

r1 + . . .+ rm = c1 + . . .+ cn = N.

The polytope P of non-negative m×n matrices (xij) with row sums r1, . . . , rm and
column sums c1, . . . , cn is called a (two-index) transportation polytope. We have

dimP = (m− 1)(n− 1).

Suppose ri and cj are integer. Integer points in P are called (two-way) contingency
tables.

ν-way transportation polytopes. Let us fix an integer ν ≥ 2. The polytope P
of ν-dimensional

k1 × . . .× kν

arrays (xj1...jν ) with prescribed sectional sums

∑

1≤j1≤k1
............

1≤ji−1≤ki−1

1≤ji+1≤ki+1
............
1≤jν≤kν

xj1...ji−1,j,ji+1...jν

are called ν-way transportation polytopes.

As long as the natural balance conditions are met, P is a polytope with

dimP = k1 · · ·kν − (k1 + . . .+ kν) + ν − 1.

Integer points in P are called ν-way contingency tables.
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Some results

Fix ν and let k1, . . . , kν grow roughly proportionately.
We proved:

• The number of integer points in P is asymptotically Gaussian provided ν ≥ 5.
We suspect it is Gaussian already for ν ≥ 3.

• In particular, the number of non-negative integer k×· · ·× k magic cubes, that
is, contingency tables with all sectional sums equal to r = αkν−1 is

(
1 + o(1)

) (
(α+ 1)α+1α−α

)kν (
2πα2 + 2πα

)−(kν−ν+1)/2
k(ν−ν2)(k−1)/2

as k −→ +∞,

provided ν ≥ 5, r is integer and α is separated away from 0;

• For ν = 2, the asymptotic of the number of integer contingency tables with
equal row sums and equal column sums was recently computed by E.R. Canfield and
B. McKay. It is differs from the Gaussian estimate by a constant factor (generally,
greater than 1). This corresponds to the Edgeworth correction to the Gaussian
distribution.
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The curious case of ν = 2

The Gaussian formula should be multiplied by the correction factor, computed
as follows.

Let Z = (zij) be the matrix maximizing

g(x) =
∑

ij

(
(xij + 1) ln (xij + 1)− xij lnxij

)

on the polytope of non-negative m × n matrices with row sums (r1, . . . , rm) and
column sums (c1, . . . , cn).

Let us consider the quadratic form q : Rm+n −→ R:

q(s, t) =
1

2

∑

ij

(
z2ij + zij

)
(si + tj)

2
for (s, t) = (s1, . . . , sm; t1, . . . , tn) .

Let

u =


1, . . . , 1︸ ︷︷ ︸

m times

;−1, . . . ,−1︸ ︷︷ ︸
n times




and let L ⊂ R
m+n be any hyperplane not containing u. Then the restriction of q

onto L is strictly positive definite and we consider the Gaussian probability measure
on L with the density proportional to e−q.

Let us define random variables f, h : L −→ R by

f(s, t) =
1

6

∑

ij

zij (zij + 1) (2zij + 1) (si + tj)
3

and

h(s, t) =
1

24

∑

ij

zij (zij + 1)
(
z2ij + 6zij + 1

)
(si + tj)

4

for (s, t) = (s1, . . . , sm; t1, . . . , tn) .

Let
µ = E f2 and ν = Eh.

Then the correction factor is

exp
{
−
µ

2
+ ν

}
.

19



Ramifications: counting 0-1 points in polytopes

A similar approach works for the set P ∩ {0, 1}n of points with 0-1 coordinates
in P ⊂ R

n, where P is defined by the system

P =
{
x : Ax = b, 0 ≤ x ≤ 1

}
.

Here A = (aij) is a k × n integer matrix of rank k < n and b ∈ Z
k. Let Λ =

A (Zn) ⊂ Z
k.

The geometric distribution is replaced by the Bernoulli distribution and function

g(ξ) = (ξ + 1) ln(ξ + 1)− ξ ln ξ

is replaced by the standard entropy function

h(x) = ξ ln
1

ξ
+ (1− ξ) ln

1

1− ξ
for 0 ≤ ξ ≤ 1.

0

0.2

0.4

0.6

0.2 0.4 0.6 0.8 1x

We solve a convex optimization problem:

Find max h(x) =

n∑

j=1

h (ξj)

Subject to: x = (ξ1, . . . , ξn) ∈ P.

Since h is strictly concave, the maximum point

z = (ζ1, . . . , ζn)

is unique and can be found efficiently by interior point methods, for example.
We compute the k × d matrix Q = (qij) by

qij =

n∑

m=1

aimajm
(
ζm − ζ2m

)
.

The Gaussian formula:

|P ∩ {0, 1}n| ≈
eh(z) det Λ

(2π)k/2 (detQ)
1/2

.
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