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It started on day one of my PhD program ...



August 1, 2000 ...

PhD advisor Frank Kschischang.

‘‘Codes on graphs: normal realizations” [Forney, 2001]

Kschischang: “Go read it! ”

and went on a vacation ...
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Normal graph duality
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Duality theorem: Dual normal graphs represent dual codes



One month later ...

Kschischang:
“Why do normal graphs have duality, but factor graphs do
not?”

Two weeks later ...

Me: “We need ... Fourier ... we need convolution..."

Given f(x, y) and g(y, z)

f(x, y) � g(y, z) =
¸
w

f(x, y−w)g(w, z)



One month later ...

Kschischang:
“Why do normal graphs have duality, but factor graphs do
not?”

Two weeks later ...

Me: “We need ... Fourier ... we need convolution..."

Given f(x, y) and g(y, z)

f(x, y) � g(y, z) =
¸
w

f(x, y−w)g(w, z)



One month later ...

Kschischang:
“Why do normal graphs have duality, but factor graphs do
not?”

Two weeks later ...

Me: “We need ... Fourier ... we need convolution..."

Given f(x, y) and g(y, z)

f(x, y) � g(y, z) =
¸
w

f(x, y−w)g(w, z)



Convolutional factor graph

bipartite graph: function nodes and variables nodes

encodes a convolutional product

f1 x1

f2 x2

f3 x3

f1(x1, x2) � f2(x1, x3) � f3(x1, x3)



Factor graph duality

Dual FGs: (G, {fi},�) and (G, {f̂i}, �)

�
F↔ �⇒ Dual FGs encode a FT pair

Dual FGs of codes: (G, {δCi
},�) and (G, {δCKi

}, �)

δC
F↔ δCK⇒ Dual FGs represent dual codes

Normal graph duality reinterpreted

“On factor graphs and the Fourier transform” [Mao &
Kschischang, ISIT2001, IT2005]
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The reviewer ...

Dave Forney

9 pages of review

Forney: “It may take years for people to take it
[convolutional FG] and run”
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Going probabilistic ...

Bredan Frey

“Convolutional FGs as probabilistic models” [Mao,
Kschischang & Frey, UAI 2004]

Each node: joint distribution of a collection of (latent)
variables
All collections are independent⇒ Convoltional CFG represents the joint distribution of
observed variables that are linearly transformed from the
latent variables
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Linear characteristic graphical models

December 2010, email from Danny Bickson:
“Inference with multivariate heavy-tails in linear models”
[Bickson & Guestrin, NIPS2010]

modelling heavy-tail (stable) distributions
applications and inference algorithms
based on convolutional FG and duality
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Missed opportunity ...

Year 2005 ... met Frey in Toronto

Frey: “How about a model for CDF?”

“Cumulative distribution networks and derivative-
sum-product algorithm” [Huang & Frey, UAI2008]

x1

FX1X2

x2

FX1X3

x3

FX1X3

CDN:
multiplicative FG
each function node: a CDF⇒ the global function is a CDF
efficiently solves structured ranking problems
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Conditional/marginal independence properties

f1 x1

f2 x2

f3 x3

Multiplicative FG: conditional indepdence;

Convolutional FG: marginal independence;

CDN: marginal independence



Again, it is Frank Kschischang ...

Early 2010 ...
Kschischang: "Look at this!"

“Constrained coding as networks of relations” [Schwartz &
Bruck 2008]
“Holographic algorithms” [Valiant 2004]

Counting problem
Holographic reduction:

°±→ °±

Holant theorem

Apparent “normal” structure

Do something with holographic algorithm?

My question: the magic of Holant theorem ...
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Give it the student ...

Ali Al-Bashebsheh

Reformulated normal factor graphs

Generalized Holant theorem

Unified normal graph duality theorem and Holant theorem
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Two concurrent submissions ...

Editor Pascal Vontobel

“Normal factor graphs and holographic transformations "
[Al-Bashebsheh & Mao 2011]

“Codes on graphs: duality and MacWilliams identities”
[Forney 2011]

Extensive comments, rounds of rewriting
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Normal factor graphs under new semantics ...

x1
x3

x4
x5 x6

x2 x7

f1 f2

f3 f4

ZG(x1, x2) :=
¸

x3,...,x7

f1(x1, x3, x4)f2(x3, x5, x6)f3(x2, x4, x5, x7)f4(x6, x7).

:= xf1, f2, f3, f4y.

:= xf1(x1, x3, x4), f2(x3, x5, x6), f3(x2, x4, x5, x7), f4(x6, x7).y



Functions as multidimensional arrays

|X1| = 2, |X2| = 3, and |X3| = 5.
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Example (Equality Indicator)

δ(s, s 1) :=

{
1, s = s 1

0, otherwise

δ(�, �): identity matrix

Example (“Transformer”)
Function Φ : χ� χ→ C is called a transformer if it
corresponds to an invertible matrix.
“Dual pair of transformers” Φ and pΦ: an inverse pair of
matrices

xΦ(s, t), pΦ(t, s 1)y = δ(s, s 1)
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Functions as linear maps

xf, gy:

xf(s), g(s)y: vector-vector dot product

xf(s), g(s, t)y: vector-matrix product

xf(s, t), g(t, u)y: matrix-matrix product

xf(s), g(t)y: vector outer product, matrix Kronecker
product, tensor product etc

NFGs are linear algebraic expressions written graphically.
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Opening/closing the box [Vontobel, Loeliger, 2002]
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Holographic transformation

x1

x2

f2

f3 f4

f5

f1

y1

y2

f2

f3 f4

f5

f1

ZG ZGH

Theorem (Generalized Holant Theorem)
ZGH is “externally transformed” version of ZG.



Generalized Holant Theorem

When external transformers are δ(�, �)
reduces to Valiant’s Holant Theorem

When all transformers are Fourier kernels
reduces to General NFG Duality Theorem
when each function is a subgroup-indicator function

reduces to Forney’s Normal Graph Duality Theorem
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General NFG Duality Theorem
x1

x2

f2

f3 f4

f5

f1
x̂1

x̂2

F [f1] F [f2]

F [f4]F [f3]

F [f5]

x1

x2

f1 f2

f4f3

f5

x̂1

x̂2

f1 f2

f3 f4

f5



Holographic algorithm: PerfMatch(H)

H: weighted graph

PerfMatch(H)

π(H) :=
¸

MPQ(H)

¹
ePM

w(e),

where Q(H) the set of all perfect matchings of H.

If H is planar, π(H) is poly. solvable by FKT algorithm

Matchgate (G,U), where G is a weighted graph, U � V(G).

Signature of matchgate (G,U) is a function µ(xU) ...
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Holographic algorithm: a graph-theoretic property

Lemma: π(H) =
°
xE

±m
i=1 µi(xE(i)).
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2 1 3
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?
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a
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Holographic algorithm

Solve Z :=
°
xE

±
v fv(xE(v))

⇓
c

a

?
3

1
a

c

1{2

c

a

?
3

1
a

c

1{2

?
2

?
2

b

b b

b
2

2

31

31

⇓
FKT



Don’t forget the mathematicians ...

Vontobel pointed to Trace Diagram, Birdtracks ...

“Unshackling linear algebra from linear notation” [Peterson
2009]
“Group Theory: Birdtracks, Lie’s, and Exceptional Group”,
[Cvitanovic, 2008]
Trace diagram is contained in NFG framework

Trace diagrams are NFGs with degree 1, 2, or |χ|

“NFGs: a diagrammatic approach to linear algebra”
[Al-Bashebsheh, Mao & Vontobel ISIT2011]
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Ciliated function nodes

Draw the edges of f counter-clockwise, with first edge
ciliated

f

. . .

. . .

x1 x2 xk

xn xn−1 xk+1

f

. . .

. . .

x1 x2 xk

xn xn−1 xk+1

f(x1, . . . , xn) f(xk+1, . . . , xn, x1, . . . , xk)



Ciliated function nodes

A

B

x2

x1

A

B

x2

x1

A

B

x2

x1

A

B

x2

x1

A � B A � BT AT � BT AT � B



Trace

A i

Z =
°
iA(i, i) = tr(A)



tr(A � B) = tr(B �A)

Proof:

A B

Read the graph in two ways:
Z = tr(A � B) and Z = tr(B �A). l



Levi-Civita symbol

Sn: the permutation group on {1, . . . , n}, n = |χ|.
Levi-Civita symbol, ε : {1, . . . , n}n → C s.t.

ε(x1, . . . , xn)=

sgn
(
1 � � � n

x1 � � � xn

)
,

(
1 � � � n

x1 � � � xn

)
P Sn

0, otherwise

Contraction (n = 3).¸
t

ε(y1, y2, t)ε(t, x2, x1) = δ(x1, y2)δ(x2, y1)−δ(x1, y1)δ(x2, y2).
x1 x2

t

ε

ε

y1 y2

=

x1 x2

y1 y2

−

x1 x2

y1 y2



Levi-Civita symbol

Sn: the permutation group on {1, . . . , n}, n = |χ|.
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Vector cross product

u, v : {1, 2, 3}→ F ⇔ u, v P F3.

Cross Product.

Z(x) =
¸
t1,t2

u(t1)v(t2)ε(t1, t2, x).

Z(1) = u(2)v(3) − u(3)v(2)

Z(2) = u(3)v(1) − u(1)v(3)

Z(3) = u(1)v(2) − u(2)v(1)

ε

u v

x

t1 t2

Z = u� v.
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Cross product identities
(u� v) � (s�w) = ((u� v)� s) �w = (w� (u� v)) � s

= ((s�w)� u) � v = (v� (s�w)) � u

= (u � s)(v �w) − (u �w)(v � s).
Proof:

w s

ε

ε

u v

=

w s

ε

ε

u v

=

w s

ε

ε

u v

=

w s

ε

ε

u v

=

w s

ε

ε

u v

=

w s

ε

ε

u v

=

w s

u v

−

w s

u v



Determinant

|A| :=
°
σPSn

sgn(σ)
±n
j=1A(j, σ(j)).

Lemma:

ε

. . .A A

= |A| ε

. . .



|A � B| = |A||B|

Proof:

|AB|
ε

. . .
=

ε

. . .AB AB

=
ε

. . .
A A

B B

= |A|
ε

. . .B B

= |A||B|
ε

. . .



|AT | = |A|

Proof:

∣∣AT
∣∣

ε

ε

. . . =

ε

ε

. . .AT AT =

ε

ε

. . .A A = |A|

ε

ε

. . .



Pfaffian

A is a 2n� 2n skew-symmetric matrix.

Pf(A) = 1
2nn!

°
σPS2n

sgn(σ)
n±
i=1

A
(
σ(2i− 1), σ(2i)

)
.

ε A A . . . A

Z = n! � 2n � Pf(A)

Affirms a conjecture of Peterson [Peterson, 2009].



Pfaffian and Determinant

J :=

(
0 In

−In 0

)
, A := RT � J �R for some R. Then Pf(A)2 = |A|.

Proof: Pf(J) = �1

�Pf(A) ε J J . . . J = ε A A . . . A

= ε J J . . . J

R R R

R R R

= ε J J . . . J

R R R

R R R

= |R| ε J J . . . J

�Pf(A) = |R|⇒ Pf(A)2 = |R|2 = |A|.



Going probabilistic ...

“NFGs as probabilistic model”
[Al-Bashebsheh & Mao, 2011, soon available on arxiv]

Internal edges: latent variabels
External edges: observed variables
Exterior function: joint distribution of observed variables
(up to scale)

Function:
compatibility/constraints/interaction protential
source of randomness, i.e., distribution

Bipartite normal: WLOG
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Special functions

x1

x2

· · ·
xn

x1

x2

· · ·
xn

Σ

x1

x2

· · ·
xn

max



“Cumulus” and “difference” transformers

A D

χ: an ordered set (integers) with “ ” well defined.
A(x, x 1) = [x 1 ¤ x]

E.g. |χ| = 2, A =

[
1 0

1 1

]
;

|χ| = 3, A =



1 0 0

1 1 0

1 1 1




xfX(x
1), A(x, x 1)y = FX(x).

D := A−1, e.g.D =



1 0 0

−1 1 0

0 −1 1


 for |χ|=3.



Bipartite NFG reduces to FG

One partitiion: arbitrary potential functions

The other partition: equality indicators⇒ NFG model reduces to FG model
x1f1

x2f2

x3f3

f1 x1

f2 x2

f3 x3



Bipartite NFG reduces to convolutional FG

One side: distributions of indep. collections of latent RVs

The other side: sum indicators

No RVs from the same collection connect to the same
indicator⇒ NFG model reduces to convolutional FG model

x1∑
f1

x2f2

x3∑
f3

f1 x1

f2 x2

f3 x3°
u,v
f(x, u)g(v, y)[w = u+ v] =

°
u
f(x, u)g(w− u, y) = f(x,w) � g(w,y)



CDN is a holographic transformed NFG

Lemma
x1

A

x2

. . .
xn

max

=

x1

=

A A

x2

. . .
xn

Corollary

x1

x2

· · ·
xn

A

D D

max

=
x1

x2

· · ·
xn



CDN is a holographic transformed NFG

One side: distributions of indep. collections of latent RVs

The other side: max indicators

No RVs from the same collection connect to the same
indicator

x1

x2

x3

f1

f2

f3

max

max



CDN is a holographic transformed NFG

x1

x2

x3

f1

f2

f3

max

max

x1f1

x2

f2

x3f3

A

A

D
D
D

D

D

A

A

A
A
A

A

max

max

x1

FX1X2

x2

FX1X3

x3

FX1X3

x1
FX1X2

x2
FX1X3

x3

FX1X3



The independence coincidence of Convolutional FG
and CDN

x1

x2

x3

f1

f2

f3

max

max

x1∑
f1

x2f2

x3∑
f3

Both are generative models

In fact, the independence property holds when changing
indicator to conditional distributions

Changing the right-side functions gives rise to a family of
infinite models ... what applications?



The End
NFGs are linear algebraic expressions written graphically

Opening/closing the box is a powerful technique

NFGs are potential tools for inference

Outlook: continuous alphabets
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