
On the complexity of #CSP

Martin Dyer

University of Leeds

Counting, Inference, and Optimization on Graphs

Princeton

Thursday, 3rd November, 2011

(joint work with David Richerby)

Introduction

1 Introduction

2 Rectangularity

3 Frames

4 Counting

5 Decidability

6 Conclusion

Introduction

Definitions and notation

A constraint language Γ is a collection of named relations over
a fixed finite set D, the domain.

An instance has a set of variables V = {v1, v2, . . . , vn} and a finite
collection of constraints, C.

A constraint has the form R(vi1 , . . . , vik), where R ∈ Γ has arity k,
and vi1 , . . . , vik ∈ V , not necessarily distinct.

An assignment is a mapping σ : V → D. It is satisfying if
(σ(v1), . . . , σ(vk)) ∈ R, for every constraint in C.

We write CSP(Γ) for CSP with all constraints from Γ.

In non-uniform CSP, we regard D and Γ as being fixed constants.
We measure the size of the input by the number of variables, n.

1

Introduction

Definitions and notation

A constraint language Γ is a collection of named relations over
a fixed finite set D, the domain.

An instance has a set of variables V = {v1, v2, . . . , vn} and a finite
collection of constraints, C.

A constraint has the form R(vi1 , . . . , vik), where R ∈ Γ has arity k,
and vi1 , . . . , vik ∈ V , not necessarily distinct.

An assignment is a mapping σ : V → D. It is satisfying if
(σ(v1), . . . , σ(vk)) ∈ R, for every constraint in C.

We write CSP(Γ) for CSP with all constraints from Γ.

In non-uniform CSP, we regard D and Γ as being fixed constants.
We measure the size of the input by the number of variables, n.

1

Introduction

Definitions and notation

A constraint language Γ is a collection of named relations over
a fixed finite set D, the domain.

An instance has a set of variables V = {v1, v2, . . . , vn} and a finite
collection of constraints, C.

A constraint has the form R(vi1 , . . . , vik), where R ∈ Γ has arity k,
and vi1 , . . . , vik ∈ V , not necessarily distinct.

An assignment is a mapping σ : V → D. It is satisfying if
(σ(v1), . . . , σ(vk)) ∈ R, for every constraint in C.

We write CSP(Γ) for CSP with all constraints from Γ.

In non-uniform CSP, we regard D and Γ as being fixed constants.
We measure the size of the input by the number of variables, n.

1

Introduction

Definitions and notation

A constraint language Γ is a collection of named relations over
a fixed finite set D, the domain.

An instance has a set of variables V = {v1, v2, . . . , vn} and a finite
collection of constraints, C.

A constraint has the form R(vi1 , . . . , vik), where R ∈ Γ has arity k,
and vi1 , . . . , vik ∈ V , not necessarily distinct.

An assignment is a mapping σ : V → D. It is satisfying if
(σ(v1), . . . , σ(vk)) ∈ R, for every constraint in C.

We write CSP(Γ) for CSP with all constraints from Γ.

In non-uniform CSP, we regard D and Γ as being fixed constants.
We measure the size of the input by the number of variables, n.

1

Introduction

Definitions and notation

A constraint language Γ is a collection of named relations over
a fixed finite set D, the domain.

An instance has a set of variables V = {v1, v2, . . . , vn} and a finite
collection of constraints, C.

A constraint has the form R(vi1 , . . . , vik), where R ∈ Γ has arity k,
and vi1 , . . . , vik ∈ V , not necessarily distinct.

An assignment is a mapping σ : V → D. It is satisfying if
(σ(v1), . . . , σ(vk)) ∈ R, for every constraint in C.

We write CSP(Γ) for CSP with all constraints from Γ.

In non-uniform CSP, we regard D and Γ as being fixed constants.
We measure the size of the input by the number of variables, n.

1

Introduction

Definitions and notation

A constraint language Γ is a collection of named relations over
a fixed finite set D, the domain.

An instance has a set of variables V = {v1, v2, . . . , vn} and a finite
collection of constraints, C.

A constraint has the form R(vi1 , . . . , vik), where R ∈ Γ has arity k,
and vi1 , . . . , vik ∈ V , not necessarily distinct.

An assignment is a mapping σ : V → D. It is satisfying if
(σ(v1), . . . , σ(vk)) ∈ R, for every constraint in C.

We write CSP(Γ) for CSP with all constraints from Γ.

In non-uniform CSP, we regard D and Γ as being fixed constants.
We measure the size of the input by the number of variables, n.

1

Introduction

Decision v. counting

For a given input, there are (at least) two questions we can ask:

Decision: is there any satisfying assignment for the given instance?

Counting: how many satisfying assignments are there?

For a given Γ, we can generalise these questions as follows:

CSP(Γ): what is the complexity of determining any satisfying
assignment for an arbitrary instance?

#CSP(Γ): what is the complexity of determining how many
satisfying assignments there are for an arbitrary instance?

The computational complexity is a function of n, the number of variables.

Here we will be concerned with #CSP(Γ).

2

Introduction

Decision v. counting

For a given input, there are (at least) two questions we can ask:

Decision: is there any satisfying assignment for the given instance?

Counting: how many satisfying assignments are there?

For a given Γ, we can generalise these questions as follows:

CSP(Γ): what is the complexity of determining any satisfying
assignment for an arbitrary instance?

#CSP(Γ): what is the complexity of determining how many
satisfying assignments there are for an arbitrary instance?

The computational complexity is a function of n, the number of variables.

Here we will be concerned with #CSP(Γ).

2

Introduction

Decision v. counting

For a given input, there are (at least) two questions we can ask:

Decision: is there any satisfying assignment for the given instance?

Counting: how many satisfying assignments are there?

For a given Γ, we can generalise these questions as follows:

CSP(Γ): what is the complexity of determining any satisfying
assignment for an arbitrary instance?

#CSP(Γ): what is the complexity of determining how many
satisfying assignments there are for an arbitrary instance?

The computational complexity is a function of n, the number of variables.

Here we will be concerned with #CSP(Γ).

2

Introduction

Decision v. counting

For a given input, there are (at least) two questions we can ask:

Decision: is there any satisfying assignment for the given instance?

Counting: how many satisfying assignments are there?

For a given Γ, we can generalise these questions as follows:

CSP(Γ): what is the complexity of determining any satisfying
assignment for an arbitrary instance?

#CSP(Γ): what is the complexity of determining how many
satisfying assignments there are for an arbitrary instance?

The computational complexity is a function of n, the number of variables.

Here we will be concerned with #CSP(Γ).

2

Introduction

Decision v. counting

For a given input, there are (at least) two questions we can ask:

Decision: is there any satisfying assignment for the given instance?

Counting: how many satisfying assignments are there?

For a given Γ, we can generalise these questions as follows:

CSP(Γ): what is the complexity of determining any satisfying
assignment for an arbitrary instance?

#CSP(Γ): what is the complexity of determining how many
satisfying assignments there are for an arbitrary instance?

The computational complexity is a function of n, the number of variables.

Here we will be concerned with #CSP(Γ).

2

Introduction

Decision v. counting

For a given input, there are (at least) two questions we can ask:

Decision: is there any satisfying assignment for the given instance?

Counting: how many satisfying assignments are there?

For a given Γ, we can generalise these questions as follows:

CSP(Γ): what is the complexity of determining any satisfying
assignment for an arbitrary instance?

#CSP(Γ): what is the complexity of determining how many
satisfying assignments there are for an arbitrary instance?

The computational complexity is a function of n, the number of variables.

Here we will be concerned with #CSP(Γ).

2

Introduction

Decision v. counting

For a given input, there are (at least) two questions we can ask:

Decision: is there any satisfying assignment for the given instance?

Counting: how many satisfying assignments are there?

For a given Γ, we can generalise these questions as follows:

CSP(Γ): what is the complexity of determining any satisfying
assignment for an arbitrary instance?

#CSP(Γ): what is the complexity of determining how many
satisfying assignments there are for an arbitrary instance?

The computational complexity is a function of n, the number of variables.

Here we will be concerned with #CSP(Γ).

2

Introduction

Decision v. counting

For a given input, there are (at least) two questions we can ask:

Decision: is there any satisfying assignment for the given instance?

Counting: how many satisfying assignments are there?

For a given Γ, we can generalise these questions as follows:

CSP(Γ): what is the complexity of determining any satisfying
assignment for an arbitrary instance?

#CSP(Γ): what is the complexity of determining how many
satisfying assignments there are for an arbitrary instance?

The computational complexity is a function of n, the number of variables.

Here we will be concerned with #CSP(Γ).

2

Introduction

Dichotomy

Both for decision and counting, it was conjectured that a dichotomy exists,
between P and NP for decision, and between FP and #P for counting.

For decision, the conjecture remains open. But, for counting, it is settled.

Theorem (Bulatov, 2008)

For all Γ, #CSP(Γ) is either in FP or is #P-complete.

But . . .

the proof is long, and requires a good understanding of universal
algebra, including lattice theory, tame congruence theory and
commutator theory.
the FP algorithm requires first transforming an instance to a much
larger subdirect product form, and its overall time complexity is
far from clear.
the criterion for the dichotomy (congruence singularity) isn’t shown
to be decidable.

3

Introduction

Dichotomy

Both for decision and counting, it was conjectured that a dichotomy exists,
between P and NP for decision, and between FP and #P for counting.

For decision, the conjecture remains open. But, for counting, it is settled.

Theorem (Bulatov, 2008)

For all Γ, #CSP(Γ) is either in FP or is #P-complete.

But . . .

the proof is long, and requires a good understanding of universal
algebra, including lattice theory, tame congruence theory and
commutator theory.
the FP algorithm requires first transforming an instance to a much
larger subdirect product form, and its overall time complexity is
far from clear.
the criterion for the dichotomy (congruence singularity) isn’t shown
to be decidable.

3

Introduction

Dichotomy

Both for decision and counting, it was conjectured that a dichotomy exists,
between P and NP for decision, and between FP and #P for counting.

For decision, the conjecture remains open. But, for counting, it is settled.

Theorem (Bulatov, 2008)

For all Γ, #CSP(Γ) is either in FP or is #P-complete.

But . . .

the proof is long, and requires a good understanding of universal
algebra, including lattice theory, tame congruence theory and
commutator theory.
the FP algorithm requires first transforming an instance to a much
larger subdirect product form, and its overall time complexity is
far from clear.
the criterion for the dichotomy (congruence singularity) isn’t shown
to be decidable.

3

Introduction

Dichotomy

Both for decision and counting, it was conjectured that a dichotomy exists,
between P and NP for decision, and between FP and #P for counting.

For decision, the conjecture remains open. But, for counting, it is settled.

Theorem (Bulatov, 2008)

For all Γ, #CSP(Γ) is either in FP or is #P-complete.

But . . .

the proof is long, and requires a good understanding of universal
algebra, including lattice theory, tame congruence theory and
commutator theory.
the FP algorithm requires first transforming an instance to a much
larger subdirect product form, and its overall time complexity is
far from clear.
the criterion for the dichotomy (congruence singularity) isn’t shown
to be decidable.

3

Introduction

Dichotomy

Both for decision and counting, it was conjectured that a dichotomy exists,
between P and NP for decision, and between FP and #P for counting.

For decision, the conjecture remains open. But, for counting, it is settled.

Theorem (Bulatov, 2008)

For all Γ, #CSP(Γ) is either in FP or is #P-complete.

But . . .

the proof is long, and requires a good understanding of universal
algebra, including lattice theory, tame congruence theory and
commutator theory.
the FP algorithm requires first transforming an instance to a much
larger subdirect product form, and its overall time complexity is
far from clear.
the criterion for the dichotomy (congruence singularity) isn’t shown
to be decidable.

3

Introduction

Dichotomy

Both for decision and counting, it was conjectured that a dichotomy exists,
between P and NP for decision, and between FP and #P for counting.

For decision, the conjecture remains open. But, for counting, it is settled.

Theorem (Bulatov, 2008)

For all Γ, #CSP(Γ) is either in FP or is #P-complete.

But . . .

the proof is long, and requires a good understanding of universal
algebra, including lattice theory, tame congruence theory and
commutator theory.
the FP algorithm requires first transforming an instance to a much
larger subdirect product form, and its overall time complexity is
far from clear.
the criterion for the dichotomy (congruence singularity) isn’t shown
to be decidable.

3

Introduction

Dichotomy

Both for decision and counting, it was conjectured that a dichotomy exists,
between P and NP for decision, and between FP and #P for counting.

For decision, the conjecture remains open. But, for counting, it is settled.

Theorem (Bulatov, 2008)

For all Γ, #CSP(Γ) is either in FP or is #P-complete.

But . . .

the proof is long, and requires a good understanding of universal
algebra, including lattice theory, tame congruence theory and
commutator theory.
the FP algorithm requires first transforming an instance to a much
larger subdirect product form, and its overall time complexity is
far from clear.
the criterion for the dichotomy (congruence singularity) isn’t shown
to be decidable.

3

Introduction

Our results

An elementary, and relatively short proof of Bulatov’s dichotomy
for #CSP(Γ), using a new criterion.

A natural algorithm, with proven time complexity, for the class
of problems in FP.

By-product: an improved algorithm for CSP(Γ) when Γ is
“strongly rectangular”.

And, most importantly,

decidability of the new criterion.

4

Introduction

Our results

An elementary, and relatively short proof of Bulatov’s dichotomy
for #CSP(Γ), using a new criterion.

A natural algorithm, with proven time complexity, for the class
of problems in FP.

By-product: an improved algorithm for CSP(Γ) when Γ is
“strongly rectangular”.

And, most importantly,

decidability of the new criterion.

4

Introduction

Our results

An elementary, and relatively short proof of Bulatov’s dichotomy
for #CSP(Γ), using a new criterion.

A natural algorithm, with proven time complexity, for the class
of problems in FP.

By-product: an improved algorithm for CSP(Γ) when Γ is
“strongly rectangular”.

And, most importantly,

decidability of the new criterion.

4

Introduction

Our results

An elementary, and relatively short proof of Bulatov’s dichotomy
for #CSP(Γ), using a new criterion.

A natural algorithm, with proven time complexity, for the class
of problems in FP.

By-product: an improved algorithm for CSP(Γ) when Γ is
“strongly rectangular”.

And, most importantly,

decidability of the new criterion.

4

Rectangularity

1 Introduction

2 Rectangularity

3 Frames

4 Counting

5 Decidability

6 Conclusion

Rectangularity

Rectangularity

A relation R defined on A ⊆ Dr , for some r , is rectangular if

(a, c)
(a,d)
(b, c)

 ∈ R ⇒ (b,d) ∈ R

5

Rectangularity

Rectangularity

A relation R defined on A ⊆ Dr , for some r , is rectangular if

(a, c)
(a,d)
(b, c)

 ∈ R ⇒ (b,d) ∈ R

5

Rectangularity

Rectangularity

A relation R defined on A ⊆ Dr , for some r , is rectangular if

(a, c)
(a,d)
(b, c)

 ∈ R ⇒ (b,d) ∈ R

(a, c) (a,d)

(b, c)

5

Rectangularity

Rectangularity

A relation R defined on A ⊆ Dr , for some r , is rectangular if

(a, c)
(a,d)
(b, c)

 ∈ R ⇒ (b,d) ∈ R

(a, c) (a,d)
↓

(b, c) → (b,d)

5

Rectangularity

Strong rectangularity

A relation is pp-definable in Γ if it uses only

∃ (existential quantifier), ∧ (logical “and”) and the relations in Γ.

This adds ∃ to the operations permissible in CSP(Γ).

Γ is strongly rectangular if every relation pp-definable in Γ is rectangular.

It’s not clear that this is decidable, but we have the well known

Lemma

Γ is strongly rectangular if, and only if, it has a Mal’tsev polymorphism.

In view of this, Bulatov & Dalmau (2006) used “relations invariant
under a Mal’tsev operation” for what we call “strongly rectangular”.

This directly implies an algorithm for testing the strong rectangularity of Γ.

6

Rectangularity

Strong rectangularity

A relation is pp-definable in Γ if it uses only

∃ (existential quantifier), ∧ (logical “and”) and the relations in Γ.

This adds ∃ to the operations permissible in CSP(Γ).

Γ is strongly rectangular if every relation pp-definable in Γ is rectangular.

It’s not clear that this is decidable, but we have the well known

Lemma

Γ is strongly rectangular if, and only if, it has a Mal’tsev polymorphism.

In view of this, Bulatov & Dalmau (2006) used “relations invariant
under a Mal’tsev operation” for what we call “strongly rectangular”.

This directly implies an algorithm for testing the strong rectangularity of Γ.

6

Rectangularity

Strong rectangularity

A relation is pp-definable in Γ if it uses only

∃ (existential quantifier), ∧ (logical “and”) and the relations in Γ.

This adds ∃ to the operations permissible in CSP(Γ).

Γ is strongly rectangular if every relation pp-definable in Γ is rectangular.

It’s not clear that this is decidable, but we have the well known

Lemma

Γ is strongly rectangular if, and only if, it has a Mal’tsev polymorphism.

In view of this, Bulatov & Dalmau (2006) used “relations invariant
under a Mal’tsev operation” for what we call “strongly rectangular”.

This directly implies an algorithm for testing the strong rectangularity of Γ.

6

Rectangularity

Strong rectangularity

A relation is pp-definable in Γ if it uses only

∃ (existential quantifier), ∧ (logical “and”) and the relations in Γ.

This adds ∃ to the operations permissible in CSP(Γ).

Γ is strongly rectangular if every relation pp-definable in Γ is rectangular.

It’s not clear that this is decidable, but we have the well known

Lemma

Γ is strongly rectangular if, and only if, it has a Mal’tsev polymorphism.

In view of this, Bulatov & Dalmau (2006) used “relations invariant
under a Mal’tsev operation” for what we call “strongly rectangular”.

This directly implies an algorithm for testing the strong rectangularity of Γ.

6

Rectangularity

Strong rectangularity

A relation is pp-definable in Γ if it uses only

∃ (existential quantifier), ∧ (logical “and”) and the relations in Γ.

This adds ∃ to the operations permissible in CSP(Γ).

Γ is strongly rectangular if every relation pp-definable in Γ is rectangular.

It’s not clear that this is decidable, but we have the well known

Lemma

Γ is strongly rectangular if, and only if, it has a Mal’tsev polymorphism.

In view of this, Bulatov & Dalmau (2006) used “relations invariant
under a Mal’tsev operation” for what we call “strongly rectangular”.

This directly implies an algorithm for testing the strong rectangularity of Γ.

6

Rectangularity

Strong rectangularity

A relation is pp-definable in Γ if it uses only

∃ (existential quantifier), ∧ (logical “and”) and the relations in Γ.

This adds ∃ to the operations permissible in CSP(Γ).

Γ is strongly rectangular if every relation pp-definable in Γ is rectangular.

It’s not clear that this is decidable, but we have the well known

Lemma

Γ is strongly rectangular if, and only if, it has a Mal’tsev polymorphism.

In view of this, Bulatov & Dalmau (2006) used “relations invariant
under a Mal’tsev operation” for what we call “strongly rectangular”.

This directly implies an algorithm for testing the strong rectangularity of Γ.

6

Rectangularity

Strong rectangularity

A relation is pp-definable in Γ if it uses only

∃ (existential quantifier), ∧ (logical “and”) and the relations in Γ.

This adds ∃ to the operations permissible in CSP(Γ).

Γ is strongly rectangular if every relation pp-definable in Γ is rectangular.

It’s not clear that this is decidable, but we have the well known

Lemma

Γ is strongly rectangular if, and only if, it has a Mal’tsev polymorphism.

In view of this, Bulatov & Dalmau (2006) used “relations invariant
under a Mal’tsev operation” for what we call “strongly rectangular”.

This directly implies an algorithm for testing the strong rectangularity of Γ.

6

Frames

1 Introduction

2 Rectangularity

3 Frames

4 Counting

5 Decidability

6 Conclusion

Frames

Notation

We use the following notation. Let [n] denote {1, 2, . . . , n}.

If J ⊆ [n], then prJR is the relation R restricted to the positions in J.

Example: Suppose D = {0, 1} and R is the ternary relation with 3-tuples:

(0 , 1 , 0)
(0 , 1 , 1)
(1 , 0 , 1)
(1 , 1 , 0)
(1 , 1 , 1)

then pr{1,2}R is the binary relation with 2-tuples:

(0 , 1)
(1 , 0)
(1 , 1)

We may omit brackets in the subscript, e.g. pr1,2R.
7

Frames

Notation

We use the following notation. Let [n] denote {1, 2, . . . , n}.

If J ⊆ [n], then prJR is the relation R restricted to the positions in J.

Example: Suppose D = {0, 1} and R is the ternary relation with 3-tuples:

(0 , 1 , 0)
(0 , 1 , 1)
(1 , 0 , 1)
(1 , 1 , 0)
(1 , 1 , 1)

then pr{1,2}R is the binary relation with 2-tuples:

(0 , 1)
(1 , 0)
(1 , 1)

We may omit brackets in the subscript, e.g. pr1,2R.
7

Frames

Notation

We use the following notation. Let [n] denote {1, 2, . . . , n}.

If J ⊆ [n], then prJR is the relation R restricted to the positions in J.

Example: Suppose D = {0, 1} and R is the ternary relation with 3-tuples:

(0 , 1 , 0)
(0 , 1 , 1)
(1 , 0 , 1)
(1 , 1 , 0)
(1 , 1 , 1)

then pr{1,2}R is the binary relation with 2-tuples:

(0 , 1)
(1 , 0)
(1 , 1)

We may omit brackets in the subscript, e.g. pr1,2R.
7

Frames

Notation

We use the following notation. Let [n] denote {1, 2, . . . , n}.

If J ⊆ [n], then prJR is the relation R restricted to the positions in J.

Example: Suppose D = {0, 1} and R is the ternary relation with 3-tuples:

(0 , 1 , 0)
(0 , 1 , 1)
(1 , 0 , 1)
(1 , 1 , 0)
(1 , 1 , 1)

then pr{1,2}R is the binary relation with 2-tuples:

(0 , 1)
(1 , 0)
(1 , 1)

We may omit brackets in the subscript, e.g. pr1,2R.
7

Frames

Notation

We use the following notation. Let [n] denote {1, 2, . . . , n}.

If J ⊆ [n], then prJR is the relation R restricted to the positions in J.

Example: Suppose D = {0, 1} and R is the ternary relation with 3-tuples:

(0 , 1 , 0)
(0 , 1 , 1)
(1 , 0 , 1)
(1 , 1 , 0)
(1 , 1 , 1)

then pr{1,2}R is the binary relation with 2-tuples:

(0 , 1)
(1 , 0)
(1 , 1)

We may omit brackets in the subscript, e.g. pr1,2R.
7

Frames

Frames

Frames are our concise representations for strongly rectangular relations.
They are similar to, but generally somewhat smaller than, the “compact
representations” introduced by Bulatov and Dalmau (2006).

A frame for a relation R ⊆ Dn is any relation F ⊆ R such that:

If, for any 0 ≤ i < n,

R contains a pair of tuples (u1, . . . , ui , a, . . .), (u1, . . . , ui , b, . . .),

then F contains a pair of tuples (v1, . . . , vi , a, . . .), (v1, . . . , vi , b, . . .).

R is a frame for itself so every relation has a frame.
However, to be useful they should be much smaller than R.

The union of the set of witness pairs in Bulatov and Dalmau’s
algorithm is also a frame, but provably smaller frames exist.

8

Frames

Frames

Frames are our concise representations for strongly rectangular relations.
They are similar to, but generally somewhat smaller than, the “compact
representations” introduced by Bulatov and Dalmau (2006).

A frame for a relation R ⊆ Dn is any relation F ⊆ R such that:

If, for any 0 ≤ i < n,

R contains a pair of tuples (u1, . . . , ui , a, . . .), (u1, . . . , ui , b, . . .),

then F contains a pair of tuples (v1, . . . , vi , a, . . .), (v1, . . . , vi , b, . . .).

R is a frame for itself so every relation has a frame.
However, to be useful they should be much smaller than R.

The union of the set of witness pairs in Bulatov and Dalmau’s
algorithm is also a frame, but provably smaller frames exist.

8

Frames

Frames

Frames are our concise representations for strongly rectangular relations.
They are similar to, but generally somewhat smaller than, the “compact
representations” introduced by Bulatov and Dalmau (2006).

A frame for a relation R ⊆ Dn is any relation F ⊆ R such that:

If, for any 0 ≤ i < n,

R contains a pair of tuples (u1, . . . , ui , a, . . .), (u1, . . . , ui , b, . . .),

then F contains a pair of tuples (v1, . . . , vi , a, . . .), (v1, . . . , vi , b, . . .).

R is a frame for itself so every relation has a frame.
However, to be useful they should be much smaller than R.

The union of the set of witness pairs in Bulatov and Dalmau’s
algorithm is also a frame, but provably smaller frames exist.

8

Frames

Frames

Frames are our concise representations for strongly rectangular relations.
They are similar to, but generally somewhat smaller than, the “compact
representations” introduced by Bulatov and Dalmau (2006).

A frame for a relation R ⊆ Dn is any relation F ⊆ R such that:

If, for any 0 ≤ i < n,

R contains a pair of tuples (u1, . . . , ui , a, . . .), (u1, . . . , ui , b, . . .),

then F contains a pair of tuples (v1, . . . , vi , a, . . .), (v1, . . . , vi , b, . . .).

R is a frame for itself so every relation has a frame.
However, to be useful they should be much smaller than R.

The union of the set of witness pairs in Bulatov and Dalmau’s
algorithm is also a frame, but provably smaller frames exist.

8

Frames

Frames

Frames are our concise representations for strongly rectangular relations.
They are similar to, but generally somewhat smaller than, the “compact
representations” introduced by Bulatov and Dalmau (2006).

A frame for a relation R ⊆ Dn is any relation F ⊆ R such that:

If, for any 0 ≤ i < n,

R contains a pair of tuples (u1, . . . , ui , a, . . .), (u1, . . . , ui , b, . . .),

then F contains a pair of tuples (v1, . . . , vi , a, . . .), (v1, . . . , vi , b, . . .).

R is a frame for itself so every relation has a frame.
However, to be useful they should be much smaller than R.

The union of the set of witness pairs in Bulatov and Dalmau’s
algorithm is also a frame, but provably smaller frames exist.

8

Frames

Frames

Frames are our concise representations for strongly rectangular relations.
They are similar to, but generally somewhat smaller than, the “compact
representations” introduced by Bulatov and Dalmau (2006).

A frame for a relation R ⊆ Dn is any relation F ⊆ R such that:

If, for any 0 ≤ i < n,

R contains a pair of tuples (u1, . . . , ui , a, . . .), (u1, . . . , ui , b, . . .),

then F contains a pair of tuples (v1, . . . , vi , a, . . .), (v1, . . . , vi , b, . . .).

R is a frame for itself so every relation has a frame.
However, to be useful they should be much smaller than R.

The union of the set of witness pairs in Bulatov and Dalmau’s
algorithm is also a frame, but provably smaller frames exist.

8

Frames

Example

Here is a frame for the complete relation {0, 1, 2}3.

(0, 0, 0)
(1, 0, 0) (0, 1, 0) (0, 0, 1)
(2, 0, 0) (0, 2, 0) (0, 0, 2)

It contains only 7 of the 27 3-tuples in the relation.

Similarly, there is a frame with less than n|D| n-tuples for any
complete relation Dn (which has |D|n n-tuples).

The complete relation Dn is trivially strongly rectangular.

For example, any function ϕ : D3 → D satisfying
ϕ(a, b, b) = ϕ(b, b, a) = a is a Mal’tsev polymorphism of Dn.

9

Frames

Example

Here is a frame for the complete relation {0, 1, 2}3.

(0, 0, 0)
(1, 0, 0) (0, 1, 0) (0, 0, 1)
(2, 0, 0) (0, 2, 0) (0, 0, 2)

It contains only 7 of the 27 3-tuples in the relation.

Similarly, there is a frame with less than n|D| n-tuples for any
complete relation Dn (which has |D|n n-tuples).

The complete relation Dn is trivially strongly rectangular.

For example, any function ϕ : D3 → D satisfying
ϕ(a, b, b) = ϕ(b, b, a) = a is a Mal’tsev polymorphism of Dn.

9

Frames

Example

Here is a frame for the complete relation {0, 1, 2}3.

(0, 0, 0)
(1, 0, 0) (0, 1, 0) (0, 0, 1)
(2, 0, 0) (0, 2, 0) (0, 0, 2)

It contains only 7 of the 27 3-tuples in the relation.

Similarly, there is a frame with less than n|D| n-tuples for any
complete relation Dn (which has |D|n n-tuples).

The complete relation Dn is trivially strongly rectangular.

For example, any function ϕ : D3 → D satisfying
ϕ(a, b, b) = ϕ(b, b, a) = a is a Mal’tsev polymorphism of Dn.

9

Frames

Example

Here is a frame for the complete relation {0, 1, 2}3.

(0, 0, 0)
(1, 0, 0) (0, 1, 0) (0, 0, 1)
(2, 0, 0) (0, 2, 0) (0, 0, 2)

It contains only 7 of the 27 3-tuples in the relation.

Similarly, there is a frame with less than n|D| n-tuples for any
complete relation Dn (which has |D|n n-tuples).

The complete relation Dn is trivially strongly rectangular.

For example, any function ϕ : D3 → D satisfying
ϕ(a, b, b) = ϕ(b, b, a) = a is a Mal’tsev polymorphism of Dn.

9

Frames

Example

Here is a frame for the complete relation {0, 1, 2}3.

(0, 0, 0)
(1, 0, 0) (0, 1, 0) (0, 0, 1)
(2, 0, 0) (0, 2, 0) (0, 0, 2)

It contains only 7 of the 27 3-tuples in the relation.

Similarly, there is a frame with less than n|D| n-tuples for any
complete relation Dn (which has |D|n n-tuples).

The complete relation Dn is trivially strongly rectangular.

For example, any function ϕ : D3 → D satisfying
ϕ(a, b, b) = ϕ(b, b, a) = a is a Mal’tsev polymorphism of Dn.

9

Frames

Example

Here is a frame for the complete relation {0, 1, 2}3.

(0, 0, 0)
(1, 0, 0) (0, 1, 0) (0, 0, 1)
(2, 0, 0) (0, 2, 0) (0, 0, 2)

It contains only 7 of the 27 3-tuples in the relation.

Similarly, there is a frame with less than n|D| n-tuples for any
complete relation Dn (which has |D|n n-tuples).

The complete relation Dn is trivially strongly rectangular.

For example, any function ϕ : D3 → D satisfying
ϕ(a, b, b) = ϕ(b, b, a) = a is a Mal’tsev polymorphism of Dn.

9

Frames

Properties of frames

If F is a frame for a strongly rectangular n-ary relation R,
with Mal’tsev polymorphism ϕ:

F = ∅ if, and only if, R = ∅.

We can recover R from F and ϕ, by taking the closure of F under ϕ.
However, this will take exponential time if R has exponential size.

In time O(n2|F |2), we can construct a small frame for R, which
means a frame with at most n|D| n-tuples, if one exists.

If F is a small frame for R, and a ∈ Dn, we can test whether
or not a ∈ R, in time O(n2).

10

Frames

Properties of frames

If F is a frame for a strongly rectangular n-ary relation R,
with Mal’tsev polymorphism ϕ:

F = ∅ if, and only if, R = ∅.

We can recover R from F and ϕ, by taking the closure of F under ϕ.
However, this will take exponential time if R has exponential size.

In time O(n2|F |2), we can construct a small frame for R, which
means a frame with at most n|D| n-tuples, if one exists.

If F is a small frame for R, and a ∈ Dn, we can test whether
or not a ∈ R, in time O(n2).

10

Frames

Properties of frames

If F is a frame for a strongly rectangular n-ary relation R,
with Mal’tsev polymorphism ϕ:

F = ∅ if, and only if, R = ∅.

We can recover R from F and ϕ, by taking the closure of F under ϕ.
However, this will take exponential time if R has exponential size.

In time O(n2|F |2), we can construct a small frame for R, which
means a frame with at most n|D| n-tuples, if one exists.

If F is a small frame for R, and a ∈ Dn, we can test whether
or not a ∈ R, in time O(n2).

10

Frames

Properties of frames

If F is a frame for a strongly rectangular n-ary relation R,
with Mal’tsev polymorphism ϕ:

F = ∅ if, and only if, R = ∅.

We can recover R from F and ϕ, by taking the closure of F under ϕ.
However, this will take exponential time if R has exponential size.

In time O(n2|F |2), we can construct a small frame for R, which
means a frame with at most n|D| n-tuples, if one exists.

If F is a small frame for R, and a ∈ Dn, we can test whether
or not a ∈ R, in time O(n2).

10

Frames

Properties of frames

If F is a frame for a strongly rectangular n-ary relation R,
with Mal’tsev polymorphism ϕ:

F = ∅ if, and only if, R = ∅.

We can recover R from F and ϕ, by taking the closure of F under ϕ.
However, this will take exponential time if R has exponential size.

In time O(n2|F |2), we can construct a small frame for R, which
means a frame with at most n|D| n-tuples, if one exists.

If F is a small frame for R, and a ∈ Dn, we can test whether
or not a ∈ R, in time O(n2).

10

Frames

Frames for strongly rectangular constraints

Let Γ be a strongly rectangular constraint language over domain D.

For an instance I of #CSP(Γ) with n variables, the set of satisfying
assignments can be considered to be an n-ary relation Φ ⊆ Dn.

Then Φ is pp-definable in Γ, so is also strongly rectangular
(and has the same Mal’tsev polymorphism).

We wish to construct, in time polynomial in n, a small frame F for Φ,
i.e. one with at most n|D| n-tuples.

11

Frames

Frames for strongly rectangular constraints

Let Γ be a strongly rectangular constraint language over domain D.

For an instance I of #CSP(Γ) with n variables, the set of satisfying
assignments can be considered to be an n-ary relation Φ ⊆ Dn.

Then Φ is pp-definable in Γ, so is also strongly rectangular
(and has the same Mal’tsev polymorphism).

We wish to construct, in time polynomial in n, a small frame F for Φ,
i.e. one with at most n|D| n-tuples.

11

Frames

Frames for strongly rectangular constraints

Let Γ be a strongly rectangular constraint language over domain D.

For an instance I of #CSP(Γ) with n variables, the set of satisfying
assignments can be considered to be an n-ary relation Φ ⊆ Dn.

Then Φ is pp-definable in Γ, so is also strongly rectangular
(and has the same Mal’tsev polymorphism).

We wish to construct, in time polynomial in n, a small frame F for Φ,
i.e. one with at most n|D| n-tuples.

11

Frames

Frames for strongly rectangular constraints

Let Γ be a strongly rectangular constraint language over domain D.

For an instance I of #CSP(Γ) with n variables, the set of satisfying
assignments can be considered to be an n-ary relation Φ ⊆ Dn.

Then Φ is pp-definable in Γ, so is also strongly rectangular
(and has the same Mal’tsev polymorphism).

We wish to construct, in time polynomial in n, a small frame F for Φ,
i.e. one with at most n|D| n-tuples.

11

Frames

Bulatov & Dalmau’s idea

Let instance I have constraints C1, . . . ,Cm.

For 0 ≤ j ≤ m, let Ij be the sub-instance of I with all variables
but only constraints C1, . . . ,Cj , determining relation Φj .

So, Im = I and I0 has no constraints.

Therefore Φ0 = Dn, and has a small frame (as we’ve seen).

We must construct, efficiently, a frame for Φj , given Cj and
a frame Fj−1 for Φj−1.

12

Frames

Bulatov & Dalmau’s idea

Let instance I have constraints C1, . . . ,Cm.

For 0 ≤ j ≤ m, let Ij be the sub-instance of I with all variables
but only constraints C1, . . . ,Cj , determining relation Φj .

So, Im = I and I0 has no constraints.

Therefore Φ0 = Dn, and has a small frame (as we’ve seen).

We must construct, efficiently, a frame for Φj , given Cj and
a frame Fj−1 for Φj−1.

12

Frames

Bulatov & Dalmau’s idea

Let instance I have constraints C1, . . . ,Cm.

For 0 ≤ j ≤ m, let Ij be the sub-instance of I with all variables
but only constraints C1, . . . ,Cj , determining relation Φj .

So, Im = I and I0 has no constraints.

Therefore Φ0 = Dn, and has a small frame (as we’ve seen).

We must construct, efficiently, a frame for Φj , given Cj and
a frame Fj−1 for Φj−1.

12

Frames

Bulatov & Dalmau’s idea

Let instance I have constraints C1, . . . ,Cm.

For 0 ≤ j ≤ m, let Ij be the sub-instance of I with all variables
but only constraints C1, . . . ,Cj , determining relation Φj .

So, Im = I and I0 has no constraints.

Therefore Φ0 = Dn, and has a small frame (as we’ve seen).

We must construct, efficiently, a frame for Φj , given Cj and
a frame Fj−1 for Φj−1.

12

Frames

Bulatov & Dalmau’s idea

Let instance I have constraints C1, . . . ,Cm.

For 0 ≤ j ≤ m, let Ij be the sub-instance of I with all variables
but only constraints C1, . . . ,Cj , determining relation Φj .

So, Im = I and I0 has no constraints.

Therefore Φ0 = Dn, and has a small frame (as we’ve seen).

We must construct, efficiently, a frame for Φj , given Cj and
a frame Fj−1 for Φj−1.

12

Frames

Inductive step

Let F be a frame for the relation Ψ = Φj−1 determined by the
constraints C1,C2, . . . ,Cj−1 added so far.

Assume for simplicity that the next constraint Cj is C = R(x1, . . . , xk).

For each i > k , choose a set Ti ⊆ F from which pr{1,...,k,i}Ψ
can be reconstructed.

Remove from each Ti anything that is inconsistent with C .

Use the resulting sets sequentially to construct “partial frames”
for pr{1,...,k+1}(Ψ ∧ C), , pr{1,...,n}(Ψ ∧ C) = Φj ∧ C .

The total time to construct the frame is O(n5), if n is the number
of variables in Φn = Φ, provided Γ has constant size.

13

Frames

Inductive step

Let F be a frame for the relation Ψ = Φj−1 determined by the
constraints C1,C2, . . . ,Cj−1 added so far.

Assume for simplicity that the next constraint Cj is C = R(x1, . . . , xk).

For each i > k , choose a set Ti ⊆ F from which pr{1,...,k,i}Ψ
can be reconstructed.

Remove from each Ti anything that is inconsistent with C .

Use the resulting sets sequentially to construct “partial frames”
for pr{1,...,k+1}(Ψ ∧ C), , pr{1,...,n}(Ψ ∧ C) = Φj ∧ C .

The total time to construct the frame is O(n5), if n is the number
of variables in Φn = Φ, provided Γ has constant size.

13

Frames

Inductive step

Let F be a frame for the relation Ψ = Φj−1 determined by the
constraints C1,C2, . . . ,Cj−1 added so far.

Assume for simplicity that the next constraint Cj is C = R(x1, . . . , xk).

For each i > k , choose a set Ti ⊆ F from which pr{1,...,k,i}Ψ
can be reconstructed.

Remove from each Ti anything that is inconsistent with C .

Use the resulting sets sequentially to construct “partial frames”
for pr{1,...,k+1}(Ψ ∧ C), , pr{1,...,n}(Ψ ∧ C) = Φj ∧ C .

The total time to construct the frame is O(n5), if n is the number
of variables in Φn = Φ, provided Γ has constant size.

13

Frames

Inductive step

Let F be a frame for the relation Ψ = Φj−1 determined by the
constraints C1,C2, . . . ,Cj−1 added so far.

Assume for simplicity that the next constraint Cj is C = R(x1, . . . , xk).

For each i > k , choose a set Ti ⊆ F from which pr{1,...,k,i}Ψ
can be reconstructed.

Remove from each Ti anything that is inconsistent with C .

Use the resulting sets sequentially to construct “partial frames”
for pr{1,...,k+1}(Ψ ∧ C), , pr{1,...,n}(Ψ ∧ C) = Φj ∧ C .

The total time to construct the frame is O(n5), if n is the number
of variables in Φn = Φ, provided Γ has constant size.

13

Frames

Inductive step

Let F be a frame for the relation Ψ = Φj−1 determined by the
constraints C1,C2, . . . ,Cj−1 added so far.

Assume for simplicity that the next constraint Cj is C = R(x1, . . . , xk).

For each i > k , choose a set Ti ⊆ F from which pr{1,...,k,i}Ψ
can be reconstructed.

Remove from each Ti anything that is inconsistent with C .

Use the resulting sets sequentially to construct “partial frames”
for pr{1,...,k+1}(Ψ ∧ C), , pr{1,...,n}(Ψ ∧ C) = Φj ∧ C .

The total time to construct the frame is O(n5), if n is the number
of variables in Φn = Φ, provided Γ has constant size.

13

Frames

Inductive step

Let F be a frame for the relation Ψ = Φj−1 determined by the
constraints C1,C2, . . . ,Cj−1 added so far.

Assume for simplicity that the next constraint Cj is C = R(x1, . . . , xk).

For each i > k , choose a set Ti ⊆ F from which pr{1,...,k,i}Ψ
can be reconstructed.

Remove from each Ti anything that is inconsistent with C .

Use the resulting sets sequentially to construct “partial frames”
for pr{1,...,k+1}(Ψ ∧ C), , pr{1,...,n}(Ψ ∧ C) = Φj ∧ C .

The total time to construct the frame is O(n5), if n is the number
of variables in Φn = Φ, provided Γ has constant size.

13

Counting

1 Introduction

2 Rectangularity

3 Frames

4 Counting

5 Decidability

6 Conclusion

Counting

Block matrices

Let A = (aij) be a k × ` non-negative real-valued matrix.

The matrix A has an underlying relation

RA = {(i , j) : aij > 0} ⊆ [k]× [`].

A block of A is a set of rows K ⊂ [k], and a set of columns L ⊂ [`],
such that aij = 0 if i ∈ K , j /∈ L, or i /∈ K , j ∈ L.

Example: The 4× 4 matrix

A =


0 0 1 2

0 0 2 1

0 1 0 0

2 0 0 0


has the three blocks shown, and underlying relation

RA = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 2), (4, 1)}.
14

Counting

Block matrices

Let A = (aij) be a k × ` non-negative real-valued matrix.

The matrix A has an underlying relation

RA = {(i , j) : aij > 0} ⊆ [k]× [`].

A block of A is a set of rows K ⊂ [k], and a set of columns L ⊂ [`],
such that aij = 0 if i ∈ K , j /∈ L, or i /∈ K , j ∈ L.

Example: The 4× 4 matrix

A =


0 0 1 2

0 0 2 1

0 1 0 0

2 0 0 0


has the three blocks shown, and underlying relation

RA = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 2), (4, 1)}.
14

Counting

Block matrices

Let A = (aij) be a k × ` non-negative real-valued matrix.

The matrix A has an underlying relation

RA = {(i , j) : aij > 0} ⊆ [k]× [`].

A block of A is a set of rows K ⊂ [k], and a set of columns L ⊂ [`],
such that aij = 0 if i ∈ K , j /∈ L, or i /∈ K , j ∈ L.

Example: The 4× 4 matrix

A =


0 0 1 2

0 0 2 1

0 1 0 0

2 0 0 0


has the three blocks shown, and underlying relation

RA = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 2), (4, 1)}.
14

Counting

Block matrices

Let A = (aij) be a k × ` non-negative real-valued matrix.

The matrix A has an underlying relation

RA = {(i , j) : aij > 0} ⊆ [k]× [`].

A block of A is a set of rows K ⊂ [k], and a set of columns L ⊂ [`],
such that aij = 0 if i ∈ K , j /∈ L, or i /∈ K , j ∈ L.

Example: The 4× 4 matrix

A =


0 0 1 2

0 0 2 1

0 1 0 0

2 0 0 0


has the three blocks shown, and underlying relation

RA = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 2), (4, 1)}.
14

Counting

Block matrices

Let A = (aij) be a k × ` non-negative real-valued matrix.

The matrix A has an underlying relation

RA = {(i , j) : aij > 0} ⊆ [k]× [`].

A block of A is a set of rows K ⊂ [k], and a set of columns L ⊂ [`],
such that aij = 0 if i ∈ K , j /∈ L, or i /∈ K , j ∈ L.

Example: The 4× 4 matrix

A =


0 0 1 2

0 0 2 1

0 1 0 0

2 0 0 0


has the three blocks shown, and underlying relation

RA = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 2), (4, 1)}.
14

Counting

Block matrices

Let A = (aij) be a k × ` non-negative real-valued matrix.

The matrix A has an underlying relation

RA = {(i , j) : aij > 0} ⊆ [k]× [`].

A block of A is a set of rows K ⊂ [k], and a set of columns L ⊂ [`],
such that aij = 0 if i ∈ K , j /∈ L, or i /∈ K , j ∈ L.

Example: The 4× 4 matrix

A =


0 0 1 2

0 0 2 1

0 1 0 0

2 0 0 0


has the three blocks shown, and underlying relation

RA = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 2), (4, 1)}.
14

Counting

Rank-one block matrix matrices

Lemma

Suppose A decomposes into blocks of rank 1. Then

RA is a rectangular relation.

we can recover A from RA and the row and column sums of A.

A decomposition of A into blocks of rank 1 corresponds to the existence of
a row function α : [k]→ R and a column function β : [`]→ R such that
aij = α(i)β(j) for (i , j) ∈ RA.

Example: The 4× 4 matrix

A =


0 0 1 1

0 0 2 2

0 1 0 0

2 0 0 0

, with α =


1
2

1

1

, β =
[

2 1 1 1
]
,

is a rank-one block matrix.
15

Counting

Rank-one block matrix matrices

Lemma

Suppose A decomposes into blocks of rank 1. Then

RA is a rectangular relation.

we can recover A from RA and the row and column sums of A.

A decomposition of A into blocks of rank 1 corresponds to the existence of
a row function α : [k]→ R and a column function β : [`]→ R such that
aij = α(i)β(j) for (i , j) ∈ RA.

Example: The 4× 4 matrix

A =


0 0 1 1

0 0 2 2

0 1 0 0

2 0 0 0

, with α =


1
2

1

1

, β =
[

2 1 1 1
]
,

is a rank-one block matrix.
15

Counting

Rank-one block matrix matrices

Lemma

Suppose A decomposes into blocks of rank 1. Then

RA is a rectangular relation.

we can recover A from RA and the row and column sums of A.

A decomposition of A into blocks of rank 1 corresponds to the existence of
a row function α : [k]→ R and a column function β : [`]→ R such that
aij = α(i)β(j) for (i , j) ∈ RA.

Example: The 4× 4 matrix

A =


0 0 1 1

0 0 2 2

0 1 0 0

2 0 0 0

, with α =


1
2

1

1

, β =
[

2 1 1 1
]
,

is a rank-one block matrix.
15

Counting

Rank-one block matrix matrices

Lemma

Suppose A decomposes into blocks of rank 1. Then

RA is a rectangular relation.

we can recover A from RA and the row and column sums of A.

A decomposition of A into blocks of rank 1 corresponds to the existence of
a row function α : [k]→ R and a column function β : [`]→ R such that
aij = α(i)β(j) for (i , j) ∈ RA.

Example: The 4× 4 matrix

A =


0 0 1 1

0 0 2 2

0 1 0 0

2 0 0 0

, with α =


1
2

1

1

, β =
[

2 1 1 1
]
,

is a rank-one block matrix.
15

Counting

Balance matrices

For a ternary relation R, define its balance matrix to be

M(x , y) =
∣∣{z : (x , y , z) ∈ R}

∣∣ .
R is balanced if M decomposes into blocks of rank 1

(i.e. if M(x , y) = α(x)β(y) for (x , y) ∈ pr1,2R).

Example: The ternary relation on {1, 2, 3, 4}, with tuples{
(1, 3, 1), (1, 4, 1), (1, 4, 3), (2, 3, 2), (2, 3, 4),

(2, 4, 2), (3, 2, 2), (4, 1, 2), (4, 1, 3)
}

has balance matrix

M =


0 0 1 2

0 0 2 1

0 1 0 0

2 0 0 0


which is not a rank-one block matrix.

16

Counting

Balance matrices

For a ternary relation R, define its balance matrix to be

M(x , y) =
∣∣{z : (x , y , z) ∈ R}

∣∣ .
R is balanced if M decomposes into blocks of rank 1

(i.e. if M(x , y) = α(x)β(y) for (x , y) ∈ pr1,2R).

Example: The ternary relation on {1, 2, 3, 4}, with tuples{
(1, 3, 1), (1, 4, 1), (1, 4, 3), (2, 3, 2), (2, 3, 4),

(2, 4, 2), (3, 2, 2), (4, 1, 2), (4, 1, 3)
}

has balance matrix

M =


0 0 1 2

0 0 2 1

0 1 0 0

2 0 0 0


which is not a rank-one block matrix.

16

Counting

Balance matrices

For a ternary relation R, define its balance matrix to be

M(x , y) =
∣∣{z : (x , y , z) ∈ R}

∣∣ .
R is balanced if M decomposes into blocks of rank 1

(i.e. if M(x , y) = α(x)β(y) for (x , y) ∈ pr1,2R).

Example: The ternary relation on {1, 2, 3, 4}, with tuples{
(1, 3, 1), (1, 4, 1), (1, 4, 3), (2, 3, 2), (2, 3, 4),

(2, 4, 2), (3, 2, 2), (4, 1, 2), (4, 1, 3)
}

has balance matrix

M =


0 0 1 2

0 0 2 1

0 1 0 0

2 0 0 0


which is not a rank-one block matrix.

16

Counting

Balance matrices

For a ternary relation R, define its balance matrix to be

M(x , y) =
∣∣{z : (x , y , z) ∈ R}

∣∣ .
R is balanced if M decomposes into blocks of rank 1

(i.e. if M(x , y) = α(x)β(y) for (x , y) ∈ pr1,2R).

Example: The ternary relation on {1, 2, 3, 4}, with tuples{
(1, 3, 1), (1, 4, 1), (1, 4, 3), (2, 3, 2), (2, 3, 4),

(2, 4, 2), (3, 2, 2), (4, 1, 2), (4, 1, 3)
}

has balance matrix

M =


0 0 1 2

0 0 2 1

0 1 0 0

2 0 0 0


which is not a rank-one block matrix.

16

Counting

Balance matrices

For a ternary relation R, define its balance matrix to be

M(x , y) =
∣∣{z : (x , y , z) ∈ R}

∣∣ .
R is balanced if M decomposes into blocks of rank 1

(i.e. if M(x , y) = α(x)β(y) for (x , y) ∈ pr1,2R).

Example: The ternary relation on {1, 2, 3, 4}, with tuples{
(1, 3, 1), (1, 4, 1), (1, 4, 3), (2, 3, 2), (2, 3, 4),

(2, 4, 2), (3, 2, 2), (4, 1, 2), (4, 1, 3)
}

has balance matrix

M =


0 0 1 2

0 0 2 1

0 1 0 0

2 0 0 0


which is not a rank-one block matrix.

16

Counting

Balance matrices

For a ternary relation R, define its balance matrix to be

M(x , y) =
∣∣{z : (x , y , z) ∈ R}

∣∣ .
R is balanced if M decomposes into blocks of rank 1

(i.e. if M(x , y) = α(x)β(y) for (x , y) ∈ pr1,2R).

Example: The ternary relation on {1, 2, 3, 4}, with tuples{
(1, 3, 1), (1, 4, 1), (1, 4, 3), (2, 3, 2), (2, 3, 4),

(2, 4, 2), (3, 2, 2), (4, 1, 2), (4, 1, 3)
}

has balance matrix

M =


0 0 1 2

0 0 2 1

0 1 0 0

2 0 0 0


which is not a rank-one block matrix.

16

Counting

Strong balance

A relation of arity r ≥ 3 can be considered as a collection of ternary
relations over D i × D j × Dk (i , j , k ≥ 1, i + j + k = r).

Example: a relation R ⊆ D4 can be considered as a ternary relation
over D2 × D × D, in 4! ways, by permuting the 4 positions in R.

Γ is strongly balanced if every ternary relation derived from every
relation pp-definable from Γ is balanced.

Strong balance clearly implies strong rectangularity.

17

Counting

Strong balance

A relation of arity r ≥ 3 can be considered as a collection of ternary
relations over D i × D j × Dk (i , j , k ≥ 1, i + j + k = r).

Example: a relation R ⊆ D4 can be considered as a ternary relation
over D2 × D × D, in 4! ways, by permuting the 4 positions in R.

Γ is strongly balanced if every ternary relation derived from every
relation pp-definable from Γ is balanced.

Strong balance clearly implies strong rectangularity.

17

Counting

Strong balance

A relation of arity r ≥ 3 can be considered as a collection of ternary
relations over D i × D j × Dk (i , j , k ≥ 1, i + j + k = r).

Example: a relation R ⊆ D4 can be considered as a ternary relation
over D2 × D × D, in 4! ways, by permuting the 4 positions in R.

Γ is strongly balanced if every ternary relation derived from every
relation pp-definable from Γ is balanced.

Strong balance clearly implies strong rectangularity.

17

Counting

Strong balance

A relation of arity r ≥ 3 can be considered as a collection of ternary
relations over D i × D j × Dk (i , j , k ≥ 1, i + j + k = r).

Example: a relation R ⊆ D4 can be considered as a ternary relation
over D2 × D × D, in 4! ways, by permuting the 4 positions in R.

Γ is strongly balanced if every ternary relation derived from every
relation pp-definable from Γ is balanced.

Strong balance clearly implies strong rectangularity.

17

Counting

#P-completeness

We use the following theorem, which strengthens a theorem of Bulatov
& Dalmau (2007) concerning strong rectangularity.

Theorem

If Γ is not strongly balanced, then #CSP(Γ) is #P-complete.

Proof.

Via weighted #CSP(Γ), using a result of Bulatov & Grohe (2005),
for partition functions of graph homomorphisms.

From this, failure of the rank-one block condition for the balance matrix of
any ternary relation pp-definable on Γ implies #P-completeness.

18

Counting

#P-completeness

We use the following theorem, which strengthens a theorem of Bulatov
& Dalmau (2007) concerning strong rectangularity.

Theorem

If Γ is not strongly balanced, then #CSP(Γ) is #P-complete.

Proof.

Via weighted #CSP(Γ), using a result of Bulatov & Grohe (2005),
for partition functions of graph homomorphisms.

From this, failure of the rank-one block condition for the balance matrix of
any ternary relation pp-definable on Γ implies #P-completeness.

18

Counting

#P-completeness

We use the following theorem, which strengthens a theorem of Bulatov
& Dalmau (2007) concerning strong rectangularity.

Theorem

If Γ is not strongly balanced, then #CSP(Γ) is #P-complete.

Proof.

Via weighted #CSP(Γ), using a result of Bulatov & Grohe (2005),
for partition functions of graph homomorphisms.

From this, failure of the rank-one block condition for the balance matrix of
any ternary relation pp-definable on Γ implies #P-completeness.

18

Counting

The counting algorithm

Suppose now that Γ is strongly balanced, and we have a given instance.

First, we compute a small frame F for set of assignments Φ, using the
algorithm outlined above.

Assume there are at least two variables, so Φ is at least binary.

For 1 ≤ i < j ≤ n, let

Ni, j(a) = |{(u1, . . . , ui) : (u1, . . . , un) ∈ Φ and uj = a}| .

Then the total number of satisfying assignments, N = |Φ|, is

N =
∑
a∈D

Nn−1,n(a) .

19

Counting

The counting algorithm

Suppose now that Γ is strongly balanced, and we have a given instance.

First, we compute a small frame F for set of assignments Φ, using the
algorithm outlined above.

Assume there are at least two variables, so Φ is at least binary.

For 1 ≤ i < j ≤ n, let

Ni, j(a) = |{(u1, . . . , ui) : (u1, . . . , un) ∈ Φ and uj = a}| .

Then the total number of satisfying assignments, N = |Φ|, is

N =
∑
a∈D

Nn−1,n(a) .

19

Counting

The counting algorithm

Suppose now that Γ is strongly balanced, and we have a given instance.

First, we compute a small frame F for set of assignments Φ, using the
algorithm outlined above.

Assume there are at least two variables, so Φ is at least binary.

For 1 ≤ i < j ≤ n, let

Ni, j(a) = |{(u1, . . . , ui) : (u1, . . . , un) ∈ Φ and uj = a}| .

Then the total number of satisfying assignments, N = |Φ|, is

N =
∑
a∈D

Nn−1,n(a) .

19

Counting

The counting algorithm

Suppose now that Γ is strongly balanced, and we have a given instance.

First, we compute a small frame F for set of assignments Φ, using the
algorithm outlined above.

Assume there are at least two variables, so Φ is at least binary.

For 1 ≤ i < j ≤ n, let

Ni, j(a) = |{(u1, . . . , ui) : (u1, . . . , un) ∈ Φ and uj = a}| .

Then the total number of satisfying assignments, N = |Φ|, is

N =
∑
a∈D

Nn−1,n(a) .

19

Counting

The counting algorithm

Suppose now that Γ is strongly balanced, and we have a given instance.

First, we compute a small frame F for set of assignments Φ, using the
algorithm outlined above.

Assume there are at least two variables, so Φ is at least binary.

For 1 ≤ i < j ≤ n, let

Ni, j(a) = |{(u1, . . . , ui) : (u1, . . . , un) ∈ Φ and uj = a}| .

Then the total number of satisfying assignments, N = |Φ|, is

N =
∑
a∈D

Nn−1,n(a) .

19

Counting

What the Ni, j count

If Φ is the relation with tuples in u ∈ Dn:

(u1,1 , u1,2 , · · · · · · , u1,i−1 , u1,i , · · · · · · , u1, j , · · · · · · , u1,n)

(u2,1 , u2,2 , · · · · · · , u2,i−1 , u2,i , · · · · · · , u2, j , · · · · · · , u2,n)
...

... · · · · · ·
...

... · · · · · ·
... · · · · · ·

...
...

... · · · · · ·
...

... · · · · · ·
... · · · · · ·

...

(uN,1 , uN,2 , · · · · · · , uN,i−1 , uN,i , · · · · · · , uN, j , · · · · · · , uN,n)

then Ni , j(a) =
∣∣{u ∈ pr{1,...,i−1, j}Φ : uj = a}

∣∣.
Note that pr{1,...,i−1, j}Φ has fewer than N tuples, in general, because

many different tuples in Φ give rise to the same one in pr{1,...,i−1, j}Φ.

20

Counting

What the Ni, j count

If Φ is the relation with tuples in u ∈ Dn:

(u1,1 , u1,2 , · · · · · · , u1,i−1 , u1,i , · · · · · · , u1, j , · · · · · · , u1,n)

(u2,1 , u2,2 , · · · · · · , u2,i−1 , u2,i , · · · · · · , u2, j , · · · · · · , u2,n)
...

... · · · · · ·
...

... · · · · · ·
... · · · · · ·

...
...

... · · · · · ·
...

... · · · · · ·
... · · · · · ·

...

(uN,1 , uN,2 , · · · · · · , uN,i−1 , uN,i , · · · · · · , uN, j , · · · · · · , uN,n)

then Ni , j(a) =
∣∣{u ∈ pr{1,...,i−1, j}Φ : uj = a}

∣∣.
Note that pr{1,...,i−1, j}Φ has fewer than N tuples, in general, because

many different tuples in Φ give rise to the same one in pr{1,...,i−1, j}Φ.

20

Counting

What the Ni, j count

If Φ is the relation with tuples in u ∈ Dn:

(u1,1 , u1,2 , · · · · · · , u1,i−1 , u1,i , · · · · · · , u1, j , · · · · · · , u1,n)

(u2,1 , u2,2 , · · · · · · , u2,i−1 , u2,i , · · · · · · , u2, j , · · · · · · , u2,n)
...

... · · · · · ·
...

... · · · · · ·
... · · · · · ·

...
...

... · · · · · ·
...

... · · · · · ·
... · · · · · ·

...

(uN,1 , uN,2 , · · · · · · , uN,i−1 , uN,i , · · · · · · , uN, j , · · · · · · , uN,n)

then Ni , j(a) =
∣∣{u ∈ pr{1,...,i−1, j}Φ : uj = a}

∣∣.
Note that pr{1,...,i−1, j}Φ has fewer than N tuples, in general, because

many different tuples in Φ give rise to the same one in pr{1,...,i−1, j}Φ.

20

Counting

What the Ni, j count

If Φ is the relation with tuples in u ∈ Dn:

(u1,1 , u1,2 , · · · · · · , u1,i−1 , u1,i , · · · · · · , u1, j , · · · · · · , u1,n)

(u2,1 , u2,2 , · · · · · · , u2,i−1 , u2,i , · · · · · · , u2, j , · · · · · · , u2,n)
...

... · · · · · ·
...

... · · · · · ·
... · · · · · ·

...
...

... · · · · · ·
...

... · · · · · ·
... · · · · · ·

...

(uN,1 , uN,2 , · · · · · · , uN,i−1 , uN,i , · · · · · · , uN, j , · · · · · · , uN,n)

then Ni , j(a) =
∣∣{u ∈ pr{1,...,i−1, j}Φ : uj = a}

∣∣.
Note that pr{1,...,i−1, j}Φ has fewer than N tuples, in general, because

many different tuples in Φ give rise to the same one in pr{1,...,i−1, j}Φ.

20

Counting

Computing the Ni, j : rectangularity

Each N1, j can be calculated easily, because |pr1, jΦ| ≤ |D|2 = O(1).

Suppose we have computed each Ni−1, j , for some i .

We consider Λ = pr{1,...,i, j}Φ to be a ternary relation on

pr{1,...,i−1}Φ× priΦ× prjΦ.

The crucial observation is that, for different (x , y) ∈ priΦ× prjΦ,

the sets {u ∈ pr{1,...,i−1}Φ : (u, x , y) ∈ Λ} are disjoint or identical.

This follows by rectangularity:

(u , x , y)
(u′, x , y)
(u′, x ′, y ′)

 ∈ Λ ⇒ (u, x ′, y ′) ∈ Λ.

21

Counting

Computing the Ni, j : rectangularity

Each N1, j can be calculated easily, because |pr1, jΦ| ≤ |D|2 = O(1).

Suppose we have computed each Ni−1, j , for some i .

We consider Λ = pr{1,...,i, j}Φ to be a ternary relation on

pr{1,...,i−1}Φ× priΦ× prjΦ.

The crucial observation is that, for different (x , y) ∈ priΦ× prjΦ,

the sets {u ∈ pr{1,...,i−1}Φ : (u, x , y) ∈ Λ} are disjoint or identical.

This follows by rectangularity:

(u , x , y)
(u′, x , y)
(u′, x ′, y ′)

 ∈ Λ ⇒ (u, x ′, y ′) ∈ Λ.

21

Counting

Computing the Ni, j : rectangularity

Each N1, j can be calculated easily, because |pr1, jΦ| ≤ |D|2 = O(1).

Suppose we have computed each Ni−1, j , for some i .

We consider Λ = pr{1,...,i, j}Φ to be a ternary relation on

pr{1,...,i−1}Φ× priΦ× prjΦ.

The crucial observation is that, for different (x , y) ∈ priΦ× prjΦ,

the sets {u ∈ pr{1,...,i−1}Φ : (u, x , y) ∈ Λ} are disjoint or identical.

This follows by rectangularity:

(u , x , y)
(u′, x , y)
(u′, x ′, y ′)

 ∈ Λ ⇒ (u, x ′, y ′) ∈ Λ.

21

Counting

Computing the Ni, j : rectangularity

Each N1, j can be calculated easily, because |pr1, jΦ| ≤ |D|2 = O(1).

Suppose we have computed each Ni−1, j , for some i .

We consider Λ = pr{1,...,i, j}Φ to be a ternary relation on

pr{1,...,i−1}Φ× priΦ× prjΦ.

The crucial observation is that, for different (x , y) ∈ priΦ× prjΦ,

the sets {u ∈ pr{1,...,i−1}Φ : (u, x , y) ∈ Λ} are disjoint or identical.

This follows by rectangularity:

(u , x , y)
(u′, x , y)
(u′, x ′, y ′)

 ∈ Λ ⇒ (u, x ′, y ′) ∈ Λ.

21

Counting

Computing the Ni, j : rectangularity

Each N1, j can be calculated easily, because |pr1, jΦ| ≤ |D|2 = O(1).

Suppose we have computed each Ni−1, j , for some i .

We consider Λ = pr{1,...,i, j}Φ to be a ternary relation on

pr{1,...,i−1}Φ× priΦ× prjΦ.

The crucial observation is that, for different (x , y) ∈ priΦ× prjΦ,

the sets {u ∈ pr{1,...,i−1}Φ : (u, x , y) ∈ Λ} are disjoint or identical.

This follows by rectangularity:

(u , x , y)
(u′, x , y)
(u′, x ′, y ′)

 ∈ Λ ⇒ (u, x ′, y ′) ∈ Λ.

21

Counting

Computing the Ni, j : rectangularity

Each N1, j can be calculated easily, because |pr1, jΦ| ≤ |D|2 = O(1).

Suppose we have computed each Ni−1, j , for some i .

We consider Λ = pr{1,...,i, j}Φ to be a ternary relation on

pr{1,...,i−1}Φ× priΦ× prjΦ.

The crucial observation is that, for different (x , y) ∈ priΦ× prjΦ,

the sets {u ∈ pr{1,...,i−1}Φ : (u, x , y) ∈ Λ} are disjoint or identical.

This follows by rectangularity:

(u , x , y)
(u′, x , y)
(u′, x ′, y ′)

 ∈ Λ ⇒ (u, x ′, y ′) ∈ Λ.

21

Counting

Computing the Ni, j : strong balance

Using a frame F for Φ, we can determine an equivalence relation :

(x , y) ≡ (x ′, y ′) ⇔ {u : (u, x , y) ∈ Λ} = {u : (u, x ′, y ′) ∈ Λ}
(x , y) 6≡ (x ′, y ′) ⇔ {u : (u, x , y) ∈ Λ} ∩ {u : (u, x ′, y ′) ∈ Λ} = ∅.

Now, since Λ is pp-definable in Γ, it is balanced. Therefore, the matrix

M(x , y) = |{u : (u, x , y) ∈ Λ}|

is a rank-one block matrix, and Ni, j(a) =
∑

x∈D M(x , a) are its column
totals.

Let matrix M̂ be the quotient of M under the equivalence ≡.

Using F again, we can determine the block structure of M̂.

Its row and column sums can be determined from Ni−1,i and Ni−1, j .

Hence we can determine M̂, and then M, and finally Ni, j .
22

Counting

Computing the Ni, j : strong balance

Using a frame F for Φ, we can determine an equivalence relation :

(x , y) ≡ (x ′, y ′) ⇔ {u : (u, x , y) ∈ Λ} = {u : (u, x ′, y ′) ∈ Λ}
(x , y) 6≡ (x ′, y ′) ⇔ {u : (u, x , y) ∈ Λ} ∩ {u : (u, x ′, y ′) ∈ Λ} = ∅.

Now, since Λ is pp-definable in Γ, it is balanced. Therefore, the matrix

M(x , y) = |{u : (u, x , y) ∈ Λ}|

is a rank-one block matrix, and Ni, j(a) =
∑

x∈D M(x , a) are its column
totals.

Let matrix M̂ be the quotient of M under the equivalence ≡.

Using F again, we can determine the block structure of M̂.

Its row and column sums can be determined from Ni−1,i and Ni−1, j .

Hence we can determine M̂, and then M, and finally Ni, j .
22

Counting

Computing the Ni, j : strong balance

Using a frame F for Φ, we can determine an equivalence relation :

(x , y) ≡ (x ′, y ′) ⇔ {u : (u, x , y) ∈ Λ} = {u : (u, x ′, y ′) ∈ Λ}
(x , y) 6≡ (x ′, y ′) ⇔ {u : (u, x , y) ∈ Λ} ∩ {u : (u, x ′, y ′) ∈ Λ} = ∅.

Now, since Λ is pp-definable in Γ, it is balanced. Therefore, the matrix

M(x , y) = |{u : (u, x , y) ∈ Λ}|

is a rank-one block matrix, and Ni, j(a) =
∑

x∈D M(x , a) are its column
totals.

Let matrix M̂ be the quotient of M under the equivalence ≡.

Using F again, we can determine the block structure of M̂.

Its row and column sums can be determined from Ni−1,i and Ni−1, j .

Hence we can determine M̂, and then M, and finally Ni, j .
22

Counting

Computing the Ni, j : strong balance

Using a frame F for Φ, we can determine an equivalence relation :

(x , y) ≡ (x ′, y ′) ⇔ {u : (u, x , y) ∈ Λ} = {u : (u, x ′, y ′) ∈ Λ}
(x , y) 6≡ (x ′, y ′) ⇔ {u : (u, x , y) ∈ Λ} ∩ {u : (u, x ′, y ′) ∈ Λ} = ∅.

Now, since Λ is pp-definable in Γ, it is balanced. Therefore, the matrix

M(x , y) = |{u : (u, x , y) ∈ Λ}|

is a rank-one block matrix, and Ni, j(a) =
∑

x∈D M(x , a) are its column
totals.

Let matrix M̂ be the quotient of M under the equivalence ≡.

Using F again, we can determine the block structure of M̂.

Its row and column sums can be determined from Ni−1,i and Ni−1, j .

Hence we can determine M̂, and then M, and finally Ni, j .
22

Counting

Computing the Ni, j : strong balance

Using a frame F for Φ, we can determine an equivalence relation :

(x , y) ≡ (x ′, y ′) ⇔ {u : (u, x , y) ∈ Λ} = {u : (u, x ′, y ′) ∈ Λ}
(x , y) 6≡ (x ′, y ′) ⇔ {u : (u, x , y) ∈ Λ} ∩ {u : (u, x ′, y ′) ∈ Λ} = ∅.

Now, since Λ is pp-definable in Γ, it is balanced. Therefore, the matrix

M(x , y) = |{u : (u, x , y) ∈ Λ}|

is a rank-one block matrix, and Ni, j(a) =
∑

x∈D M(x , a) are its column
totals.

Let matrix M̂ be the quotient of M under the equivalence ≡.

Using F again, we can determine the block structure of M̂.

Its row and column sums can be determined from Ni−1,i and Ni−1, j .

Hence we can determine M̂, and then M, and finally Ni, j .
22

Counting

Computing the Ni, j : strong balance

Using a frame F for Φ, we can determine an equivalence relation :

(x , y) ≡ (x ′, y ′) ⇔ {u : (u, x , y) ∈ Λ} = {u : (u, x ′, y ′) ∈ Λ}
(x , y) 6≡ (x ′, y ′) ⇔ {u : (u, x , y) ∈ Λ} ∩ {u : (u, x ′, y ′) ∈ Λ} = ∅.

Now, since Λ is pp-definable in Γ, it is balanced. Therefore, the matrix

M(x , y) = |{u : (u, x , y) ∈ Λ}|

is a rank-one block matrix, and Ni, j(a) =
∑

x∈D M(x , a) are its column
totals.

Let matrix M̂ be the quotient of M under the equivalence ≡.

Using F again, we can determine the block structure of M̂.

Its row and column sums can be determined from Ni−1,i and Ni−1, j .

Hence we can determine M̂, and then M, and finally Ni, j .
22

Counting

Computing the Ni, j : strong balance

Using a frame F for Φ, we can determine an equivalence relation :

(x , y) ≡ (x ′, y ′) ⇔ {u : (u, x , y) ∈ Λ} = {u : (u, x ′, y ′) ∈ Λ}
(x , y) 6≡ (x ′, y ′) ⇔ {u : (u, x , y) ∈ Λ} ∩ {u : (u, x ′, y ′) ∈ Λ} = ∅.

Now, since Λ is pp-definable in Γ, it is balanced. Therefore, the matrix

M(x , y) = |{u : (u, x , y) ∈ Λ}|

is a rank-one block matrix, and Ni, j(a) =
∑

x∈D M(x , a) are its column
totals.

Let matrix M̂ be the quotient of M under the equivalence ≡.

Using F again, we can determine the block structure of M̂.

Its row and column sums can be determined from Ni−1,i and Ni−1, j .

Hence we can determine M̂, and then M, and finally Ni, j .
22

Counting

Dichotomy theorem

Therefore we have

Theorem

If Γ is strongly balanced, then #CSP(Γ) is computable in time O(n5).
Otherwise, it is #P-complete.

We can prove that strong balance is equivalent to the congruence
singularity criterion of Bulatov (2008). So the dichotomy is identical,
as would be expected.

But is the strong balance property decidable, for a given Γ ?

The answer to this question is yes and, in fact, it is decidable in NP.

23

Counting

Dichotomy theorem

Therefore we have

Theorem

If Γ is strongly balanced, then #CSP(Γ) is computable in time O(n5).
Otherwise, it is #P-complete.

We can prove that strong balance is equivalent to the congruence
singularity criterion of Bulatov (2008). So the dichotomy is identical,
as would be expected.

But is the strong balance property decidable, for a given Γ ?

The answer to this question is yes and, in fact, it is decidable in NP.

23

Counting

Dichotomy theorem

Therefore we have

Theorem

If Γ is strongly balanced, then #CSP(Γ) is computable in time O(n5).
Otherwise, it is #P-complete.

We can prove that strong balance is equivalent to the congruence
singularity criterion of Bulatov (2008). So the dichotomy is identical,
as would be expected.

But is the strong balance property decidable, for a given Γ ?

The answer to this question is yes and, in fact, it is decidable in NP.

23

Counting

Dichotomy theorem

Therefore we have

Theorem

If Γ is strongly balanced, then #CSP(Γ) is computable in time O(n5).
Otherwise, it is #P-complete.

We can prove that strong balance is equivalent to the congruence
singularity criterion of Bulatov (2008). So the dichotomy is identical,
as would be expected.

But is the strong balance property decidable, for a given Γ ?

The answer to this question is yes and, in fact, it is decidable in NP.

23

Decidability

1 Introduction

2 Rectangularity

3 Frames

4 Counting

5 Decidability

6 Conclusion

Decidability

The question

Is the following problem decidable?

Input: a constraint language Γ
Question: is Γ strongly balanced?

And, if so, what is its computational complexity?

Note that D and Γ are not fixed parameters in this meta-problem,
though they were in the dichotomy theorem.

24

Decidability

The question

Is the following problem decidable?

Input: a constraint language Γ
Question: is Γ strongly balanced?

And, if so, what is its computational complexity?

Note that D and Γ are not fixed parameters in this meta-problem,
though they were in the dichotomy theorem.

24

Decidability

The question

Is the following problem decidable?

Input: a constraint language Γ
Question: is Γ strongly balanced?

And, if so, what is its computational complexity?

Note that D and Γ are not fixed parameters in this meta-problem,
though they were in the dichotomy theorem.

24

Decidability

A weaker condition

We can relax the strong balance criterion to a more useful condition which
we call almost-strong balance.

An constraint language Γ with domain D is almost-strongly balanced
if the balance matrix of every pp-definable ternary relation which is a
subset of Dk × D × D, for some k, is a rank-one block matrix.

This is sufficient for the algorithm we have described to succeed, and
hence is equivalent to strong balance by the chain of implications:

strong balance =⇒ almost strong balance
=⇒ the algorithm works
=⇒ the problem is in FP
=⇒ the problem isn’t #P-complete
=⇒ strong balance,

provided that the dichotomy exists, i.e. FP 6= #P.
25

Decidability

A weaker condition

We can relax the strong balance criterion to a more useful condition which
we call almost-strong balance.

An constraint language Γ with domain D is almost-strongly balanced
if the balance matrix of every pp-definable ternary relation which is a
subset of Dk × D × D, for some k, is a rank-one block matrix.

This is sufficient for the algorithm we have described to succeed, and
hence is equivalent to strong balance by the chain of implications:

strong balance =⇒ almost strong balance
=⇒ the algorithm works
=⇒ the problem is in FP
=⇒ the problem isn’t #P-complete
=⇒ strong balance,

provided that the dichotomy exists, i.e. FP 6= #P.
25

Decidability

A weaker condition

We can relax the strong balance criterion to a more useful condition which
we call almost-strong balance.

An constraint language Γ with domain D is almost-strongly balanced
if the balance matrix of every pp-definable ternary relation which is a
subset of Dk × D × D, for some k, is a rank-one block matrix.

This is sufficient for the algorithm we have described to succeed, and
hence is equivalent to strong balance by the chain of implications:

strong balance =⇒ almost strong balance
=⇒ the algorithm works
=⇒ the problem is in FP
=⇒ the problem isn’t #P-complete
=⇒ strong balance,

provided that the dichotomy exists, i.e. FP 6= #P.
25

Decidability

A weaker condition

We can relax the strong balance criterion to a more useful condition which
we call almost-strong balance.

An constraint language Γ with domain D is almost-strongly balanced
if the balance matrix of every pp-definable ternary relation which is a
subset of Dk × D × D, for some k, is a rank-one block matrix.

This is sufficient for the algorithm we have described to succeed, and
hence is equivalent to strong balance by the chain of implications:

strong balance =⇒ almost strong balance
=⇒ the algorithm works
=⇒ the problem is in FP
=⇒ the problem isn’t #P-complete
=⇒ strong balance,

provided that the dichotomy exists, i.e. FP 6= #P.
25

Decidability

A weaker condition

We can relax the strong balance criterion to a more useful condition which
we call almost-strong balance.

An constraint language Γ with domain D is almost-strongly balanced
if the balance matrix of every pp-definable ternary relation which is a
subset of Dk × D × D, for some k, is a rank-one block matrix.

This is sufficient for the algorithm we have described to succeed, and
hence is equivalent to strong balance by the chain of implications:

strong balance =⇒ almost strong balance
=⇒ the algorithm works
=⇒ the problem is in FP
=⇒ the problem isn’t #P-complete
=⇒ strong balance,

provided that the dichotomy exists, i.e. FP 6= #P.
25

Decidability

A weaker condition

We can relax the strong balance criterion to a more useful condition which
we call almost-strong balance.

An constraint language Γ with domain D is almost-strongly balanced
if the balance matrix of every pp-definable ternary relation which is a
subset of Dk × D × D, for some k, is a rank-one block matrix.

This is sufficient for the algorithm we have described to succeed, and
hence is equivalent to strong balance by the chain of implications:

strong balance =⇒ almost strong balance
=⇒ the algorithm works
=⇒ the problem is in FP
=⇒ the problem isn’t #P-complete
=⇒ strong balance,

provided that the dichotomy exists, i.e. FP 6= #P.
25

Decidability

A weaker condition

We can relax the strong balance criterion to a more useful condition which
we call almost-strong balance.

An constraint language Γ with domain D is almost-strongly balanced
if the balance matrix of every pp-definable ternary relation which is a
subset of Dk × D × D, for some k, is a rank-one block matrix.

This is sufficient for the algorithm we have described to succeed, and
hence is equivalent to strong balance by the chain of implications:

strong balance =⇒ almost strong balance
=⇒ the algorithm works
=⇒ the problem is in FP
=⇒ the problem isn’t #P-complete
=⇒ strong balance,

provided that the dichotomy exists, i.e. FP 6= #P.
25

Decidability

A weaker condition

We can relax the strong balance criterion to a more useful condition which
we call almost-strong balance.

An constraint language Γ with domain D is almost-strongly balanced
if the balance matrix of every pp-definable ternary relation which is a
subset of Dk × D × D, for some k, is a rank-one block matrix.

This is sufficient for the algorithm we have described to succeed, and
hence is equivalent to strong balance by the chain of implications:

strong balance =⇒ almost strong balance
=⇒ the algorithm works
=⇒ the problem is in FP
=⇒ the problem isn’t #P-complete
=⇒ strong balance,

provided that the dichotomy exists, i.e. FP 6= #P.
25

Decidability

A weaker condition

We can relax the strong balance criterion to a more useful condition which
we call almost-strong balance.

An constraint language Γ with domain D is almost-strongly balanced
if the balance matrix of every pp-definable ternary relation which is a
subset of Dk × D × D, for some k, is a rank-one block matrix.

This is sufficient for the algorithm we have described to succeed, and
hence is equivalent to strong balance by the chain of implications:

strong balance =⇒ almost strong balance
=⇒ the algorithm works
=⇒ the problem is in FP
=⇒ the problem isn’t #P-complete
=⇒ strong balance,

provided that the dichotomy exists, i.e. FP 6= #P.
25

Decidability

A useful characterisation of strong balance

We require a more uniform condition that a matrix is a rank-one block
matrix. This is provided by the following lemma:

Lemma

M is a rank-one block matrix if and only if its underlying relation is
rectangular, and

u2x2vw = v2w2ux

for every 2× 2 submatrix
(
u v
w x

)
.

Strong rectangularity (which we can test via Mal’tsev polymorphism)
implies that the underlying relation of any such matrix is rectangular.

So, for strong balance, we need that

M(a, c)2M(b, d)2M(a, d)M(b, c) = M(a, d)2M(b, c)2M(a, c)M(b, d)

for all a, b, c, d ∈ D and every M = M(R), R ⊆ Dk × D × D.
26

Decidability

A useful characterisation of strong balance

We require a more uniform condition that a matrix is a rank-one block
matrix. This is provided by the following lemma:

Lemma

M is a rank-one block matrix if and only if its underlying relation is
rectangular, and

u2x2vw = v2w2ux

for every 2× 2 submatrix
(
u v
w x

)
.

Strong rectangularity (which we can test via Mal’tsev polymorphism)
implies that the underlying relation of any such matrix is rectangular.

So, for strong balance, we need that

M(a, c)2M(b, d)2M(a, d)M(b, c) = M(a, d)2M(b, c)2M(a, c)M(b, d)

for all a, b, c, d ∈ D and every M = M(R), R ⊆ Dk × D × D.
26

Decidability

A useful characterisation of strong balance

We require a more uniform condition that a matrix is a rank-one block
matrix. This is provided by the following lemma:

Lemma

M is a rank-one block matrix if and only if its underlying relation is
rectangular, and

u2x2vw = v2w2ux

for every 2× 2 submatrix
(
u v
w x

)
.

Strong rectangularity (which we can test via Mal’tsev polymorphism)
implies that the underlying relation of any such matrix is rectangular.

So, for strong balance, we need that

M(a, c)2M(b, d)2M(a, d)M(b, c) = M(a, d)2M(b, c)2M(a, c)M(b, d)

for all a, b, c, d ∈ D and every M = M(R), R ⊆ Dk × D × D.
26

Decidability

A useful characterisation of strong balance

We require a more uniform condition that a matrix is a rank-one block
matrix. This is provided by the following lemma:

Lemma

M is a rank-one block matrix if and only if its underlying relation is
rectangular, and

u2x2vw = v2w2ux

for every 2× 2 submatrix
(
u v
w x

)
.

Strong rectangularity (which we can test via Mal’tsev polymorphism)
implies that the underlying relation of any such matrix is rectangular.

So, for strong balance, we need that

M(a, c)2M(b, d)2M(a, d)M(b, c) = M(a, d)2M(b, c)2M(a, c)M(b, d)

for all a, b, c, d ∈ D and every M = M(R), R ⊆ Dk × D × D.
26

Decidability

A useful characterisation of strong balance

We require a more uniform condition that a matrix is a rank-one block
matrix. This is provided by the following lemma:

Lemma

M is a rank-one block matrix if and only if its underlying relation is
rectangular, and

u2x2vw = v2w2ux

for every 2× 2 submatrix
(
u v
w x

)
.

Strong rectangularity (which we can test via Mal’tsev polymorphism)
implies that the underlying relation of any such matrix is rectangular.

So, for strong balance, we need that

M(a, c)2M(b, d)2M(a, d)M(b, c) = M(a, d)2M(b, c)2M(a, c)M(b, d)

for all a, b, c, d ∈ D and every M = M(R), R ⊆ Dk × D × D.
26

Decidability

Cartesian powers

We will recast this as a problem in D6. We abbreviate the sextuple
(a, b, c , d , e, f) ∈ D6 to abcdef .

Now, using the usual definition of Cartesian powers of a finite structure,
we can define a new constraint language Γ′ over D6, and translate the
relation R ⊆ Dk to R ′ ⊆ (D6)k , with corresponding balance matrix M ′.

Our condition for Γ to be strongly balanced then becomes that

M ′(aabbab, ccdddc) = M ′(aabbab, ddcccd)

for all a, b, c , d ∈ D and all balance matrices M ′ of these translated
relations R ′.

We will write M ′(ā, b̄) = M ′(b̄, c̄) for these identities, where ā, b̄, c̄ ∈ D6.

27

Decidability

Cartesian powers

We will recast this as a problem in D6. We abbreviate the sextuple
(a, b, c , d , e, f) ∈ D6 to abcdef .

Now, using the usual definition of Cartesian powers of a finite structure,
we can define a new constraint language Γ′ over D6, and translate the
relation R ⊆ Dk to R ′ ⊆ (D6)k , with corresponding balance matrix M ′.

Our condition for Γ to be strongly balanced then becomes that

M ′(aabbab, ccdddc) = M ′(aabbab, ddcccd)

for all a, b, c , d ∈ D and all balance matrices M ′ of these translated
relations R ′.

We will write M ′(ā, b̄) = M ′(b̄, c̄) for these identities, where ā, b̄, c̄ ∈ D6.

27

Decidability

Cartesian powers

We will recast this as a problem in D6. We abbreviate the sextuple
(a, b, c , d , e, f) ∈ D6 to abcdef .

Now, using the usual definition of Cartesian powers of a finite structure,
we can define a new constraint language Γ′ over D6, and translate the
relation R ⊆ Dk to R ′ ⊆ (D6)k , with corresponding balance matrix M ′.

Our condition for Γ to be strongly balanced then becomes that

M ′(aabbab, ccdddc) = M ′(aabbab, ddcccd)

for all a, b, c , d ∈ D and all balance matrices M ′ of these translated
relations R ′.

We will write M ′(ā, b̄) = M ′(b̄, c̄) for these identities, where ā, b̄, c̄ ∈ D6.

27

Decidability

Cartesian powers

We will recast this as a problem in D6. We abbreviate the sextuple
(a, b, c , d , e, f) ∈ D6 to abcdef .

Now, using the usual definition of Cartesian powers of a finite structure,
we can define a new constraint language Γ′ over D6, and translate the
relation R ⊆ Dk to R ′ ⊆ (D6)k , with corresponding balance matrix M ′.

Our condition for Γ to be strongly balanced then becomes that

M ′(aabbab, ccdddc) = M ′(aabbab, ddcccd)

for all a, b, c , d ∈ D and all balance matrices M ′ of these translated
relations R ′.

We will write M ′(ā, b̄) = M ′(b̄, c̄) for these identities, where ā, b̄, c̄ ∈ D6.

27

Decidability

Cartesian powers

We will recast this as a problem in D6. We abbreviate the sextuple
(a, b, c , d , e, f) ∈ D6 to abcdef .

Now, using the usual definition of Cartesian powers of a finite structure,
we can define a new constraint language Γ′ over D6, and translate the
relation R ⊆ Dk to R ′ ⊆ (D6)k , with corresponding balance matrix M ′.

Our condition for Γ to be strongly balanced then becomes that

M ′(aabbab, ccdddc) = M ′(aabbab, ddcccd)

for all a, b, c , d ∈ D and all balance matrices M ′ of these translated
relations R ′.

We will write M ′(ā, b̄) = M ′(b̄, c̄) for these identities, where ā, b̄, c̄ ∈ D6.

27

Decidability

Cartesian powers

We will recast this as a problem in D6. We abbreviate the sextuple
(a, b, c , d , e, f) ∈ D6 to abcdef .

Now, using the usual definition of Cartesian powers of a finite structure,
we can define a new constraint language Γ′ over D6, and translate the
relation R ⊆ Dk to R ′ ⊆ (D6)k , with corresponding balance matrix M ′.

Our condition for Γ to be strongly balanced then becomes that

M ′(aabbab, ccdddc) = M ′(aabbab, ddcccd)

for all a, b, c , d ∈ D and all balance matrices M ′ of these translated
relations R ′.

We will write M ′(ā, b̄) = M ′(b̄, c̄) for these identities, where ā, b̄, c̄ ∈ D6.

27

Decidability

Automorphisms

Our condition is then that M ′(ā, b̄) = M ′(b̄, c̄) for all ā, b̄, c̄
(of appropriate form) and all M ′ = M ′(R ′).

This means that, for every R ′, the number of tuples beginning ā, b̄
is always the same as the number beginning ā, c̄ .

Using a technique of Lovász (1967), we can show that this happens
if and only if, for every ā, b̄, c̄ (of appropriate form), there exists an
automorphism η of Γ′ with η(ā) = ā and η(b̄) = c̄ .

We may therefore use the existence of these automorphisms as the
criterion for strong balance.

28

Decidability

Automorphisms

Our condition is then that M ′(ā, b̄) = M ′(b̄, c̄) for all ā, b̄, c̄
(of appropriate form) and all M ′ = M ′(R ′).

This means that, for every R ′, the number of tuples beginning ā, b̄
is always the same as the number beginning ā, c̄ .

Using a technique of Lovász (1967), we can show that this happens
if and only if, for every ā, b̄, c̄ (of appropriate form), there exists an
automorphism η of Γ′ with η(ā) = ā and η(b̄) = c̄ .

We may therefore use the existence of these automorphisms as the
criterion for strong balance.

28

Decidability

Automorphisms

Our condition is then that M ′(ā, b̄) = M ′(b̄, c̄) for all ā, b̄, c̄
(of appropriate form) and all M ′ = M ′(R ′).

This means that, for every R ′, the number of tuples beginning ā, b̄
is always the same as the number beginning ā, c̄ .

Using a technique of Lovász (1967), we can show that this happens
if and only if, for every ā, b̄, c̄ (of appropriate form), there exists an
automorphism η of Γ′ with η(ā) = ā and η(b̄) = c̄ .

We may therefore use the existence of these automorphisms as the
criterion for strong balance.

28

Decidability

Automorphisms

Our condition is then that M ′(ā, b̄) = M ′(b̄, c̄) for all ā, b̄, c̄
(of appropriate form) and all M ′ = M ′(R ′).

This means that, for every R ′, the number of tuples beginning ā, b̄
is always the same as the number beginning ā, c̄ .

Using a technique of Lovász (1967), we can show that this happens
if and only if, for every ā, b̄, c̄ (of appropriate form), there exists an
automorphism η of Γ′ with η(ā) = ā and η(b̄) = c̄ .

We may therefore use the existence of these automorphisms as the
criterion for strong balance.

28

Decidability

Decidability

Theorem

Strong balance is decidable in NP.

Proof.

First verify that Γ is strongly rectangular. If not, answer no. If so:

Construct Γ′ and, for each ā, b̄, c̄ of the required form, nondeterministically
guess a function η : D6 → D6. Check that these functions are the required
automorphisms. If so, answer yes, otherwise answer no.

As a corollary, we have

Theorem

Congruence singularity is decidable in NP.

29

Decidability

Decidability

Theorem

Strong balance is decidable in NP.

Proof.

First verify that Γ is strongly rectangular. If not, answer no. If so:

Construct Γ′ and, for each ā, b̄, c̄ of the required form, nondeterministically
guess a function η : D6 → D6. Check that these functions are the required
automorphisms. If so, answer yes, otherwise answer no.

As a corollary, we have

Theorem

Congruence singularity is decidable in NP.

29

Decidability

Decidability

Theorem

Strong balance is decidable in NP.

Proof.

First verify that Γ is strongly rectangular. If not, answer no. If so:

Construct Γ′ and, for each ā, b̄, c̄ of the required form, nondeterministically
guess a function η : D6 → D6. Check that these functions are the required
automorphisms. If so, answer yes, otherwise answer no.

As a corollary, we have

Theorem

Congruence singularity is decidable in NP.

29

Decidability

Complexity of strong balance

It seems unlikely that strong balance is as hard as NP.

It is not difficult to show that strong balance is reducible to the graph
isomorphism problem GI.

GI is clearly in NP but, if it is NP-complete then it follows that the
polynomial time hierarchy collapses to the second level.

This gives compelling evidence that strong balance is not NP-complete.

30

Decidability

Complexity of strong balance

It seems unlikely that strong balance is as hard as NP.

It is not difficult to show that strong balance is reducible to the graph
isomorphism problem GI.

GI is clearly in NP but, if it is NP-complete then it follows that the
polynomial time hierarchy collapses to the second level.

This gives compelling evidence that strong balance is not NP-complete.

30

Decidability

Complexity of strong balance

It seems unlikely that strong balance is as hard as NP.

It is not difficult to show that strong balance is reducible to the graph
isomorphism problem GI.

GI is clearly in NP but, if it is NP-complete then it follows that the
polynomial time hierarchy collapses to the second level.

This gives compelling evidence that strong balance is not NP-complete.

30

Decidability

Complexity of strong balance

It seems unlikely that strong balance is as hard as NP.

It is not difficult to show that strong balance is reducible to the graph
isomorphism problem GI.

GI is clearly in NP but, if it is NP-complete then it follows that the
polynomial time hierarchy collapses to the second level.

This gives compelling evidence that strong balance is not NP-complete.

30

Decidability

Complexity of strong balance

It seems unlikely that strong balance is as hard as NP.

It is not difficult to show that strong balance is reducible to the graph
isomorphism problem GI.

GI is clearly in NP but, if it is NP-complete then it follows that the
polynomial time hierarchy collapses to the second level.

This gives compelling evidence that strong balance is not NP-complete.

30

Decidability

Complexity of strong balance

It seems unlikely that strong balance is as hard as NP.

It is not difficult to show that strong balance is reducible to the graph
isomorphism problem GI.

GI is clearly in NP but, if it is NP-complete then it follows that the
polynomial time hierarchy collapses to the second level.

This gives compelling evidence that strong balance is not NP-complete.

30

Conclusion

1 Introduction

2 Rectangularity

3 Frames

4 Counting

5 Decidability

6 Conclusion

Conclusion

Open questions and further work

Can the algorithm for handling strongly rectangular relations be made
more efficient ? It is O(n5), but there seems no reason why is should
be worse than matrix multiplication: O(n2.376). This computation
dominates the counting algorithm.

What about weighted #CSP ?

Bulatov, Dyer, Goldberg, Jalsenius, Jerrum & Richerby
(2010) extended the dichotomy to rational-weighted #CSP.

Cai, Chen & Lu (2011) have extended this result to algebraic
weights by developing the approach used here.

More generally, negative or complex weights can be considered.
Dichotomies were known only in special cases, but Cai & Chen
(2011) have recently obtained the “ultimate” generalisation: to
complex algebraic weights.

31

Conclusion

Open questions and further work

Can the algorithm for handling strongly rectangular relations be made
more efficient ? It is O(n5), but there seems no reason why is should
be worse than matrix multiplication: O(n2.376). This computation
dominates the counting algorithm.

What about weighted #CSP ?

Bulatov, Dyer, Goldberg, Jalsenius, Jerrum & Richerby
(2010) extended the dichotomy to rational-weighted #CSP.

Cai, Chen & Lu (2011) have extended this result to algebraic
weights by developing the approach used here.

More generally, negative or complex weights can be considered.
Dichotomies were known only in special cases, but Cai & Chen
(2011) have recently obtained the “ultimate” generalisation: to
complex algebraic weights.

31

Conclusion

Open questions and further work

What new or known special cases (for restricted classes of Γ)
can be derived from our results? Can the algorithm be made more
efficient in these cases? Most known special cases have O(n) time
counting algorithms.

What can be said if restrictions are placed on the instance ?
For example, if any variable can occur only a bounded number
of times in the constraints ? The two known approaches to the
general dichotomy shed no light on this.

What can be said for approximate counting ? It seems unlikely that
a simple dichotomy exists, but D, Goldberg and Jerrum (2010)
have given a trichotomy for the Boolean domain.

Can we be more precise about the complexity of strong balance?
Is it equivalent to GI? Is it in P (e.g. via a special case of GI) ?

32

Conclusion

Open questions and further work

What new or known special cases (for restricted classes of Γ)
can be derived from our results? Can the algorithm be made more
efficient in these cases? Most known special cases have O(n) time
counting algorithms.

What can be said if restrictions are placed on the instance ?
For example, if any variable can occur only a bounded number
of times in the constraints ? The two known approaches to the
general dichotomy shed no light on this.

What can be said for approximate counting ? It seems unlikely that
a simple dichotomy exists, but D, Goldberg and Jerrum (2010)
have given a trichotomy for the Boolean domain.

Can we be more precise about the complexity of strong balance?
Is it equivalent to GI? Is it in P (e.g. via a special case of GI) ?

32

Conclusion

Open questions and further work

What new or known special cases (for restricted classes of Γ)
can be derived from our results? Can the algorithm be made more
efficient in these cases? Most known special cases have O(n) time
counting algorithms.

What can be said if restrictions are placed on the instance ?
For example, if any variable can occur only a bounded number
of times in the constraints ? The two known approaches to the
general dichotomy shed no light on this.

What can be said for approximate counting ? It seems unlikely that
a simple dichotomy exists, but D, Goldberg and Jerrum (2010)
have given a trichotomy for the Boolean domain.

Can we be more precise about the complexity of strong balance?
Is it equivalent to GI? Is it in P (e.g. via a special case of GI) ?

32

Conclusion

Open questions and further work

What new or known special cases (for restricted classes of Γ)
can be derived from our results? Can the algorithm be made more
efficient in these cases? Most known special cases have O(n) time
counting algorithms.

What can be said if restrictions are placed on the instance ?
For example, if any variable can occur only a bounded number
of times in the constraints ? The two known approaches to the
general dichotomy shed no light on this.

What can be said for approximate counting ? It seems unlikely that
a simple dichotomy exists, but D, Goldberg and Jerrum (2010)
have given a trichotomy for the Boolean domain.

Can we be more precise about the complexity of strong balance?
Is it equivalent to GI? Is it in P (e.g. via a special case of GI) ?

32

	Introduction
	Rectangularity
	Frames
	Counting
	Decidability
	Conclusion

